• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
3  *
4  * This software may be used and distributed according to the terms of the
5  * GNU General Public License.
6  *
7  * The author may be reached as romieu@cogenit.fr.
8  * Specific bug reports/asian food will be welcome.
9  *
10  * Special thanks to the nice people at CS-Telecom for the hardware and the
11  * access to the test/measure tools.
12  *
13  *
14  *                             Theory of Operation
15  *
16  * I. Board Compatibility
17  *
18  * This device driver is designed for the Siemens PEB20534 4 ports serial
19  * controller as found on Etinc PCISYNC cards. The documentation for the
20  * chipset is available at http://www.infineon.com:
21  * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22  * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23  * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24  * - Errata sheet DS5 (courtesy of Michael Skerritt).
25  * Jens David has built an adapter based on the same chipset. Take a look
26  * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
27  * driver.
28  * Sample code (2 revisions) is available at Infineon.
29  *
30  * II. Board-specific settings
31  *
32  * Pcisync can transmit some clock signal to the outside world on the
33  * *first two* ports provided you put a quartz and a line driver on it and
34  * remove the jumpers. The operation is described on Etinc web site. If you
35  * go DCE on these ports, don't forget to use an adequate cable.
36  *
37  * Sharing of the PCI interrupt line for this board is possible.
38  *
39  * III. Driver operation
40  *
41  * The rx/tx operations are based on a linked list of descriptors. The driver
42  * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43  * I tried to fix it, the more it started to look like (convoluted) software
44  * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45  * this a rfc2119 MUST.
46  *
47  * Tx direction
48  * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49  * The device is supposed to be enabled again during an ALLS irq (we could
50  * use HI but as it's easy to lose events, it's fscked).
51  *
52  * Rx direction
53  * The received frames aren't supposed to span over multiple receiving areas.
54  * I may implement it some day but it isn't the highest ranked item.
55  *
56  * IV. Notes
57  * The current error (XDU, RFO) recovery code is untested.
58  * So far, RDO takes his RX channel down and the right sequence to enable it
59  * again is still a mistery. If RDO happens, plan a reboot. More details
60  * in the code (NB: as this happens, TX still works).
61  * Don't mess the cables during operation, especially on DTE ports. I don't
62  * suggest it for DCE either but at least one can get some messages instead
63  * of a complete instant freeze.
64  * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65  * the documentation/chipset releases.
66  *
67  * TODO:
68  * - test X25.
69  * - use polling at high irq/s,
70  * - performance analysis,
71  * - endianness.
72  *
73  * 2001/12/10	Daniela Squassoni  <daniela@cyclades.com>
74  * - Contribution to support the new generic HDLC layer.
75  *
76  * 2002/01	Ueimor
77  * - old style interface removal
78  * - dscc4_release_ring fix (related to DMA mapping)
79  * - hard_start_xmit fix (hint: TxSizeMax)
80  * - misc crapectomy.
81  */
82 
83 #include <linux/module.h>
84 #include <linux/types.h>
85 #include <linux/errno.h>
86 #include <linux/list.h>
87 #include <linux/ioport.h>
88 #include <linux/pci.h>
89 #include <linux/kernel.h>
90 #include <linux/mm.h>
91 
92 #include <asm/system.h>
93 #include <asm/cache.h>
94 #include <asm/byteorder.h>
95 #include <asm/uaccess.h>
96 #include <asm/io.h>
97 #include <asm/irq.h>
98 
99 #include <linux/init.h>
100 #include <linux/string.h>
101 
102 #include <linux/if_arp.h>
103 #include <linux/netdevice.h>
104 #include <linux/skbuff.h>
105 #include <linux/delay.h>
106 #include <linux/hdlc.h>
107 #include <linux/mutex.h>
108 
109 /* Version */
110 static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
111 static int debug;
112 static int quartz;
113 
114 #ifdef CONFIG_DSCC4_PCI_RST
115 static DEFINE_MUTEX(dscc4_mutex);
116 static u32 dscc4_pci_config_store[16];
117 #endif
118 
119 #define	DRV_NAME	"dscc4"
120 
121 #undef DSCC4_POLLING
122 
123 /* Module parameters */
124 
125 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
126 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
127 MODULE_LICENSE("GPL");
128 module_param(debug, int, 0);
129 MODULE_PARM_DESC(debug,"Enable/disable extra messages");
130 module_param(quartz, int, 0);
131 MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)");
132 
133 /* Structures */
134 
135 struct thingie {
136 	int define;
137 	u32 bits;
138 };
139 
140 struct TxFD {
141 	__le32 state;
142 	__le32 next;
143 	__le32 data;
144 	__le32 complete;
145 	u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
146 		     /* FWIW, datasheet calls that "dummy" and says that card
147 		      * never looks at it; neither does the driver */
148 };
149 
150 struct RxFD {
151 	__le32 state1;
152 	__le32 next;
153 	__le32 data;
154 	__le32 state2;
155 	__le32 end;
156 };
157 
158 #define DUMMY_SKB_SIZE		64
159 #define TX_LOW			8
160 #define TX_RING_SIZE		32
161 #define RX_RING_SIZE		32
162 #define TX_TOTAL_SIZE		TX_RING_SIZE*sizeof(struct TxFD)
163 #define RX_TOTAL_SIZE		RX_RING_SIZE*sizeof(struct RxFD)
164 #define IRQ_RING_SIZE		64		/* Keep it a multiple of 32 */
165 #define TX_TIMEOUT		(HZ/10)
166 #define DSCC4_HZ_MAX		33000000
167 #define BRR_DIVIDER_MAX		64*0x00004000	/* Cf errata DS5 p.10 */
168 #define dev_per_card		4
169 #define SCC_REGISTERS_MAX	23		/* Cf errata DS5 p.4 */
170 
171 #define SOURCE_ID(flags)	(((flags) >> 28) & 0x03)
172 #define TO_SIZE(state)		(((state) >> 16) & 0x1fff)
173 
174 /*
175  * Given the operating range of Linux HDLC, the 2 defines below could be
176  * made simpler. However they are a fine reminder for the limitations of
177  * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
178  */
179 #define TO_STATE_TX(len)	cpu_to_le32(((len) & TxSizeMax) << 16)
180 #define TO_STATE_RX(len)	cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
181 #define RX_MAX(len)		((((len) >> 5) + 1) << 5)	/* Cf RLCR */
182 #define SCC_REG_START(dpriv)	(SCC_START+(dpriv->dev_id)*SCC_OFFSET)
183 
184 struct dscc4_pci_priv {
185         __le32 *iqcfg;
186         int cfg_cur;
187         spinlock_t lock;
188         struct pci_dev *pdev;
189 
190         struct dscc4_dev_priv *root;
191         dma_addr_t iqcfg_dma;
192 	u32 xtal_hz;
193 };
194 
195 struct dscc4_dev_priv {
196         struct sk_buff *rx_skbuff[RX_RING_SIZE];
197         struct sk_buff *tx_skbuff[TX_RING_SIZE];
198 
199         struct RxFD *rx_fd;
200         struct TxFD *tx_fd;
201         __le32 *iqrx;
202         __le32 *iqtx;
203 
204 	/* FIXME: check all the volatile are required */
205         volatile u32 tx_current;
206         u32 rx_current;
207         u32 iqtx_current;
208         u32 iqrx_current;
209 
210         volatile u32 tx_dirty;
211         volatile u32 ltda;
212         u32 rx_dirty;
213         u32 lrda;
214 
215         dma_addr_t tx_fd_dma;
216         dma_addr_t rx_fd_dma;
217         dma_addr_t iqtx_dma;
218         dma_addr_t iqrx_dma;
219 
220 	u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */
221 
222 	struct timer_list timer;
223 
224         struct dscc4_pci_priv *pci_priv;
225         spinlock_t lock;
226 
227         int dev_id;
228 	volatile u32 flags;
229 	u32 timer_help;
230 
231 	unsigned short encoding;
232 	unsigned short parity;
233 	struct net_device *dev;
234 	sync_serial_settings settings;
235 	void __iomem *base_addr;
236 	u32 __pad __attribute__ ((aligned (4)));
237 };
238 
239 /* GLOBAL registers definitions */
240 #define GCMDR   0x00
241 #define GSTAR   0x04
242 #define GMODE   0x08
243 #define IQLENR0 0x0C
244 #define IQLENR1 0x10
245 #define IQRX0   0x14
246 #define IQTX0   0x24
247 #define IQCFG   0x3c
248 #define FIFOCR1 0x44
249 #define FIFOCR2 0x48
250 #define FIFOCR3 0x4c
251 #define FIFOCR4 0x34
252 #define CH0CFG  0x50
253 #define CH0BRDA 0x54
254 #define CH0BTDA 0x58
255 #define CH0FRDA 0x98
256 #define CH0FTDA 0xb0
257 #define CH0LRDA 0xc8
258 #define CH0LTDA 0xe0
259 
260 /* SCC registers definitions */
261 #define SCC_START	0x0100
262 #define SCC_OFFSET      0x80
263 #define CMDR    0x00
264 #define STAR    0x04
265 #define CCR0    0x08
266 #define CCR1    0x0c
267 #define CCR2    0x10
268 #define BRR     0x2C
269 #define RLCR    0x40
270 #define IMR     0x54
271 #define ISR     0x58
272 
273 #define GPDIR	0x0400
274 #define GPDATA	0x0404
275 #define GPIM	0x0408
276 
277 /* Bit masks */
278 #define EncodingMask	0x00700000
279 #define CrcMask		0x00000003
280 
281 #define IntRxScc0	0x10000000
282 #define IntTxScc0	0x01000000
283 
284 #define TxPollCmd	0x00000400
285 #define RxActivate	0x08000000
286 #define MTFi		0x04000000
287 #define Rdr		0x00400000
288 #define Rdt		0x00200000
289 #define Idr		0x00100000
290 #define Idt		0x00080000
291 #define TxSccRes	0x01000000
292 #define RxSccRes	0x00010000
293 #define TxSizeMax	0x1fff		/* Datasheet DS1 - 11.1.1.1 */
294 #define RxSizeMax	0x1ffc		/* Datasheet DS1 - 11.1.2.1 */
295 
296 #define Ccr0ClockMask	0x0000003f
297 #define Ccr1LoopMask	0x00000200
298 #define IsrMask		0x000fffff
299 #define BrrExpMask	0x00000f00
300 #define BrrMultMask	0x0000003f
301 #define EncodingMask	0x00700000
302 #define Hold		cpu_to_le32(0x40000000)
303 #define SccBusy		0x10000000
304 #define PowerUp		0x80000000
305 #define Vis		0x00001000
306 #define FrameOk		(FrameVfr | FrameCrc)
307 #define FrameVfr	0x80
308 #define FrameRdo	0x40
309 #define FrameCrc	0x20
310 #define FrameRab	0x10
311 #define FrameAborted	cpu_to_le32(0x00000200)
312 #define FrameEnd	cpu_to_le32(0x80000000)
313 #define DataComplete	cpu_to_le32(0x40000000)
314 #define LengthCheck	0x00008000
315 #define SccEvt		0x02000000
316 #define NoAck		0x00000200
317 #define Action		0x00000001
318 #define HiDesc		cpu_to_le32(0x20000000)
319 
320 /* SCC events */
321 #define RxEvt		0xf0000000
322 #define TxEvt		0x0f000000
323 #define Alls		0x00040000
324 #define Xdu		0x00010000
325 #define Cts		0x00004000
326 #define Xmr		0x00002000
327 #define Xpr		0x00001000
328 #define Rdo		0x00000080
329 #define Rfs		0x00000040
330 #define Cd		0x00000004
331 #define Rfo		0x00000002
332 #define Flex		0x00000001
333 
334 /* DMA core events */
335 #define Cfg		0x00200000
336 #define Hi		0x00040000
337 #define Fi		0x00020000
338 #define Err		0x00010000
339 #define Arf		0x00000002
340 #define ArAck		0x00000001
341 
342 /* State flags */
343 #define Ready		0x00000000
344 #define NeedIDR		0x00000001
345 #define NeedIDT		0x00000002
346 #define RdoSet		0x00000004
347 #define FakeReset	0x00000008
348 
349 /* Don't mask RDO. Ever. */
350 #ifdef DSCC4_POLLING
351 #define EventsMask	0xfffeef7f
352 #else
353 #define EventsMask	0xfffa8f7a
354 #endif
355 
356 /* Functions prototypes */
357 static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
358 static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *);
359 static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr);
360 static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent);
361 static int dscc4_open(struct net_device *);
362 static int dscc4_start_xmit(struct sk_buff *, struct net_device *);
363 static int dscc4_close(struct net_device *);
364 static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
365 static int dscc4_init_ring(struct net_device *);
366 static void dscc4_release_ring(struct dscc4_dev_priv *);
367 static void dscc4_timer(unsigned long);
368 static void dscc4_tx_timeout(struct net_device *);
369 static irqreturn_t dscc4_irq(int irq, void *dev_id);
370 static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short);
371 static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *);
372 #ifdef DSCC4_POLLING
373 static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *);
374 #endif
375 
dscc4_priv(struct net_device * dev)376 static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev)
377 {
378 	return dev_to_hdlc(dev)->priv;
379 }
380 
dscc4_to_dev(struct dscc4_dev_priv * p)381 static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p)
382 {
383 	return p->dev;
384 }
385 
scc_patchl(u32 mask,u32 value,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)386 static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv,
387 			struct net_device *dev, int offset)
388 {
389 	u32 state;
390 
391 	/* Cf scc_writel for concern regarding thread-safety */
392 	state = dpriv->scc_regs[offset >> 2];
393 	state &= ~mask;
394 	state |= value;
395 	dpriv->scc_regs[offset >> 2] = state;
396 	writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
397 }
398 
scc_writel(u32 bits,struct dscc4_dev_priv * dpriv,struct net_device * dev,int offset)399 static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv,
400 		       struct net_device *dev, int offset)
401 {
402 	/*
403 	 * Thread-UNsafe.
404 	 * As of 2002/02/16, there are no thread racing for access.
405 	 */
406 	dpriv->scc_regs[offset >> 2] = bits;
407 	writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset);
408 }
409 
scc_readl(struct dscc4_dev_priv * dpriv,int offset)410 static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset)
411 {
412 	return dpriv->scc_regs[offset >> 2];
413 }
414 
scc_readl_star(struct dscc4_dev_priv * dpriv,struct net_device * dev)415 static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev)
416 {
417 	/* Cf errata DS5 p.4 */
418 	readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
419 	return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR);
420 }
421 
dscc4_do_tx(struct dscc4_dev_priv * dpriv,struct net_device * dev)422 static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv,
423 			       struct net_device *dev)
424 {
425 	dpriv->ltda = dpriv->tx_fd_dma +
426                       ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD);
427 	writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
428 	/* Flush posted writes *NOW* */
429 	readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4);
430 }
431 
dscc4_rx_update(struct dscc4_dev_priv * dpriv,struct net_device * dev)432 static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv,
433 				   struct net_device *dev)
434 {
435 	dpriv->lrda = dpriv->rx_fd_dma +
436 		      ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD);
437 	writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
438 }
439 
dscc4_tx_done(struct dscc4_dev_priv * dpriv)440 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv)
441 {
442 	return dpriv->tx_current == dpriv->tx_dirty;
443 }
444 
dscc4_tx_quiescent(struct dscc4_dev_priv * dpriv,struct net_device * dev)445 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv,
446 					      struct net_device *dev)
447 {
448 	return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda;
449 }
450 
state_check(u32 state,struct dscc4_dev_priv * dpriv,struct net_device * dev,const char * msg)451 static int state_check(u32 state, struct dscc4_dev_priv *dpriv,
452 		       struct net_device *dev, const char *msg)
453 {
454 	int ret = 0;
455 
456 	if (debug > 1) {
457 	if (SOURCE_ID(state) != dpriv->dev_id) {
458 		printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n",
459 		       dev->name, msg, SOURCE_ID(state), state );
460 			ret = -1;
461 	}
462 	if (state & 0x0df80c00) {
463 		printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n",
464 		       dev->name, msg, state);
465 			ret = -1;
466 	}
467 	}
468 	return ret;
469 }
470 
dscc4_tx_print(struct net_device * dev,struct dscc4_dev_priv * dpriv,char * msg)471 static void dscc4_tx_print(struct net_device *dev,
472 			   struct dscc4_dev_priv *dpriv,
473 			   char *msg)
474 {
475 	printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n",
476 	       dev->name, dpriv->tx_current, dpriv->tx_dirty, msg);
477 }
478 
dscc4_release_ring(struct dscc4_dev_priv * dpriv)479 static void dscc4_release_ring(struct dscc4_dev_priv *dpriv)
480 {
481 	struct pci_dev *pdev = dpriv->pci_priv->pdev;
482 	struct TxFD *tx_fd = dpriv->tx_fd;
483 	struct RxFD *rx_fd = dpriv->rx_fd;
484 	struct sk_buff **skbuff;
485 	int i;
486 
487 	pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma);
488 	pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
489 
490 	skbuff = dpriv->tx_skbuff;
491 	for (i = 0; i < TX_RING_SIZE; i++) {
492 		if (*skbuff) {
493 			pci_unmap_single(pdev, le32_to_cpu(tx_fd->data),
494 				(*skbuff)->len, PCI_DMA_TODEVICE);
495 			dev_kfree_skb(*skbuff);
496 		}
497 		skbuff++;
498 		tx_fd++;
499 	}
500 
501 	skbuff = dpriv->rx_skbuff;
502 	for (i = 0; i < RX_RING_SIZE; i++) {
503 		if (*skbuff) {
504 			pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
505 				RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
506 			dev_kfree_skb(*skbuff);
507 		}
508 		skbuff++;
509 		rx_fd++;
510 	}
511 }
512 
try_get_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)513 static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv,
514 				 struct net_device *dev)
515 {
516 	unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE;
517 	struct RxFD *rx_fd = dpriv->rx_fd + dirty;
518 	const int len = RX_MAX(HDLC_MAX_MRU);
519 	struct sk_buff *skb;
520 	int ret = 0;
521 
522 	skb = dev_alloc_skb(len);
523 	dpriv->rx_skbuff[dirty] = skb;
524 	if (skb) {
525 		skb->protocol = hdlc_type_trans(skb, dev);
526 		rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
527 					  skb->data, len, PCI_DMA_FROMDEVICE));
528 	} else {
529 		rx_fd->data = 0;
530 		ret = -1;
531 	}
532 	return ret;
533 }
534 
535 /*
536  * IRQ/thread/whatever safe
537  */
dscc4_wait_ack_cec(struct dscc4_dev_priv * dpriv,struct net_device * dev,char * msg)538 static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv,
539 			      struct net_device *dev, char *msg)
540 {
541 	s8 i = 0;
542 
543 	do {
544 		if (!(scc_readl_star(dpriv, dev) & SccBusy)) {
545 			printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name,
546 			       msg, i);
547 			goto done;
548 		}
549 		schedule_timeout_uninterruptible(10);
550 		rmb();
551 	} while (++i > 0);
552 	printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
553 done:
554 	return (i >= 0) ? i : -EAGAIN;
555 }
556 
dscc4_do_action(struct net_device * dev,char * msg)557 static int dscc4_do_action(struct net_device *dev, char *msg)
558 {
559 	void __iomem *ioaddr = dscc4_priv(dev)->base_addr;
560 	s16 i = 0;
561 
562 	writel(Action, ioaddr + GCMDR);
563 	ioaddr += GSTAR;
564 	do {
565 		u32 state = readl(ioaddr);
566 
567 		if (state & ArAck) {
568 			printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg);
569 			writel(ArAck, ioaddr);
570 			goto done;
571 		} else if (state & Arf) {
572 			printk(KERN_ERR "%s: %s failed\n", dev->name, msg);
573 			writel(Arf, ioaddr);
574 			i = -1;
575 			goto done;
576 	}
577 		rmb();
578 	} while (++i > 0);
579 	printk(KERN_ERR "%s: %s timeout\n", dev->name, msg);
580 done:
581 	return i;
582 }
583 
dscc4_xpr_ack(struct dscc4_dev_priv * dpriv)584 static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv)
585 {
586 	int cur = dpriv->iqtx_current%IRQ_RING_SIZE;
587 	s8 i = 0;
588 
589 	do {
590 		if (!(dpriv->flags & (NeedIDR | NeedIDT)) ||
591 		    (dpriv->iqtx[cur] & cpu_to_le32(Xpr)))
592 			break;
593 		smp_rmb();
594 		schedule_timeout_uninterruptible(10);
595 	} while (++i > 0);
596 
597 	return (i >= 0 ) ? i : -EAGAIN;
598 }
599 
600 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
601 static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
602 {
603 	unsigned long flags;
604 
605 	spin_lock_irqsave(&dpriv->pci_priv->lock, flags);
606 	/* Cf errata DS5 p.6 */
607 	writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
608 	scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
609 	readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4);
610 	writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
611 	writel(Action, dpriv->base_addr + GCMDR);
612 	spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags);
613 }
614 
615 #endif
616 
617 #if 0
618 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev)
619 {
620 	u16 i = 0;
621 
622 	/* Cf errata DS5 p.7 */
623 	scc_patchl(PowerUp, 0, dpriv, dev, CCR0);
624 	scc_writel(0x00050000, dpriv, dev, CCR2);
625 	/*
626 	 * Must be longer than the time required to fill the fifo.
627 	 */
628 	while (!dscc4_tx_quiescent(dpriv, dev) && ++i) {
629 		udelay(1);
630 		wmb();
631 	}
632 
633 	writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG);
634 	if (dscc4_do_action(dev, "Rdt") < 0)
635 		printk(KERN_ERR "%s: Tx reset failed\n", dev->name);
636 }
637 #endif
638 
639 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
dscc4_rx_skb(struct dscc4_dev_priv * dpriv,struct net_device * dev)640 static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
641 				struct net_device *dev)
642 {
643 	struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
644 	struct pci_dev *pdev = dpriv->pci_priv->pdev;
645 	struct sk_buff *skb;
646 	int pkt_len;
647 
648 	skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE];
649 	if (!skb) {
650 		printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__);
651 		goto refill;
652 	}
653 	pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2));
654 	pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
655 			 RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
656 	if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
657 		dev->stats.rx_packets++;
658 		dev->stats.rx_bytes += pkt_len;
659 		skb_put(skb, pkt_len);
660 		if (netif_running(dev))
661 			skb->protocol = hdlc_type_trans(skb, dev);
662 		netif_rx(skb);
663 	} else {
664 		if (skb->data[pkt_len] & FrameRdo)
665 			dev->stats.rx_fifo_errors++;
666 		else if (!(skb->data[pkt_len] | ~FrameCrc))
667 			dev->stats.rx_crc_errors++;
668 		else if (!(skb->data[pkt_len] | ~(FrameVfr | FrameRab)))
669 			dev->stats.rx_length_errors++;
670 		else
671 			dev->stats.rx_errors++;
672 		dev_kfree_skb_irq(skb);
673 	}
674 refill:
675 	while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) {
676 		if (try_get_rx_skb(dpriv, dev) < 0)
677 			break;
678 		dpriv->rx_dirty++;
679 	}
680 	dscc4_rx_update(dpriv, dev);
681 	rx_fd->state2 = 0x00000000;
682 	rx_fd->end = cpu_to_le32(0xbabeface);
683 }
684 
dscc4_free1(struct pci_dev * pdev)685 static void dscc4_free1(struct pci_dev *pdev)
686 {
687 	struct dscc4_pci_priv *ppriv;
688 	struct dscc4_dev_priv *root;
689 	int i;
690 
691 	ppriv = pci_get_drvdata(pdev);
692 	root = ppriv->root;
693 
694 	for (i = 0; i < dev_per_card; i++)
695 		unregister_hdlc_device(dscc4_to_dev(root + i));
696 
697 	pci_set_drvdata(pdev, NULL);
698 
699 	for (i = 0; i < dev_per_card; i++)
700 		free_netdev(root[i].dev);
701 	kfree(root);
702 	kfree(ppriv);
703 }
704 
dscc4_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)705 static int __devinit dscc4_init_one(struct pci_dev *pdev,
706 				  const struct pci_device_id *ent)
707 {
708 	struct dscc4_pci_priv *priv;
709 	struct dscc4_dev_priv *dpriv;
710 	void __iomem *ioaddr;
711 	int i, rc;
712 
713 	printk(KERN_DEBUG "%s", version);
714 
715 	rc = pci_enable_device(pdev);
716 	if (rc < 0)
717 		goto out;
718 
719 	rc = pci_request_region(pdev, 0, "registers");
720 	if (rc < 0) {
721 	        printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n",
722 			DRV_NAME);
723 	        goto err_disable_0;
724 	}
725 	rc = pci_request_region(pdev, 1, "LBI interface");
726 	if (rc < 0) {
727 	        printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n",
728 			DRV_NAME);
729 	        goto err_free_mmio_region_1;
730 	}
731 
732 	ioaddr = pci_ioremap_bar(pdev, 0);
733 	if (!ioaddr) {
734 		printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n",
735 			DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0),
736 			(unsigned long long)pci_resource_start(pdev, 0));
737 		rc = -EIO;
738 		goto err_free_mmio_regions_2;
739 	}
740 	printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
741 	        (unsigned long long)pci_resource_start(pdev, 0),
742 	        (unsigned long long)pci_resource_start(pdev, 1), pdev->irq);
743 
744 	/* Cf errata DS5 p.2 */
745 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8);
746 	pci_set_master(pdev);
747 
748 	rc = dscc4_found1(pdev, ioaddr);
749 	if (rc < 0)
750 	        goto err_iounmap_3;
751 
752 	priv = pci_get_drvdata(pdev);
753 
754 	rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root);
755 	if (rc < 0) {
756 		printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq);
757 		goto err_release_4;
758 	}
759 
760 	/* power up/little endian/dma core controlled via lrda/ltda */
761 	writel(0x00000001, ioaddr + GMODE);
762 	/* Shared interrupt queue */
763 	{
764 		u32 bits;
765 
766 		bits = (IRQ_RING_SIZE >> 5) - 1;
767 		bits |= bits << 4;
768 		bits |= bits << 8;
769 		bits |= bits << 16;
770 		writel(bits, ioaddr + IQLENR0);
771 	}
772 	/* Global interrupt queue */
773 	writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1);
774 	priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev,
775 		IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma);
776 	if (!priv->iqcfg)
777 		goto err_free_irq_5;
778 	writel(priv->iqcfg_dma, ioaddr + IQCFG);
779 
780 	rc = -ENOMEM;
781 
782 	/*
783 	 * SCC 0-3 private rx/tx irq structures
784 	 * IQRX/TXi needs to be set soon. Learned it the hard way...
785 	 */
786 	for (i = 0; i < dev_per_card; i++) {
787 		dpriv = priv->root + i;
788 		dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev,
789 			IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma);
790 		if (!dpriv->iqtx)
791 			goto err_free_iqtx_6;
792 		writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4);
793 	}
794 	for (i = 0; i < dev_per_card; i++) {
795 		dpriv = priv->root + i;
796 		dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev,
797 			IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma);
798 		if (!dpriv->iqrx)
799 			goto err_free_iqrx_7;
800 		writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4);
801 	}
802 
803 	/* Cf application hint. Beware of hard-lock condition on threshold. */
804 	writel(0x42104000, ioaddr + FIFOCR1);
805 	//writel(0x9ce69800, ioaddr + FIFOCR2);
806 	writel(0xdef6d800, ioaddr + FIFOCR2);
807 	//writel(0x11111111, ioaddr + FIFOCR4);
808 	writel(0x18181818, ioaddr + FIFOCR4);
809 	// FIXME: should depend on the chipset revision
810 	writel(0x0000000e, ioaddr + FIFOCR3);
811 
812 	writel(0xff200001, ioaddr + GCMDR);
813 
814 	rc = 0;
815 out:
816 	return rc;
817 
818 err_free_iqrx_7:
819 	while (--i >= 0) {
820 		dpriv = priv->root + i;
821 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
822 				    dpriv->iqrx, dpriv->iqrx_dma);
823 	}
824 	i = dev_per_card;
825 err_free_iqtx_6:
826 	while (--i >= 0) {
827 		dpriv = priv->root + i;
828 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
829 				    dpriv->iqtx, dpriv->iqtx_dma);
830 	}
831 	pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg,
832 			    priv->iqcfg_dma);
833 err_free_irq_5:
834 	free_irq(pdev->irq, priv->root);
835 err_release_4:
836 	dscc4_free1(pdev);
837 err_iounmap_3:
838 	iounmap (ioaddr);
839 err_free_mmio_regions_2:
840 	pci_release_region(pdev, 1);
841 err_free_mmio_region_1:
842 	pci_release_region(pdev, 0);
843 err_disable_0:
844 	pci_disable_device(pdev);
845 	goto out;
846 };
847 
848 /*
849  * Let's hope the default values are decent enough to protect my
850  * feet from the user's gun - Ueimor
851  */
dscc4_init_registers(struct dscc4_dev_priv * dpriv,struct net_device * dev)852 static void dscc4_init_registers(struct dscc4_dev_priv *dpriv,
853 				 struct net_device *dev)
854 {
855 	/* No interrupts, SCC core disabled. Let's relax */
856 	scc_writel(0x00000000, dpriv, dev, CCR0);
857 
858 	scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR);
859 
860 	/*
861 	 * No address recognition/crc-CCITT/cts enabled
862 	 * Shared flags transmission disabled - cf errata DS5 p.11
863 	 * Carrier detect disabled - cf errata p.14
864 	 * FIXME: carrier detection/polarity may be handled more gracefully.
865 	 */
866 	scc_writel(0x02408000, dpriv, dev, CCR1);
867 
868 	/* crc not forwarded - Cf errata DS5 p.11 */
869 	scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2);
870 	// crc forwarded
871 	//scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
872 }
873 
dscc4_set_quartz(struct dscc4_dev_priv * dpriv,int hz)874 static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz)
875 {
876 	int ret = 0;
877 
878 	if ((hz < 0) || (hz > DSCC4_HZ_MAX))
879 		ret = -EOPNOTSUPP;
880 	else
881 		dpriv->pci_priv->xtal_hz = hz;
882 
883 	return ret;
884 }
885 
dscc4_found1(struct pci_dev * pdev,void __iomem * ioaddr)886 static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr)
887 {
888 	struct dscc4_pci_priv *ppriv;
889 	struct dscc4_dev_priv *root;
890 	int i, ret = -ENOMEM;
891 
892 	root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL);
893 	if (!root) {
894 		printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME);
895 		goto err_out;
896 	}
897 
898 	for (i = 0; i < dev_per_card; i++) {
899 		root[i].dev = alloc_hdlcdev(root + i);
900 		if (!root[i].dev)
901 			goto err_free_dev;
902 	}
903 
904 	ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL);
905 	if (!ppriv) {
906 		printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME);
907 		goto err_free_dev;
908 	}
909 
910 	ppriv->root = root;
911 	spin_lock_init(&ppriv->lock);
912 
913 	for (i = 0; i < dev_per_card; i++) {
914 		struct dscc4_dev_priv *dpriv = root + i;
915 		struct net_device *d = dscc4_to_dev(dpriv);
916 		hdlc_device *hdlc = dev_to_hdlc(d);
917 
918 	        d->base_addr = (unsigned long)ioaddr;
919 		d->init = NULL;
920 	        d->irq = pdev->irq;
921 	        d->open = dscc4_open;
922 	        d->stop = dscc4_close;
923 		d->set_multicast_list = NULL;
924 	        d->do_ioctl = dscc4_ioctl;
925 		d->tx_timeout = dscc4_tx_timeout;
926 		d->watchdog_timeo = TX_TIMEOUT;
927 		SET_NETDEV_DEV(d, &pdev->dev);
928 
929 		dpriv->dev_id = i;
930 		dpriv->pci_priv = ppriv;
931 		dpriv->base_addr = ioaddr;
932 		spin_lock_init(&dpriv->lock);
933 
934 		hdlc->xmit = dscc4_start_xmit;
935 		hdlc->attach = dscc4_hdlc_attach;
936 
937 		dscc4_init_registers(dpriv, d);
938 		dpriv->parity = PARITY_CRC16_PR0_CCITT;
939 		dpriv->encoding = ENCODING_NRZ;
940 
941 		ret = dscc4_init_ring(d);
942 		if (ret < 0)
943 			goto err_unregister;
944 
945 		ret = register_hdlc_device(d);
946 		if (ret < 0) {
947 			printk(KERN_ERR "%s: unable to register\n", DRV_NAME);
948 			dscc4_release_ring(dpriv);
949 			goto err_unregister;
950 	        }
951 	}
952 
953 	ret = dscc4_set_quartz(root, quartz);
954 	if (ret < 0)
955 		goto err_unregister;
956 
957 	pci_set_drvdata(pdev, ppriv);
958 	return ret;
959 
960 err_unregister:
961 	while (i-- > 0) {
962 		dscc4_release_ring(root + i);
963 		unregister_hdlc_device(dscc4_to_dev(root + i));
964 	}
965 	kfree(ppriv);
966 	i = dev_per_card;
967 err_free_dev:
968 	while (i-- > 0)
969 		free_netdev(root[i].dev);
970 	kfree(root);
971 err_out:
972 	return ret;
973 };
974 
975 /* FIXME: get rid of the unneeded code */
dscc4_timer(unsigned long data)976 static void dscc4_timer(unsigned long data)
977 {
978 	struct net_device *dev = (struct net_device *)data;
979 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
980 //	struct dscc4_pci_priv *ppriv;
981 
982 	goto done;
983 done:
984         dpriv->timer.expires = jiffies + TX_TIMEOUT;
985         add_timer(&dpriv->timer);
986 }
987 
dscc4_tx_timeout(struct net_device * dev)988 static void dscc4_tx_timeout(struct net_device *dev)
989 {
990 	/* FIXME: something is missing there */
991 }
992 
dscc4_loopback_check(struct dscc4_dev_priv * dpriv)993 static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv)
994 {
995 	sync_serial_settings *settings = &dpriv->settings;
996 
997 	if (settings->loopback && (settings->clock_type != CLOCK_INT)) {
998 		struct net_device *dev = dscc4_to_dev(dpriv);
999 
1000 		printk(KERN_INFO "%s: loopback requires clock\n", dev->name);
1001 		return -1;
1002 	}
1003 	return 0;
1004 }
1005 
1006 #ifdef CONFIG_DSCC4_PCI_RST
1007 /*
1008  * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1009  * so as to provide a safe way to reset the asic while not the whole machine
1010  * rebooting.
1011  *
1012  * This code doesn't need to be efficient. Keep It Simple
1013  */
dscc4_pci_reset(struct pci_dev * pdev,void __iomem * ioaddr)1014 static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr)
1015 {
1016 	int i;
1017 
1018 	mutex_lock(&dscc4_mutex);
1019 	for (i = 0; i < 16; i++)
1020 		pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i);
1021 
1022 	/* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1023 	writel(0x001c0000, ioaddr + GMODE);
1024 	/* Configure GPIO port as output */
1025 	writel(0x0000ffff, ioaddr + GPDIR);
1026 	/* Disable interruption */
1027 	writel(0x0000ffff, ioaddr + GPIM);
1028 
1029 	writel(0x0000ffff, ioaddr + GPDATA);
1030 	writel(0x00000000, ioaddr + GPDATA);
1031 
1032 	/* Flush posted writes */
1033 	readl(ioaddr + GSTAR);
1034 
1035 	schedule_timeout_uninterruptible(10);
1036 
1037 	for (i = 0; i < 16; i++)
1038 		pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]);
1039 	mutex_unlock(&dscc4_mutex);
1040 }
1041 #else
1042 #define dscc4_pci_reset(pdev,ioaddr)	do {} while (0)
1043 #endif /* CONFIG_DSCC4_PCI_RST */
1044 
dscc4_open(struct net_device * dev)1045 static int dscc4_open(struct net_device *dev)
1046 {
1047 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1048 	struct dscc4_pci_priv *ppriv;
1049 	int ret = -EAGAIN;
1050 
1051 	if ((dscc4_loopback_check(dpriv) < 0) || !dev->hard_start_xmit)
1052 		goto err;
1053 
1054 	if ((ret = hdlc_open(dev)))
1055 		goto err;
1056 
1057 	ppriv = dpriv->pci_priv;
1058 
1059 	/*
1060 	 * Due to various bugs, there is no way to reliably reset a
1061 	 * specific port (manufacturer's dependant special PCI #RST wiring
1062 	 * apart: it affects all ports). Thus the device goes in the best
1063 	 * silent mode possible at dscc4_close() time and simply claims to
1064 	 * be up if it's opened again. It still isn't possible to change
1065 	 * the HDLC configuration without rebooting but at least the ports
1066 	 * can be up/down ifconfig'ed without killing the host.
1067 	 */
1068 	if (dpriv->flags & FakeReset) {
1069 		dpriv->flags &= ~FakeReset;
1070 		scc_patchl(0, PowerUp, dpriv, dev, CCR0);
1071 		scc_patchl(0, 0x00050000, dpriv, dev, CCR2);
1072 		scc_writel(EventsMask, dpriv, dev, IMR);
1073 		printk(KERN_INFO "%s: up again.\n", dev->name);
1074 		goto done;
1075 	}
1076 
1077 	/* IDT+IDR during XPR */
1078 	dpriv->flags = NeedIDR | NeedIDT;
1079 
1080 	scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0);
1081 
1082 	/*
1083 	 * The following is a bit paranoid...
1084 	 *
1085 	 * NB: the datasheet "...CEC will stay active if the SCC is in
1086 	 * power-down mode or..." and CCR2.RAC = 1 are two different
1087 	 * situations.
1088 	 */
1089 	if (scc_readl_star(dpriv, dev) & SccBusy) {
1090 		printk(KERN_ERR "%s busy. Try later\n", dev->name);
1091 		ret = -EAGAIN;
1092 		goto err_out;
1093 	} else
1094 		printk(KERN_INFO "%s: available. Good\n", dev->name);
1095 
1096 	scc_writel(EventsMask, dpriv, dev, IMR);
1097 
1098 	/* Posted write is flushed in the wait_ack loop */
1099 	scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR);
1100 
1101 	if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0)
1102 		goto err_disable_scc_events;
1103 
1104 	/*
1105 	 * I would expect XPR near CE completion (before ? after ?).
1106 	 * At worst, this code won't see a late XPR and people
1107 	 * will have to re-issue an ifconfig (this is harmless).
1108 	 * WARNING, a really missing XPR usually means a hardware
1109 	 * reset is needed. Suggestions anyone ?
1110 	 */
1111 	if ((ret = dscc4_xpr_ack(dpriv)) < 0) {
1112 		printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR");
1113 		goto err_disable_scc_events;
1114 	}
1115 
1116 	if (debug > 2)
1117 		dscc4_tx_print(dev, dpriv, "Open");
1118 
1119 done:
1120 	netif_start_queue(dev);
1121 
1122         init_timer(&dpriv->timer);
1123         dpriv->timer.expires = jiffies + 10*HZ;
1124         dpriv->timer.data = (unsigned long)dev;
1125         dpriv->timer.function = &dscc4_timer;
1126         add_timer(&dpriv->timer);
1127 	netif_carrier_on(dev);
1128 
1129 	return 0;
1130 
1131 err_disable_scc_events:
1132 	scc_writel(0xffffffff, dpriv, dev, IMR);
1133 	scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1134 err_out:
1135 	hdlc_close(dev);
1136 err:
1137 	return ret;
1138 }
1139 
1140 #ifdef DSCC4_POLLING
dscc4_tx_poll(struct dscc4_dev_priv * dpriv,struct net_device * dev)1141 static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1142 {
1143 	/* FIXME: it's gonna be easy (TM), for sure */
1144 }
1145 #endif /* DSCC4_POLLING */
1146 
dscc4_start_xmit(struct sk_buff * skb,struct net_device * dev)1147 static int dscc4_start_xmit(struct sk_buff *skb, struct net_device *dev)
1148 {
1149 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1150 	struct dscc4_pci_priv *ppriv = dpriv->pci_priv;
1151 	struct TxFD *tx_fd;
1152 	int next;
1153 
1154 	next = dpriv->tx_current%TX_RING_SIZE;
1155 	dpriv->tx_skbuff[next] = skb;
1156 	tx_fd = dpriv->tx_fd + next;
1157 	tx_fd->state = FrameEnd | TO_STATE_TX(skb->len);
1158 	tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len,
1159 				     PCI_DMA_TODEVICE));
1160 	tx_fd->complete = 0x00000000;
1161 	tx_fd->jiffies = jiffies;
1162 	mb();
1163 
1164 #ifdef DSCC4_POLLING
1165 	spin_lock(&dpriv->lock);
1166 	while (dscc4_tx_poll(dpriv, dev));
1167 	spin_unlock(&dpriv->lock);
1168 #endif
1169 
1170 	dev->trans_start = jiffies;
1171 
1172 	if (debug > 2)
1173 		dscc4_tx_print(dev, dpriv, "Xmit");
1174 	/* To be cleaned(unsigned int)/optimized. Later, ok ? */
1175 	if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE))
1176 		netif_stop_queue(dev);
1177 
1178 	if (dscc4_tx_quiescent(dpriv, dev))
1179 		dscc4_do_tx(dpriv, dev);
1180 
1181 	return 0;
1182 }
1183 
dscc4_close(struct net_device * dev)1184 static int dscc4_close(struct net_device *dev)
1185 {
1186 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1187 
1188 	del_timer_sync(&dpriv->timer);
1189 	netif_stop_queue(dev);
1190 
1191 	scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0);
1192 	scc_patchl(0x00050000, 0, dpriv, dev, CCR2);
1193 	scc_writel(0xffffffff, dpriv, dev, IMR);
1194 
1195 	dpriv->flags |= FakeReset;
1196 
1197 	hdlc_close(dev);
1198 
1199 	return 0;
1200 }
1201 
dscc4_check_clock_ability(int port)1202 static inline int dscc4_check_clock_ability(int port)
1203 {
1204 	int ret = 0;
1205 
1206 #ifdef CONFIG_DSCC4_PCISYNC
1207 	if (port >= 2)
1208 		ret = -1;
1209 #endif
1210 	return ret;
1211 }
1212 
1213 /*
1214  * DS1 p.137: "There are a total of 13 different clocking modes..."
1215  *                                  ^^
1216  * Design choices:
1217  * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1218  *   Clock mode 3b _should_ work but the testing seems to make this point
1219  *   dubious (DIY testing requires setting CCR0 at 0x00000033).
1220  *   This is supposed to provide least surprise "DTE like" behavior.
1221  * - if line rate is specified, clocks are assumed to be locally generated.
1222  *   A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1223  *   between these it automagically done according on the required frequency
1224  *   scaling. Of course some rounding may take place.
1225  * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1226  *   appropriate external clocking device for testing.
1227  * - no time-slot/clock mode 5: shameless lazyness.
1228  *
1229  * The clock signals wiring can be (is ?) manufacturer dependant. Good luck.
1230  *
1231  * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1232  * won't pass the init sequence. For example, straight back-to-back DTE without
1233  * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1234  * called.
1235  *
1236  * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1237  * DS0 for example)
1238  *
1239  * Clock mode related bits of CCR0:
1240  *     +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1241  *     | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1242  *     | | +-------- High Speed: say 0
1243  *     | | | +-+-+-- Clock Mode: 0..7
1244  *     | | | | | |
1245  * -+-+-+-+-+-+-+-+
1246  * x|x|5|4|3|2|1|0| lower bits
1247  *
1248  * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1249  *            +-+-+-+------------------ M (0..15)
1250  *            | | | |     +-+-+-+-+-+-- N (0..63)
1251  *    0 0 0 0 | | | | 0 0 | | | | | |
1252  * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1253  *    f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1254  *
1255  */
dscc4_set_clock(struct net_device * dev,u32 * bps,u32 * state)1256 static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state)
1257 {
1258 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1259 	int ret = -1;
1260 	u32 brr;
1261 
1262 	*state &= ~Ccr0ClockMask;
1263 	if (*bps) { /* Clock generated - required for DCE */
1264 		u32 n = 0, m = 0, divider;
1265 		int xtal;
1266 
1267 		xtal = dpriv->pci_priv->xtal_hz;
1268 		if (!xtal)
1269 			goto done;
1270 		if (dscc4_check_clock_ability(dpriv->dev_id) < 0)
1271 			goto done;
1272 		divider = xtal / *bps;
1273 		if (divider > BRR_DIVIDER_MAX) {
1274 			divider >>= 4;
1275 			*state |= 0x00000036; /* Clock mode 6b (BRG/16) */
1276 		} else
1277 			*state |= 0x00000037; /* Clock mode 7b (BRG) */
1278 		if (divider >> 22) {
1279 			n = 63;
1280 			m = 15;
1281 		} else if (divider) {
1282 			/* Extraction of the 6 highest weighted bits */
1283 			m = 0;
1284 			while (0xffffffc0 & divider) {
1285 				m++;
1286 				divider >>= 1;
1287 			}
1288 			n = divider;
1289 		}
1290 		brr = (m << 8) | n;
1291 		divider = n << m;
1292 		if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */
1293 			divider <<= 4;
1294 		*bps = xtal / divider;
1295 	} else {
1296 		/*
1297 		 * External clock - DTE
1298 		 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1299 		 * Nothing more to be done
1300 		 */
1301 		brr = 0;
1302 	}
1303 	scc_writel(brr, dpriv, dev, BRR);
1304 	ret = 0;
1305 done:
1306 	return ret;
1307 }
1308 
dscc4_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1309 static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1310 {
1311 	sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
1312 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1313 	const size_t size = sizeof(dpriv->settings);
1314 	int ret = 0;
1315 
1316         if (dev->flags & IFF_UP)
1317                 return -EBUSY;
1318 
1319 	if (cmd != SIOCWANDEV)
1320 		return -EOPNOTSUPP;
1321 
1322 	switch(ifr->ifr_settings.type) {
1323 	case IF_GET_IFACE:
1324 		ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
1325 		if (ifr->ifr_settings.size < size) {
1326 			ifr->ifr_settings.size = size; /* data size wanted */
1327 			return -ENOBUFS;
1328 		}
1329 		if (copy_to_user(line, &dpriv->settings, size))
1330 			return -EFAULT;
1331 		break;
1332 
1333 	case IF_IFACE_SYNC_SERIAL:
1334 		if (!capable(CAP_NET_ADMIN))
1335 			return -EPERM;
1336 
1337 		if (dpriv->flags & FakeReset) {
1338 			printk(KERN_INFO "%s: please reset the device"
1339 			       " before this command\n", dev->name);
1340 			return -EPERM;
1341 		}
1342 		if (copy_from_user(&dpriv->settings, line, size))
1343 			return -EFAULT;
1344 		ret = dscc4_set_iface(dpriv, dev);
1345 		break;
1346 
1347 	default:
1348 		ret = hdlc_ioctl(dev, ifr, cmd);
1349 		break;
1350 	}
1351 
1352 	return ret;
1353 }
1354 
dscc4_match(struct thingie * p,int value)1355 static int dscc4_match(struct thingie *p, int value)
1356 {
1357 	int i;
1358 
1359 	for (i = 0; p[i].define != -1; i++) {
1360 		if (value == p[i].define)
1361 			break;
1362 	}
1363 	if (p[i].define == -1)
1364 		return -1;
1365 	else
1366 		return i;
1367 }
1368 
dscc4_clock_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1369 static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv,
1370 			       struct net_device *dev)
1371 {
1372 	sync_serial_settings *settings = &dpriv->settings;
1373 	int ret = -EOPNOTSUPP;
1374 	u32 bps, state;
1375 
1376 	bps = settings->clock_rate;
1377 	state = scc_readl(dpriv, CCR0);
1378 	if (dscc4_set_clock(dev, &bps, &state) < 0)
1379 		goto done;
1380 	if (bps) { /* DCE */
1381 		printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name);
1382 		if (settings->clock_rate != bps) {
1383 			printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n",
1384 				dev->name, settings->clock_rate, bps);
1385 			settings->clock_rate = bps;
1386 		}
1387 	} else { /* DTE */
1388 		state |= PowerUp | Vis;
1389 		printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name);
1390 	}
1391 	scc_writel(state, dpriv, dev, CCR0);
1392 	ret = 0;
1393 done:
1394 	return ret;
1395 }
1396 
dscc4_encoding_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1397 static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv,
1398 				  struct net_device *dev)
1399 {
1400 	struct thingie encoding[] = {
1401 		{ ENCODING_NRZ,		0x00000000 },
1402 		{ ENCODING_NRZI,	0x00200000 },
1403 		{ ENCODING_FM_MARK,	0x00400000 },
1404 		{ ENCODING_FM_SPACE,	0x00500000 },
1405 		{ ENCODING_MANCHESTER,	0x00600000 },
1406 		{ -1,			0}
1407 	};
1408 	int i, ret = 0;
1409 
1410 	i = dscc4_match(encoding, dpriv->encoding);
1411 	if (i >= 0)
1412 		scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0);
1413 	else
1414 		ret = -EOPNOTSUPP;
1415 	return ret;
1416 }
1417 
dscc4_loopback_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1418 static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv,
1419 				  struct net_device *dev)
1420 {
1421 	sync_serial_settings *settings = &dpriv->settings;
1422 	u32 state;
1423 
1424 	state = scc_readl(dpriv, CCR1);
1425 	if (settings->loopback) {
1426 		printk(KERN_DEBUG "%s: loopback\n", dev->name);
1427 		state |= 0x00000100;
1428 	} else {
1429 		printk(KERN_DEBUG "%s: normal\n", dev->name);
1430 		state &= ~0x00000100;
1431 	}
1432 	scc_writel(state, dpriv, dev, CCR1);
1433 	return 0;
1434 }
1435 
dscc4_crc_setting(struct dscc4_dev_priv * dpriv,struct net_device * dev)1436 static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv,
1437 			     struct net_device *dev)
1438 {
1439 	struct thingie crc[] = {
1440 		{ PARITY_CRC16_PR0_CCITT,	0x00000010 },
1441 		{ PARITY_CRC16_PR1_CCITT,	0x00000000 },
1442 		{ PARITY_CRC32_PR0_CCITT,	0x00000011 },
1443 		{ PARITY_CRC32_PR1_CCITT,	0x00000001 }
1444 	};
1445 	int i, ret = 0;
1446 
1447 	i = dscc4_match(crc, dpriv->parity);
1448 	if (i >= 0)
1449 		scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1);
1450 	else
1451 		ret = -EOPNOTSUPP;
1452 	return ret;
1453 }
1454 
dscc4_set_iface(struct dscc4_dev_priv * dpriv,struct net_device * dev)1455 static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev)
1456 {
1457 	struct {
1458 		int (*action)(struct dscc4_dev_priv *, struct net_device *);
1459 	} *p, do_setting[] = {
1460 		{ dscc4_encoding_setting },
1461 		{ dscc4_clock_setting },
1462 		{ dscc4_loopback_setting },
1463 		{ dscc4_crc_setting },
1464 		{ NULL }
1465 	};
1466 	int ret = 0;
1467 
1468 	for (p = do_setting; p->action; p++) {
1469 		if ((ret = p->action(dpriv, dev)) < 0)
1470 			break;
1471 	}
1472 	return ret;
1473 }
1474 
dscc4_irq(int irq,void * token)1475 static irqreturn_t dscc4_irq(int irq, void *token)
1476 {
1477 	struct dscc4_dev_priv *root = token;
1478 	struct dscc4_pci_priv *priv;
1479 	struct net_device *dev;
1480 	void __iomem *ioaddr;
1481 	u32 state;
1482 	unsigned long flags;
1483 	int i, handled = 1;
1484 
1485 	priv = root->pci_priv;
1486 	dev = dscc4_to_dev(root);
1487 
1488 	spin_lock_irqsave(&priv->lock, flags);
1489 
1490 	ioaddr = root->base_addr;
1491 
1492 	state = readl(ioaddr + GSTAR);
1493 	if (!state) {
1494 		handled = 0;
1495 		goto out;
1496 	}
1497 	if (debug > 3)
1498 		printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state);
1499 	writel(state, ioaddr + GSTAR);
1500 
1501 	if (state & Arf) {
1502 		printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n",
1503 		       dev->name);
1504 		goto out;
1505 	}
1506 	state &= ~ArAck;
1507 	if (state & Cfg) {
1508 		if (debug > 0)
1509 			printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME);
1510 		if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf))
1511 			printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG");
1512 		if (!(state &= ~Cfg))
1513 			goto out;
1514 	}
1515 	if (state & RxEvt) {
1516 		i = dev_per_card - 1;
1517 		do {
1518 			dscc4_rx_irq(priv, root + i);
1519 		} while (--i >= 0);
1520 		state &= ~RxEvt;
1521 	}
1522 	if (state & TxEvt) {
1523 		i = dev_per_card - 1;
1524 		do {
1525 			dscc4_tx_irq(priv, root + i);
1526 		} while (--i >= 0);
1527 		state &= ~TxEvt;
1528 	}
1529 out:
1530 	spin_unlock_irqrestore(&priv->lock, flags);
1531 	return IRQ_RETVAL(handled);
1532 }
1533 
dscc4_tx_irq(struct dscc4_pci_priv * ppriv,struct dscc4_dev_priv * dpriv)1534 static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv,
1535 				struct dscc4_dev_priv *dpriv)
1536 {
1537 	struct net_device *dev = dscc4_to_dev(dpriv);
1538 	u32 state;
1539 	int cur, loop = 0;
1540 
1541 try:
1542 	cur = dpriv->iqtx_current%IRQ_RING_SIZE;
1543 	state = le32_to_cpu(dpriv->iqtx[cur]);
1544 	if (!state) {
1545 		if (debug > 4)
1546 			printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name,
1547 			       state);
1548 		if ((debug > 1) && (loop > 1))
1549 			printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop);
1550 		if (loop && netif_queue_stopped(dev))
1551 			if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)
1552 				netif_wake_queue(dev);
1553 
1554 		if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) &&
1555 		    !dscc4_tx_done(dpriv))
1556 				dscc4_do_tx(dpriv, dev);
1557 		return;
1558 	}
1559 	loop++;
1560 	dpriv->iqtx[cur] = 0;
1561 	dpriv->iqtx_current++;
1562 
1563 	if (state_check(state, dpriv, dev, "Tx") < 0)
1564 		return;
1565 
1566 	if (state & SccEvt) {
1567 		if (state & Alls) {
1568 			struct sk_buff *skb;
1569 			struct TxFD *tx_fd;
1570 
1571 			if (debug > 2)
1572 				dscc4_tx_print(dev, dpriv, "Alls");
1573 			/*
1574 			 * DataComplete can't be trusted for Tx completion.
1575 			 * Cf errata DS5 p.8
1576 			 */
1577 			cur = dpriv->tx_dirty%TX_RING_SIZE;
1578 			tx_fd = dpriv->tx_fd + cur;
1579 			skb = dpriv->tx_skbuff[cur];
1580 			if (skb) {
1581 				pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
1582 						 skb->len, PCI_DMA_TODEVICE);
1583 				if (tx_fd->state & FrameEnd) {
1584 					dev->stats.tx_packets++;
1585 					dev->stats.tx_bytes += skb->len;
1586 				}
1587 				dev_kfree_skb_irq(skb);
1588 				dpriv->tx_skbuff[cur] = NULL;
1589 				++dpriv->tx_dirty;
1590 			} else {
1591 				if (debug > 1)
1592 					printk(KERN_ERR "%s Tx: NULL skb %d\n",
1593 						dev->name, cur);
1594 			}
1595 			/*
1596 			 * If the driver ends sending crap on the wire, it
1597 			 * will be way easier to diagnose than the (not so)
1598 			 * random freeze induced by null sized tx frames.
1599 			 */
1600 			tx_fd->data = tx_fd->next;
1601 			tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1602 			tx_fd->complete = 0x00000000;
1603 			tx_fd->jiffies = 0;
1604 
1605 			if (!(state &= ~Alls))
1606 				goto try;
1607 		}
1608 		/*
1609 		 * Transmit Data Underrun
1610 		 */
1611 		if (state & Xdu) {
1612 			printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME);
1613 			dpriv->flags = NeedIDT;
1614 			/* Tx reset */
1615 			writel(MTFi | Rdt,
1616 			       dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG);
1617 			writel(Action, dpriv->base_addr + GCMDR);
1618 			return;
1619 		}
1620 		if (state & Cts) {
1621 			printk(KERN_INFO "%s: CTS transition\n", dev->name);
1622 			if (!(state &= ~Cts)) /* DEBUG */
1623 				goto try;
1624 		}
1625 		if (state & Xmr) {
1626 			/* Frame needs to be sent again - FIXME */
1627 			printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME);
1628 			if (!(state &= ~Xmr)) /* DEBUG */
1629 				goto try;
1630 		}
1631 		if (state & Xpr) {
1632 			void __iomem *scc_addr;
1633 			unsigned long ring;
1634 			int i;
1635 
1636 			/*
1637 			 * - the busy condition happens (sometimes);
1638 			 * - it doesn't seem to make the handler unreliable.
1639 			 */
1640 			for (i = 1; i; i <<= 1) {
1641 				if (!(scc_readl_star(dpriv, dev) & SccBusy))
1642 					break;
1643 			}
1644 			if (!i)
1645 				printk(KERN_INFO "%s busy in irq\n", dev->name);
1646 
1647 			scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1648 			/* Keep this order: IDT before IDR */
1649 			if (dpriv->flags & NeedIDT) {
1650 				if (debug > 2)
1651 					dscc4_tx_print(dev, dpriv, "Xpr");
1652 				ring = dpriv->tx_fd_dma +
1653 				       (dpriv->tx_dirty%TX_RING_SIZE)*
1654 				       sizeof(struct TxFD);
1655 				writel(ring, scc_addr + CH0BTDA);
1656 				dscc4_do_tx(dpriv, dev);
1657 				writel(MTFi | Idt, scc_addr + CH0CFG);
1658 				if (dscc4_do_action(dev, "IDT") < 0)
1659 					goto err_xpr;
1660 				dpriv->flags &= ~NeedIDT;
1661 			}
1662 			if (dpriv->flags & NeedIDR) {
1663 				ring = dpriv->rx_fd_dma +
1664 				       (dpriv->rx_current%RX_RING_SIZE)*
1665 				       sizeof(struct RxFD);
1666 				writel(ring, scc_addr + CH0BRDA);
1667 				dscc4_rx_update(dpriv, dev);
1668 				writel(MTFi | Idr, scc_addr + CH0CFG);
1669 				if (dscc4_do_action(dev, "IDR") < 0)
1670 					goto err_xpr;
1671 				dpriv->flags &= ~NeedIDR;
1672 				smp_wmb();
1673 				/* Activate receiver and misc */
1674 				scc_writel(0x08050008, dpriv, dev, CCR2);
1675 			}
1676 		err_xpr:
1677 			if (!(state &= ~Xpr))
1678 				goto try;
1679 		}
1680 		if (state & Cd) {
1681 			if (debug > 0)
1682 				printk(KERN_INFO "%s: CD transition\n", dev->name);
1683 			if (!(state &= ~Cd)) /* DEBUG */
1684 				goto try;
1685 		}
1686 	} else { /* ! SccEvt */
1687 		if (state & Hi) {
1688 #ifdef DSCC4_POLLING
1689 			while (!dscc4_tx_poll(dpriv, dev));
1690 #endif
1691 			printk(KERN_INFO "%s: Tx Hi\n", dev->name);
1692 			state &= ~Hi;
1693 		}
1694 		if (state & Err) {
1695 			printk(KERN_INFO "%s: Tx ERR\n", dev->name);
1696 			dev->stats.tx_errors++;
1697 			state &= ~Err;
1698 		}
1699 	}
1700 	goto try;
1701 }
1702 
dscc4_rx_irq(struct dscc4_pci_priv * priv,struct dscc4_dev_priv * dpriv)1703 static void dscc4_rx_irq(struct dscc4_pci_priv *priv,
1704 				    struct dscc4_dev_priv *dpriv)
1705 {
1706 	struct net_device *dev = dscc4_to_dev(dpriv);
1707 	u32 state;
1708 	int cur;
1709 
1710 try:
1711 	cur = dpriv->iqrx_current%IRQ_RING_SIZE;
1712 	state = le32_to_cpu(dpriv->iqrx[cur]);
1713 	if (!state)
1714 		return;
1715 	dpriv->iqrx[cur] = 0;
1716 	dpriv->iqrx_current++;
1717 
1718 	if (state_check(state, dpriv, dev, "Rx") < 0)
1719 		return;
1720 
1721 	if (!(state & SccEvt)){
1722 		struct RxFD *rx_fd;
1723 
1724 		if (debug > 4)
1725 			printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name,
1726 			       state);
1727 		state &= 0x00ffffff;
1728 		if (state & Err) { /* Hold or reset */
1729 			printk(KERN_DEBUG "%s: Rx ERR\n", dev->name);
1730 			cur = dpriv->rx_current%RX_RING_SIZE;
1731 			rx_fd = dpriv->rx_fd + cur;
1732 			/*
1733 			 * Presume we're not facing a DMAC receiver reset.
1734 			 * As We use the rx size-filtering feature of the
1735 			 * DSCC4, the beginning of a new frame is waiting in
1736 			 * the rx fifo. I bet a Receive Data Overflow will
1737 			 * happen most of time but let's try and avoid it.
1738 			 * Btw (as for RDO) if one experiences ERR whereas
1739 			 * the system looks rather idle, there may be a
1740 			 * problem with latency. In this case, increasing
1741 			 * RX_RING_SIZE may help.
1742 			 */
1743 			//while (dpriv->rx_needs_refill) {
1744 				while (!(rx_fd->state1 & Hold)) {
1745 					rx_fd++;
1746 					cur++;
1747 					if (!(cur = cur%RX_RING_SIZE))
1748 						rx_fd = dpriv->rx_fd;
1749 				}
1750 				//dpriv->rx_needs_refill--;
1751 				try_get_rx_skb(dpriv, dev);
1752 				if (!rx_fd->data)
1753 					goto try;
1754 				rx_fd->state1 &= ~Hold;
1755 				rx_fd->state2 = 0x00000000;
1756 				rx_fd->end = cpu_to_le32(0xbabeface);
1757 			//}
1758 			goto try;
1759 		}
1760 		if (state & Fi) {
1761 			dscc4_rx_skb(dpriv, dev);
1762 			goto try;
1763 		}
1764 		if (state & Hi ) { /* HI bit */
1765 			printk(KERN_INFO "%s: Rx Hi\n", dev->name);
1766 			state &= ~Hi;
1767 			goto try;
1768 		}
1769 	} else { /* SccEvt */
1770 		if (debug > 1) {
1771 			//FIXME: verifier la presence de tous les evenements
1772 		static struct {
1773 			u32 mask;
1774 			const char *irq_name;
1775 		} evts[] = {
1776 			{ 0x00008000, "TIN"},
1777 			{ 0x00000020, "RSC"},
1778 			{ 0x00000010, "PCE"},
1779 			{ 0x00000008, "PLLA"},
1780 			{ 0, NULL}
1781 		}, *evt;
1782 
1783 		for (evt = evts; evt->irq_name; evt++) {
1784 			if (state & evt->mask) {
1785 					printk(KERN_DEBUG "%s: %s\n",
1786 						dev->name, evt->irq_name);
1787 				if (!(state &= ~evt->mask))
1788 					goto try;
1789 			}
1790 		}
1791 		} else {
1792 			if (!(state &= ~0x0000c03c))
1793 				goto try;
1794 		}
1795 		if (state & Cts) {
1796 			printk(KERN_INFO "%s: CTS transition\n", dev->name);
1797 			if (!(state &= ~Cts)) /* DEBUG */
1798 				goto try;
1799 		}
1800 		/*
1801 		 * Receive Data Overflow (FIXME: fscked)
1802 		 */
1803 		if (state & Rdo) {
1804 			struct RxFD *rx_fd;
1805 			void __iomem *scc_addr;
1806 			int cur;
1807 
1808 			//if (debug)
1809 			//	dscc4_rx_dump(dpriv);
1810 			scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id;
1811 
1812 			scc_patchl(RxActivate, 0, dpriv, dev, CCR2);
1813 			/*
1814 			 * This has no effect. Why ?
1815 			 * ORed with TxSccRes, one sees the CFG ack (for
1816 			 * the TX part only).
1817 			 */
1818 			scc_writel(RxSccRes, dpriv, dev, CMDR);
1819 			dpriv->flags |= RdoSet;
1820 
1821 			/*
1822 			 * Let's try and save something in the received data.
1823 			 * rx_current must be incremented at least once to
1824 			 * avoid HOLD in the BRDA-to-be-pointed desc.
1825 			 */
1826 			do {
1827 				cur = dpriv->rx_current++%RX_RING_SIZE;
1828 				rx_fd = dpriv->rx_fd + cur;
1829 				if (!(rx_fd->state2 & DataComplete))
1830 					break;
1831 				if (rx_fd->state2 & FrameAborted) {
1832 					dev->stats.rx_over_errors++;
1833 					rx_fd->state1 |= Hold;
1834 					rx_fd->state2 = 0x00000000;
1835 					rx_fd->end = cpu_to_le32(0xbabeface);
1836 				} else
1837 					dscc4_rx_skb(dpriv, dev);
1838 			} while (1);
1839 
1840 			if (debug > 0) {
1841 				if (dpriv->flags & RdoSet)
1842 					printk(KERN_DEBUG
1843 					       "%s: no RDO in Rx data\n", DRV_NAME);
1844 			}
1845 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1846 			/*
1847 			 * FIXME: must the reset be this violent ?
1848 			 */
1849 #warning "FIXME: CH0BRDA"
1850 			writel(dpriv->rx_fd_dma +
1851 			       (dpriv->rx_current%RX_RING_SIZE)*
1852 			       sizeof(struct RxFD), scc_addr + CH0BRDA);
1853 			writel(MTFi|Rdr|Idr, scc_addr + CH0CFG);
1854 			if (dscc4_do_action(dev, "RDR") < 0) {
1855 				printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1856 				       dev->name, "RDR");
1857 				goto rdo_end;
1858 			}
1859 			writel(MTFi|Idr, scc_addr + CH0CFG);
1860 			if (dscc4_do_action(dev, "IDR") < 0) {
1861 				printk(KERN_ERR "%s: RDO recovery failed(%s)\n",
1862 				       dev->name, "IDR");
1863 				goto rdo_end;
1864 			}
1865 		rdo_end:
1866 #endif
1867 			scc_patchl(0, RxActivate, dpriv, dev, CCR2);
1868 			goto try;
1869 		}
1870 		if (state & Cd) {
1871 			printk(KERN_INFO "%s: CD transition\n", dev->name);
1872 			if (!(state &= ~Cd)) /* DEBUG */
1873 				goto try;
1874 		}
1875 		if (state & Flex) {
1876 			printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME);
1877 			if (!(state &= ~Flex))
1878 				goto try;
1879 		}
1880 	}
1881 }
1882 
1883 /*
1884  * I had expected the following to work for the first descriptor
1885  * (tx_fd->state = 0xc0000000)
1886  * - Hold=1 (don't try and branch to the next descripto);
1887  * - No=0 (I want an empty data section, i.e. size=0);
1888  * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1889  * It failed and locked solid. Thus the introduction of a dummy skb.
1890  * Problem is acknowledged in errata sheet DS5. Joy :o/
1891  */
dscc4_init_dummy_skb(struct dscc4_dev_priv * dpriv)1892 static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv)
1893 {
1894 	struct sk_buff *skb;
1895 
1896 	skb = dev_alloc_skb(DUMMY_SKB_SIZE);
1897 	if (skb) {
1898 		int last = dpriv->tx_dirty%TX_RING_SIZE;
1899 		struct TxFD *tx_fd = dpriv->tx_fd + last;
1900 
1901 		skb->len = DUMMY_SKB_SIZE;
1902 		skb_copy_to_linear_data(skb, version,
1903 					strlen(version) % DUMMY_SKB_SIZE);
1904 		tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE);
1905 		tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev,
1906 					     skb->data, DUMMY_SKB_SIZE,
1907 					     PCI_DMA_TODEVICE));
1908 		dpriv->tx_skbuff[last] = skb;
1909 	}
1910 	return skb;
1911 }
1912 
dscc4_init_ring(struct net_device * dev)1913 static int dscc4_init_ring(struct net_device *dev)
1914 {
1915 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
1916 	struct pci_dev *pdev = dpriv->pci_priv->pdev;
1917 	struct TxFD *tx_fd;
1918 	struct RxFD *rx_fd;
1919 	void *ring;
1920 	int i;
1921 
1922 	ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma);
1923 	if (!ring)
1924 		goto err_out;
1925 	dpriv->rx_fd = rx_fd = (struct RxFD *) ring;
1926 
1927 	ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma);
1928 	if (!ring)
1929 		goto err_free_dma_rx;
1930 	dpriv->tx_fd = tx_fd = (struct TxFD *) ring;
1931 
1932 	memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE);
1933 	dpriv->tx_dirty = 0xffffffff;
1934 	i = dpriv->tx_current = 0;
1935 	do {
1936 		tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE);
1937 		tx_fd->complete = 0x00000000;
1938 	        /* FIXME: NULL should be ok - to be tried */
1939 	        tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma);
1940 		(tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma +
1941 					(++i%TX_RING_SIZE)*sizeof(*tx_fd));
1942 	} while (i < TX_RING_SIZE);
1943 
1944 	if (!dscc4_init_dummy_skb(dpriv))
1945 		goto err_free_dma_tx;
1946 
1947 	memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE);
1948 	i = dpriv->rx_dirty = dpriv->rx_current = 0;
1949 	do {
1950 		/* size set by the host. Multiple of 4 bytes please */
1951 	        rx_fd->state1 = HiDesc;
1952 	        rx_fd->state2 = 0x00000000;
1953 	        rx_fd->end = cpu_to_le32(0xbabeface);
1954 	        rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU);
1955 		// FIXME: return value verifiee mais traitement suspect
1956 		if (try_get_rx_skb(dpriv, dev) >= 0)
1957 			dpriv->rx_dirty++;
1958 		(rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma +
1959 					(++i%RX_RING_SIZE)*sizeof(*rx_fd));
1960 	} while (i < RX_RING_SIZE);
1961 
1962 	return 0;
1963 
1964 err_free_dma_tx:
1965 	pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma);
1966 err_free_dma_rx:
1967 	pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma);
1968 err_out:
1969 	return -ENOMEM;
1970 }
1971 
dscc4_remove_one(struct pci_dev * pdev)1972 static void __devexit dscc4_remove_one(struct pci_dev *pdev)
1973 {
1974 	struct dscc4_pci_priv *ppriv;
1975 	struct dscc4_dev_priv *root;
1976 	void __iomem *ioaddr;
1977 	int i;
1978 
1979 	ppriv = pci_get_drvdata(pdev);
1980 	root = ppriv->root;
1981 
1982 	ioaddr = root->base_addr;
1983 
1984 	dscc4_pci_reset(pdev, ioaddr);
1985 
1986 	free_irq(pdev->irq, root);
1987 	pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg,
1988 			    ppriv->iqcfg_dma);
1989 	for (i = 0; i < dev_per_card; i++) {
1990 		struct dscc4_dev_priv *dpriv = root + i;
1991 
1992 		dscc4_release_ring(dpriv);
1993 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1994 				    dpriv->iqrx, dpriv->iqrx_dma);
1995 		pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32),
1996 				    dpriv->iqtx, dpriv->iqtx_dma);
1997 	}
1998 
1999 	dscc4_free1(pdev);
2000 
2001 	iounmap(ioaddr);
2002 
2003 	pci_release_region(pdev, 1);
2004 	pci_release_region(pdev, 0);
2005 
2006 	pci_disable_device(pdev);
2007 }
2008 
dscc4_hdlc_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)2009 static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding,
2010 	unsigned short parity)
2011 {
2012 	struct dscc4_dev_priv *dpriv = dscc4_priv(dev);
2013 
2014 	if (encoding != ENCODING_NRZ &&
2015 	    encoding != ENCODING_NRZI &&
2016 	    encoding != ENCODING_FM_MARK &&
2017 	    encoding != ENCODING_FM_SPACE &&
2018 	    encoding != ENCODING_MANCHESTER)
2019 		return -EINVAL;
2020 
2021 	if (parity != PARITY_NONE &&
2022 	    parity != PARITY_CRC16_PR0_CCITT &&
2023 	    parity != PARITY_CRC16_PR1_CCITT &&
2024 	    parity != PARITY_CRC32_PR0_CCITT &&
2025 	    parity != PARITY_CRC32_PR1_CCITT)
2026 		return -EINVAL;
2027 
2028         dpriv->encoding = encoding;
2029         dpriv->parity = parity;
2030 	return 0;
2031 }
2032 
2033 #ifndef MODULE
dscc4_setup(char * str)2034 static int __init dscc4_setup(char *str)
2035 {
2036 	int *args[] = { &debug, &quartz, NULL }, **p = args;
2037 
2038 	while (*p && (get_option(&str, *p) == 2))
2039 		p++;
2040 	return 1;
2041 }
2042 
2043 __setup("dscc4.setup=", dscc4_setup);
2044 #endif
2045 
2046 static struct pci_device_id dscc4_pci_tbl[] = {
2047 	{ PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4,
2048 	        PCI_ANY_ID, PCI_ANY_ID, },
2049 	{ 0,}
2050 };
2051 MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl);
2052 
2053 static struct pci_driver dscc4_driver = {
2054 	.name		= DRV_NAME,
2055 	.id_table	= dscc4_pci_tbl,
2056 	.probe		= dscc4_init_one,
2057 	.remove		= __devexit_p(dscc4_remove_one),
2058 };
2059 
dscc4_init_module(void)2060 static int __init dscc4_init_module(void)
2061 {
2062 	return pci_register_driver(&dscc4_driver);
2063 }
2064 
dscc4_cleanup_module(void)2065 static void __exit dscc4_cleanup_module(void)
2066 {
2067 	pci_unregister_driver(&dscc4_driver);
2068 }
2069 
2070 module_init(dscc4_init_module);
2071 module_exit(dscc4_cleanup_module);
2072