• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	Current Maintainer: Roger Luethi <rl@hellgate.ch>
6 
7 	This software may be used and distributed according to the terms of
8 	the GNU General Public License (GPL), incorporated herein by reference.
9 	Drivers based on or derived from this code fall under the GPL and must
10 	retain the authorship, copyright and license notice.  This file is not
11 	a complete program and may only be used when the entire operating
12 	system is licensed under the GPL.
13 
14 	This driver is designed for the VIA VT86C100A Rhine-I.
15 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 	and management NIC 6105M).
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 
24 	This driver contains some changes from the original Donald Becker
25 	version. He may or may not be interested in bug reports on this
26 	code. You can find his versions at:
27 	http://www.scyld.com/network/via-rhine.html
28 	[link no longer provides useful info -jgarzik]
29 
30 */
31 
32 #define DRV_NAME	"via-rhine"
33 #define DRV_VERSION	"1.4.3"
34 #define DRV_RELDATE	"2007-03-06"
35 
36 
37 /* A few user-configurable values.
38    These may be modified when a driver module is loaded. */
39 
40 static int debug = 1;	/* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
42 
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46        || defined(CONFIG_SPARC) || defined(__ia64__) \
47        || defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
52 
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
56 
57 /*
58  * In case you are looking for 'options[]' or 'full_duplex[]', they
59  * are gone. Use ethtool(8) instead.
60  */
61 
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63    The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
65 
66 
67 /* Operational parameters that are set at compile time. */
68 
69 /* Keep the ring sizes a power of two for compile efficiency.
70    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71    Making the Tx ring too large decreases the effectiveness of channel
72    bonding and packet priority.
73    There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE	16
75 #define TX_QUEUE_LEN	10	/* Limit ring entries actually used. */
76 #define RX_RING_SIZE	64
77 
78 /* Operational parameters that usually are not changed. */
79 
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT	(2*HZ)
82 
83 #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
84 
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/slab.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/netdevice.h>
97 #include <linux/etherdevice.h>
98 #include <linux/skbuff.h>
99 #include <linux/init.h>
100 #include <linux/delay.h>
101 #include <linux/mii.h>
102 #include <linux/ethtool.h>
103 #include <linux/crc32.h>
104 #include <linux/bitops.h>
105 #include <asm/processor.h>	/* Processor type for cache alignment. */
106 #include <asm/io.h>
107 #include <asm/irq.h>
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
110 
111 /* These identify the driver base version and may not be removed. */
112 static char version[] __devinitdata =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
114 
115 /* This driver was written to use PCI memory space. Some early versions
116    of the Rhine may only work correctly with I/O space accesses. */
117 #ifdef CONFIG_VIA_RHINE_MMIO
118 #define USE_MMIO
119 #else
120 #endif
121 
122 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
123 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
124 MODULE_LICENSE("GPL");
125 
126 module_param(max_interrupt_work, int, 0);
127 module_param(debug, int, 0);
128 module_param(rx_copybreak, int, 0);
129 module_param(avoid_D3, bool, 0);
130 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
131 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
132 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
133 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
134 
135 /*
136 		Theory of Operation
137 
138 I. Board Compatibility
139 
140 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
141 controller.
142 
143 II. Board-specific settings
144 
145 Boards with this chip are functional only in a bus-master PCI slot.
146 
147 Many operational settings are loaded from the EEPROM to the Config word at
148 offset 0x78. For most of these settings, this driver assumes that they are
149 correct.
150 If this driver is compiled to use PCI memory space operations the EEPROM
151 must be configured to enable memory ops.
152 
153 III. Driver operation
154 
155 IIIa. Ring buffers
156 
157 This driver uses two statically allocated fixed-size descriptor lists
158 formed into rings by a branch from the final descriptor to the beginning of
159 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160 
161 IIIb/c. Transmit/Receive Structure
162 
163 This driver attempts to use a zero-copy receive and transmit scheme.
164 
165 Alas, all data buffers are required to start on a 32 bit boundary, so
166 the driver must often copy transmit packets into bounce buffers.
167 
168 The driver allocates full frame size skbuffs for the Rx ring buffers at
169 open() time and passes the skb->data field to the chip as receive data
170 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
171 a fresh skbuff is allocated and the frame is copied to the new skbuff.
172 When the incoming frame is larger, the skbuff is passed directly up the
173 protocol stack. Buffers consumed this way are replaced by newly allocated
174 skbuffs in the last phase of rhine_rx().
175 
176 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
177 using a full-sized skbuff for small frames vs. the copying costs of larger
178 frames. New boards are typically used in generously configured machines
179 and the underfilled buffers have negligible impact compared to the benefit of
180 a single allocation size, so the default value of zero results in never
181 copying packets. When copying is done, the cost is usually mitigated by using
182 a combined copy/checksum routine. Copying also preloads the cache, which is
183 most useful with small frames.
184 
185 Since the VIA chips are only able to transfer data to buffers on 32 bit
186 boundaries, the IP header at offset 14 in an ethernet frame isn't
187 longword aligned for further processing. Copying these unaligned buffers
188 has the beneficial effect of 16-byte aligning the IP header.
189 
190 IIId. Synchronization
191 
192 The driver runs as two independent, single-threaded flows of control. One
193 is the send-packet routine, which enforces single-threaded use by the
194 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
195 which is single threaded by the hardware and interrupt handling software.
196 
197 The send packet thread has partial control over the Tx ring. It locks the
198 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
199 the ring is not available it stops the transmit queue by
200 calling netif_stop_queue.
201 
202 The interrupt handler has exclusive control over the Rx ring and records stats
203 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
204 empty by incrementing the dirty_tx mark. If at least half of the entries in
205 the Rx ring are available the transmit queue is woken up if it was stopped.
206 
207 IV. Notes
208 
209 IVb. References
210 
211 Preliminary VT86C100A manual from http://www.via.com.tw/
212 http://www.scyld.com/expert/100mbps.html
213 http://www.scyld.com/expert/NWay.html
214 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
215 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
216 
217 
218 IVc. Errata
219 
220 The VT86C100A manual is not reliable information.
221 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
222 in significant performance degradation for bounce buffer copies on transmit
223 and unaligned IP headers on receive.
224 The chip does not pad to minimum transmit length.
225 
226 */
227 
228 
229 /* This table drives the PCI probe routines. It's mostly boilerplate in all
230    of the drivers, and will likely be provided by some future kernel.
231    Note the matching code -- the first table entry matchs all 56** cards but
232    second only the 1234 card.
233 */
234 
235 enum rhine_revs {
236 	VT86C100A	= 0x00,
237 	VTunknown0	= 0x20,
238 	VT6102		= 0x40,
239 	VT8231		= 0x50,	/* Integrated MAC */
240 	VT8233		= 0x60,	/* Integrated MAC */
241 	VT8235		= 0x74,	/* Integrated MAC */
242 	VT8237		= 0x78,	/* Integrated MAC */
243 	VTunknown1	= 0x7C,
244 	VT6105		= 0x80,
245 	VT6105_B0	= 0x83,
246 	VT6105L		= 0x8A,
247 	VT6107		= 0x8C,
248 	VTunknown2	= 0x8E,
249 	VT6105M		= 0x90,	/* Management adapter */
250 };
251 
252 enum rhine_quirks {
253 	rqWOL		= 0x0001,	/* Wake-On-LAN support */
254 	rqForceReset	= 0x0002,
255 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
256 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
257 	rqRhineI	= 0x0100,	/* See comment below */
258 };
259 /*
260  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
261  * MMIO as well as for the collision counter and the Tx FIFO underflow
262  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
263  */
264 
265 /* Beware of PCI posted writes */
266 #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
267 
268 static const struct pci_device_id rhine_pci_tbl[] = {
269 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
270 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
271 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
272 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
273 	{ }	/* terminate list */
274 };
275 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
276 
277 
278 /* Offsets to the device registers. */
279 enum register_offsets {
280 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
281 	ChipCmd1=0x09,
282 	IntrStatus=0x0C, IntrEnable=0x0E,
283 	MulticastFilter0=0x10, MulticastFilter1=0x14,
284 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
285 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
286 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
287 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
288 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
289 	StickyHW=0x83, IntrStatus2=0x84,
290 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
291 	WOLcrClr1=0xA6, WOLcgClr=0xA7,
292 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
293 };
294 
295 /* Bits in ConfigD */
296 enum backoff_bits {
297 	BackOptional=0x01, BackModify=0x02,
298 	BackCaptureEffect=0x04, BackRandom=0x08
299 };
300 
301 #ifdef USE_MMIO
302 /* Registers we check that mmio and reg are the same. */
303 static const int mmio_verify_registers[] = {
304 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
305 	0
306 };
307 #endif
308 
309 /* Bits in the interrupt status/mask registers. */
310 enum intr_status_bits {
311 	IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
312 	IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
313 	IntrPCIErr=0x0040,
314 	IntrStatsMax=0x0080, IntrRxEarly=0x0100,
315 	IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
316 	IntrTxAborted=0x2000, IntrLinkChange=0x4000,
317 	IntrRxWakeUp=0x8000,
318 	IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
319 	IntrTxDescRace=0x080000,	/* mapped from IntrStatus2 */
320 	IntrTxErrSummary=0x082218,
321 };
322 
323 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
324 enum wol_bits {
325 	WOLucast	= 0x10,
326 	WOLmagic	= 0x20,
327 	WOLbmcast	= 0x30,
328 	WOLlnkon	= 0x40,
329 	WOLlnkoff	= 0x80,
330 };
331 
332 /* The Rx and Tx buffer descriptors. */
333 struct rx_desc {
334 	__le32 rx_status;
335 	__le32 desc_length; /* Chain flag, Buffer/frame length */
336 	__le32 addr;
337 	__le32 next_desc;
338 };
339 struct tx_desc {
340 	__le32 tx_status;
341 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
342 	__le32 addr;
343 	__le32 next_desc;
344 };
345 
346 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
347 #define TXDESC		0x00e08000
348 
349 enum rx_status_bits {
350 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
351 };
352 
353 /* Bits in *_desc.*_status */
354 enum desc_status_bits {
355 	DescOwn=0x80000000
356 };
357 
358 /* Bits in ChipCmd. */
359 enum chip_cmd_bits {
360 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
361 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
362 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
363 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
364 };
365 
366 struct rhine_private {
367 	/* Descriptor rings */
368 	struct rx_desc *rx_ring;
369 	struct tx_desc *tx_ring;
370 	dma_addr_t rx_ring_dma;
371 	dma_addr_t tx_ring_dma;
372 
373 	/* The addresses of receive-in-place skbuffs. */
374 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
375 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
376 
377 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
378 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
379 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
380 
381 	/* Tx bounce buffers (Rhine-I only) */
382 	unsigned char *tx_buf[TX_RING_SIZE];
383 	unsigned char *tx_bufs;
384 	dma_addr_t tx_bufs_dma;
385 
386 	struct pci_dev *pdev;
387 	long pioaddr;
388 	struct net_device *dev;
389 	struct napi_struct napi;
390 	struct net_device_stats stats;
391 	spinlock_t lock;
392 
393 	/* Frequently used values: keep some adjacent for cache effect. */
394 	u32 quirks;
395 	struct rx_desc *rx_head_desc;
396 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
397 	unsigned int cur_tx, dirty_tx;
398 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
399 	u8 wolopts;
400 
401 	u8 tx_thresh, rx_thresh;
402 
403 	struct mii_if_info mii_if;
404 	void __iomem *base;
405 };
406 
407 static int  mdio_read(struct net_device *dev, int phy_id, int location);
408 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
409 static int  rhine_open(struct net_device *dev);
410 static void rhine_tx_timeout(struct net_device *dev);
411 static int  rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
412 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
413 static void rhine_tx(struct net_device *dev);
414 static int rhine_rx(struct net_device *dev, int limit);
415 static void rhine_error(struct net_device *dev, int intr_status);
416 static void rhine_set_rx_mode(struct net_device *dev);
417 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
418 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
419 static const struct ethtool_ops netdev_ethtool_ops;
420 static int  rhine_close(struct net_device *dev);
421 static void rhine_shutdown (struct pci_dev *pdev);
422 
423 #define RHINE_WAIT_FOR(condition) do {					\
424 	int i=1024;							\
425 	while (!(condition) && --i)					\
426 		;							\
427 	if (debug > 1 && i < 512)					\
428 		printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n",	\
429 				DRV_NAME, 1024-i, __func__, __LINE__);	\
430 } while(0)
431 
get_intr_status(struct net_device * dev)432 static inline u32 get_intr_status(struct net_device *dev)
433 {
434 	struct rhine_private *rp = netdev_priv(dev);
435 	void __iomem *ioaddr = rp->base;
436 	u32 intr_status;
437 
438 	intr_status = ioread16(ioaddr + IntrStatus);
439 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
440 	if (rp->quirks & rqStatusWBRace)
441 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
442 	return intr_status;
443 }
444 
445 /*
446  * Get power related registers into sane state.
447  * Notify user about past WOL event.
448  */
rhine_power_init(struct net_device * dev)449 static void rhine_power_init(struct net_device *dev)
450 {
451 	struct rhine_private *rp = netdev_priv(dev);
452 	void __iomem *ioaddr = rp->base;
453 	u16 wolstat;
454 
455 	if (rp->quirks & rqWOL) {
456 		/* Make sure chip is in power state D0 */
457 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
458 
459 		/* Disable "force PME-enable" */
460 		iowrite8(0x80, ioaddr + WOLcgClr);
461 
462 		/* Clear power-event config bits (WOL) */
463 		iowrite8(0xFF, ioaddr + WOLcrClr);
464 		/* More recent cards can manage two additional patterns */
465 		if (rp->quirks & rq6patterns)
466 			iowrite8(0x03, ioaddr + WOLcrClr1);
467 
468 		/* Save power-event status bits */
469 		wolstat = ioread8(ioaddr + PwrcsrSet);
470 		if (rp->quirks & rq6patterns)
471 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
472 
473 		/* Clear power-event status bits */
474 		iowrite8(0xFF, ioaddr + PwrcsrClr);
475 		if (rp->quirks & rq6patterns)
476 			iowrite8(0x03, ioaddr + PwrcsrClr1);
477 
478 		if (wolstat) {
479 			char *reason;
480 			switch (wolstat) {
481 			case WOLmagic:
482 				reason = "Magic packet";
483 				break;
484 			case WOLlnkon:
485 				reason = "Link went up";
486 				break;
487 			case WOLlnkoff:
488 				reason = "Link went down";
489 				break;
490 			case WOLucast:
491 				reason = "Unicast packet";
492 				break;
493 			case WOLbmcast:
494 				reason = "Multicast/broadcast packet";
495 				break;
496 			default:
497 				reason = "Unknown";
498 			}
499 			printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
500 			       DRV_NAME, reason);
501 		}
502 	}
503 }
504 
rhine_chip_reset(struct net_device * dev)505 static void rhine_chip_reset(struct net_device *dev)
506 {
507 	struct rhine_private *rp = netdev_priv(dev);
508 	void __iomem *ioaddr = rp->base;
509 
510 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
511 	IOSYNC;
512 
513 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
514 		printk(KERN_INFO "%s: Reset not complete yet. "
515 			"Trying harder.\n", DRV_NAME);
516 
517 		/* Force reset */
518 		if (rp->quirks & rqForceReset)
519 			iowrite8(0x40, ioaddr + MiscCmd);
520 
521 		/* Reset can take somewhat longer (rare) */
522 		RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
523 	}
524 
525 	if (debug > 1)
526 		printk(KERN_INFO "%s: Reset %s.\n", dev->name,
527 			(ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
528 			"failed" : "succeeded");
529 }
530 
531 #ifdef USE_MMIO
enable_mmio(long pioaddr,u32 quirks)532 static void enable_mmio(long pioaddr, u32 quirks)
533 {
534 	int n;
535 	if (quirks & rqRhineI) {
536 		/* More recent docs say that this bit is reserved ... */
537 		n = inb(pioaddr + ConfigA) | 0x20;
538 		outb(n, pioaddr + ConfigA);
539 	} else {
540 		n = inb(pioaddr + ConfigD) | 0x80;
541 		outb(n, pioaddr + ConfigD);
542 	}
543 }
544 #endif
545 
546 /*
547  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
548  * (plus 0x6C for Rhine-I/II)
549  */
rhine_reload_eeprom(long pioaddr,struct net_device * dev)550 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
551 {
552 	struct rhine_private *rp = netdev_priv(dev);
553 	void __iomem *ioaddr = rp->base;
554 
555 	outb(0x20, pioaddr + MACRegEEcsr);
556 	RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
557 
558 #ifdef USE_MMIO
559 	/*
560 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
561 	 * MMIO. If reloading EEPROM was done first this could be avoided, but
562 	 * it is not known if that still works with the "win98-reboot" problem.
563 	 */
564 	enable_mmio(pioaddr, rp->quirks);
565 #endif
566 
567 	/* Turn off EEPROM-controlled wake-up (magic packet) */
568 	if (rp->quirks & rqWOL)
569 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
570 
571 }
572 
573 #ifdef CONFIG_NET_POLL_CONTROLLER
rhine_poll(struct net_device * dev)574 static void rhine_poll(struct net_device *dev)
575 {
576 	disable_irq(dev->irq);
577 	rhine_interrupt(dev->irq, (void *)dev);
578 	enable_irq(dev->irq);
579 }
580 #endif
581 
rhine_napipoll(struct napi_struct * napi,int budget)582 static int rhine_napipoll(struct napi_struct *napi, int budget)
583 {
584 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
585 	struct net_device *dev = rp->dev;
586 	void __iomem *ioaddr = rp->base;
587 	int work_done;
588 
589 	work_done = rhine_rx(dev, budget);
590 
591 	if (work_done < budget) {
592 		netif_rx_complete(napi);
593 
594 		iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
595 			  IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
596 			  IntrTxDone | IntrTxError | IntrTxUnderrun |
597 			  IntrPCIErr | IntrStatsMax | IntrLinkChange,
598 			  ioaddr + IntrEnable);
599 	}
600 	return work_done;
601 }
602 
rhine_hw_init(struct net_device * dev,long pioaddr)603 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
604 {
605 	struct rhine_private *rp = netdev_priv(dev);
606 
607 	/* Reset the chip to erase previous misconfiguration. */
608 	rhine_chip_reset(dev);
609 
610 	/* Rhine-I needs extra time to recuperate before EEPROM reload */
611 	if (rp->quirks & rqRhineI)
612 		msleep(5);
613 
614 	/* Reload EEPROM controlled bytes cleared by soft reset */
615 	rhine_reload_eeprom(pioaddr, dev);
616 }
617 
618 static const struct net_device_ops rhine_netdev_ops = {
619 	.ndo_open		 = rhine_open,
620 	.ndo_stop		 = rhine_close,
621 	.ndo_start_xmit		 = rhine_start_tx,
622 	.ndo_get_stats		 = rhine_get_stats,
623 	.ndo_set_multicast_list	 = rhine_set_rx_mode,
624 	.ndo_validate_addr	 = eth_validate_addr,
625 	.ndo_set_mac_address 	 = eth_mac_addr,
626 	.ndo_do_ioctl		 = netdev_ioctl,
627 	.ndo_tx_timeout 	 = rhine_tx_timeout,
628 #ifdef CONFIG_NET_POLL_CONTROLLER
629 	.ndo_poll_controller	 = rhine_poll,
630 #endif
631 };
632 
rhine_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)633 static int __devinit rhine_init_one(struct pci_dev *pdev,
634 				    const struct pci_device_id *ent)
635 {
636 	struct net_device *dev;
637 	struct rhine_private *rp;
638 	int i, rc;
639 	u32 quirks;
640 	long pioaddr;
641 	long memaddr;
642 	void __iomem *ioaddr;
643 	int io_size, phy_id;
644 	const char *name;
645 #ifdef USE_MMIO
646 	int bar = 1;
647 #else
648 	int bar = 0;
649 #endif
650 
651 /* when built into the kernel, we only print version if device is found */
652 #ifndef MODULE
653 	static int printed_version;
654 	if (!printed_version++)
655 		printk(version);
656 #endif
657 
658 	io_size = 256;
659 	phy_id = 0;
660 	quirks = 0;
661 	name = "Rhine";
662 	if (pdev->revision < VTunknown0) {
663 		quirks = rqRhineI;
664 		io_size = 128;
665 	}
666 	else if (pdev->revision >= VT6102) {
667 		quirks = rqWOL | rqForceReset;
668 		if (pdev->revision < VT6105) {
669 			name = "Rhine II";
670 			quirks |= rqStatusWBRace;	/* Rhine-II exclusive */
671 		}
672 		else {
673 			phy_id = 1;	/* Integrated PHY, phy_id fixed to 1 */
674 			if (pdev->revision >= VT6105_B0)
675 				quirks |= rq6patterns;
676 			if (pdev->revision < VT6105M)
677 				name = "Rhine III";
678 			else
679 				name = "Rhine III (Management Adapter)";
680 		}
681 	}
682 
683 	rc = pci_enable_device(pdev);
684 	if (rc)
685 		goto err_out;
686 
687 	/* this should always be supported */
688 	rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
689 	if (rc) {
690 		printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
691 		       "the card!?\n");
692 		goto err_out;
693 	}
694 
695 	/* sanity check */
696 	if ((pci_resource_len(pdev, 0) < io_size) ||
697 	    (pci_resource_len(pdev, 1) < io_size)) {
698 		rc = -EIO;
699 		printk(KERN_ERR "Insufficient PCI resources, aborting\n");
700 		goto err_out;
701 	}
702 
703 	pioaddr = pci_resource_start(pdev, 0);
704 	memaddr = pci_resource_start(pdev, 1);
705 
706 	pci_set_master(pdev);
707 
708 	dev = alloc_etherdev(sizeof(struct rhine_private));
709 	if (!dev) {
710 		rc = -ENOMEM;
711 		printk(KERN_ERR "alloc_etherdev failed\n");
712 		goto err_out;
713 	}
714 	SET_NETDEV_DEV(dev, &pdev->dev);
715 
716 	rp = netdev_priv(dev);
717 	rp->dev = dev;
718 	rp->quirks = quirks;
719 	rp->pioaddr = pioaddr;
720 	rp->pdev = pdev;
721 
722 	rc = pci_request_regions(pdev, DRV_NAME);
723 	if (rc)
724 		goto err_out_free_netdev;
725 
726 	ioaddr = pci_iomap(pdev, bar, io_size);
727 	if (!ioaddr) {
728 		rc = -EIO;
729 		printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
730 		       "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
731 		goto err_out_free_res;
732 	}
733 
734 #ifdef USE_MMIO
735 	enable_mmio(pioaddr, quirks);
736 
737 	/* Check that selected MMIO registers match the PIO ones */
738 	i = 0;
739 	while (mmio_verify_registers[i]) {
740 		int reg = mmio_verify_registers[i++];
741 		unsigned char a = inb(pioaddr+reg);
742 		unsigned char b = readb(ioaddr+reg);
743 		if (a != b) {
744 			rc = -EIO;
745 			printk(KERN_ERR "MMIO do not match PIO [%02x] "
746 			       "(%02x != %02x)\n", reg, a, b);
747 			goto err_out_unmap;
748 		}
749 	}
750 #endif /* USE_MMIO */
751 
752 	dev->base_addr = (unsigned long)ioaddr;
753 	rp->base = ioaddr;
754 
755 	/* Get chip registers into a sane state */
756 	rhine_power_init(dev);
757 	rhine_hw_init(dev, pioaddr);
758 
759 	for (i = 0; i < 6; i++)
760 		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
761 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
762 
763 	if (!is_valid_ether_addr(dev->perm_addr)) {
764 		rc = -EIO;
765 		printk(KERN_ERR "Invalid MAC address\n");
766 		goto err_out_unmap;
767 	}
768 
769 	/* For Rhine-I/II, phy_id is loaded from EEPROM */
770 	if (!phy_id)
771 		phy_id = ioread8(ioaddr + 0x6C);
772 
773 	dev->irq = pdev->irq;
774 
775 	spin_lock_init(&rp->lock);
776 	rp->mii_if.dev = dev;
777 	rp->mii_if.mdio_read = mdio_read;
778 	rp->mii_if.mdio_write = mdio_write;
779 	rp->mii_if.phy_id_mask = 0x1f;
780 	rp->mii_if.reg_num_mask = 0x1f;
781 
782 	/* The chip-specific entries in the device structure. */
783 	dev->netdev_ops = &rhine_netdev_ops;
784 	dev->ethtool_ops = &netdev_ethtool_ops,
785 	dev->watchdog_timeo = TX_TIMEOUT;
786 
787 	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
788 
789 	if (rp->quirks & rqRhineI)
790 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
791 
792 	/* dev->name not defined before register_netdev()! */
793 	rc = register_netdev(dev);
794 	if (rc)
795 		goto err_out_unmap;
796 
797 	printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
798 	       dev->name, name,
799 #ifdef USE_MMIO
800 	       memaddr,
801 #else
802 	       (long)ioaddr,
803 #endif
804 	       dev->dev_addr, pdev->irq);
805 
806 	pci_set_drvdata(pdev, dev);
807 
808 	{
809 		u16 mii_cmd;
810 		int mii_status = mdio_read(dev, phy_id, 1);
811 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
812 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
813 		if (mii_status != 0xffff && mii_status != 0x0000) {
814 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
815 			printk(KERN_INFO "%s: MII PHY found at address "
816 			       "%d, status 0x%4.4x advertising %4.4x "
817 			       "Link %4.4x.\n", dev->name, phy_id,
818 			       mii_status, rp->mii_if.advertising,
819 			       mdio_read(dev, phy_id, 5));
820 
821 			/* set IFF_RUNNING */
822 			if (mii_status & BMSR_LSTATUS)
823 				netif_carrier_on(dev);
824 			else
825 				netif_carrier_off(dev);
826 
827 		}
828 	}
829 	rp->mii_if.phy_id = phy_id;
830 	if (debug > 1 && avoid_D3)
831 		printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
832 		       dev->name);
833 
834 	return 0;
835 
836 err_out_unmap:
837 	pci_iounmap(pdev, ioaddr);
838 err_out_free_res:
839 	pci_release_regions(pdev);
840 err_out_free_netdev:
841 	free_netdev(dev);
842 err_out:
843 	return rc;
844 }
845 
alloc_ring(struct net_device * dev)846 static int alloc_ring(struct net_device* dev)
847 {
848 	struct rhine_private *rp = netdev_priv(dev);
849 	void *ring;
850 	dma_addr_t ring_dma;
851 
852 	ring = pci_alloc_consistent(rp->pdev,
853 				    RX_RING_SIZE * sizeof(struct rx_desc) +
854 				    TX_RING_SIZE * sizeof(struct tx_desc),
855 				    &ring_dma);
856 	if (!ring) {
857 		printk(KERN_ERR "Could not allocate DMA memory.\n");
858 		return -ENOMEM;
859 	}
860 	if (rp->quirks & rqRhineI) {
861 		rp->tx_bufs = pci_alloc_consistent(rp->pdev,
862 						   PKT_BUF_SZ * TX_RING_SIZE,
863 						   &rp->tx_bufs_dma);
864 		if (rp->tx_bufs == NULL) {
865 			pci_free_consistent(rp->pdev,
866 				    RX_RING_SIZE * sizeof(struct rx_desc) +
867 				    TX_RING_SIZE * sizeof(struct tx_desc),
868 				    ring, ring_dma);
869 			return -ENOMEM;
870 		}
871 	}
872 
873 	rp->rx_ring = ring;
874 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
875 	rp->rx_ring_dma = ring_dma;
876 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
877 
878 	return 0;
879 }
880 
free_ring(struct net_device * dev)881 static void free_ring(struct net_device* dev)
882 {
883 	struct rhine_private *rp = netdev_priv(dev);
884 
885 	pci_free_consistent(rp->pdev,
886 			    RX_RING_SIZE * sizeof(struct rx_desc) +
887 			    TX_RING_SIZE * sizeof(struct tx_desc),
888 			    rp->rx_ring, rp->rx_ring_dma);
889 	rp->tx_ring = NULL;
890 
891 	if (rp->tx_bufs)
892 		pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
893 				    rp->tx_bufs, rp->tx_bufs_dma);
894 
895 	rp->tx_bufs = NULL;
896 
897 }
898 
alloc_rbufs(struct net_device * dev)899 static void alloc_rbufs(struct net_device *dev)
900 {
901 	struct rhine_private *rp = netdev_priv(dev);
902 	dma_addr_t next;
903 	int i;
904 
905 	rp->dirty_rx = rp->cur_rx = 0;
906 
907 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
908 	rp->rx_head_desc = &rp->rx_ring[0];
909 	next = rp->rx_ring_dma;
910 
911 	/* Init the ring entries */
912 	for (i = 0; i < RX_RING_SIZE; i++) {
913 		rp->rx_ring[i].rx_status = 0;
914 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
915 		next += sizeof(struct rx_desc);
916 		rp->rx_ring[i].next_desc = cpu_to_le32(next);
917 		rp->rx_skbuff[i] = NULL;
918 	}
919 	/* Mark the last entry as wrapping the ring. */
920 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
921 
922 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
923 	for (i = 0; i < RX_RING_SIZE; i++) {
924 		struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
925 		rp->rx_skbuff[i] = skb;
926 		if (skb == NULL)
927 			break;
928 		skb->dev = dev;                 /* Mark as being used by this device. */
929 
930 		rp->rx_skbuff_dma[i] =
931 			pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
932 				       PCI_DMA_FROMDEVICE);
933 
934 		rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
935 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
936 	}
937 	rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
938 }
939 
free_rbufs(struct net_device * dev)940 static void free_rbufs(struct net_device* dev)
941 {
942 	struct rhine_private *rp = netdev_priv(dev);
943 	int i;
944 
945 	/* Free all the skbuffs in the Rx queue. */
946 	for (i = 0; i < RX_RING_SIZE; i++) {
947 		rp->rx_ring[i].rx_status = 0;
948 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
949 		if (rp->rx_skbuff[i]) {
950 			pci_unmap_single(rp->pdev,
951 					 rp->rx_skbuff_dma[i],
952 					 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
953 			dev_kfree_skb(rp->rx_skbuff[i]);
954 		}
955 		rp->rx_skbuff[i] = NULL;
956 	}
957 }
958 
alloc_tbufs(struct net_device * dev)959 static void alloc_tbufs(struct net_device* dev)
960 {
961 	struct rhine_private *rp = netdev_priv(dev);
962 	dma_addr_t next;
963 	int i;
964 
965 	rp->dirty_tx = rp->cur_tx = 0;
966 	next = rp->tx_ring_dma;
967 	for (i = 0; i < TX_RING_SIZE; i++) {
968 		rp->tx_skbuff[i] = NULL;
969 		rp->tx_ring[i].tx_status = 0;
970 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
971 		next += sizeof(struct tx_desc);
972 		rp->tx_ring[i].next_desc = cpu_to_le32(next);
973 		if (rp->quirks & rqRhineI)
974 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
975 	}
976 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
977 
978 }
979 
free_tbufs(struct net_device * dev)980 static void free_tbufs(struct net_device* dev)
981 {
982 	struct rhine_private *rp = netdev_priv(dev);
983 	int i;
984 
985 	for (i = 0; i < TX_RING_SIZE; i++) {
986 		rp->tx_ring[i].tx_status = 0;
987 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
988 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
989 		if (rp->tx_skbuff[i]) {
990 			if (rp->tx_skbuff_dma[i]) {
991 				pci_unmap_single(rp->pdev,
992 						 rp->tx_skbuff_dma[i],
993 						 rp->tx_skbuff[i]->len,
994 						 PCI_DMA_TODEVICE);
995 			}
996 			dev_kfree_skb(rp->tx_skbuff[i]);
997 		}
998 		rp->tx_skbuff[i] = NULL;
999 		rp->tx_buf[i] = NULL;
1000 	}
1001 }
1002 
rhine_check_media(struct net_device * dev,unsigned int init_media)1003 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1004 {
1005 	struct rhine_private *rp = netdev_priv(dev);
1006 	void __iomem *ioaddr = rp->base;
1007 
1008 	mii_check_media(&rp->mii_if, debug, init_media);
1009 
1010 	if (rp->mii_if.full_duplex)
1011 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1012 		   ioaddr + ChipCmd1);
1013 	else
1014 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1015 		   ioaddr + ChipCmd1);
1016 	if (debug > 1)
1017 		printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1018 			rp->mii_if.force_media, netif_carrier_ok(dev));
1019 }
1020 
1021 /* Called after status of force_media possibly changed */
rhine_set_carrier(struct mii_if_info * mii)1022 static void rhine_set_carrier(struct mii_if_info *mii)
1023 {
1024 	if (mii->force_media) {
1025 		/* autoneg is off: Link is always assumed to be up */
1026 		if (!netif_carrier_ok(mii->dev))
1027 			netif_carrier_on(mii->dev);
1028 	}
1029 	else	/* Let MMI library update carrier status */
1030 		rhine_check_media(mii->dev, 0);
1031 	if (debug > 1)
1032 		printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1033 		       mii->dev->name, mii->force_media,
1034 		       netif_carrier_ok(mii->dev));
1035 }
1036 
init_registers(struct net_device * dev)1037 static void init_registers(struct net_device *dev)
1038 {
1039 	struct rhine_private *rp = netdev_priv(dev);
1040 	void __iomem *ioaddr = rp->base;
1041 	int i;
1042 
1043 	for (i = 0; i < 6; i++)
1044 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1045 
1046 	/* Initialize other registers. */
1047 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
1048 	/* Configure initial FIFO thresholds. */
1049 	iowrite8(0x20, ioaddr + TxConfig);
1050 	rp->tx_thresh = 0x20;
1051 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
1052 
1053 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1054 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1055 
1056 	rhine_set_rx_mode(dev);
1057 
1058 	napi_enable(&rp->napi);
1059 
1060 	/* Enable interrupts by setting the interrupt mask. */
1061 	iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1062 	       IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1063 	       IntrTxDone | IntrTxError | IntrTxUnderrun |
1064 	       IntrPCIErr | IntrStatsMax | IntrLinkChange,
1065 	       ioaddr + IntrEnable);
1066 
1067 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1068 	       ioaddr + ChipCmd);
1069 	rhine_check_media(dev, 1);
1070 }
1071 
1072 /* Enable MII link status auto-polling (required for IntrLinkChange) */
rhine_enable_linkmon(void __iomem * ioaddr)1073 static void rhine_enable_linkmon(void __iomem *ioaddr)
1074 {
1075 	iowrite8(0, ioaddr + MIICmd);
1076 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1077 	iowrite8(0x80, ioaddr + MIICmd);
1078 
1079 	RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1080 
1081 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1082 }
1083 
1084 /* Disable MII link status auto-polling (required for MDIO access) */
rhine_disable_linkmon(void __iomem * ioaddr,u32 quirks)1085 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1086 {
1087 	iowrite8(0, ioaddr + MIICmd);
1088 
1089 	if (quirks & rqRhineI) {
1090 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
1091 
1092 		/* Can be called from ISR. Evil. */
1093 		mdelay(1);
1094 
1095 		/* 0x80 must be set immediately before turning it off */
1096 		iowrite8(0x80, ioaddr + MIICmd);
1097 
1098 		RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1099 
1100 		/* Heh. Now clear 0x80 again. */
1101 		iowrite8(0, ioaddr + MIICmd);
1102 	}
1103 	else
1104 		RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1105 }
1106 
1107 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1108 
mdio_read(struct net_device * dev,int phy_id,int regnum)1109 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1110 {
1111 	struct rhine_private *rp = netdev_priv(dev);
1112 	void __iomem *ioaddr = rp->base;
1113 	int result;
1114 
1115 	rhine_disable_linkmon(ioaddr, rp->quirks);
1116 
1117 	/* rhine_disable_linkmon already cleared MIICmd */
1118 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1119 	iowrite8(regnum, ioaddr + MIIRegAddr);
1120 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
1121 	RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1122 	result = ioread16(ioaddr + MIIData);
1123 
1124 	rhine_enable_linkmon(ioaddr);
1125 	return result;
1126 }
1127 
mdio_write(struct net_device * dev,int phy_id,int regnum,int value)1128 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1129 {
1130 	struct rhine_private *rp = netdev_priv(dev);
1131 	void __iomem *ioaddr = rp->base;
1132 
1133 	rhine_disable_linkmon(ioaddr, rp->quirks);
1134 
1135 	/* rhine_disable_linkmon already cleared MIICmd */
1136 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
1137 	iowrite8(regnum, ioaddr + MIIRegAddr);
1138 	iowrite16(value, ioaddr + MIIData);
1139 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
1140 	RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1141 
1142 	rhine_enable_linkmon(ioaddr);
1143 }
1144 
rhine_open(struct net_device * dev)1145 static int rhine_open(struct net_device *dev)
1146 {
1147 	struct rhine_private *rp = netdev_priv(dev);
1148 	void __iomem *ioaddr = rp->base;
1149 	int rc;
1150 
1151 	rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1152 			dev);
1153 	if (rc)
1154 		return rc;
1155 
1156 	if (debug > 1)
1157 		printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1158 		       dev->name, rp->pdev->irq);
1159 
1160 	rc = alloc_ring(dev);
1161 	if (rc) {
1162 		free_irq(rp->pdev->irq, dev);
1163 		return rc;
1164 	}
1165 	alloc_rbufs(dev);
1166 	alloc_tbufs(dev);
1167 	rhine_chip_reset(dev);
1168 	init_registers(dev);
1169 	if (debug > 2)
1170 		printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1171 		       "MII status: %4.4x.\n",
1172 		       dev->name, ioread16(ioaddr + ChipCmd),
1173 		       mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1174 
1175 	netif_start_queue(dev);
1176 
1177 	return 0;
1178 }
1179 
rhine_tx_timeout(struct net_device * dev)1180 static void rhine_tx_timeout(struct net_device *dev)
1181 {
1182 	struct rhine_private *rp = netdev_priv(dev);
1183 	void __iomem *ioaddr = rp->base;
1184 
1185 	printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1186 	       "%4.4x, resetting...\n",
1187 	       dev->name, ioread16(ioaddr + IntrStatus),
1188 	       mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1189 
1190 	/* protect against concurrent rx interrupts */
1191 	disable_irq(rp->pdev->irq);
1192 
1193 	napi_disable(&rp->napi);
1194 
1195 	spin_lock(&rp->lock);
1196 
1197 	/* clear all descriptors */
1198 	free_tbufs(dev);
1199 	free_rbufs(dev);
1200 	alloc_tbufs(dev);
1201 	alloc_rbufs(dev);
1202 
1203 	/* Reinitialize the hardware. */
1204 	rhine_chip_reset(dev);
1205 	init_registers(dev);
1206 
1207 	spin_unlock(&rp->lock);
1208 	enable_irq(rp->pdev->irq);
1209 
1210 	dev->trans_start = jiffies;
1211 	rp->stats.tx_errors++;
1212 	netif_wake_queue(dev);
1213 }
1214 
rhine_start_tx(struct sk_buff * skb,struct net_device * dev)1215 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1216 {
1217 	struct rhine_private *rp = netdev_priv(dev);
1218 	void __iomem *ioaddr = rp->base;
1219 	unsigned entry;
1220 
1221 	/* Caution: the write order is important here, set the field
1222 	   with the "ownership" bits last. */
1223 
1224 	/* Calculate the next Tx descriptor entry. */
1225 	entry = rp->cur_tx % TX_RING_SIZE;
1226 
1227 	if (skb_padto(skb, ETH_ZLEN))
1228 		return 0;
1229 
1230 	rp->tx_skbuff[entry] = skb;
1231 
1232 	if ((rp->quirks & rqRhineI) &&
1233 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1234 		/* Must use alignment buffer. */
1235 		if (skb->len > PKT_BUF_SZ) {
1236 			/* packet too long, drop it */
1237 			dev_kfree_skb(skb);
1238 			rp->tx_skbuff[entry] = NULL;
1239 			rp->stats.tx_dropped++;
1240 			return 0;
1241 		}
1242 
1243 		/* Padding is not copied and so must be redone. */
1244 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1245 		if (skb->len < ETH_ZLEN)
1246 			memset(rp->tx_buf[entry] + skb->len, 0,
1247 			       ETH_ZLEN - skb->len);
1248 		rp->tx_skbuff_dma[entry] = 0;
1249 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1250 						      (rp->tx_buf[entry] -
1251 						       rp->tx_bufs));
1252 	} else {
1253 		rp->tx_skbuff_dma[entry] =
1254 			pci_map_single(rp->pdev, skb->data, skb->len,
1255 				       PCI_DMA_TODEVICE);
1256 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1257 	}
1258 
1259 	rp->tx_ring[entry].desc_length =
1260 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1261 
1262 	/* lock eth irq */
1263 	spin_lock_irq(&rp->lock);
1264 	wmb();
1265 	rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1266 	wmb();
1267 
1268 	rp->cur_tx++;
1269 
1270 	/* Non-x86 Todo: explicitly flush cache lines here. */
1271 
1272 	/* Wake the potentially-idle transmit channel */
1273 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1274 	       ioaddr + ChipCmd1);
1275 	IOSYNC;
1276 
1277 	if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1278 		netif_stop_queue(dev);
1279 
1280 	dev->trans_start = jiffies;
1281 
1282 	spin_unlock_irq(&rp->lock);
1283 
1284 	if (debug > 4) {
1285 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1286 		       dev->name, rp->cur_tx-1, entry);
1287 	}
1288 	return 0;
1289 }
1290 
1291 /* The interrupt handler does all of the Rx thread work and cleans up
1292    after the Tx thread. */
rhine_interrupt(int irq,void * dev_instance)1293 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1294 {
1295 	struct net_device *dev = dev_instance;
1296 	struct rhine_private *rp = netdev_priv(dev);
1297 	void __iomem *ioaddr = rp->base;
1298 	u32 intr_status;
1299 	int boguscnt = max_interrupt_work;
1300 	int handled = 0;
1301 
1302 	while ((intr_status = get_intr_status(dev))) {
1303 		handled = 1;
1304 
1305 		/* Acknowledge all of the current interrupt sources ASAP. */
1306 		if (intr_status & IntrTxDescRace)
1307 			iowrite8(0x08, ioaddr + IntrStatus2);
1308 		iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1309 		IOSYNC;
1310 
1311 		if (debug > 4)
1312 			printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1313 			       dev->name, intr_status);
1314 
1315 		if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1316 				   IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1317 			iowrite16(IntrTxAborted |
1318 				  IntrTxDone | IntrTxError | IntrTxUnderrun |
1319 				  IntrPCIErr | IntrStatsMax | IntrLinkChange,
1320 				  ioaddr + IntrEnable);
1321 
1322 			netif_rx_schedule(&rp->napi);
1323 		}
1324 
1325 		if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1326 			if (intr_status & IntrTxErrSummary) {
1327 				/* Avoid scavenging before Tx engine turned off */
1328 				RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1329 				if (debug > 2 &&
1330 				    ioread8(ioaddr+ChipCmd) & CmdTxOn)
1331 					printk(KERN_WARNING "%s: "
1332 					       "rhine_interrupt() Tx engine "
1333 					       "still on.\n", dev->name);
1334 			}
1335 			rhine_tx(dev);
1336 		}
1337 
1338 		/* Abnormal error summary/uncommon events handlers. */
1339 		if (intr_status & (IntrPCIErr | IntrLinkChange |
1340 				   IntrStatsMax | IntrTxError | IntrTxAborted |
1341 				   IntrTxUnderrun | IntrTxDescRace))
1342 			rhine_error(dev, intr_status);
1343 
1344 		if (--boguscnt < 0) {
1345 			printk(KERN_WARNING "%s: Too much work at interrupt, "
1346 			       "status=%#8.8x.\n",
1347 			       dev->name, intr_status);
1348 			break;
1349 		}
1350 	}
1351 
1352 	if (debug > 3)
1353 		printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1354 		       dev->name, ioread16(ioaddr + IntrStatus));
1355 	return IRQ_RETVAL(handled);
1356 }
1357 
1358 /* This routine is logically part of the interrupt handler, but isolated
1359    for clarity. */
rhine_tx(struct net_device * dev)1360 static void rhine_tx(struct net_device *dev)
1361 {
1362 	struct rhine_private *rp = netdev_priv(dev);
1363 	int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1364 
1365 	spin_lock(&rp->lock);
1366 
1367 	/* find and cleanup dirty tx descriptors */
1368 	while (rp->dirty_tx != rp->cur_tx) {
1369 		txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1370 		if (debug > 6)
1371 			printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1372 			       entry, txstatus);
1373 		if (txstatus & DescOwn)
1374 			break;
1375 		if (txstatus & 0x8000) {
1376 			if (debug > 1)
1377 				printk(KERN_DEBUG "%s: Transmit error, "
1378 				       "Tx status %8.8x.\n",
1379 				       dev->name, txstatus);
1380 			rp->stats.tx_errors++;
1381 			if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1382 			if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1383 			if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1384 			if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1385 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1386 			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
1387 				rp->stats.tx_fifo_errors++;
1388 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1389 				break; /* Keep the skb - we try again */
1390 			}
1391 			/* Transmitter restarted in 'abnormal' handler. */
1392 		} else {
1393 			if (rp->quirks & rqRhineI)
1394 				rp->stats.collisions += (txstatus >> 3) & 0x0F;
1395 			else
1396 				rp->stats.collisions += txstatus & 0x0F;
1397 			if (debug > 6)
1398 				printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1399 				       (txstatus >> 3) & 0xF,
1400 				       txstatus & 0xF);
1401 			rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1402 			rp->stats.tx_packets++;
1403 		}
1404 		/* Free the original skb. */
1405 		if (rp->tx_skbuff_dma[entry]) {
1406 			pci_unmap_single(rp->pdev,
1407 					 rp->tx_skbuff_dma[entry],
1408 					 rp->tx_skbuff[entry]->len,
1409 					 PCI_DMA_TODEVICE);
1410 		}
1411 		dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1412 		rp->tx_skbuff[entry] = NULL;
1413 		entry = (++rp->dirty_tx) % TX_RING_SIZE;
1414 	}
1415 	if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1416 		netif_wake_queue(dev);
1417 
1418 	spin_unlock(&rp->lock);
1419 }
1420 
1421 /* Process up to limit frames from receive ring */
rhine_rx(struct net_device * dev,int limit)1422 static int rhine_rx(struct net_device *dev, int limit)
1423 {
1424 	struct rhine_private *rp = netdev_priv(dev);
1425 	int count;
1426 	int entry = rp->cur_rx % RX_RING_SIZE;
1427 
1428 	if (debug > 4) {
1429 		printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1430 		       dev->name, entry,
1431 		       le32_to_cpu(rp->rx_head_desc->rx_status));
1432 	}
1433 
1434 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1435 	for (count = 0; count < limit; ++count) {
1436 		struct rx_desc *desc = rp->rx_head_desc;
1437 		u32 desc_status = le32_to_cpu(desc->rx_status);
1438 		int data_size = desc_status >> 16;
1439 
1440 		if (desc_status & DescOwn)
1441 			break;
1442 
1443 		if (debug > 4)
1444 			printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1445 			       desc_status);
1446 
1447 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1448 			if ((desc_status & RxWholePkt) != RxWholePkt) {
1449 				printk(KERN_WARNING "%s: Oversized Ethernet "
1450 				       "frame spanned multiple buffers, entry "
1451 				       "%#x length %d status %8.8x!\n",
1452 				       dev->name, entry, data_size,
1453 				       desc_status);
1454 				printk(KERN_WARNING "%s: Oversized Ethernet "
1455 				       "frame %p vs %p.\n", dev->name,
1456 				       rp->rx_head_desc, &rp->rx_ring[entry]);
1457 				rp->stats.rx_length_errors++;
1458 			} else if (desc_status & RxErr) {
1459 				/* There was a error. */
1460 				if (debug > 2)
1461 					printk(KERN_DEBUG "rhine_rx() Rx "
1462 					       "error was %8.8x.\n",
1463 					       desc_status);
1464 				rp->stats.rx_errors++;
1465 				if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1466 				if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1467 				if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1468 				if (desc_status & 0x0002) {
1469 					/* this can also be updated outside the interrupt handler */
1470 					spin_lock(&rp->lock);
1471 					rp->stats.rx_crc_errors++;
1472 					spin_unlock(&rp->lock);
1473 				}
1474 			}
1475 		} else {
1476 			struct sk_buff *skb;
1477 			/* Length should omit the CRC */
1478 			int pkt_len = data_size - 4;
1479 
1480 			/* Check if the packet is long enough to accept without
1481 			   copying to a minimally-sized skbuff. */
1482 			if (pkt_len < rx_copybreak &&
1483 				(skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1484 				skb_reserve(skb, NET_IP_ALIGN);	/* 16 byte align the IP header */
1485 				pci_dma_sync_single_for_cpu(rp->pdev,
1486 							    rp->rx_skbuff_dma[entry],
1487 							    rp->rx_buf_sz,
1488 							    PCI_DMA_FROMDEVICE);
1489 
1490 				skb_copy_to_linear_data(skb,
1491 						 rp->rx_skbuff[entry]->data,
1492 						 pkt_len);
1493 				skb_put(skb, pkt_len);
1494 				pci_dma_sync_single_for_device(rp->pdev,
1495 							       rp->rx_skbuff_dma[entry],
1496 							       rp->rx_buf_sz,
1497 							       PCI_DMA_FROMDEVICE);
1498 			} else {
1499 				skb = rp->rx_skbuff[entry];
1500 				if (skb == NULL) {
1501 					printk(KERN_ERR "%s: Inconsistent Rx "
1502 					       "descriptor chain.\n",
1503 					       dev->name);
1504 					break;
1505 				}
1506 				rp->rx_skbuff[entry] = NULL;
1507 				skb_put(skb, pkt_len);
1508 				pci_unmap_single(rp->pdev,
1509 						 rp->rx_skbuff_dma[entry],
1510 						 rp->rx_buf_sz,
1511 						 PCI_DMA_FROMDEVICE);
1512 			}
1513 			skb->protocol = eth_type_trans(skb, dev);
1514 			netif_receive_skb(skb);
1515 			rp->stats.rx_bytes += pkt_len;
1516 			rp->stats.rx_packets++;
1517 		}
1518 		entry = (++rp->cur_rx) % RX_RING_SIZE;
1519 		rp->rx_head_desc = &rp->rx_ring[entry];
1520 	}
1521 
1522 	/* Refill the Rx ring buffers. */
1523 	for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1524 		struct sk_buff *skb;
1525 		entry = rp->dirty_rx % RX_RING_SIZE;
1526 		if (rp->rx_skbuff[entry] == NULL) {
1527 			skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1528 			rp->rx_skbuff[entry] = skb;
1529 			if (skb == NULL)
1530 				break;	/* Better luck next round. */
1531 			skb->dev = dev;	/* Mark as being used by this device. */
1532 			rp->rx_skbuff_dma[entry] =
1533 				pci_map_single(rp->pdev, skb->data,
1534 					       rp->rx_buf_sz,
1535 					       PCI_DMA_FROMDEVICE);
1536 			rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1537 		}
1538 		rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1539 	}
1540 
1541 	return count;
1542 }
1543 
1544 /*
1545  * Clears the "tally counters" for CRC errors and missed frames(?).
1546  * It has been reported that some chips need a write of 0 to clear
1547  * these, for others the counters are set to 1 when written to and
1548  * instead cleared when read. So we clear them both ways ...
1549  */
clear_tally_counters(void __iomem * ioaddr)1550 static inline void clear_tally_counters(void __iomem *ioaddr)
1551 {
1552 	iowrite32(0, ioaddr + RxMissed);
1553 	ioread16(ioaddr + RxCRCErrs);
1554 	ioread16(ioaddr + RxMissed);
1555 }
1556 
rhine_restart_tx(struct net_device * dev)1557 static void rhine_restart_tx(struct net_device *dev) {
1558 	struct rhine_private *rp = netdev_priv(dev);
1559 	void __iomem *ioaddr = rp->base;
1560 	int entry = rp->dirty_tx % TX_RING_SIZE;
1561 	u32 intr_status;
1562 
1563 	/*
1564 	 * If new errors occured, we need to sort them out before doing Tx.
1565 	 * In that case the ISR will be back here RSN anyway.
1566 	 */
1567 	intr_status = get_intr_status(dev);
1568 
1569 	if ((intr_status & IntrTxErrSummary) == 0) {
1570 
1571 		/* We know better than the chip where it should continue. */
1572 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1573 		       ioaddr + TxRingPtr);
1574 
1575 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1576 		       ioaddr + ChipCmd);
1577 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1578 		       ioaddr + ChipCmd1);
1579 		IOSYNC;
1580 	}
1581 	else {
1582 		/* This should never happen */
1583 		if (debug > 1)
1584 			printk(KERN_WARNING "%s: rhine_restart_tx() "
1585 			       "Another error occured %8.8x.\n",
1586 			       dev->name, intr_status);
1587 	}
1588 
1589 }
1590 
rhine_error(struct net_device * dev,int intr_status)1591 static void rhine_error(struct net_device *dev, int intr_status)
1592 {
1593 	struct rhine_private *rp = netdev_priv(dev);
1594 	void __iomem *ioaddr = rp->base;
1595 
1596 	spin_lock(&rp->lock);
1597 
1598 	if (intr_status & IntrLinkChange)
1599 		rhine_check_media(dev, 0);
1600 	if (intr_status & IntrStatsMax) {
1601 		rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1602 		rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1603 		clear_tally_counters(ioaddr);
1604 	}
1605 	if (intr_status & IntrTxAborted) {
1606 		if (debug > 1)
1607 			printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1608 			       dev->name, intr_status);
1609 	}
1610 	if (intr_status & IntrTxUnderrun) {
1611 		if (rp->tx_thresh < 0xE0)
1612 			iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1613 		if (debug > 1)
1614 			printk(KERN_INFO "%s: Transmitter underrun, Tx "
1615 			       "threshold now %2.2x.\n",
1616 			       dev->name, rp->tx_thresh);
1617 	}
1618 	if (intr_status & IntrTxDescRace) {
1619 		if (debug > 2)
1620 			printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1621 			       dev->name);
1622 	}
1623 	if ((intr_status & IntrTxError) &&
1624 	    (intr_status & (IntrTxAborted |
1625 	     IntrTxUnderrun | IntrTxDescRace)) == 0) {
1626 		if (rp->tx_thresh < 0xE0) {
1627 			iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1628 		}
1629 		if (debug > 1)
1630 			printk(KERN_INFO "%s: Unspecified error. Tx "
1631 			       "threshold now %2.2x.\n",
1632 			       dev->name, rp->tx_thresh);
1633 	}
1634 	if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1635 			   IntrTxError))
1636 		rhine_restart_tx(dev);
1637 
1638 	if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1639 			    IntrTxError | IntrTxAborted | IntrNormalSummary |
1640 			    IntrTxDescRace)) {
1641 		if (debug > 1)
1642 			printk(KERN_ERR "%s: Something Wicked happened! "
1643 			       "%8.8x.\n", dev->name, intr_status);
1644 	}
1645 
1646 	spin_unlock(&rp->lock);
1647 }
1648 
rhine_get_stats(struct net_device * dev)1649 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1650 {
1651 	struct rhine_private *rp = netdev_priv(dev);
1652 	void __iomem *ioaddr = rp->base;
1653 	unsigned long flags;
1654 
1655 	spin_lock_irqsave(&rp->lock, flags);
1656 	rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1657 	rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1658 	clear_tally_counters(ioaddr);
1659 	spin_unlock_irqrestore(&rp->lock, flags);
1660 
1661 	return &rp->stats;
1662 }
1663 
rhine_set_rx_mode(struct net_device * dev)1664 static void rhine_set_rx_mode(struct net_device *dev)
1665 {
1666 	struct rhine_private *rp = netdev_priv(dev);
1667 	void __iomem *ioaddr = rp->base;
1668 	u32 mc_filter[2];	/* Multicast hash filter */
1669 	u8 rx_mode;		/* Note: 0x02=accept runt, 0x01=accept errs */
1670 
1671 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
1672 		rx_mode = 0x1C;
1673 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1674 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1675 	} else if ((dev->mc_count > multicast_filter_limit)
1676 		   || (dev->flags & IFF_ALLMULTI)) {
1677 		/* Too many to match, or accept all multicasts. */
1678 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1679 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1680 		rx_mode = 0x0C;
1681 	} else {
1682 		struct dev_mc_list *mclist;
1683 		int i;
1684 		memset(mc_filter, 0, sizeof(mc_filter));
1685 		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1686 		     i++, mclist = mclist->next) {
1687 			int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1688 
1689 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1690 		}
1691 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1692 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1693 		rx_mode = 0x0C;
1694 	}
1695 	iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1696 }
1697 
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1698 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1699 {
1700 	struct rhine_private *rp = netdev_priv(dev);
1701 
1702 	strcpy(info->driver, DRV_NAME);
1703 	strcpy(info->version, DRV_VERSION);
1704 	strcpy(info->bus_info, pci_name(rp->pdev));
1705 }
1706 
netdev_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1707 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1708 {
1709 	struct rhine_private *rp = netdev_priv(dev);
1710 	int rc;
1711 
1712 	spin_lock_irq(&rp->lock);
1713 	rc = mii_ethtool_gset(&rp->mii_if, cmd);
1714 	spin_unlock_irq(&rp->lock);
1715 
1716 	return rc;
1717 }
1718 
netdev_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1719 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1720 {
1721 	struct rhine_private *rp = netdev_priv(dev);
1722 	int rc;
1723 
1724 	spin_lock_irq(&rp->lock);
1725 	rc = mii_ethtool_sset(&rp->mii_if, cmd);
1726 	spin_unlock_irq(&rp->lock);
1727 	rhine_set_carrier(&rp->mii_if);
1728 
1729 	return rc;
1730 }
1731 
netdev_nway_reset(struct net_device * dev)1732 static int netdev_nway_reset(struct net_device *dev)
1733 {
1734 	struct rhine_private *rp = netdev_priv(dev);
1735 
1736 	return mii_nway_restart(&rp->mii_if);
1737 }
1738 
netdev_get_link(struct net_device * dev)1739 static u32 netdev_get_link(struct net_device *dev)
1740 {
1741 	struct rhine_private *rp = netdev_priv(dev);
1742 
1743 	return mii_link_ok(&rp->mii_if);
1744 }
1745 
netdev_get_msglevel(struct net_device * dev)1746 static u32 netdev_get_msglevel(struct net_device *dev)
1747 {
1748 	return debug;
1749 }
1750 
netdev_set_msglevel(struct net_device * dev,u32 value)1751 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1752 {
1753 	debug = value;
1754 }
1755 
rhine_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1756 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1757 {
1758 	struct rhine_private *rp = netdev_priv(dev);
1759 
1760 	if (!(rp->quirks & rqWOL))
1761 		return;
1762 
1763 	spin_lock_irq(&rp->lock);
1764 	wol->supported = WAKE_PHY | WAKE_MAGIC |
1765 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
1766 	wol->wolopts = rp->wolopts;
1767 	spin_unlock_irq(&rp->lock);
1768 }
1769 
rhine_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)1770 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1771 {
1772 	struct rhine_private *rp = netdev_priv(dev);
1773 	u32 support = WAKE_PHY | WAKE_MAGIC |
1774 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
1775 
1776 	if (!(rp->quirks & rqWOL))
1777 		return -EINVAL;
1778 
1779 	if (wol->wolopts & ~support)
1780 		return -EINVAL;
1781 
1782 	spin_lock_irq(&rp->lock);
1783 	rp->wolopts = wol->wolopts;
1784 	spin_unlock_irq(&rp->lock);
1785 
1786 	return 0;
1787 }
1788 
1789 static const struct ethtool_ops netdev_ethtool_ops = {
1790 	.get_drvinfo		= netdev_get_drvinfo,
1791 	.get_settings		= netdev_get_settings,
1792 	.set_settings		= netdev_set_settings,
1793 	.nway_reset		= netdev_nway_reset,
1794 	.get_link		= netdev_get_link,
1795 	.get_msglevel		= netdev_get_msglevel,
1796 	.set_msglevel		= netdev_set_msglevel,
1797 	.get_wol		= rhine_get_wol,
1798 	.set_wol		= rhine_set_wol,
1799 };
1800 
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1801 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1802 {
1803 	struct rhine_private *rp = netdev_priv(dev);
1804 	int rc;
1805 
1806 	if (!netif_running(dev))
1807 		return -EINVAL;
1808 
1809 	spin_lock_irq(&rp->lock);
1810 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1811 	spin_unlock_irq(&rp->lock);
1812 	rhine_set_carrier(&rp->mii_if);
1813 
1814 	return rc;
1815 }
1816 
rhine_close(struct net_device * dev)1817 static int rhine_close(struct net_device *dev)
1818 {
1819 	struct rhine_private *rp = netdev_priv(dev);
1820 	void __iomem *ioaddr = rp->base;
1821 
1822 	spin_lock_irq(&rp->lock);
1823 
1824 	netif_stop_queue(dev);
1825 	napi_disable(&rp->napi);
1826 
1827 	if (debug > 1)
1828 		printk(KERN_DEBUG "%s: Shutting down ethercard, "
1829 		       "status was %4.4x.\n",
1830 		       dev->name, ioread16(ioaddr + ChipCmd));
1831 
1832 	/* Switch to loopback mode to avoid hardware races. */
1833 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1834 
1835 	/* Disable interrupts by clearing the interrupt mask. */
1836 	iowrite16(0x0000, ioaddr + IntrEnable);
1837 
1838 	/* Stop the chip's Tx and Rx processes. */
1839 	iowrite16(CmdStop, ioaddr + ChipCmd);
1840 
1841 	spin_unlock_irq(&rp->lock);
1842 
1843 	free_irq(rp->pdev->irq, dev);
1844 	free_rbufs(dev);
1845 	free_tbufs(dev);
1846 	free_ring(dev);
1847 
1848 	return 0;
1849 }
1850 
1851 
rhine_remove_one(struct pci_dev * pdev)1852 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1853 {
1854 	struct net_device *dev = pci_get_drvdata(pdev);
1855 	struct rhine_private *rp = netdev_priv(dev);
1856 
1857 	unregister_netdev(dev);
1858 
1859 	pci_iounmap(pdev, rp->base);
1860 	pci_release_regions(pdev);
1861 
1862 	free_netdev(dev);
1863 	pci_disable_device(pdev);
1864 	pci_set_drvdata(pdev, NULL);
1865 }
1866 
rhine_shutdown(struct pci_dev * pdev)1867 static void rhine_shutdown (struct pci_dev *pdev)
1868 {
1869 	struct net_device *dev = pci_get_drvdata(pdev);
1870 	struct rhine_private *rp = netdev_priv(dev);
1871 	void __iomem *ioaddr = rp->base;
1872 
1873 	if (!(rp->quirks & rqWOL))
1874 		return; /* Nothing to do for non-WOL adapters */
1875 
1876 	rhine_power_init(dev);
1877 
1878 	/* Make sure we use pattern 0, 1 and not 4, 5 */
1879 	if (rp->quirks & rq6patterns)
1880 		iowrite8(0x04, ioaddr + WOLcgClr);
1881 
1882 	if (rp->wolopts & WAKE_MAGIC) {
1883 		iowrite8(WOLmagic, ioaddr + WOLcrSet);
1884 		/*
1885 		 * Turn EEPROM-controlled wake-up back on -- some hardware may
1886 		 * not cooperate otherwise.
1887 		 */
1888 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1889 	}
1890 
1891 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1892 		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1893 
1894 	if (rp->wolopts & WAKE_PHY)
1895 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1896 
1897 	if (rp->wolopts & WAKE_UCAST)
1898 		iowrite8(WOLucast, ioaddr + WOLcrSet);
1899 
1900 	if (rp->wolopts) {
1901 		/* Enable legacy WOL (for old motherboards) */
1902 		iowrite8(0x01, ioaddr + PwcfgSet);
1903 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1904 	}
1905 
1906 	/* Hit power state D3 (sleep) */
1907 	if (!avoid_D3)
1908 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1909 
1910 	/* TODO: Check use of pci_enable_wake() */
1911 
1912 }
1913 
1914 #ifdef CONFIG_PM
rhine_suspend(struct pci_dev * pdev,pm_message_t state)1915 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1916 {
1917 	struct net_device *dev = pci_get_drvdata(pdev);
1918 	struct rhine_private *rp = netdev_priv(dev);
1919 	unsigned long flags;
1920 
1921 	if (!netif_running(dev))
1922 		return 0;
1923 
1924 	napi_disable(&rp->napi);
1925 
1926 	netif_device_detach(dev);
1927 	pci_save_state(pdev);
1928 
1929 	spin_lock_irqsave(&rp->lock, flags);
1930 	rhine_shutdown(pdev);
1931 	spin_unlock_irqrestore(&rp->lock, flags);
1932 
1933 	free_irq(dev->irq, dev);
1934 	return 0;
1935 }
1936 
rhine_resume(struct pci_dev * pdev)1937 static int rhine_resume(struct pci_dev *pdev)
1938 {
1939 	struct net_device *dev = pci_get_drvdata(pdev);
1940 	struct rhine_private *rp = netdev_priv(dev);
1941 	unsigned long flags;
1942 	int ret;
1943 
1944 	if (!netif_running(dev))
1945 		return 0;
1946 
1947         if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1948 		printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1949 
1950 	ret = pci_set_power_state(pdev, PCI_D0);
1951 	if (debug > 1)
1952 		printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1953 			dev->name, ret ? "failed" : "succeeded", ret);
1954 
1955 	pci_restore_state(pdev);
1956 
1957 	spin_lock_irqsave(&rp->lock, flags);
1958 #ifdef USE_MMIO
1959 	enable_mmio(rp->pioaddr, rp->quirks);
1960 #endif
1961 	rhine_power_init(dev);
1962 	free_tbufs(dev);
1963 	free_rbufs(dev);
1964 	alloc_tbufs(dev);
1965 	alloc_rbufs(dev);
1966 	init_registers(dev);
1967 	spin_unlock_irqrestore(&rp->lock, flags);
1968 
1969 	netif_device_attach(dev);
1970 
1971 	return 0;
1972 }
1973 #endif /* CONFIG_PM */
1974 
1975 static struct pci_driver rhine_driver = {
1976 	.name		= DRV_NAME,
1977 	.id_table	= rhine_pci_tbl,
1978 	.probe		= rhine_init_one,
1979 	.remove		= __devexit_p(rhine_remove_one),
1980 #ifdef CONFIG_PM
1981 	.suspend	= rhine_suspend,
1982 	.resume		= rhine_resume,
1983 #endif /* CONFIG_PM */
1984 	.shutdown =	rhine_shutdown,
1985 };
1986 
1987 static struct dmi_system_id __initdata rhine_dmi_table[] = {
1988 	{
1989 		.ident = "EPIA-M",
1990 		.matches = {
1991 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
1992 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1993 		},
1994 	},
1995 	{
1996 		.ident = "KV7",
1997 		.matches = {
1998 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
1999 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
2000 		},
2001 	},
2002 	{ NULL }
2003 };
2004 
rhine_init(void)2005 static int __init rhine_init(void)
2006 {
2007 /* when a module, this is printed whether or not devices are found in probe */
2008 #ifdef MODULE
2009 	printk(version);
2010 #endif
2011 	if (dmi_check_system(rhine_dmi_table)) {
2012 		/* these BIOSes fail at PXE boot if chip is in D3 */
2013 		avoid_D3 = 1;
2014 		printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2015 				    "enabled.\n",
2016 		       DRV_NAME);
2017 	}
2018 	else if (avoid_D3)
2019 		printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2020 
2021 	return pci_register_driver(&rhine_driver);
2022 }
2023 
2024 
rhine_cleanup(void)2025 static void __exit rhine_cleanup(void)
2026 {
2027 	pci_unregister_driver(&rhine_driver);
2028 }
2029 
2030 
2031 module_init(rhine_init);
2032 module_exit(rhine_cleanup);
2033