• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PHY drivers for the sungem ethernet driver.
3  *
4  * This file could be shared with other drivers.
5  *
6  * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
7  *
8  * TODO:
9  *  - Add support for PHYs that provide an IRQ line
10  *  - Eventually moved the entire polling state machine in
11  *    there (out of the eth driver), so that it can easily be
12  *    skipped on PHYs that implement it in hardware.
13  *  - On LXT971 & BCM5201, Apple uses some chip specific regs
14  *    to read the link status. Figure out why and if it makes
15  *    sense to do the same (magic aneg ?)
16  *  - Apple has some additional power management code for some
17  *    Broadcom PHYs that they "hide" from the OpenSource version
18  *    of darwin, still need to reverse engineer that
19  */
20 
21 
22 #include <linux/module.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/delay.h>
31 
32 #ifdef CONFIG_PPC_PMAC
33 #include <asm/prom.h>
34 #endif
35 
36 #include "sungem_phy.h"
37 
38 /* Link modes of the BCM5400 PHY */
39 static const int phy_BCM5400_link_table[8][3] = {
40 	{ 0, 0, 0 },	/* No link */
41 	{ 0, 0, 0 },	/* 10BT Half Duplex */
42 	{ 1, 0, 0 },	/* 10BT Full Duplex */
43 	{ 0, 1, 0 },	/* 100BT Half Duplex */
44 	{ 0, 1, 0 },	/* 100BT Half Duplex */
45 	{ 1, 1, 0 },	/* 100BT Full Duplex*/
46 	{ 1, 0, 1 },	/* 1000BT */
47 	{ 1, 0, 1 },	/* 1000BT */
48 };
49 
__phy_read(struct mii_phy * phy,int id,int reg)50 static inline int __phy_read(struct mii_phy* phy, int id, int reg)
51 {
52 	return phy->mdio_read(phy->dev, id, reg);
53 }
54 
__phy_write(struct mii_phy * phy,int id,int reg,int val)55 static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val)
56 {
57 	phy->mdio_write(phy->dev, id, reg, val);
58 }
59 
phy_read(struct mii_phy * phy,int reg)60 static inline int phy_read(struct mii_phy* phy, int reg)
61 {
62 	return phy->mdio_read(phy->dev, phy->mii_id, reg);
63 }
64 
phy_write(struct mii_phy * phy,int reg,int val)65 static inline void phy_write(struct mii_phy* phy, int reg, int val)
66 {
67 	phy->mdio_write(phy->dev, phy->mii_id, reg, val);
68 }
69 
reset_one_mii_phy(struct mii_phy * phy,int phy_id)70 static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
71 {
72 	u16 val;
73 	int limit = 10000;
74 
75 	val = __phy_read(phy, phy_id, MII_BMCR);
76 	val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
77 	val |= BMCR_RESET;
78 	__phy_write(phy, phy_id, MII_BMCR, val);
79 
80 	udelay(100);
81 
82 	while (--limit) {
83 		val = __phy_read(phy, phy_id, MII_BMCR);
84 		if ((val & BMCR_RESET) == 0)
85 			break;
86 		udelay(10);
87 	}
88 	if ((val & BMCR_ISOLATE) && limit > 0)
89 		__phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
90 
91 	return (limit <= 0);
92 }
93 
bcm5201_init(struct mii_phy * phy)94 static int bcm5201_init(struct mii_phy* phy)
95 {
96 	u16 data;
97 
98 	data = phy_read(phy, MII_BCM5201_MULTIPHY);
99 	data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
100 	phy_write(phy, MII_BCM5201_MULTIPHY, data);
101 
102 	phy_write(phy, MII_BCM5201_INTERRUPT, 0);
103 
104 	return 0;
105 }
106 
bcm5201_suspend(struct mii_phy * phy)107 static int bcm5201_suspend(struct mii_phy* phy)
108 {
109 	phy_write(phy, MII_BCM5201_INTERRUPT, 0);
110 	phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
111 
112 	return 0;
113 }
114 
bcm5221_init(struct mii_phy * phy)115 static int bcm5221_init(struct mii_phy* phy)
116 {
117 	u16 data;
118 
119 	data = phy_read(phy, MII_BCM5221_TEST);
120 	phy_write(phy, MII_BCM5221_TEST,
121 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
122 
123 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
124 	phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
125 		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
126 
127 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
128 	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
129 		data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
130 
131 	data = phy_read(phy, MII_BCM5221_TEST);
132 	phy_write(phy, MII_BCM5221_TEST,
133 		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
134 
135 	return 0;
136 }
137 
bcm5221_suspend(struct mii_phy * phy)138 static int bcm5221_suspend(struct mii_phy* phy)
139 {
140 	u16 data;
141 
142 	data = phy_read(phy, MII_BCM5221_TEST);
143 	phy_write(phy, MII_BCM5221_TEST,
144 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
145 
146 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
147 	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
148 		  data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
149 
150 	return 0;
151 }
152 
bcm5241_init(struct mii_phy * phy)153 static int bcm5241_init(struct mii_phy* phy)
154 {
155 	u16 data;
156 
157 	data = phy_read(phy, MII_BCM5221_TEST);
158 	phy_write(phy, MII_BCM5221_TEST,
159 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
160 
161 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
162 	phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
163 		data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
164 
165 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
166 	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
167 		data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
168 
169 	data = phy_read(phy, MII_BCM5221_TEST);
170 	phy_write(phy, MII_BCM5221_TEST,
171 		data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
172 
173 	return 0;
174 }
175 
bcm5241_suspend(struct mii_phy * phy)176 static int bcm5241_suspend(struct mii_phy* phy)
177 {
178 	u16 data;
179 
180 	data = phy_read(phy, MII_BCM5221_TEST);
181 	phy_write(phy, MII_BCM5221_TEST,
182 		data | MII_BCM5221_TEST_ENABLE_SHADOWS);
183 
184 	data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
185 	phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
186 		  data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
187 
188 	return 0;
189 }
190 
bcm5400_init(struct mii_phy * phy)191 static int bcm5400_init(struct mii_phy* phy)
192 {
193 	u16 data;
194 
195 	/* Configure for gigabit full duplex */
196 	data = phy_read(phy, MII_BCM5400_AUXCONTROL);
197 	data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
198 	phy_write(phy, MII_BCM5400_AUXCONTROL, data);
199 
200 	data = phy_read(phy, MII_BCM5400_GB_CONTROL);
201 	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
202 	phy_write(phy, MII_BCM5400_GB_CONTROL, data);
203 
204 	udelay(100);
205 
206 	/* Reset and configure cascaded 10/100 PHY */
207 	(void)reset_one_mii_phy(phy, 0x1f);
208 
209 	data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
210 	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
211 	__phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
212 
213 	data = phy_read(phy, MII_BCM5400_AUXCONTROL);
214 	data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
215 	phy_write(phy, MII_BCM5400_AUXCONTROL, data);
216 
217 	return 0;
218 }
219 
bcm5400_suspend(struct mii_phy * phy)220 static int bcm5400_suspend(struct mii_phy* phy)
221 {
222 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
223 	phy_write(phy, MII_BMCR, BMCR_PDOWN);
224 #endif
225 	return 0;
226 }
227 
bcm5401_init(struct mii_phy * phy)228 static int bcm5401_init(struct mii_phy* phy)
229 {
230 	u16 data;
231 	int rev;
232 
233 	rev = phy_read(phy, MII_PHYSID2) & 0x000f;
234 	if (rev == 0 || rev == 3) {
235 		/* Some revisions of 5401 appear to need this
236 		 * initialisation sequence to disable, according
237 		 * to OF, "tap power management"
238 		 *
239 		 * WARNING ! OF and Darwin don't agree on the
240 		 * register addresses. OF seem to interpret the
241 		 * register numbers below as decimal
242 		 *
243 		 * Note: This should (and does) match tg3_init_5401phy_dsp
244 		 *       in the tg3.c driver. -DaveM
245 		 */
246 		phy_write(phy, 0x18, 0x0c20);
247 		phy_write(phy, 0x17, 0x0012);
248 		phy_write(phy, 0x15, 0x1804);
249 		phy_write(phy, 0x17, 0x0013);
250 		phy_write(phy, 0x15, 0x1204);
251 		phy_write(phy, 0x17, 0x8006);
252 		phy_write(phy, 0x15, 0x0132);
253 		phy_write(phy, 0x17, 0x8006);
254 		phy_write(phy, 0x15, 0x0232);
255 		phy_write(phy, 0x17, 0x201f);
256 		phy_write(phy, 0x15, 0x0a20);
257 	}
258 
259 	/* Configure for gigabit full duplex */
260 	data = phy_read(phy, MII_BCM5400_GB_CONTROL);
261 	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
262 	phy_write(phy, MII_BCM5400_GB_CONTROL, data);
263 
264 	udelay(10);
265 
266 	/* Reset and configure cascaded 10/100 PHY */
267 	(void)reset_one_mii_phy(phy, 0x1f);
268 
269 	data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
270 	data |= MII_BCM5201_MULTIPHY_SERIALMODE;
271 	__phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
272 
273 	return 0;
274 }
275 
bcm5401_suspend(struct mii_phy * phy)276 static int bcm5401_suspend(struct mii_phy* phy)
277 {
278 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
279 	phy_write(phy, MII_BMCR, BMCR_PDOWN);
280 #endif
281 	return 0;
282 }
283 
bcm5411_init(struct mii_phy * phy)284 static int bcm5411_init(struct mii_phy* phy)
285 {
286 	u16 data;
287 
288 	/* Here's some more Apple black magic to setup
289 	 * some voltage stuffs.
290 	 */
291 	phy_write(phy, 0x1c, 0x8c23);
292 	phy_write(phy, 0x1c, 0x8ca3);
293 	phy_write(phy, 0x1c, 0x8c23);
294 
295 	/* Here, Apple seems to want to reset it, do
296 	 * it as well
297 	 */
298 	phy_write(phy, MII_BMCR, BMCR_RESET);
299 	phy_write(phy, MII_BMCR, 0x1340);
300 
301 	data = phy_read(phy, MII_BCM5400_GB_CONTROL);
302 	data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
303 	phy_write(phy, MII_BCM5400_GB_CONTROL, data);
304 
305 	udelay(10);
306 
307 	/* Reset and configure cascaded 10/100 PHY */
308 	(void)reset_one_mii_phy(phy, 0x1f);
309 
310 	return 0;
311 }
312 
genmii_setup_aneg(struct mii_phy * phy,u32 advertise)313 static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
314 {
315 	u16 ctl, adv;
316 
317 	phy->autoneg = 1;
318 	phy->speed = SPEED_10;
319 	phy->duplex = DUPLEX_HALF;
320 	phy->pause = 0;
321 	phy->advertising = advertise;
322 
323 	/* Setup standard advertise */
324 	adv = phy_read(phy, MII_ADVERTISE);
325 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
326 	if (advertise & ADVERTISED_10baseT_Half)
327 		adv |= ADVERTISE_10HALF;
328 	if (advertise & ADVERTISED_10baseT_Full)
329 		adv |= ADVERTISE_10FULL;
330 	if (advertise & ADVERTISED_100baseT_Half)
331 		adv |= ADVERTISE_100HALF;
332 	if (advertise & ADVERTISED_100baseT_Full)
333 		adv |= ADVERTISE_100FULL;
334 	phy_write(phy, MII_ADVERTISE, adv);
335 
336 	/* Start/Restart aneg */
337 	ctl = phy_read(phy, MII_BMCR);
338 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
339 	phy_write(phy, MII_BMCR, ctl);
340 
341 	return 0;
342 }
343 
genmii_setup_forced(struct mii_phy * phy,int speed,int fd)344 static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
345 {
346 	u16 ctl;
347 
348 	phy->autoneg = 0;
349 	phy->speed = speed;
350 	phy->duplex = fd;
351 	phy->pause = 0;
352 
353 	ctl = phy_read(phy, MII_BMCR);
354 	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
355 
356 	/* First reset the PHY */
357 	phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
358 
359 	/* Select speed & duplex */
360 	switch(speed) {
361 	case SPEED_10:
362 		break;
363 	case SPEED_100:
364 		ctl |= BMCR_SPEED100;
365 		break;
366 	case SPEED_1000:
367 	default:
368 		return -EINVAL;
369 	}
370 	if (fd == DUPLEX_FULL)
371 		ctl |= BMCR_FULLDPLX;
372 	phy_write(phy, MII_BMCR, ctl);
373 
374 	return 0;
375 }
376 
genmii_poll_link(struct mii_phy * phy)377 static int genmii_poll_link(struct mii_phy *phy)
378 {
379 	u16 status;
380 
381 	(void)phy_read(phy, MII_BMSR);
382 	status = phy_read(phy, MII_BMSR);
383 	if ((status & BMSR_LSTATUS) == 0)
384 		return 0;
385 	if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
386 		return 0;
387 	return 1;
388 }
389 
genmii_read_link(struct mii_phy * phy)390 static int genmii_read_link(struct mii_phy *phy)
391 {
392 	u16 lpa;
393 
394 	if (phy->autoneg) {
395 		lpa = phy_read(phy, MII_LPA);
396 
397 		if (lpa & (LPA_10FULL | LPA_100FULL))
398 			phy->duplex = DUPLEX_FULL;
399 		else
400 			phy->duplex = DUPLEX_HALF;
401 		if (lpa & (LPA_100FULL | LPA_100HALF))
402 			phy->speed = SPEED_100;
403 		else
404 			phy->speed = SPEED_10;
405 		phy->pause = 0;
406 	}
407 	/* On non-aneg, we assume what we put in BMCR is the speed,
408 	 * though magic-aneg shouldn't prevent this case from occurring
409 	 */
410 
411 	 return 0;
412 }
413 
generic_suspend(struct mii_phy * phy)414 static int generic_suspend(struct mii_phy* phy)
415 {
416 	phy_write(phy, MII_BMCR, BMCR_PDOWN);
417 
418 	return 0;
419 }
420 
bcm5421_init(struct mii_phy * phy)421 static int bcm5421_init(struct mii_phy* phy)
422 {
423 	u16 data;
424 	unsigned int id;
425 
426 	id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
427 
428 	/* Revision 0 of 5421 needs some fixups */
429 	if (id == 0x002060e0) {
430 		/* This is borrowed from MacOS
431 		 */
432 		phy_write(phy, 0x18, 0x1007);
433 		data = phy_read(phy, 0x18);
434 		phy_write(phy, 0x18, data | 0x0400);
435 		phy_write(phy, 0x18, 0x0007);
436 		data = phy_read(phy, 0x18);
437 		phy_write(phy, 0x18, data | 0x0800);
438 		phy_write(phy, 0x17, 0x000a);
439 		data = phy_read(phy, 0x15);
440 		phy_write(phy, 0x15, data | 0x0200);
441 	}
442 
443 	/* Pick up some init code from OF for K2 version */
444 	if ((id & 0xfffffff0) == 0x002062e0) {
445 		phy_write(phy, 4, 0x01e1);
446 		phy_write(phy, 9, 0x0300);
447 	}
448 
449 	/* Check if we can enable automatic low power */
450 #ifdef CONFIG_PPC_PMAC
451 	if (phy->platform_data) {
452 		struct device_node *np = of_get_parent(phy->platform_data);
453 		int can_low_power = 1;
454 		if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
455 			can_low_power = 0;
456 		if (can_low_power) {
457 			/* Enable automatic low-power */
458 			phy_write(phy, 0x1c, 0x9002);
459 			phy_write(phy, 0x1c, 0xa821);
460 			phy_write(phy, 0x1c, 0x941d);
461 		}
462 	}
463 #endif /* CONFIG_PPC_PMAC */
464 
465 	return 0;
466 }
467 
bcm54xx_setup_aneg(struct mii_phy * phy,u32 advertise)468 static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
469 {
470 	u16 ctl, adv;
471 
472 	phy->autoneg = 1;
473 	phy->speed = SPEED_10;
474 	phy->duplex = DUPLEX_HALF;
475 	phy->pause = 0;
476 	phy->advertising = advertise;
477 
478 	/* Setup standard advertise */
479 	adv = phy_read(phy, MII_ADVERTISE);
480 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
481 	if (advertise & ADVERTISED_10baseT_Half)
482 		adv |= ADVERTISE_10HALF;
483 	if (advertise & ADVERTISED_10baseT_Full)
484 		adv |= ADVERTISE_10FULL;
485 	if (advertise & ADVERTISED_100baseT_Half)
486 		adv |= ADVERTISE_100HALF;
487 	if (advertise & ADVERTISED_100baseT_Full)
488 		adv |= ADVERTISE_100FULL;
489 	if (advertise & ADVERTISED_Pause)
490 		adv |= ADVERTISE_PAUSE_CAP;
491 	if (advertise & ADVERTISED_Asym_Pause)
492 		adv |= ADVERTISE_PAUSE_ASYM;
493 	phy_write(phy, MII_ADVERTISE, adv);
494 
495 	/* Setup 1000BT advertise */
496 	adv = phy_read(phy, MII_1000BASETCONTROL);
497 	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
498 	if (advertise & SUPPORTED_1000baseT_Half)
499 		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
500 	if (advertise & SUPPORTED_1000baseT_Full)
501 		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
502 	phy_write(phy, MII_1000BASETCONTROL, adv);
503 
504 	/* Start/Restart aneg */
505 	ctl = phy_read(phy, MII_BMCR);
506 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
507 	phy_write(phy, MII_BMCR, ctl);
508 
509 	return 0;
510 }
511 
bcm54xx_setup_forced(struct mii_phy * phy,int speed,int fd)512 static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
513 {
514 	u16 ctl;
515 
516 	phy->autoneg = 0;
517 	phy->speed = speed;
518 	phy->duplex = fd;
519 	phy->pause = 0;
520 
521 	ctl = phy_read(phy, MII_BMCR);
522 	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
523 
524 	/* First reset the PHY */
525 	phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
526 
527 	/* Select speed & duplex */
528 	switch(speed) {
529 	case SPEED_10:
530 		break;
531 	case SPEED_100:
532 		ctl |= BMCR_SPEED100;
533 		break;
534 	case SPEED_1000:
535 		ctl |= BMCR_SPD2;
536 	}
537 	if (fd == DUPLEX_FULL)
538 		ctl |= BMCR_FULLDPLX;
539 
540 	// XXX Should we set the sungem to GII now on 1000BT ?
541 
542 	phy_write(phy, MII_BMCR, ctl);
543 
544 	return 0;
545 }
546 
bcm54xx_read_link(struct mii_phy * phy)547 static int bcm54xx_read_link(struct mii_phy *phy)
548 {
549 	int link_mode;
550 	u16 val;
551 
552 	if (phy->autoneg) {
553 	    	val = phy_read(phy, MII_BCM5400_AUXSTATUS);
554 		link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
555 			     MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
556 		phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
557 			DUPLEX_FULL : DUPLEX_HALF;
558 		phy->speed = phy_BCM5400_link_table[link_mode][2] ?
559 				SPEED_1000 :
560 				(phy_BCM5400_link_table[link_mode][1] ?
561 				 SPEED_100 : SPEED_10);
562 		val = phy_read(phy, MII_LPA);
563 		phy->pause = (phy->duplex == DUPLEX_FULL) &&
564 			((val & LPA_PAUSE) != 0);
565 	}
566 	/* On non-aneg, we assume what we put in BMCR is the speed,
567 	 * though magic-aneg shouldn't prevent this case from occurring
568 	 */
569 
570 	return 0;
571 }
572 
marvell88e1111_init(struct mii_phy * phy)573 static int marvell88e1111_init(struct mii_phy* phy)
574 {
575 	u16 rev;
576 
577 	/* magic init sequence for rev 0 */
578 	rev = phy_read(phy, MII_PHYSID2) & 0x000f;
579 	if (rev == 0) {
580 		phy_write(phy, 0x1d, 0x000a);
581 		phy_write(phy, 0x1e, 0x0821);
582 
583 		phy_write(phy, 0x1d, 0x0006);
584 		phy_write(phy, 0x1e, 0x8600);
585 
586 		phy_write(phy, 0x1d, 0x000b);
587 		phy_write(phy, 0x1e, 0x0100);
588 
589 		phy_write(phy, 0x1d, 0x0004);
590 		phy_write(phy, 0x1e, 0x4850);
591 	}
592 	return 0;
593 }
594 
595 #define BCM5421_MODE_MASK	(1 << 5)
596 
bcm5421_poll_link(struct mii_phy * phy)597 static int bcm5421_poll_link(struct mii_phy* phy)
598 {
599 	u32 phy_reg;
600 	int mode;
601 
602 	/* find out in what mode we are */
603 	phy_write(phy, MII_NCONFIG, 0x1000);
604 	phy_reg = phy_read(phy, MII_NCONFIG);
605 
606 	mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
607 
608 	if ( mode == BCM54XX_COPPER)
609 		return genmii_poll_link(phy);
610 
611 	/* try to find out wether we have a link */
612 	phy_write(phy, MII_NCONFIG, 0x2000);
613 	phy_reg = phy_read(phy, MII_NCONFIG);
614 
615 	if (phy_reg & 0x0020)
616 		return 0;
617 	else
618 		return 1;
619 }
620 
bcm5421_read_link(struct mii_phy * phy)621 static int bcm5421_read_link(struct mii_phy* phy)
622 {
623 	u32 phy_reg;
624 	int mode;
625 
626 	/* find out in what mode we are */
627 	phy_write(phy, MII_NCONFIG, 0x1000);
628 	phy_reg = phy_read(phy, MII_NCONFIG);
629 
630 	mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
631 
632 	if ( mode == BCM54XX_COPPER)
633 		return bcm54xx_read_link(phy);
634 
635 	phy->speed = SPEED_1000;
636 
637 	/* find out wether we are running half- or full duplex */
638 	phy_write(phy, MII_NCONFIG, 0x2000);
639 	phy_reg = phy_read(phy, MII_NCONFIG);
640 
641 	if ( (phy_reg & 0x0080) >> 7)
642 		phy->duplex |=  DUPLEX_HALF;
643 	else
644 		phy->duplex |=  DUPLEX_FULL;
645 
646 	return 0;
647 }
648 
bcm5421_enable_fiber(struct mii_phy * phy,int autoneg)649 static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
650 {
651 	/* enable fiber mode */
652 	phy_write(phy, MII_NCONFIG, 0x9020);
653 	/* LEDs active in both modes, autosense prio = fiber */
654 	phy_write(phy, MII_NCONFIG, 0x945f);
655 
656 	if (!autoneg) {
657 		/* switch off fibre autoneg */
658 		phy_write(phy, MII_NCONFIG, 0xfc01);
659 		phy_write(phy, 0x0b, 0x0004);
660 	}
661 
662 	phy->autoneg = autoneg;
663 
664 	return 0;
665 }
666 
667 #define BCM5461_FIBER_LINK	(1 << 2)
668 #define BCM5461_MODE_MASK	(3 << 1)
669 
bcm5461_poll_link(struct mii_phy * phy)670 static int bcm5461_poll_link(struct mii_phy* phy)
671 {
672 	u32 phy_reg;
673 	int mode;
674 
675 	/* find out in what mode we are */
676 	phy_write(phy, MII_NCONFIG, 0x7c00);
677 	phy_reg = phy_read(phy, MII_NCONFIG);
678 
679 	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
680 
681 	if ( mode == BCM54XX_COPPER)
682 		return genmii_poll_link(phy);
683 
684 	/* find out wether we have a link */
685 	phy_write(phy, MII_NCONFIG, 0x7000);
686 	phy_reg = phy_read(phy, MII_NCONFIG);
687 
688 	if (phy_reg & BCM5461_FIBER_LINK)
689 		return 1;
690 	else
691 		return 0;
692 }
693 
694 #define BCM5461_FIBER_DUPLEX	(1 << 3)
695 
bcm5461_read_link(struct mii_phy * phy)696 static int bcm5461_read_link(struct mii_phy* phy)
697 {
698 	u32 phy_reg;
699 	int mode;
700 
701 	/* find out in what mode we are */
702 	phy_write(phy, MII_NCONFIG, 0x7c00);
703 	phy_reg = phy_read(phy, MII_NCONFIG);
704 
705 	mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
706 
707 	if ( mode == BCM54XX_COPPER) {
708 		return bcm54xx_read_link(phy);
709 	}
710 
711 	phy->speed = SPEED_1000;
712 
713 	/* find out wether we are running half- or full duplex */
714 	phy_write(phy, MII_NCONFIG, 0x7000);
715 	phy_reg = phy_read(phy, MII_NCONFIG);
716 
717 	if (phy_reg & BCM5461_FIBER_DUPLEX)
718 		phy->duplex |=  DUPLEX_FULL;
719 	else
720 		phy->duplex |=  DUPLEX_HALF;
721 
722 	return 0;
723 }
724 
bcm5461_enable_fiber(struct mii_phy * phy,int autoneg)725 static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
726 {
727 	/* select fiber mode, enable 1000 base-X registers */
728 	phy_write(phy, MII_NCONFIG, 0xfc0b);
729 
730 	if (autoneg) {
731 		/* enable fiber with no autonegotiation */
732 		phy_write(phy, MII_ADVERTISE, 0x01e0);
733 		phy_write(phy, MII_BMCR, 0x1140);
734 	} else {
735 		/* enable fiber with autonegotiation */
736 		phy_write(phy, MII_BMCR, 0x0140);
737 	}
738 
739 	phy->autoneg = autoneg;
740 
741 	return 0;
742 }
743 
marvell_setup_aneg(struct mii_phy * phy,u32 advertise)744 static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
745 {
746 	u16 ctl, adv;
747 
748 	phy->autoneg = 1;
749 	phy->speed = SPEED_10;
750 	phy->duplex = DUPLEX_HALF;
751 	phy->pause = 0;
752 	phy->advertising = advertise;
753 
754 	/* Setup standard advertise */
755 	adv = phy_read(phy, MII_ADVERTISE);
756 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
757 	if (advertise & ADVERTISED_10baseT_Half)
758 		adv |= ADVERTISE_10HALF;
759 	if (advertise & ADVERTISED_10baseT_Full)
760 		adv |= ADVERTISE_10FULL;
761 	if (advertise & ADVERTISED_100baseT_Half)
762 		adv |= ADVERTISE_100HALF;
763 	if (advertise & ADVERTISED_100baseT_Full)
764 		adv |= ADVERTISE_100FULL;
765 	if (advertise & ADVERTISED_Pause)
766 		adv |= ADVERTISE_PAUSE_CAP;
767 	if (advertise & ADVERTISED_Asym_Pause)
768 		adv |= ADVERTISE_PAUSE_ASYM;
769 	phy_write(phy, MII_ADVERTISE, adv);
770 
771 	/* Setup 1000BT advertise & enable crossover detect
772 	 * XXX How do we advertise 1000BT ? Darwin source is
773 	 * confusing here, they read from specific control and
774 	 * write to control... Someone has specs for those
775 	 * beasts ?
776 	 */
777 	adv = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
778 	adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
779 	adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
780 			MII_1000BASETCONTROL_HALFDUPLEXCAP);
781 	if (advertise & SUPPORTED_1000baseT_Half)
782 		adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
783 	if (advertise & SUPPORTED_1000baseT_Full)
784 		adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
785 	phy_write(phy, MII_1000BASETCONTROL, adv);
786 
787 	/* Start/Restart aneg */
788 	ctl = phy_read(phy, MII_BMCR);
789 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
790 	phy_write(phy, MII_BMCR, ctl);
791 
792 	return 0;
793 }
794 
marvell_setup_forced(struct mii_phy * phy,int speed,int fd)795 static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
796 {
797 	u16 ctl, ctl2;
798 
799 	phy->autoneg = 0;
800 	phy->speed = speed;
801 	phy->duplex = fd;
802 	phy->pause = 0;
803 
804 	ctl = phy_read(phy, MII_BMCR);
805 	ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
806 	ctl |= BMCR_RESET;
807 
808 	/* Select speed & duplex */
809 	switch(speed) {
810 	case SPEED_10:
811 		break;
812 	case SPEED_100:
813 		ctl |= BMCR_SPEED100;
814 		break;
815 	/* I'm not sure about the one below, again, Darwin source is
816 	 * quite confusing and I lack chip specs
817 	 */
818 	case SPEED_1000:
819 		ctl |= BMCR_SPD2;
820 	}
821 	if (fd == DUPLEX_FULL)
822 		ctl |= BMCR_FULLDPLX;
823 
824 	/* Disable crossover. Again, the way Apple does it is strange,
825 	 * though I don't assume they are wrong ;)
826 	 */
827 	ctl2 = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
828 	ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
829 		MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
830 		MII_1000BASETCONTROL_FULLDUPLEXCAP |
831 		MII_1000BASETCONTROL_HALFDUPLEXCAP);
832 	if (speed == SPEED_1000)
833 		ctl2 |= (fd == DUPLEX_FULL) ?
834 			MII_1000BASETCONTROL_FULLDUPLEXCAP :
835 			MII_1000BASETCONTROL_HALFDUPLEXCAP;
836 	phy_write(phy, MII_1000BASETCONTROL, ctl2);
837 
838 	// XXX Should we set the sungem to GII now on 1000BT ?
839 
840 	phy_write(phy, MII_BMCR, ctl);
841 
842 	return 0;
843 }
844 
marvell_read_link(struct mii_phy * phy)845 static int marvell_read_link(struct mii_phy *phy)
846 {
847 	u16 status, pmask;
848 
849 	if (phy->autoneg) {
850 		status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
851 		if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
852 			return -EAGAIN;
853 		if (status & MII_M1011_PHY_SPEC_STATUS_1000)
854 			phy->speed = SPEED_1000;
855 		else if (status & MII_M1011_PHY_SPEC_STATUS_100)
856 			phy->speed = SPEED_100;
857 		else
858 			phy->speed = SPEED_10;
859 		if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
860 			phy->duplex = DUPLEX_FULL;
861 		else
862 			phy->duplex = DUPLEX_HALF;
863 		pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
864 			MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
865 		phy->pause = (status & pmask) == pmask;
866 	}
867 	/* On non-aneg, we assume what we put in BMCR is the speed,
868 	 * though magic-aneg shouldn't prevent this case from occurring
869 	 */
870 
871 	return 0;
872 }
873 
874 #define MII_BASIC_FEATURES \
875 	(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |	\
876 	 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |	\
877 	 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII |	\
878 	 SUPPORTED_Pause)
879 
880 /* On gigabit capable PHYs, we advertise Pause support but not asym pause
881  * support for now as I'm not sure it's supported and Darwin doesn't do
882  * it neither. --BenH.
883  */
884 #define MII_GBIT_FEATURES \
885 	(MII_BASIC_FEATURES |	\
886 	 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
887 
888 /* Broadcom BCM 5201 */
889 static struct mii_phy_ops bcm5201_phy_ops = {
890 	.init		= bcm5201_init,
891 	.suspend	= bcm5201_suspend,
892 	.setup_aneg	= genmii_setup_aneg,
893 	.setup_forced	= genmii_setup_forced,
894 	.poll_link	= genmii_poll_link,
895 	.read_link	= genmii_read_link,
896 };
897 
898 static struct mii_phy_def bcm5201_phy_def = {
899 	.phy_id		= 0x00406210,
900 	.phy_id_mask	= 0xfffffff0,
901 	.name		= "BCM5201",
902 	.features	= MII_BASIC_FEATURES,
903 	.magic_aneg	= 1,
904 	.ops		= &bcm5201_phy_ops
905 };
906 
907 /* Broadcom BCM 5221 */
908 static struct mii_phy_ops bcm5221_phy_ops = {
909 	.suspend	= bcm5221_suspend,
910 	.init		= bcm5221_init,
911 	.setup_aneg	= genmii_setup_aneg,
912 	.setup_forced	= genmii_setup_forced,
913 	.poll_link	= genmii_poll_link,
914 	.read_link	= genmii_read_link,
915 };
916 
917 static struct mii_phy_def bcm5221_phy_def = {
918 	.phy_id		= 0x004061e0,
919 	.phy_id_mask	= 0xfffffff0,
920 	.name		= "BCM5221",
921 	.features	= MII_BASIC_FEATURES,
922 	.magic_aneg	= 1,
923 	.ops		= &bcm5221_phy_ops
924 };
925 
926 /* Broadcom BCM 5241 */
927 static struct mii_phy_ops bcm5241_phy_ops = {
928 	.suspend	= bcm5241_suspend,
929 	.init		= bcm5241_init,
930 	.setup_aneg	= genmii_setup_aneg,
931 	.setup_forced	= genmii_setup_forced,
932 	.poll_link	= genmii_poll_link,
933 	.read_link	= genmii_read_link,
934 };
935 static struct mii_phy_def bcm5241_phy_def = {
936 	.phy_id		= 0x0143bc30,
937 	.phy_id_mask	= 0xfffffff0,
938 	.name		= "BCM5241",
939 	.features	= MII_BASIC_FEATURES,
940 	.magic_aneg	= 1,
941 	.ops		= &bcm5241_phy_ops
942 };
943 
944 /* Broadcom BCM 5400 */
945 static struct mii_phy_ops bcm5400_phy_ops = {
946 	.init		= bcm5400_init,
947 	.suspend	= bcm5400_suspend,
948 	.setup_aneg	= bcm54xx_setup_aneg,
949 	.setup_forced	= bcm54xx_setup_forced,
950 	.poll_link	= genmii_poll_link,
951 	.read_link	= bcm54xx_read_link,
952 };
953 
954 static struct mii_phy_def bcm5400_phy_def = {
955 	.phy_id		= 0x00206040,
956 	.phy_id_mask	= 0xfffffff0,
957 	.name		= "BCM5400",
958 	.features	= MII_GBIT_FEATURES,
959 	.magic_aneg	= 1,
960 	.ops		= &bcm5400_phy_ops
961 };
962 
963 /* Broadcom BCM 5401 */
964 static struct mii_phy_ops bcm5401_phy_ops = {
965 	.init		= bcm5401_init,
966 	.suspend	= bcm5401_suspend,
967 	.setup_aneg	= bcm54xx_setup_aneg,
968 	.setup_forced	= bcm54xx_setup_forced,
969 	.poll_link	= genmii_poll_link,
970 	.read_link	= bcm54xx_read_link,
971 };
972 
973 static struct mii_phy_def bcm5401_phy_def = {
974 	.phy_id		= 0x00206050,
975 	.phy_id_mask	= 0xfffffff0,
976 	.name		= "BCM5401",
977 	.features	= MII_GBIT_FEATURES,
978 	.magic_aneg	= 1,
979 	.ops		= &bcm5401_phy_ops
980 };
981 
982 /* Broadcom BCM 5411 */
983 static struct mii_phy_ops bcm5411_phy_ops = {
984 	.init		= bcm5411_init,
985 	.suspend	= generic_suspend,
986 	.setup_aneg	= bcm54xx_setup_aneg,
987 	.setup_forced	= bcm54xx_setup_forced,
988 	.poll_link	= genmii_poll_link,
989 	.read_link	= bcm54xx_read_link,
990 };
991 
992 static struct mii_phy_def bcm5411_phy_def = {
993 	.phy_id		= 0x00206070,
994 	.phy_id_mask	= 0xfffffff0,
995 	.name		= "BCM5411",
996 	.features	= MII_GBIT_FEATURES,
997 	.magic_aneg	= 1,
998 	.ops		= &bcm5411_phy_ops
999 };
1000 
1001 /* Broadcom BCM 5421 */
1002 static struct mii_phy_ops bcm5421_phy_ops = {
1003 	.init		= bcm5421_init,
1004 	.suspend	= generic_suspend,
1005 	.setup_aneg	= bcm54xx_setup_aneg,
1006 	.setup_forced	= bcm54xx_setup_forced,
1007 	.poll_link	= bcm5421_poll_link,
1008 	.read_link	= bcm5421_read_link,
1009 	.enable_fiber   = bcm5421_enable_fiber,
1010 };
1011 
1012 static struct mii_phy_def bcm5421_phy_def = {
1013 	.phy_id		= 0x002060e0,
1014 	.phy_id_mask	= 0xfffffff0,
1015 	.name		= "BCM5421",
1016 	.features	= MII_GBIT_FEATURES,
1017 	.magic_aneg	= 1,
1018 	.ops		= &bcm5421_phy_ops
1019 };
1020 
1021 /* Broadcom BCM 5421 built-in K2 */
1022 static struct mii_phy_ops bcm5421k2_phy_ops = {
1023 	.init		= bcm5421_init,
1024 	.suspend	= generic_suspend,
1025 	.setup_aneg	= bcm54xx_setup_aneg,
1026 	.setup_forced	= bcm54xx_setup_forced,
1027 	.poll_link	= genmii_poll_link,
1028 	.read_link	= bcm54xx_read_link,
1029 };
1030 
1031 static struct mii_phy_def bcm5421k2_phy_def = {
1032 	.phy_id		= 0x002062e0,
1033 	.phy_id_mask	= 0xfffffff0,
1034 	.name		= "BCM5421-K2",
1035 	.features	= MII_GBIT_FEATURES,
1036 	.magic_aneg	= 1,
1037 	.ops		= &bcm5421k2_phy_ops
1038 };
1039 
1040 static struct mii_phy_ops bcm5461_phy_ops = {
1041 	.init		= bcm5421_init,
1042 	.suspend	= generic_suspend,
1043 	.setup_aneg	= bcm54xx_setup_aneg,
1044 	.setup_forced	= bcm54xx_setup_forced,
1045 	.poll_link	= bcm5461_poll_link,
1046 	.read_link	= bcm5461_read_link,
1047 	.enable_fiber   = bcm5461_enable_fiber,
1048 };
1049 
1050 static struct mii_phy_def bcm5461_phy_def = {
1051 	.phy_id		= 0x002060c0,
1052 	.phy_id_mask	= 0xfffffff0,
1053 	.name		= "BCM5461",
1054 	.features	= MII_GBIT_FEATURES,
1055 	.magic_aneg	= 1,
1056 	.ops		= &bcm5461_phy_ops
1057 };
1058 
1059 /* Broadcom BCM 5462 built-in Vesta */
1060 static struct mii_phy_ops bcm5462V_phy_ops = {
1061 	.init		= bcm5421_init,
1062 	.suspend	= generic_suspend,
1063 	.setup_aneg	= bcm54xx_setup_aneg,
1064 	.setup_forced	= bcm54xx_setup_forced,
1065 	.poll_link	= genmii_poll_link,
1066 	.read_link	= bcm54xx_read_link,
1067 };
1068 
1069 static struct mii_phy_def bcm5462V_phy_def = {
1070 	.phy_id		= 0x002060d0,
1071 	.phy_id_mask	= 0xfffffff0,
1072 	.name		= "BCM5462-Vesta",
1073 	.features	= MII_GBIT_FEATURES,
1074 	.magic_aneg	= 1,
1075 	.ops		= &bcm5462V_phy_ops
1076 };
1077 
1078 /* Marvell 88E1101 amd 88E1111 */
1079 static struct mii_phy_ops marvell88e1101_phy_ops = {
1080 	.suspend	= generic_suspend,
1081 	.setup_aneg	= marvell_setup_aneg,
1082 	.setup_forced	= marvell_setup_forced,
1083 	.poll_link	= genmii_poll_link,
1084 	.read_link	= marvell_read_link
1085 };
1086 
1087 static struct mii_phy_ops marvell88e1111_phy_ops = {
1088 	.init		= marvell88e1111_init,
1089 	.suspend	= generic_suspend,
1090 	.setup_aneg	= marvell_setup_aneg,
1091 	.setup_forced	= marvell_setup_forced,
1092 	.poll_link	= genmii_poll_link,
1093 	.read_link	= marvell_read_link
1094 };
1095 
1096 /* two revs in darwin for the 88e1101 ... I could use a datasheet
1097  * to get the proper names...
1098  */
1099 static struct mii_phy_def marvell88e1101v1_phy_def = {
1100 	.phy_id		= 0x01410c20,
1101 	.phy_id_mask	= 0xfffffff0,
1102 	.name		= "Marvell 88E1101v1",
1103 	.features	= MII_GBIT_FEATURES,
1104 	.magic_aneg	= 1,
1105 	.ops		= &marvell88e1101_phy_ops
1106 };
1107 static struct mii_phy_def marvell88e1101v2_phy_def = {
1108 	.phy_id		= 0x01410c60,
1109 	.phy_id_mask	= 0xfffffff0,
1110 	.name		= "Marvell 88E1101v2",
1111 	.features	= MII_GBIT_FEATURES,
1112 	.magic_aneg	= 1,
1113 	.ops		= &marvell88e1101_phy_ops
1114 };
1115 static struct mii_phy_def marvell88e1111_phy_def = {
1116 	.phy_id		= 0x01410cc0,
1117 	.phy_id_mask	= 0xfffffff0,
1118 	.name		= "Marvell 88E1111",
1119 	.features	= MII_GBIT_FEATURES,
1120 	.magic_aneg	= 1,
1121 	.ops		= &marvell88e1111_phy_ops
1122 };
1123 
1124 /* Generic implementation for most 10/100 PHYs */
1125 static struct mii_phy_ops generic_phy_ops = {
1126 	.setup_aneg	= genmii_setup_aneg,
1127 	.setup_forced	= genmii_setup_forced,
1128 	.poll_link	= genmii_poll_link,
1129 	.read_link	= genmii_read_link
1130 };
1131 
1132 static struct mii_phy_def genmii_phy_def = {
1133 	.phy_id		= 0x00000000,
1134 	.phy_id_mask	= 0x00000000,
1135 	.name		= "Generic MII",
1136 	.features	= MII_BASIC_FEATURES,
1137 	.magic_aneg	= 0,
1138 	.ops		= &generic_phy_ops
1139 };
1140 
1141 static struct mii_phy_def* mii_phy_table[] = {
1142 	&bcm5201_phy_def,
1143 	&bcm5221_phy_def,
1144 	&bcm5241_phy_def,
1145 	&bcm5400_phy_def,
1146 	&bcm5401_phy_def,
1147 	&bcm5411_phy_def,
1148 	&bcm5421_phy_def,
1149 	&bcm5421k2_phy_def,
1150 	&bcm5461_phy_def,
1151 	&bcm5462V_phy_def,
1152 	&marvell88e1101v1_phy_def,
1153 	&marvell88e1101v2_phy_def,
1154 	&marvell88e1111_phy_def,
1155 	&genmii_phy_def,
1156 	NULL
1157 };
1158 
mii_phy_probe(struct mii_phy * phy,int mii_id)1159 int mii_phy_probe(struct mii_phy *phy, int mii_id)
1160 {
1161 	int rc;
1162 	u32 id;
1163 	struct mii_phy_def* def;
1164 	int i;
1165 
1166 	/* We do not reset the mii_phy structure as the driver
1167 	 * may re-probe the PHY regulary
1168 	 */
1169 	phy->mii_id = mii_id;
1170 
1171 	/* Take PHY out of isloate mode and reset it. */
1172 	rc = reset_one_mii_phy(phy, mii_id);
1173 	if (rc)
1174 		goto fail;
1175 
1176 	/* Read ID and find matching entry */
1177 	id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
1178 	printk(KERN_DEBUG "PHY ID: %x, addr: %x\n", id, mii_id);
1179 	for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1180 		if ((id & def->phy_id_mask) == def->phy_id)
1181 			break;
1182 	/* Should never be NULL (we have a generic entry), but... */
1183 	if (def == NULL)
1184 		goto fail;
1185 
1186 	phy->def = def;
1187 
1188 	return 0;
1189 fail:
1190 	phy->speed = 0;
1191 	phy->duplex = 0;
1192 	phy->pause = 0;
1193 	phy->advertising = 0;
1194 	return -ENODEV;
1195 }
1196 
1197 EXPORT_SYMBOL(mii_phy_probe);
1198 MODULE_LICENSE("GPL");
1199 
1200