• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * smc91x.c
3  * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4  *
5  * Copyright (C) 1996 by Erik Stahlman
6  * Copyright (C) 2001 Standard Microsystems Corporation
7  *	Developed by Simple Network Magic Corporation
8  * Copyright (C) 2003 Monta Vista Software, Inc.
9  *	Unified SMC91x driver by Nicolas Pitre
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24  *
25  * Arguments:
26  * 	io	= for the base address
27  *	irq	= for the IRQ
28  *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
29  *
30  * original author:
31  * 	Erik Stahlman <erik@vt.edu>
32  *
33  * hardware multicast code:
34  *    Peter Cammaert <pc@denkart.be>
35  *
36  * contributors:
37  * 	Daris A Nevil <dnevil@snmc.com>
38  *      Nicolas Pitre <nico@cam.org>
39  *	Russell King <rmk@arm.linux.org.uk>
40  *
41  * History:
42  *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
43  *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
44  *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
45  *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
46  *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
47  *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
48  *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
49  *                                more bus abstraction, big cleanup, etc.
50  *   29/09/03  Russell King       - add driver model support
51  *                                - ethtool support
52  *                                - convert to use generic MII interface
53  *                                - add link up/down notification
54  *                                - don't try to handle full negotiation in
55  *                                  smc_phy_configure
56  *                                - clean up (and fix stack overrun) in PHY
57  *                                  MII read/write functions
58  *   22/09/04  Nicolas Pitre      big update (see commit log for details)
59  */
60 static const char version[] =
61 	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@cam.org>\n";
62 
63 /* Debugging level */
64 #ifndef SMC_DEBUG
65 #define SMC_DEBUG		0
66 #endif
67 
68 
69 #include <linux/init.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/sched.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/interrupt.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/platform_device.h>
80 #include <linux/spinlock.h>
81 #include <linux/ethtool.h>
82 #include <linux/mii.h>
83 #include <linux/workqueue.h>
84 
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 
89 #include <asm/io.h>
90 
91 #include "smc91x.h"
92 
93 #ifndef SMC_NOWAIT
94 # define SMC_NOWAIT		0
95 #endif
96 static int nowait = SMC_NOWAIT;
97 module_param(nowait, int, 0400);
98 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
99 
100 /*
101  * Transmit timeout, default 5 seconds.
102  */
103 static int watchdog = 1000;
104 module_param(watchdog, int, 0400);
105 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
106 
107 MODULE_LICENSE("GPL");
108 MODULE_ALIAS("platform:smc91x");
109 
110 /*
111  * The internal workings of the driver.  If you are changing anything
112  * here with the SMC stuff, you should have the datasheet and know
113  * what you are doing.
114  */
115 #define CARDNAME "smc91x"
116 
117 /*
118  * Use power-down feature of the chip
119  */
120 #define POWER_DOWN		1
121 
122 /*
123  * Wait time for memory to be free.  This probably shouldn't be
124  * tuned that much, as waiting for this means nothing else happens
125  * in the system
126  */
127 #define MEMORY_WAIT_TIME	16
128 
129 /*
130  * The maximum number of processing loops allowed for each call to the
131  * IRQ handler.
132  */
133 #define MAX_IRQ_LOOPS		8
134 
135 /*
136  * This selects whether TX packets are sent one by one to the SMC91x internal
137  * memory and throttled until transmission completes.  This may prevent
138  * RX overruns a litle by keeping much of the memory free for RX packets
139  * but to the expense of reduced TX throughput and increased IRQ overhead.
140  * Note this is not a cure for a too slow data bus or too high IRQ latency.
141  */
142 #define THROTTLE_TX_PKTS	0
143 
144 /*
145  * The MII clock high/low times.  2x this number gives the MII clock period
146  * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
147  */
148 #define MII_DELAY		1
149 
150 #if SMC_DEBUG > 0
151 #define DBG(n, args...)					\
152 	do {						\
153 		if (SMC_DEBUG >= (n))			\
154 			printk(args);	\
155 	} while (0)
156 
157 #define PRINTK(args...)   printk(args)
158 #else
159 #define DBG(n, args...)   do { } while(0)
160 #define PRINTK(args...)   printk(KERN_DEBUG args)
161 #endif
162 
163 #if SMC_DEBUG > 3
PRINT_PKT(u_char * buf,int length)164 static void PRINT_PKT(u_char *buf, int length)
165 {
166 	int i;
167 	int remainder;
168 	int lines;
169 
170 	lines = length / 16;
171 	remainder = length % 16;
172 
173 	for (i = 0; i < lines ; i ++) {
174 		int cur;
175 		for (cur = 0; cur < 8; cur++) {
176 			u_char a, b;
177 			a = *buf++;
178 			b = *buf++;
179 			printk("%02x%02x ", a, b);
180 		}
181 		printk("\n");
182 	}
183 	for (i = 0; i < remainder/2 ; i++) {
184 		u_char a, b;
185 		a = *buf++;
186 		b = *buf++;
187 		printk("%02x%02x ", a, b);
188 	}
189 	printk("\n");
190 }
191 #else
192 #define PRINT_PKT(x...)  do { } while(0)
193 #endif
194 
195 
196 /* this enables an interrupt in the interrupt mask register */
197 #define SMC_ENABLE_INT(lp, x) do {					\
198 	unsigned char mask;						\
199 	spin_lock_irq(&lp->lock);					\
200 	mask = SMC_GET_INT_MASK(lp);					\
201 	mask |= (x);							\
202 	SMC_SET_INT_MASK(lp, mask);					\
203 	spin_unlock_irq(&lp->lock);					\
204 } while (0)
205 
206 /* this disables an interrupt from the interrupt mask register */
207 #define SMC_DISABLE_INT(lp, x) do {					\
208 	unsigned char mask;						\
209 	spin_lock_irq(&lp->lock);					\
210 	mask = SMC_GET_INT_MASK(lp);					\
211 	mask &= ~(x);							\
212 	SMC_SET_INT_MASK(lp, mask);					\
213 	spin_unlock_irq(&lp->lock);					\
214 } while (0)
215 
216 /*
217  * Wait while MMU is busy.  This is usually in the order of a few nanosecs
218  * if at all, but let's avoid deadlocking the system if the hardware
219  * decides to go south.
220  */
221 #define SMC_WAIT_MMU_BUSY(lp) do {					\
222 	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
223 		unsigned long timeout = jiffies + 2;			\
224 		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
225 			if (time_after(jiffies, timeout)) {		\
226 				printk("%s: timeout %s line %d\n",	\
227 					dev->name, __FILE__, __LINE__);	\
228 				break;					\
229 			}						\
230 			cpu_relax();					\
231 		}							\
232 	}								\
233 } while (0)
234 
235 
236 /*
237  * this does a soft reset on the device
238  */
smc_reset(struct net_device * dev)239 static void smc_reset(struct net_device *dev)
240 {
241 	struct smc_local *lp = netdev_priv(dev);
242 	void __iomem *ioaddr = lp->base;
243 	unsigned int ctl, cfg;
244 	struct sk_buff *pending_skb;
245 
246 	DBG(2, "%s: %s\n", dev->name, __func__);
247 
248 	/* Disable all interrupts, block TX tasklet */
249 	spin_lock_irq(&lp->lock);
250 	SMC_SELECT_BANK(lp, 2);
251 	SMC_SET_INT_MASK(lp, 0);
252 	pending_skb = lp->pending_tx_skb;
253 	lp->pending_tx_skb = NULL;
254 	spin_unlock_irq(&lp->lock);
255 
256 	/* free any pending tx skb */
257 	if (pending_skb) {
258 		dev_kfree_skb(pending_skb);
259 		dev->stats.tx_errors++;
260 		dev->stats.tx_aborted_errors++;
261 	}
262 
263 	/*
264 	 * This resets the registers mostly to defaults, but doesn't
265 	 * affect EEPROM.  That seems unnecessary
266 	 */
267 	SMC_SELECT_BANK(lp, 0);
268 	SMC_SET_RCR(lp, RCR_SOFTRST);
269 
270 	/*
271 	 * Setup the Configuration Register
272 	 * This is necessary because the CONFIG_REG is not affected
273 	 * by a soft reset
274 	 */
275 	SMC_SELECT_BANK(lp, 1);
276 
277 	cfg = CONFIG_DEFAULT;
278 
279 	/*
280 	 * Setup for fast accesses if requested.  If the card/system
281 	 * can't handle it then there will be no recovery except for
282 	 * a hard reset or power cycle
283 	 */
284 	if (lp->cfg.flags & SMC91X_NOWAIT)
285 		cfg |= CONFIG_NO_WAIT;
286 
287 	/*
288 	 * Release from possible power-down state
289 	 * Configuration register is not affected by Soft Reset
290 	 */
291 	cfg |= CONFIG_EPH_POWER_EN;
292 
293 	SMC_SET_CONFIG(lp, cfg);
294 
295 	/* this should pause enough for the chip to be happy */
296 	/*
297 	 * elaborate?  What does the chip _need_? --jgarzik
298 	 *
299 	 * This seems to be undocumented, but something the original
300 	 * driver(s) have always done.  Suspect undocumented timing
301 	 * info/determined empirically. --rmk
302 	 */
303 	udelay(1);
304 
305 	/* Disable transmit and receive functionality */
306 	SMC_SELECT_BANK(lp, 0);
307 	SMC_SET_RCR(lp, RCR_CLEAR);
308 	SMC_SET_TCR(lp, TCR_CLEAR);
309 
310 	SMC_SELECT_BANK(lp, 1);
311 	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
312 
313 	/*
314 	 * Set the control register to automatically release successfully
315 	 * transmitted packets, to make the best use out of our limited
316 	 * memory
317 	 */
318 	if(!THROTTLE_TX_PKTS)
319 		ctl |= CTL_AUTO_RELEASE;
320 	else
321 		ctl &= ~CTL_AUTO_RELEASE;
322 	SMC_SET_CTL(lp, ctl);
323 
324 	/* Reset the MMU */
325 	SMC_SELECT_BANK(lp, 2);
326 	SMC_SET_MMU_CMD(lp, MC_RESET);
327 	SMC_WAIT_MMU_BUSY(lp);
328 }
329 
330 /*
331  * Enable Interrupts, Receive, and Transmit
332  */
smc_enable(struct net_device * dev)333 static void smc_enable(struct net_device *dev)
334 {
335 	struct smc_local *lp = netdev_priv(dev);
336 	void __iomem *ioaddr = lp->base;
337 	int mask;
338 
339 	DBG(2, "%s: %s\n", dev->name, __func__);
340 
341 	/* see the header file for options in TCR/RCR DEFAULT */
342 	SMC_SELECT_BANK(lp, 0);
343 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
344 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
345 
346 	SMC_SELECT_BANK(lp, 1);
347 	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
348 
349 	/* now, enable interrupts */
350 	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
351 	if (lp->version >= (CHIP_91100 << 4))
352 		mask |= IM_MDINT;
353 	SMC_SELECT_BANK(lp, 2);
354 	SMC_SET_INT_MASK(lp, mask);
355 
356 	/*
357 	 * From this point the register bank must _NOT_ be switched away
358 	 * to something else than bank 2 without proper locking against
359 	 * races with any tasklet or interrupt handlers until smc_shutdown()
360 	 * or smc_reset() is called.
361 	 */
362 }
363 
364 /*
365  * this puts the device in an inactive state
366  */
smc_shutdown(struct net_device * dev)367 static void smc_shutdown(struct net_device *dev)
368 {
369 	struct smc_local *lp = netdev_priv(dev);
370 	void __iomem *ioaddr = lp->base;
371 	struct sk_buff *pending_skb;
372 
373 	DBG(2, "%s: %s\n", CARDNAME, __func__);
374 
375 	/* no more interrupts for me */
376 	spin_lock_irq(&lp->lock);
377 	SMC_SELECT_BANK(lp, 2);
378 	SMC_SET_INT_MASK(lp, 0);
379 	pending_skb = lp->pending_tx_skb;
380 	lp->pending_tx_skb = NULL;
381 	spin_unlock_irq(&lp->lock);
382 	if (pending_skb)
383 		dev_kfree_skb(pending_skb);
384 
385 	/* and tell the card to stay away from that nasty outside world */
386 	SMC_SELECT_BANK(lp, 0);
387 	SMC_SET_RCR(lp, RCR_CLEAR);
388 	SMC_SET_TCR(lp, TCR_CLEAR);
389 
390 #ifdef POWER_DOWN
391 	/* finally, shut the chip down */
392 	SMC_SELECT_BANK(lp, 1);
393 	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
394 #endif
395 }
396 
397 /*
398  * This is the procedure to handle the receipt of a packet.
399  */
smc_rcv(struct net_device * dev)400 static inline void  smc_rcv(struct net_device *dev)
401 {
402 	struct smc_local *lp = netdev_priv(dev);
403 	void __iomem *ioaddr = lp->base;
404 	unsigned int packet_number, status, packet_len;
405 
406 	DBG(3, "%s: %s\n", dev->name, __func__);
407 
408 	packet_number = SMC_GET_RXFIFO(lp);
409 	if (unlikely(packet_number & RXFIFO_REMPTY)) {
410 		PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
411 		return;
412 	}
413 
414 	/* read from start of packet */
415 	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
416 
417 	/* First two words are status and packet length */
418 	SMC_GET_PKT_HDR(lp, status, packet_len);
419 	packet_len &= 0x07ff;  /* mask off top bits */
420 	DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
421 		dev->name, packet_number, status,
422 		packet_len, packet_len);
423 
424 	back:
425 	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
426 		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
427 			/* accept VLAN packets */
428 			status &= ~RS_TOOLONG;
429 			goto back;
430 		}
431 		if (packet_len < 6) {
432 			/* bloody hardware */
433 			printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
434 					dev->name, packet_len, status);
435 			status |= RS_TOOSHORT;
436 		}
437 		SMC_WAIT_MMU_BUSY(lp);
438 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
439 		dev->stats.rx_errors++;
440 		if (status & RS_ALGNERR)
441 			dev->stats.rx_frame_errors++;
442 		if (status & (RS_TOOSHORT | RS_TOOLONG))
443 			dev->stats.rx_length_errors++;
444 		if (status & RS_BADCRC)
445 			dev->stats.rx_crc_errors++;
446 	} else {
447 		struct sk_buff *skb;
448 		unsigned char *data;
449 		unsigned int data_len;
450 
451 		/* set multicast stats */
452 		if (status & RS_MULTICAST)
453 			dev->stats.multicast++;
454 
455 		/*
456 		 * Actual payload is packet_len - 6 (or 5 if odd byte).
457 		 * We want skb_reserve(2) and the final ctrl word
458 		 * (2 bytes, possibly containing the payload odd byte).
459 		 * Furthermore, we add 2 bytes to allow rounding up to
460 		 * multiple of 4 bytes on 32 bit buses.
461 		 * Hence packet_len - 6 + 2 + 2 + 2.
462 		 */
463 		skb = dev_alloc_skb(packet_len);
464 		if (unlikely(skb == NULL)) {
465 			printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
466 				dev->name);
467 			SMC_WAIT_MMU_BUSY(lp);
468 			SMC_SET_MMU_CMD(lp, MC_RELEASE);
469 			dev->stats.rx_dropped++;
470 			return;
471 		}
472 
473 		/* Align IP header to 32 bits */
474 		skb_reserve(skb, 2);
475 
476 		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
477 		if (lp->version == 0x90)
478 			status |= RS_ODDFRAME;
479 
480 		/*
481 		 * If odd length: packet_len - 5,
482 		 * otherwise packet_len - 6.
483 		 * With the trailing ctrl byte it's packet_len - 4.
484 		 */
485 		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
486 		data = skb_put(skb, data_len);
487 		SMC_PULL_DATA(lp, data, packet_len - 4);
488 
489 		SMC_WAIT_MMU_BUSY(lp);
490 		SMC_SET_MMU_CMD(lp, MC_RELEASE);
491 
492 		PRINT_PKT(data, packet_len - 4);
493 
494 		skb->protocol = eth_type_trans(skb, dev);
495 		netif_rx(skb);
496 		dev->stats.rx_packets++;
497 		dev->stats.rx_bytes += data_len;
498 	}
499 }
500 
501 #ifdef CONFIG_SMP
502 /*
503  * On SMP we have the following problem:
504  *
505  * 	A = smc_hardware_send_pkt()
506  * 	B = smc_hard_start_xmit()
507  * 	C = smc_interrupt()
508  *
509  * A and B can never be executed simultaneously.  However, at least on UP,
510  * it is possible (and even desirable) for C to interrupt execution of
511  * A or B in order to have better RX reliability and avoid overruns.
512  * C, just like A and B, must have exclusive access to the chip and
513  * each of them must lock against any other concurrent access.
514  * Unfortunately this is not possible to have C suspend execution of A or
515  * B taking place on another CPU. On UP this is no an issue since A and B
516  * are run from softirq context and C from hard IRQ context, and there is
517  * no other CPU where concurrent access can happen.
518  * If ever there is a way to force at least B and C to always be executed
519  * on the same CPU then we could use read/write locks to protect against
520  * any other concurrent access and C would always interrupt B. But life
521  * isn't that easy in a SMP world...
522  */
523 #define smc_special_trylock(lock)					\
524 ({									\
525 	int __ret;							\
526 	local_irq_disable();						\
527 	__ret = spin_trylock(lock);					\
528 	if (!__ret)							\
529 		local_irq_enable();					\
530 	__ret;								\
531 })
532 #define smc_special_lock(lock)		spin_lock_irq(lock)
533 #define smc_special_unlock(lock)	spin_unlock_irq(lock)
534 #else
535 #define smc_special_trylock(lock)	(1)
536 #define smc_special_lock(lock)		do { } while (0)
537 #define smc_special_unlock(lock)	do { } while (0)
538 #endif
539 
540 /*
541  * This is called to actually send a packet to the chip.
542  */
smc_hardware_send_pkt(unsigned long data)543 static void smc_hardware_send_pkt(unsigned long data)
544 {
545 	struct net_device *dev = (struct net_device *)data;
546 	struct smc_local *lp = netdev_priv(dev);
547 	void __iomem *ioaddr = lp->base;
548 	struct sk_buff *skb;
549 	unsigned int packet_no, len;
550 	unsigned char *buf;
551 
552 	DBG(3, "%s: %s\n", dev->name, __func__);
553 
554 	if (!smc_special_trylock(&lp->lock)) {
555 		netif_stop_queue(dev);
556 		tasklet_schedule(&lp->tx_task);
557 		return;
558 	}
559 
560 	skb = lp->pending_tx_skb;
561 	if (unlikely(!skb)) {
562 		smc_special_unlock(&lp->lock);
563 		return;
564 	}
565 	lp->pending_tx_skb = NULL;
566 
567 	packet_no = SMC_GET_AR(lp);
568 	if (unlikely(packet_no & AR_FAILED)) {
569 		printk("%s: Memory allocation failed.\n", dev->name);
570 		dev->stats.tx_errors++;
571 		dev->stats.tx_fifo_errors++;
572 		smc_special_unlock(&lp->lock);
573 		goto done;
574 	}
575 
576 	/* point to the beginning of the packet */
577 	SMC_SET_PN(lp, packet_no);
578 	SMC_SET_PTR(lp, PTR_AUTOINC);
579 
580 	buf = skb->data;
581 	len = skb->len;
582 	DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
583 		dev->name, packet_no, len, len, buf);
584 	PRINT_PKT(buf, len);
585 
586 	/*
587 	 * Send the packet length (+6 for status words, length, and ctl.
588 	 * The card will pad to 64 bytes with zeroes if packet is too small.
589 	 */
590 	SMC_PUT_PKT_HDR(lp, 0, len + 6);
591 
592 	/* send the actual data */
593 	SMC_PUSH_DATA(lp, buf, len & ~1);
594 
595 	/* Send final ctl word with the last byte if there is one */
596 	SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
597 
598 	/*
599 	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
600 	 * have the effect of having at most one packet queued for TX
601 	 * in the chip's memory at all time.
602 	 *
603 	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
604 	 * when memory allocation (MC_ALLOC) does not succeed right away.
605 	 */
606 	if (THROTTLE_TX_PKTS)
607 		netif_stop_queue(dev);
608 
609 	/* queue the packet for TX */
610 	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
611 	smc_special_unlock(&lp->lock);
612 
613 	dev->trans_start = jiffies;
614 	dev->stats.tx_packets++;
615 	dev->stats.tx_bytes += len;
616 
617 	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
618 
619 done:	if (!THROTTLE_TX_PKTS)
620 		netif_wake_queue(dev);
621 
622 	dev_kfree_skb(skb);
623 }
624 
625 /*
626  * Since I am not sure if I will have enough room in the chip's ram
627  * to store the packet, I call this routine which either sends it
628  * now, or set the card to generates an interrupt when ready
629  * for the packet.
630  */
smc_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)631 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
632 {
633 	struct smc_local *lp = netdev_priv(dev);
634 	void __iomem *ioaddr = lp->base;
635 	unsigned int numPages, poll_count, status;
636 
637 	DBG(3, "%s: %s\n", dev->name, __func__);
638 
639 	BUG_ON(lp->pending_tx_skb != NULL);
640 
641 	/*
642 	 * The MMU wants the number of pages to be the number of 256 bytes
643 	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
644 	 *
645 	 * The 91C111 ignores the size bits, but earlier models don't.
646 	 *
647 	 * Pkt size for allocating is data length +6 (for additional status
648 	 * words, length and ctl)
649 	 *
650 	 * If odd size then last byte is included in ctl word.
651 	 */
652 	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
653 	if (unlikely(numPages > 7)) {
654 		printk("%s: Far too big packet error.\n", dev->name);
655 		dev->stats.tx_errors++;
656 		dev->stats.tx_dropped++;
657 		dev_kfree_skb(skb);
658 		return 0;
659 	}
660 
661 	smc_special_lock(&lp->lock);
662 
663 	/* now, try to allocate the memory */
664 	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
665 
666 	/*
667 	 * Poll the chip for a short amount of time in case the
668 	 * allocation succeeds quickly.
669 	 */
670 	poll_count = MEMORY_WAIT_TIME;
671 	do {
672 		status = SMC_GET_INT(lp);
673 		if (status & IM_ALLOC_INT) {
674 			SMC_ACK_INT(lp, IM_ALLOC_INT);
675   			break;
676 		}
677    	} while (--poll_count);
678 
679 	smc_special_unlock(&lp->lock);
680 
681 	lp->pending_tx_skb = skb;
682    	if (!poll_count) {
683 		/* oh well, wait until the chip finds memory later */
684 		netif_stop_queue(dev);
685 		DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
686 		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
687    	} else {
688 		/*
689 		 * Allocation succeeded: push packet to the chip's own memory
690 		 * immediately.
691 		 */
692 		smc_hardware_send_pkt((unsigned long)dev);
693 	}
694 
695 	return 0;
696 }
697 
698 /*
699  * This handles a TX interrupt, which is only called when:
700  * - a TX error occurred, or
701  * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
702  */
smc_tx(struct net_device * dev)703 static void smc_tx(struct net_device *dev)
704 {
705 	struct smc_local *lp = netdev_priv(dev);
706 	void __iomem *ioaddr = lp->base;
707 	unsigned int saved_packet, packet_no, tx_status, pkt_len;
708 
709 	DBG(3, "%s: %s\n", dev->name, __func__);
710 
711 	/* If the TX FIFO is empty then nothing to do */
712 	packet_no = SMC_GET_TXFIFO(lp);
713 	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
714 		PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
715 		return;
716 	}
717 
718 	/* select packet to read from */
719 	saved_packet = SMC_GET_PN(lp);
720 	SMC_SET_PN(lp, packet_no);
721 
722 	/* read the first word (status word) from this packet */
723 	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
724 	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
725 	DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
726 		dev->name, tx_status, packet_no);
727 
728 	if (!(tx_status & ES_TX_SUC))
729 		dev->stats.tx_errors++;
730 
731 	if (tx_status & ES_LOSTCARR)
732 		dev->stats.tx_carrier_errors++;
733 
734 	if (tx_status & (ES_LATCOL | ES_16COL)) {
735 		PRINTK("%s: %s occurred on last xmit\n", dev->name,
736 		       (tx_status & ES_LATCOL) ?
737 			"late collision" : "too many collisions");
738 		dev->stats.tx_window_errors++;
739 		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
740 			printk(KERN_INFO "%s: unexpectedly large number of "
741 			       "bad collisions. Please check duplex "
742 			       "setting.\n", dev->name);
743 		}
744 	}
745 
746 	/* kill the packet */
747 	SMC_WAIT_MMU_BUSY(lp);
748 	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
749 
750 	/* Don't restore Packet Number Reg until busy bit is cleared */
751 	SMC_WAIT_MMU_BUSY(lp);
752 	SMC_SET_PN(lp, saved_packet);
753 
754 	/* re-enable transmit */
755 	SMC_SELECT_BANK(lp, 0);
756 	SMC_SET_TCR(lp, lp->tcr_cur_mode);
757 	SMC_SELECT_BANK(lp, 2);
758 }
759 
760 
761 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
762 
smc_mii_out(struct net_device * dev,unsigned int val,int bits)763 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
764 {
765 	struct smc_local *lp = netdev_priv(dev);
766 	void __iomem *ioaddr = lp->base;
767 	unsigned int mii_reg, mask;
768 
769 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
770 	mii_reg |= MII_MDOE;
771 
772 	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
773 		if (val & mask)
774 			mii_reg |= MII_MDO;
775 		else
776 			mii_reg &= ~MII_MDO;
777 
778 		SMC_SET_MII(lp, mii_reg);
779 		udelay(MII_DELAY);
780 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
781 		udelay(MII_DELAY);
782 	}
783 }
784 
smc_mii_in(struct net_device * dev,int bits)785 static unsigned int smc_mii_in(struct net_device *dev, int bits)
786 {
787 	struct smc_local *lp = netdev_priv(dev);
788 	void __iomem *ioaddr = lp->base;
789 	unsigned int mii_reg, mask, val;
790 
791 	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
792 	SMC_SET_MII(lp, mii_reg);
793 
794 	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
795 		if (SMC_GET_MII(lp) & MII_MDI)
796 			val |= mask;
797 
798 		SMC_SET_MII(lp, mii_reg);
799 		udelay(MII_DELAY);
800 		SMC_SET_MII(lp, mii_reg | MII_MCLK);
801 		udelay(MII_DELAY);
802 	}
803 
804 	return val;
805 }
806 
807 /*
808  * Reads a register from the MII Management serial interface
809  */
smc_phy_read(struct net_device * dev,int phyaddr,int phyreg)810 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
811 {
812 	struct smc_local *lp = netdev_priv(dev);
813 	void __iomem *ioaddr = lp->base;
814 	unsigned int phydata;
815 
816 	SMC_SELECT_BANK(lp, 3);
817 
818 	/* Idle - 32 ones */
819 	smc_mii_out(dev, 0xffffffff, 32);
820 
821 	/* Start code (01) + read (10) + phyaddr + phyreg */
822 	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
823 
824 	/* Turnaround (2bits) + phydata */
825 	phydata = smc_mii_in(dev, 18);
826 
827 	/* Return to idle state */
828 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
829 
830 	DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
831 		__func__, phyaddr, phyreg, phydata);
832 
833 	SMC_SELECT_BANK(lp, 2);
834 	return phydata;
835 }
836 
837 /*
838  * Writes a register to the MII Management serial interface
839  */
smc_phy_write(struct net_device * dev,int phyaddr,int phyreg,int phydata)840 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
841 			  int phydata)
842 {
843 	struct smc_local *lp = netdev_priv(dev);
844 	void __iomem *ioaddr = lp->base;
845 
846 	SMC_SELECT_BANK(lp, 3);
847 
848 	/* Idle - 32 ones */
849 	smc_mii_out(dev, 0xffffffff, 32);
850 
851 	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
852 	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
853 
854 	/* Return to idle state */
855 	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
856 
857 	DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
858 		__func__, phyaddr, phyreg, phydata);
859 
860 	SMC_SELECT_BANK(lp, 2);
861 }
862 
863 /*
864  * Finds and reports the PHY address
865  */
smc_phy_detect(struct net_device * dev)866 static void smc_phy_detect(struct net_device *dev)
867 {
868 	struct smc_local *lp = netdev_priv(dev);
869 	int phyaddr;
870 
871 	DBG(2, "%s: %s\n", dev->name, __func__);
872 
873 	lp->phy_type = 0;
874 
875 	/*
876 	 * Scan all 32 PHY addresses if necessary, starting at
877 	 * PHY#1 to PHY#31, and then PHY#0 last.
878 	 */
879 	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
880 		unsigned int id1, id2;
881 
882 		/* Read the PHY identifiers */
883 		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
884 		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
885 
886 		DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
887 			dev->name, id1, id2);
888 
889 		/* Make sure it is a valid identifier */
890 		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
891 		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
892 			/* Save the PHY's address */
893 			lp->mii.phy_id = phyaddr & 31;
894 			lp->phy_type = id1 << 16 | id2;
895 			break;
896 		}
897 	}
898 }
899 
900 /*
901  * Sets the PHY to a configuration as determined by the user
902  */
smc_phy_fixed(struct net_device * dev)903 static int smc_phy_fixed(struct net_device *dev)
904 {
905 	struct smc_local *lp = netdev_priv(dev);
906 	void __iomem *ioaddr = lp->base;
907 	int phyaddr = lp->mii.phy_id;
908 	int bmcr, cfg1;
909 
910 	DBG(3, "%s: %s\n", dev->name, __func__);
911 
912 	/* Enter Link Disable state */
913 	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
914 	cfg1 |= PHY_CFG1_LNKDIS;
915 	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
916 
917 	/*
918 	 * Set our fixed capabilities
919 	 * Disable auto-negotiation
920 	 */
921 	bmcr = 0;
922 
923 	if (lp->ctl_rfduplx)
924 		bmcr |= BMCR_FULLDPLX;
925 
926 	if (lp->ctl_rspeed == 100)
927 		bmcr |= BMCR_SPEED100;
928 
929 	/* Write our capabilities to the phy control register */
930 	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
931 
932 	/* Re-Configure the Receive/Phy Control register */
933 	SMC_SELECT_BANK(lp, 0);
934 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
935 	SMC_SELECT_BANK(lp, 2);
936 
937 	return 1;
938 }
939 
940 /*
941  * smc_phy_reset - reset the phy
942  * @dev: net device
943  * @phy: phy address
944  *
945  * Issue a software reset for the specified PHY and
946  * wait up to 100ms for the reset to complete.  We should
947  * not access the PHY for 50ms after issuing the reset.
948  *
949  * The time to wait appears to be dependent on the PHY.
950  *
951  * Must be called with lp->lock locked.
952  */
smc_phy_reset(struct net_device * dev,int phy)953 static int smc_phy_reset(struct net_device *dev, int phy)
954 {
955 	struct smc_local *lp = netdev_priv(dev);
956 	unsigned int bmcr;
957 	int timeout;
958 
959 	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
960 
961 	for (timeout = 2; timeout; timeout--) {
962 		spin_unlock_irq(&lp->lock);
963 		msleep(50);
964 		spin_lock_irq(&lp->lock);
965 
966 		bmcr = smc_phy_read(dev, phy, MII_BMCR);
967 		if (!(bmcr & BMCR_RESET))
968 			break;
969 	}
970 
971 	return bmcr & BMCR_RESET;
972 }
973 
974 /*
975  * smc_phy_powerdown - powerdown phy
976  * @dev: net device
977  *
978  * Power down the specified PHY
979  */
smc_phy_powerdown(struct net_device * dev)980 static void smc_phy_powerdown(struct net_device *dev)
981 {
982 	struct smc_local *lp = netdev_priv(dev);
983 	unsigned int bmcr;
984 	int phy = lp->mii.phy_id;
985 
986 	if (lp->phy_type == 0)
987 		return;
988 
989 	/* We need to ensure that no calls to smc_phy_configure are
990 	   pending.
991 	*/
992 	cancel_work_sync(&lp->phy_configure);
993 
994 	bmcr = smc_phy_read(dev, phy, MII_BMCR);
995 	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
996 }
997 
998 /*
999  * smc_phy_check_media - check the media status and adjust TCR
1000  * @dev: net device
1001  * @init: set true for initialisation
1002  *
1003  * Select duplex mode depending on negotiation state.  This
1004  * also updates our carrier state.
1005  */
smc_phy_check_media(struct net_device * dev,int init)1006 static void smc_phy_check_media(struct net_device *dev, int init)
1007 {
1008 	struct smc_local *lp = netdev_priv(dev);
1009 	void __iomem *ioaddr = lp->base;
1010 
1011 	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1012 		/* duplex state has changed */
1013 		if (lp->mii.full_duplex) {
1014 			lp->tcr_cur_mode |= TCR_SWFDUP;
1015 		} else {
1016 			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1017 		}
1018 
1019 		SMC_SELECT_BANK(lp, 0);
1020 		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1021 	}
1022 }
1023 
1024 /*
1025  * Configures the specified PHY through the MII management interface
1026  * using Autonegotiation.
1027  * Calls smc_phy_fixed() if the user has requested a certain config.
1028  * If RPC ANEG bit is set, the media selection is dependent purely on
1029  * the selection by the MII (either in the MII BMCR reg or the result
1030  * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1031  * is controlled by the RPC SPEED and RPC DPLX bits.
1032  */
smc_phy_configure(struct work_struct * work)1033 static void smc_phy_configure(struct work_struct *work)
1034 {
1035 	struct smc_local *lp =
1036 		container_of(work, struct smc_local, phy_configure);
1037 	struct net_device *dev = lp->dev;
1038 	void __iomem *ioaddr = lp->base;
1039 	int phyaddr = lp->mii.phy_id;
1040 	int my_phy_caps; /* My PHY capabilities */
1041 	int my_ad_caps; /* My Advertised capabilities */
1042 	int status;
1043 
1044 	DBG(3, "%s:smc_program_phy()\n", dev->name);
1045 
1046 	spin_lock_irq(&lp->lock);
1047 
1048 	/*
1049 	 * We should not be called if phy_type is zero.
1050 	 */
1051 	if (lp->phy_type == 0)
1052 		goto smc_phy_configure_exit;
1053 
1054 	if (smc_phy_reset(dev, phyaddr)) {
1055 		printk("%s: PHY reset timed out\n", dev->name);
1056 		goto smc_phy_configure_exit;
1057 	}
1058 
1059 	/*
1060 	 * Enable PHY Interrupts (for register 18)
1061 	 * Interrupts listed here are disabled
1062 	 */
1063 	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1064 		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1065 		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1066 		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1067 
1068 	/* Configure the Receive/Phy Control register */
1069 	SMC_SELECT_BANK(lp, 0);
1070 	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1071 
1072 	/* If the user requested no auto neg, then go set his request */
1073 	if (lp->mii.force_media) {
1074 		smc_phy_fixed(dev);
1075 		goto smc_phy_configure_exit;
1076 	}
1077 
1078 	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1079 	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1080 
1081 	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1082 		printk(KERN_INFO "Auto negotiation NOT supported\n");
1083 		smc_phy_fixed(dev);
1084 		goto smc_phy_configure_exit;
1085 	}
1086 
1087 	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1088 
1089 	if (my_phy_caps & BMSR_100BASE4)
1090 		my_ad_caps |= ADVERTISE_100BASE4;
1091 	if (my_phy_caps & BMSR_100FULL)
1092 		my_ad_caps |= ADVERTISE_100FULL;
1093 	if (my_phy_caps & BMSR_100HALF)
1094 		my_ad_caps |= ADVERTISE_100HALF;
1095 	if (my_phy_caps & BMSR_10FULL)
1096 		my_ad_caps |= ADVERTISE_10FULL;
1097 	if (my_phy_caps & BMSR_10HALF)
1098 		my_ad_caps |= ADVERTISE_10HALF;
1099 
1100 	/* Disable capabilities not selected by our user */
1101 	if (lp->ctl_rspeed != 100)
1102 		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1103 
1104 	if (!lp->ctl_rfduplx)
1105 		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1106 
1107 	/* Update our Auto-Neg Advertisement Register */
1108 	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1109 	lp->mii.advertising = my_ad_caps;
1110 
1111 	/*
1112 	 * Read the register back.  Without this, it appears that when
1113 	 * auto-negotiation is restarted, sometimes it isn't ready and
1114 	 * the link does not come up.
1115 	 */
1116 	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1117 
1118 	DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1119 	DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1120 
1121 	/* Restart auto-negotiation process in order to advertise my caps */
1122 	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1123 
1124 	smc_phy_check_media(dev, 1);
1125 
1126 smc_phy_configure_exit:
1127 	SMC_SELECT_BANK(lp, 2);
1128 	spin_unlock_irq(&lp->lock);
1129 }
1130 
1131 /*
1132  * smc_phy_interrupt
1133  *
1134  * Purpose:  Handle interrupts relating to PHY register 18. This is
1135  *  called from the "hard" interrupt handler under our private spinlock.
1136  */
smc_phy_interrupt(struct net_device * dev)1137 static void smc_phy_interrupt(struct net_device *dev)
1138 {
1139 	struct smc_local *lp = netdev_priv(dev);
1140 	int phyaddr = lp->mii.phy_id;
1141 	int phy18;
1142 
1143 	DBG(2, "%s: %s\n", dev->name, __func__);
1144 
1145 	if (lp->phy_type == 0)
1146 		return;
1147 
1148 	for(;;) {
1149 		smc_phy_check_media(dev, 0);
1150 
1151 		/* Read PHY Register 18, Status Output */
1152 		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1153 		if ((phy18 & PHY_INT_INT) == 0)
1154 			break;
1155 	}
1156 }
1157 
1158 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1159 
smc_10bt_check_media(struct net_device * dev,int init)1160 static void smc_10bt_check_media(struct net_device *dev, int init)
1161 {
1162 	struct smc_local *lp = netdev_priv(dev);
1163 	void __iomem *ioaddr = lp->base;
1164 	unsigned int old_carrier, new_carrier;
1165 
1166 	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1167 
1168 	SMC_SELECT_BANK(lp, 0);
1169 	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1170 	SMC_SELECT_BANK(lp, 2);
1171 
1172 	if (init || (old_carrier != new_carrier)) {
1173 		if (!new_carrier) {
1174 			netif_carrier_off(dev);
1175 		} else {
1176 			netif_carrier_on(dev);
1177 		}
1178 		if (netif_msg_link(lp))
1179 			printk(KERN_INFO "%s: link %s\n", dev->name,
1180 			       new_carrier ? "up" : "down");
1181 	}
1182 }
1183 
smc_eph_interrupt(struct net_device * dev)1184 static void smc_eph_interrupt(struct net_device *dev)
1185 {
1186 	struct smc_local *lp = netdev_priv(dev);
1187 	void __iomem *ioaddr = lp->base;
1188 	unsigned int ctl;
1189 
1190 	smc_10bt_check_media(dev, 0);
1191 
1192 	SMC_SELECT_BANK(lp, 1);
1193 	ctl = SMC_GET_CTL(lp);
1194 	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1195 	SMC_SET_CTL(lp, ctl);
1196 	SMC_SELECT_BANK(lp, 2);
1197 }
1198 
1199 /*
1200  * This is the main routine of the driver, to handle the device when
1201  * it needs some attention.
1202  */
smc_interrupt(int irq,void * dev_id)1203 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1204 {
1205 	struct net_device *dev = dev_id;
1206 	struct smc_local *lp = netdev_priv(dev);
1207 	void __iomem *ioaddr = lp->base;
1208 	int status, mask, timeout, card_stats;
1209 	int saved_pointer;
1210 
1211 	DBG(3, "%s: %s\n", dev->name, __func__);
1212 
1213 	spin_lock(&lp->lock);
1214 
1215 	/* A preamble may be used when there is a potential race
1216 	 * between the interruptible transmit functions and this
1217 	 * ISR. */
1218 	SMC_INTERRUPT_PREAMBLE;
1219 
1220 	saved_pointer = SMC_GET_PTR(lp);
1221 	mask = SMC_GET_INT_MASK(lp);
1222 	SMC_SET_INT_MASK(lp, 0);
1223 
1224 	/* set a timeout value, so I don't stay here forever */
1225 	timeout = MAX_IRQ_LOOPS;
1226 
1227 	do {
1228 		status = SMC_GET_INT(lp);
1229 
1230 		DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1231 			dev->name, status, mask,
1232 			({ int meminfo; SMC_SELECT_BANK(lp, 0);
1233 			   meminfo = SMC_GET_MIR(lp);
1234 			   SMC_SELECT_BANK(lp, 2); meminfo; }),
1235 			SMC_GET_FIFO(lp));
1236 
1237 		status &= mask;
1238 		if (!status)
1239 			break;
1240 
1241 		if (status & IM_TX_INT) {
1242 			/* do this before RX as it will free memory quickly */
1243 			DBG(3, "%s: TX int\n", dev->name);
1244 			smc_tx(dev);
1245 			SMC_ACK_INT(lp, IM_TX_INT);
1246 			if (THROTTLE_TX_PKTS)
1247 				netif_wake_queue(dev);
1248 		} else if (status & IM_RCV_INT) {
1249 			DBG(3, "%s: RX irq\n", dev->name);
1250 			smc_rcv(dev);
1251 		} else if (status & IM_ALLOC_INT) {
1252 			DBG(3, "%s: Allocation irq\n", dev->name);
1253 			tasklet_hi_schedule(&lp->tx_task);
1254 			mask &= ~IM_ALLOC_INT;
1255 		} else if (status & IM_TX_EMPTY_INT) {
1256 			DBG(3, "%s: TX empty\n", dev->name);
1257 			mask &= ~IM_TX_EMPTY_INT;
1258 
1259 			/* update stats */
1260 			SMC_SELECT_BANK(lp, 0);
1261 			card_stats = SMC_GET_COUNTER(lp);
1262 			SMC_SELECT_BANK(lp, 2);
1263 
1264 			/* single collisions */
1265 			dev->stats.collisions += card_stats & 0xF;
1266 			card_stats >>= 4;
1267 
1268 			/* multiple collisions */
1269 			dev->stats.collisions += card_stats & 0xF;
1270 		} else if (status & IM_RX_OVRN_INT) {
1271 			DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1272 			       ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1273 				  eph_st = SMC_GET_EPH_STATUS(lp);
1274 				  SMC_SELECT_BANK(lp, 2); eph_st; }));
1275 			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1276 			dev->stats.rx_errors++;
1277 			dev->stats.rx_fifo_errors++;
1278 		} else if (status & IM_EPH_INT) {
1279 			smc_eph_interrupt(dev);
1280 		} else if (status & IM_MDINT) {
1281 			SMC_ACK_INT(lp, IM_MDINT);
1282 			smc_phy_interrupt(dev);
1283 		} else if (status & IM_ERCV_INT) {
1284 			SMC_ACK_INT(lp, IM_ERCV_INT);
1285 			PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1286 		}
1287 	} while (--timeout);
1288 
1289 	/* restore register states */
1290 	SMC_SET_PTR(lp, saved_pointer);
1291 	SMC_SET_INT_MASK(lp, mask);
1292 	spin_unlock(&lp->lock);
1293 
1294 #ifndef CONFIG_NET_POLL_CONTROLLER
1295 	if (timeout == MAX_IRQ_LOOPS)
1296 		PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1297 		       dev->name, mask);
1298 #endif
1299 	DBG(3, "%s: Interrupt done (%d loops)\n",
1300 	       dev->name, MAX_IRQ_LOOPS - timeout);
1301 
1302 	/*
1303 	 * We return IRQ_HANDLED unconditionally here even if there was
1304 	 * nothing to do.  There is a possibility that a packet might
1305 	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1306 	 * but just before the CPU acknowledges the IRQ.
1307 	 * Better take an unneeded IRQ in some occasions than complexifying
1308 	 * the code for all cases.
1309 	 */
1310 	return IRQ_HANDLED;
1311 }
1312 
1313 #ifdef CONFIG_NET_POLL_CONTROLLER
1314 /*
1315  * Polling receive - used by netconsole and other diagnostic tools
1316  * to allow network i/o with interrupts disabled.
1317  */
smc_poll_controller(struct net_device * dev)1318 static void smc_poll_controller(struct net_device *dev)
1319 {
1320 	disable_irq(dev->irq);
1321 	smc_interrupt(dev->irq, dev);
1322 	enable_irq(dev->irq);
1323 }
1324 #endif
1325 
1326 /* Our watchdog timed out. Called by the networking layer */
smc_timeout(struct net_device * dev)1327 static void smc_timeout(struct net_device *dev)
1328 {
1329 	struct smc_local *lp = netdev_priv(dev);
1330 	void __iomem *ioaddr = lp->base;
1331 	int status, mask, eph_st, meminfo, fifo;
1332 
1333 	DBG(2, "%s: %s\n", dev->name, __func__);
1334 
1335 	spin_lock_irq(&lp->lock);
1336 	status = SMC_GET_INT(lp);
1337 	mask = SMC_GET_INT_MASK(lp);
1338 	fifo = SMC_GET_FIFO(lp);
1339 	SMC_SELECT_BANK(lp, 0);
1340 	eph_st = SMC_GET_EPH_STATUS(lp);
1341 	meminfo = SMC_GET_MIR(lp);
1342 	SMC_SELECT_BANK(lp, 2);
1343 	spin_unlock_irq(&lp->lock);
1344 	PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1345 		"MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1346 		dev->name, status, mask, meminfo, fifo, eph_st );
1347 
1348 	smc_reset(dev);
1349 	smc_enable(dev);
1350 
1351 	/*
1352 	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1353 	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1354 	 * which calls schedule().  Hence we use a work queue.
1355 	 */
1356 	if (lp->phy_type != 0)
1357 		schedule_work(&lp->phy_configure);
1358 
1359 	/* We can accept TX packets again */
1360 	dev->trans_start = jiffies;
1361 	netif_wake_queue(dev);
1362 }
1363 
1364 /*
1365  * This routine will, depending on the values passed to it,
1366  * either make it accept multicast packets, go into
1367  * promiscuous mode (for TCPDUMP and cousins) or accept
1368  * a select set of multicast packets
1369  */
smc_set_multicast_list(struct net_device * dev)1370 static void smc_set_multicast_list(struct net_device *dev)
1371 {
1372 	struct smc_local *lp = netdev_priv(dev);
1373 	void __iomem *ioaddr = lp->base;
1374 	unsigned char multicast_table[8];
1375 	int update_multicast = 0;
1376 
1377 	DBG(2, "%s: %s\n", dev->name, __func__);
1378 
1379 	if (dev->flags & IFF_PROMISC) {
1380 		DBG(2, "%s: RCR_PRMS\n", dev->name);
1381 		lp->rcr_cur_mode |= RCR_PRMS;
1382 	}
1383 
1384 /* BUG?  I never disable promiscuous mode if multicasting was turned on.
1385    Now, I turn off promiscuous mode, but I don't do anything to multicasting
1386    when promiscuous mode is turned on.
1387 */
1388 
1389 	/*
1390 	 * Here, I am setting this to accept all multicast packets.
1391 	 * I don't need to zero the multicast table, because the flag is
1392 	 * checked before the table is
1393 	 */
1394 	else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
1395 		DBG(2, "%s: RCR_ALMUL\n", dev->name);
1396 		lp->rcr_cur_mode |= RCR_ALMUL;
1397 	}
1398 
1399 	/*
1400 	 * This sets the internal hardware table to filter out unwanted
1401 	 * multicast packets before they take up memory.
1402 	 *
1403 	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1404 	 * address are the offset into the table.  If that bit is 1, then the
1405 	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1406 	 *
1407 	 * To use the 6 bits as an offset into the table, the high 3 bits are
1408 	 * the number of the 8 bit register, while the low 3 bits are the bit
1409 	 * within that register.
1410 	 */
1411 	else if (dev->mc_count)  {
1412 		int i;
1413 		struct dev_mc_list *cur_addr;
1414 
1415 		/* table for flipping the order of 3 bits */
1416 		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1417 
1418 		/* start with a table of all zeros: reject all */
1419 		memset(multicast_table, 0, sizeof(multicast_table));
1420 
1421 		cur_addr = dev->mc_list;
1422 		for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1423 			int position;
1424 
1425 			/* do we have a pointer here? */
1426 			if (!cur_addr)
1427 				break;
1428 			/* make sure this is a multicast address -
1429 		   	   shouldn't this be a given if we have it here ? */
1430 			if (!(*cur_addr->dmi_addr & 1))
1431 				continue;
1432 
1433 			/* only use the low order bits */
1434 			position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1435 
1436 			/* do some messy swapping to put the bit in the right spot */
1437 			multicast_table[invert3[position&7]] |=
1438 				(1<<invert3[(position>>3)&7]);
1439 		}
1440 
1441 		/* be sure I get rid of flags I might have set */
1442 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1443 
1444 		/* now, the table can be loaded into the chipset */
1445 		update_multicast = 1;
1446 	} else  {
1447 		DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1448 		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1449 
1450 		/*
1451 		 * since I'm disabling all multicast entirely, I need to
1452 		 * clear the multicast list
1453 		 */
1454 		memset(multicast_table, 0, sizeof(multicast_table));
1455 		update_multicast = 1;
1456 	}
1457 
1458 	spin_lock_irq(&lp->lock);
1459 	SMC_SELECT_BANK(lp, 0);
1460 	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1461 	if (update_multicast) {
1462 		SMC_SELECT_BANK(lp, 3);
1463 		SMC_SET_MCAST(lp, multicast_table);
1464 	}
1465 	SMC_SELECT_BANK(lp, 2);
1466 	spin_unlock_irq(&lp->lock);
1467 }
1468 
1469 
1470 /*
1471  * Open and Initialize the board
1472  *
1473  * Set up everything, reset the card, etc..
1474  */
1475 static int
smc_open(struct net_device * dev)1476 smc_open(struct net_device *dev)
1477 {
1478 	struct smc_local *lp = netdev_priv(dev);
1479 
1480 	DBG(2, "%s: %s\n", dev->name, __func__);
1481 
1482 	/*
1483 	 * Check that the address is valid.  If its not, refuse
1484 	 * to bring the device up.  The user must specify an
1485 	 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1486 	 */
1487 	if (!is_valid_ether_addr(dev->dev_addr)) {
1488 		PRINTK("%s: no valid ethernet hw addr\n", __func__);
1489 		return -EINVAL;
1490 	}
1491 
1492 	/* Setup the default Register Modes */
1493 	lp->tcr_cur_mode = TCR_DEFAULT;
1494 	lp->rcr_cur_mode = RCR_DEFAULT;
1495 	lp->rpc_cur_mode = RPC_DEFAULT |
1496 				lp->cfg.leda << RPC_LSXA_SHFT |
1497 				lp->cfg.ledb << RPC_LSXB_SHFT;
1498 
1499 	/*
1500 	 * If we are not using a MII interface, we need to
1501 	 * monitor our own carrier signal to detect faults.
1502 	 */
1503 	if (lp->phy_type == 0)
1504 		lp->tcr_cur_mode |= TCR_MON_CSN;
1505 
1506 	/* reset the hardware */
1507 	smc_reset(dev);
1508 	smc_enable(dev);
1509 
1510 	/* Configure the PHY, initialize the link state */
1511 	if (lp->phy_type != 0)
1512 		smc_phy_configure(&lp->phy_configure);
1513 	else {
1514 		spin_lock_irq(&lp->lock);
1515 		smc_10bt_check_media(dev, 1);
1516 		spin_unlock_irq(&lp->lock);
1517 	}
1518 
1519 	netif_start_queue(dev);
1520 	return 0;
1521 }
1522 
1523 /*
1524  * smc_close
1525  *
1526  * this makes the board clean up everything that it can
1527  * and not talk to the outside world.   Caused by
1528  * an 'ifconfig ethX down'
1529  */
smc_close(struct net_device * dev)1530 static int smc_close(struct net_device *dev)
1531 {
1532 	struct smc_local *lp = netdev_priv(dev);
1533 
1534 	DBG(2, "%s: %s\n", dev->name, __func__);
1535 
1536 	netif_stop_queue(dev);
1537 	netif_carrier_off(dev);
1538 
1539 	/* clear everything */
1540 	smc_shutdown(dev);
1541 	tasklet_kill(&lp->tx_task);
1542 	smc_phy_powerdown(dev);
1543 	return 0;
1544 }
1545 
1546 /*
1547  * Ethtool support
1548  */
1549 static int
smc_ethtool_getsettings(struct net_device * dev,struct ethtool_cmd * cmd)1550 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1551 {
1552 	struct smc_local *lp = netdev_priv(dev);
1553 	int ret;
1554 
1555 	cmd->maxtxpkt = 1;
1556 	cmd->maxrxpkt = 1;
1557 
1558 	if (lp->phy_type != 0) {
1559 		spin_lock_irq(&lp->lock);
1560 		ret = mii_ethtool_gset(&lp->mii, cmd);
1561 		spin_unlock_irq(&lp->lock);
1562 	} else {
1563 		cmd->supported = SUPPORTED_10baseT_Half |
1564 				 SUPPORTED_10baseT_Full |
1565 				 SUPPORTED_TP | SUPPORTED_AUI;
1566 
1567 		if (lp->ctl_rspeed == 10)
1568 			cmd->speed = SPEED_10;
1569 		else if (lp->ctl_rspeed == 100)
1570 			cmd->speed = SPEED_100;
1571 
1572 		cmd->autoneg = AUTONEG_DISABLE;
1573 		cmd->transceiver = XCVR_INTERNAL;
1574 		cmd->port = 0;
1575 		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1576 
1577 		ret = 0;
1578 	}
1579 
1580 	return ret;
1581 }
1582 
1583 static int
smc_ethtool_setsettings(struct net_device * dev,struct ethtool_cmd * cmd)1584 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1585 {
1586 	struct smc_local *lp = netdev_priv(dev);
1587 	int ret;
1588 
1589 	if (lp->phy_type != 0) {
1590 		spin_lock_irq(&lp->lock);
1591 		ret = mii_ethtool_sset(&lp->mii, cmd);
1592 		spin_unlock_irq(&lp->lock);
1593 	} else {
1594 		if (cmd->autoneg != AUTONEG_DISABLE ||
1595 		    cmd->speed != SPEED_10 ||
1596 		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1597 		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1598 			return -EINVAL;
1599 
1600 //		lp->port = cmd->port;
1601 		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1602 
1603 //		if (netif_running(dev))
1604 //			smc_set_port(dev);
1605 
1606 		ret = 0;
1607 	}
1608 
1609 	return ret;
1610 }
1611 
1612 static void
smc_ethtool_getdrvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1613 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1614 {
1615 	strncpy(info->driver, CARDNAME, sizeof(info->driver));
1616 	strncpy(info->version, version, sizeof(info->version));
1617 	strncpy(info->bus_info, dev->dev.parent->bus_id, sizeof(info->bus_info));
1618 }
1619 
smc_ethtool_nwayreset(struct net_device * dev)1620 static int smc_ethtool_nwayreset(struct net_device *dev)
1621 {
1622 	struct smc_local *lp = netdev_priv(dev);
1623 	int ret = -EINVAL;
1624 
1625 	if (lp->phy_type != 0) {
1626 		spin_lock_irq(&lp->lock);
1627 		ret = mii_nway_restart(&lp->mii);
1628 		spin_unlock_irq(&lp->lock);
1629 	}
1630 
1631 	return ret;
1632 }
1633 
smc_ethtool_getmsglevel(struct net_device * dev)1634 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1635 {
1636 	struct smc_local *lp = netdev_priv(dev);
1637 	return lp->msg_enable;
1638 }
1639 
smc_ethtool_setmsglevel(struct net_device * dev,u32 level)1640 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1641 {
1642 	struct smc_local *lp = netdev_priv(dev);
1643 	lp->msg_enable = level;
1644 }
1645 
1646 static const struct ethtool_ops smc_ethtool_ops = {
1647 	.get_settings	= smc_ethtool_getsettings,
1648 	.set_settings	= smc_ethtool_setsettings,
1649 	.get_drvinfo	= smc_ethtool_getdrvinfo,
1650 
1651 	.get_msglevel	= smc_ethtool_getmsglevel,
1652 	.set_msglevel	= smc_ethtool_setmsglevel,
1653 	.nway_reset	= smc_ethtool_nwayreset,
1654 	.get_link	= ethtool_op_get_link,
1655 //	.get_eeprom	= smc_ethtool_geteeprom,
1656 //	.set_eeprom	= smc_ethtool_seteeprom,
1657 };
1658 
1659 /*
1660  * smc_findirq
1661  *
1662  * This routine has a simple purpose -- make the SMC chip generate an
1663  * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1664  */
1665 /*
1666  * does this still work?
1667  *
1668  * I just deleted auto_irq.c, since it was never built...
1669  *   --jgarzik
1670  */
smc_findirq(struct smc_local * lp)1671 static int __devinit smc_findirq(struct smc_local *lp)
1672 {
1673 	void __iomem *ioaddr = lp->base;
1674 	int timeout = 20;
1675 	unsigned long cookie;
1676 
1677 	DBG(2, "%s: %s\n", CARDNAME, __func__);
1678 
1679 	cookie = probe_irq_on();
1680 
1681 	/*
1682 	 * What I try to do here is trigger an ALLOC_INT. This is done
1683 	 * by allocating a small chunk of memory, which will give an interrupt
1684 	 * when done.
1685 	 */
1686 	/* enable ALLOCation interrupts ONLY */
1687 	SMC_SELECT_BANK(lp, 2);
1688 	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1689 
1690 	/*
1691  	 * Allocate 512 bytes of memory.  Note that the chip was just
1692 	 * reset so all the memory is available
1693 	 */
1694 	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1695 
1696 	/*
1697 	 * Wait until positive that the interrupt has been generated
1698 	 */
1699 	do {
1700 		int int_status;
1701 		udelay(10);
1702 		int_status = SMC_GET_INT(lp);
1703 		if (int_status & IM_ALLOC_INT)
1704 			break;		/* got the interrupt */
1705 	} while (--timeout);
1706 
1707 	/*
1708 	 * there is really nothing that I can do here if timeout fails,
1709 	 * as autoirq_report will return a 0 anyway, which is what I
1710 	 * want in this case.   Plus, the clean up is needed in both
1711 	 * cases.
1712 	 */
1713 
1714 	/* and disable all interrupts again */
1715 	SMC_SET_INT_MASK(lp, 0);
1716 
1717 	/* and return what I found */
1718 	return probe_irq_off(cookie);
1719 }
1720 
1721 /*
1722  * Function: smc_probe(unsigned long ioaddr)
1723  *
1724  * Purpose:
1725  *	Tests to see if a given ioaddr points to an SMC91x chip.
1726  *	Returns a 0 on success
1727  *
1728  * Algorithm:
1729  *	(1) see if the high byte of BANK_SELECT is 0x33
1730  * 	(2) compare the ioaddr with the base register's address
1731  *	(3) see if I recognize the chip ID in the appropriate register
1732  *
1733  * Here I do typical initialization tasks.
1734  *
1735  * o  Initialize the structure if needed
1736  * o  print out my vanity message if not done so already
1737  * o  print out what type of hardware is detected
1738  * o  print out the ethernet address
1739  * o  find the IRQ
1740  * o  set up my private data
1741  * o  configure the dev structure with my subroutines
1742  * o  actually GRAB the irq.
1743  * o  GRAB the region
1744  */
smc_probe(struct net_device * dev,void __iomem * ioaddr,unsigned long irq_flags)1745 static int __devinit smc_probe(struct net_device *dev, void __iomem *ioaddr,
1746 			    unsigned long irq_flags)
1747 {
1748 	struct smc_local *lp = netdev_priv(dev);
1749 	static int version_printed = 0;
1750 	int retval;
1751 	unsigned int val, revision_register;
1752 	const char *version_string;
1753 
1754 	DBG(2, "%s: %s\n", CARDNAME, __func__);
1755 
1756 	/* First, see if the high byte is 0x33 */
1757 	val = SMC_CURRENT_BANK(lp);
1758 	DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1759 	if ((val & 0xFF00) != 0x3300) {
1760 		if ((val & 0xFF) == 0x33) {
1761 			printk(KERN_WARNING
1762 				"%s: Detected possible byte-swapped interface"
1763 				" at IOADDR %p\n", CARDNAME, ioaddr);
1764 		}
1765 		retval = -ENODEV;
1766 		goto err_out;
1767 	}
1768 
1769 	/*
1770 	 * The above MIGHT indicate a device, but I need to write to
1771 	 * further test this.
1772 	 */
1773 	SMC_SELECT_BANK(lp, 0);
1774 	val = SMC_CURRENT_BANK(lp);
1775 	if ((val & 0xFF00) != 0x3300) {
1776 		retval = -ENODEV;
1777 		goto err_out;
1778 	}
1779 
1780 	/*
1781 	 * well, we've already written once, so hopefully another
1782 	 * time won't hurt.  This time, I need to switch the bank
1783 	 * register to bank 1, so I can access the base address
1784 	 * register
1785 	 */
1786 	SMC_SELECT_BANK(lp, 1);
1787 	val = SMC_GET_BASE(lp);
1788 	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1789 	if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1790 		printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1791 			CARDNAME, ioaddr, val);
1792 	}
1793 
1794 	/*
1795 	 * check if the revision register is something that I
1796 	 * recognize.  These might need to be added to later,
1797 	 * as future revisions could be added.
1798 	 */
1799 	SMC_SELECT_BANK(lp, 3);
1800 	revision_register = SMC_GET_REV(lp);
1801 	DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1802 	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1803 	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1804 		/* I don't recognize this chip, so... */
1805 		printk("%s: IO %p: Unrecognized revision register 0x%04x"
1806 			", Contact author.\n", CARDNAME,
1807 			ioaddr, revision_register);
1808 
1809 		retval = -ENODEV;
1810 		goto err_out;
1811 	}
1812 
1813 	/* At this point I'll assume that the chip is an SMC91x. */
1814 	if (version_printed++ == 0)
1815 		printk("%s", version);
1816 
1817 	/* fill in some of the fields */
1818 	dev->base_addr = (unsigned long)ioaddr;
1819 	lp->base = ioaddr;
1820 	lp->version = revision_register & 0xff;
1821 	spin_lock_init(&lp->lock);
1822 
1823 	/* Get the MAC address */
1824 	SMC_SELECT_BANK(lp, 1);
1825 	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1826 
1827 	/* now, reset the chip, and put it into a known state */
1828 	smc_reset(dev);
1829 
1830 	/*
1831 	 * If dev->irq is 0, then the device has to be banged on to see
1832 	 * what the IRQ is.
1833  	 *
1834 	 * This banging doesn't always detect the IRQ, for unknown reasons.
1835 	 * a workaround is to reset the chip and try again.
1836 	 *
1837 	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1838 	 * be what is requested on the command line.   I don't do that, mostly
1839 	 * because the card that I have uses a non-standard method of accessing
1840 	 * the IRQs, and because this _should_ work in most configurations.
1841 	 *
1842 	 * Specifying an IRQ is done with the assumption that the user knows
1843 	 * what (s)he is doing.  No checking is done!!!!
1844 	 */
1845 	if (dev->irq < 1) {
1846 		int trials;
1847 
1848 		trials = 3;
1849 		while (trials--) {
1850 			dev->irq = smc_findirq(lp);
1851 			if (dev->irq)
1852 				break;
1853 			/* kick the card and try again */
1854 			smc_reset(dev);
1855 		}
1856 	}
1857 	if (dev->irq == 0) {
1858 		printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1859 			dev->name);
1860 		retval = -ENODEV;
1861 		goto err_out;
1862 	}
1863 	dev->irq = irq_canonicalize(dev->irq);
1864 
1865 	/* Fill in the fields of the device structure with ethernet values. */
1866 	ether_setup(dev);
1867 
1868 	dev->open = smc_open;
1869 	dev->stop = smc_close;
1870 	dev->hard_start_xmit = smc_hard_start_xmit;
1871 	dev->tx_timeout = smc_timeout;
1872 	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1873 	dev->set_multicast_list = smc_set_multicast_list;
1874 	dev->ethtool_ops = &smc_ethtool_ops;
1875 #ifdef CONFIG_NET_POLL_CONTROLLER
1876 	dev->poll_controller = smc_poll_controller;
1877 #endif
1878 
1879 	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1880 	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1881 	lp->dev = dev;
1882 	lp->mii.phy_id_mask = 0x1f;
1883 	lp->mii.reg_num_mask = 0x1f;
1884 	lp->mii.force_media = 0;
1885 	lp->mii.full_duplex = 0;
1886 	lp->mii.dev = dev;
1887 	lp->mii.mdio_read = smc_phy_read;
1888 	lp->mii.mdio_write = smc_phy_write;
1889 
1890 	/*
1891 	 * Locate the phy, if any.
1892 	 */
1893 	if (lp->version >= (CHIP_91100 << 4))
1894 		smc_phy_detect(dev);
1895 
1896 	/* then shut everything down to save power */
1897 	smc_shutdown(dev);
1898 	smc_phy_powerdown(dev);
1899 
1900 	/* Set default parameters */
1901 	lp->msg_enable = NETIF_MSG_LINK;
1902 	lp->ctl_rfduplx = 0;
1903 	lp->ctl_rspeed = 10;
1904 
1905 	if (lp->version >= (CHIP_91100 << 4)) {
1906 		lp->ctl_rfduplx = 1;
1907 		lp->ctl_rspeed = 100;
1908 	}
1909 
1910 	/* Grab the IRQ */
1911 	retval = request_irq(dev->irq, &smc_interrupt, irq_flags, dev->name, dev);
1912       	if (retval)
1913       		goto err_out;
1914 
1915 #ifdef CONFIG_ARCH_PXA
1916 #  ifdef SMC_USE_PXA_DMA
1917 	lp->cfg.flags |= SMC91X_USE_DMA;
1918 #  endif
1919 	if (lp->cfg.flags & SMC91X_USE_DMA) {
1920 		int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
1921 					  smc_pxa_dma_irq, NULL);
1922 		if (dma >= 0)
1923 			dev->dma = dma;
1924 	}
1925 #endif
1926 
1927 	retval = register_netdev(dev);
1928 	if (retval == 0) {
1929 		/* now, print out the card info, in a short format.. */
1930 		printk("%s: %s (rev %d) at %p IRQ %d",
1931 			dev->name, version_string, revision_register & 0x0f,
1932 			lp->base, dev->irq);
1933 
1934 		if (dev->dma != (unsigned char)-1)
1935 			printk(" DMA %d", dev->dma);
1936 
1937 		printk("%s%s\n",
1938 			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
1939 			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
1940 
1941 		if (!is_valid_ether_addr(dev->dev_addr)) {
1942 			printk("%s: Invalid ethernet MAC address.  Please "
1943 			       "set using ifconfig\n", dev->name);
1944 		} else {
1945 			/* Print the Ethernet address */
1946 			printk("%s: Ethernet addr: %pM\n",
1947 			       dev->name, dev->dev_addr);
1948 		}
1949 
1950 		if (lp->phy_type == 0) {
1951 			PRINTK("%s: No PHY found\n", dev->name);
1952 		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
1953 			PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
1954 		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
1955 			PRINTK("%s: PHY LAN83C180\n", dev->name);
1956 		}
1957 	}
1958 
1959 err_out:
1960 #ifdef CONFIG_ARCH_PXA
1961 	if (retval && dev->dma != (unsigned char)-1)
1962 		pxa_free_dma(dev->dma);
1963 #endif
1964 	return retval;
1965 }
1966 
smc_enable_device(struct platform_device * pdev)1967 static int smc_enable_device(struct platform_device *pdev)
1968 {
1969 	struct net_device *ndev = platform_get_drvdata(pdev);
1970 	struct smc_local *lp = netdev_priv(ndev);
1971 	unsigned long flags;
1972 	unsigned char ecor, ecsr;
1973 	void __iomem *addr;
1974 	struct resource * res;
1975 
1976 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
1977 	if (!res)
1978 		return 0;
1979 
1980 	/*
1981 	 * Map the attribute space.  This is overkill, but clean.
1982 	 */
1983 	addr = ioremap(res->start, ATTRIB_SIZE);
1984 	if (!addr)
1985 		return -ENOMEM;
1986 
1987 	/*
1988 	 * Reset the device.  We must disable IRQs around this
1989 	 * since a reset causes the IRQ line become active.
1990 	 */
1991 	local_irq_save(flags);
1992 	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
1993 	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
1994 	readb(addr + (ECOR << SMC_IO_SHIFT));
1995 
1996 	/*
1997 	 * Wait 100us for the chip to reset.
1998 	 */
1999 	udelay(100);
2000 
2001 	/*
2002 	 * The device will ignore all writes to the enable bit while
2003 	 * reset is asserted, even if the reset bit is cleared in the
2004 	 * same write.  Must clear reset first, then enable the device.
2005 	 */
2006 	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2007 	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2008 
2009 	/*
2010 	 * Set the appropriate byte/word mode.
2011 	 */
2012 	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2013 	if (!SMC_16BIT(lp))
2014 		ecsr |= ECSR_IOIS8;
2015 	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2016 	local_irq_restore(flags);
2017 
2018 	iounmap(addr);
2019 
2020 	/*
2021 	 * Wait for the chip to wake up.  We could poll the control
2022 	 * register in the main register space, but that isn't mapped
2023 	 * yet.  We know this is going to take 750us.
2024 	 */
2025 	msleep(1);
2026 
2027 	return 0;
2028 }
2029 
smc_request_attrib(struct platform_device * pdev,struct net_device * ndev)2030 static int smc_request_attrib(struct platform_device *pdev,
2031 			      struct net_device *ndev)
2032 {
2033 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2034 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2035 
2036 	if (!res)
2037 		return 0;
2038 
2039 	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2040 		return -EBUSY;
2041 
2042 	return 0;
2043 }
2044 
smc_release_attrib(struct platform_device * pdev,struct net_device * ndev)2045 static void smc_release_attrib(struct platform_device *pdev,
2046 			       struct net_device *ndev)
2047 {
2048 	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2049 	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2050 
2051 	if (res)
2052 		release_mem_region(res->start, ATTRIB_SIZE);
2053 }
2054 
smc_request_datacs(struct platform_device * pdev,struct net_device * ndev)2055 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2056 {
2057 	if (SMC_CAN_USE_DATACS) {
2058 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2059 		struct smc_local *lp = netdev_priv(ndev);
2060 
2061 		if (!res)
2062 			return;
2063 
2064 		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2065 			printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2066 			return;
2067 		}
2068 
2069 		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2070 	}
2071 }
2072 
smc_release_datacs(struct platform_device * pdev,struct net_device * ndev)2073 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2074 {
2075 	if (SMC_CAN_USE_DATACS) {
2076 		struct smc_local *lp = netdev_priv(ndev);
2077 		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2078 
2079 		if (lp->datacs)
2080 			iounmap(lp->datacs);
2081 
2082 		lp->datacs = NULL;
2083 
2084 		if (res)
2085 			release_mem_region(res->start, SMC_DATA_EXTENT);
2086 	}
2087 }
2088 
2089 /*
2090  * smc_init(void)
2091  *   Input parameters:
2092  *	dev->base_addr == 0, try to find all possible locations
2093  *	dev->base_addr > 0x1ff, this is the address to check
2094  *	dev->base_addr == <anything else>, return failure code
2095  *
2096  *   Output:
2097  *	0 --> there is a device
2098  *	anything else, error
2099  */
smc_drv_probe(struct platform_device * pdev)2100 static int __devinit smc_drv_probe(struct platform_device *pdev)
2101 {
2102 	struct smc91x_platdata *pd = pdev->dev.platform_data;
2103 	struct smc_local *lp;
2104 	struct net_device *ndev;
2105 	struct resource *res, *ires;
2106 	unsigned int __iomem *addr;
2107 	unsigned long irq_flags = SMC_IRQ_FLAGS;
2108 	int ret;
2109 
2110 	ndev = alloc_etherdev(sizeof(struct smc_local));
2111 	if (!ndev) {
2112 		printk("%s: could not allocate device.\n", CARDNAME);
2113 		ret = -ENOMEM;
2114 		goto out;
2115 	}
2116 	SET_NETDEV_DEV(ndev, &pdev->dev);
2117 
2118 	/* get configuration from platform data, only allow use of
2119 	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2120 	 */
2121 
2122 	lp = netdev_priv(ndev);
2123 
2124 	if (pd) {
2125 		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2126 		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2127 	} else {
2128 		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2129 		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2130 		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2131 		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2132 	}
2133 
2134 	if (!lp->cfg.leda && !lp->cfg.ledb) {
2135 		lp->cfg.leda = RPC_LSA_DEFAULT;
2136 		lp->cfg.ledb = RPC_LSB_DEFAULT;
2137 	}
2138 
2139 	ndev->dma = (unsigned char)-1;
2140 
2141 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2142 	if (!res)
2143 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2144 	if (!res) {
2145 		ret = -ENODEV;
2146 		goto out_free_netdev;
2147 	}
2148 
2149 
2150 	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2151 		ret = -EBUSY;
2152 		goto out_free_netdev;
2153 	}
2154 
2155 	ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2156 	if (!ires) {
2157 		ret = -ENODEV;
2158 		goto out_release_io;
2159 	}
2160 
2161 	ndev->irq = ires->start;
2162 
2163 	if (ires->flags & IRQF_TRIGGER_MASK)
2164 		irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2165 
2166 	ret = smc_request_attrib(pdev, ndev);
2167 	if (ret)
2168 		goto out_release_io;
2169 #if defined(CONFIG_SA1100_ASSABET)
2170 	NCR_0 |= NCR_ENET_OSC_EN;
2171 #endif
2172 	platform_set_drvdata(pdev, ndev);
2173 	ret = smc_enable_device(pdev);
2174 	if (ret)
2175 		goto out_release_attrib;
2176 
2177 	addr = ioremap(res->start, SMC_IO_EXTENT);
2178 	if (!addr) {
2179 		ret = -ENOMEM;
2180 		goto out_release_attrib;
2181 	}
2182 
2183 #ifdef CONFIG_ARCH_PXA
2184 	{
2185 		struct smc_local *lp = netdev_priv(ndev);
2186 		lp->device = &pdev->dev;
2187 		lp->physaddr = res->start;
2188 	}
2189 #endif
2190 
2191 	ret = smc_probe(ndev, addr, irq_flags);
2192 	if (ret != 0)
2193 		goto out_iounmap;
2194 
2195 	smc_request_datacs(pdev, ndev);
2196 
2197 	return 0;
2198 
2199  out_iounmap:
2200 	platform_set_drvdata(pdev, NULL);
2201 	iounmap(addr);
2202  out_release_attrib:
2203 	smc_release_attrib(pdev, ndev);
2204  out_release_io:
2205 	release_mem_region(res->start, SMC_IO_EXTENT);
2206  out_free_netdev:
2207 	free_netdev(ndev);
2208  out:
2209 	printk("%s: not found (%d).\n", CARDNAME, ret);
2210 
2211 	return ret;
2212 }
2213 
smc_drv_remove(struct platform_device * pdev)2214 static int __devexit smc_drv_remove(struct platform_device *pdev)
2215 {
2216 	struct net_device *ndev = platform_get_drvdata(pdev);
2217 	struct smc_local *lp = netdev_priv(ndev);
2218 	struct resource *res;
2219 
2220 	platform_set_drvdata(pdev, NULL);
2221 
2222 	unregister_netdev(ndev);
2223 
2224 	free_irq(ndev->irq, ndev);
2225 
2226 #ifdef CONFIG_ARCH_PXA
2227 	if (ndev->dma != (unsigned char)-1)
2228 		pxa_free_dma(ndev->dma);
2229 #endif
2230 	iounmap(lp->base);
2231 
2232 	smc_release_datacs(pdev,ndev);
2233 	smc_release_attrib(pdev,ndev);
2234 
2235 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2236 	if (!res)
2237 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2238 	release_mem_region(res->start, SMC_IO_EXTENT);
2239 
2240 	free_netdev(ndev);
2241 
2242 	return 0;
2243 }
2244 
smc_drv_suspend(struct platform_device * dev,pm_message_t state)2245 static int smc_drv_suspend(struct platform_device *dev, pm_message_t state)
2246 {
2247 	struct net_device *ndev = platform_get_drvdata(dev);
2248 
2249 	if (ndev) {
2250 		if (netif_running(ndev)) {
2251 			netif_device_detach(ndev);
2252 			smc_shutdown(ndev);
2253 			smc_phy_powerdown(ndev);
2254 		}
2255 	}
2256 	return 0;
2257 }
2258 
smc_drv_resume(struct platform_device * dev)2259 static int smc_drv_resume(struct platform_device *dev)
2260 {
2261 	struct net_device *ndev = platform_get_drvdata(dev);
2262 
2263 	if (ndev) {
2264 		struct smc_local *lp = netdev_priv(ndev);
2265 		smc_enable_device(dev);
2266 		if (netif_running(ndev)) {
2267 			smc_reset(ndev);
2268 			smc_enable(ndev);
2269 			if (lp->phy_type != 0)
2270 				smc_phy_configure(&lp->phy_configure);
2271 			netif_device_attach(ndev);
2272 		}
2273 	}
2274 	return 0;
2275 }
2276 
2277 static struct platform_driver smc_driver = {
2278 	.probe		= smc_drv_probe,
2279 	.remove		= __devexit_p(smc_drv_remove),
2280 	.suspend	= smc_drv_suspend,
2281 	.resume		= smc_drv_resume,
2282 	.driver		= {
2283 		.name	= CARDNAME,
2284 		.owner	= THIS_MODULE,
2285 	},
2286 };
2287 
smc_init(void)2288 static int __init smc_init(void)
2289 {
2290 	return platform_driver_register(&smc_driver);
2291 }
2292 
smc_cleanup(void)2293 static void __exit smc_cleanup(void)
2294 {
2295 	platform_driver_unregister(&smc_driver);
2296 }
2297 
2298 module_init(smc_init);
2299 module_exit(smc_cleanup);
2300