• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
5  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26 
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "debug.h"
30 #include "base.h"
31 
32 /*******************\
33 * Generic functions *
34 \*******************/
35 
36 /**
37  * ath5k_hw_set_opmode - Set PCU operating mode
38  *
39  * @ah: The &struct ath5k_hw
40  *
41  * Initialize PCU for the various operating modes (AP/STA etc)
42  *
43  * NOTE: ah->ah_op_mode must be set before calling this.
44  */
ath5k_hw_set_opmode(struct ath5k_hw * ah)45 int ath5k_hw_set_opmode(struct ath5k_hw *ah)
46 {
47 	u32 pcu_reg, beacon_reg, low_id, high_id;
48 
49 
50 	/* Preserve rest settings */
51 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
52 	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
53 			| AR5K_STA_ID1_KEYSRCH_MODE
54 			| (ah->ah_version == AR5K_AR5210 ?
55 			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
56 
57 	beacon_reg = 0;
58 
59 	ATH5K_TRACE(ah->ah_sc);
60 
61 	switch (ah->ah_op_mode) {
62 	case NL80211_IFTYPE_ADHOC:
63 		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
64 		beacon_reg |= AR5K_BCR_ADHOC;
65 		if (ah->ah_version == AR5K_AR5210)
66 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
67 		else
68 			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
69 		break;
70 
71 	case NL80211_IFTYPE_AP:
72 	case NL80211_IFTYPE_MESH_POINT:
73 		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
74 		beacon_reg |= AR5K_BCR_AP;
75 		if (ah->ah_version == AR5K_AR5210)
76 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
77 		else
78 			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
79 		break;
80 
81 	case NL80211_IFTYPE_STATION:
82 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
83 			| (ah->ah_version == AR5K_AR5210 ?
84 				AR5K_STA_ID1_PWR_SV : 0);
85 	case NL80211_IFTYPE_MONITOR:
86 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
87 			| (ah->ah_version == AR5K_AR5210 ?
88 				AR5K_STA_ID1_NO_PSPOLL : 0);
89 		break;
90 
91 	default:
92 		return -EINVAL;
93 	}
94 
95 	/*
96 	 * Set PCU registers
97 	 */
98 	low_id = AR5K_LOW_ID(ah->ah_sta_id);
99 	high_id = AR5K_HIGH_ID(ah->ah_sta_id);
100 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
101 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
102 
103 	/*
104 	 * Set Beacon Control Register on 5210
105 	 */
106 	if (ah->ah_version == AR5K_AR5210)
107 		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
108 
109 	return 0;
110 }
111 
112 /**
113  * ath5k_hw_update - Update mib counters (mac layer statistics)
114  *
115  * @ah: The &struct ath5k_hw
116  * @stats: The &struct ieee80211_low_level_stats we use to track
117  * statistics on the driver
118  *
119  * Reads MIB counters from PCU and updates sw statistics. Must be
120  * called after a MIB interrupt.
121  */
ath5k_hw_update_mib_counters(struct ath5k_hw * ah,struct ieee80211_low_level_stats * stats)122 void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
123 		struct ieee80211_low_level_stats  *stats)
124 {
125 	ATH5K_TRACE(ah->ah_sc);
126 
127 	/* Read-And-Clear */
128 	stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
129 	stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
130 	stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
131 	stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
132 
133 	/* XXX: Should we use this to track beacon count ?
134 	 * -we read it anyway to clear the register */
135 	ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
136 
137 	/* Reset profile count registers on 5212*/
138 	if (ah->ah_version == AR5K_AR5212) {
139 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
140 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
141 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
142 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
143 	}
144 
145 	/* TODO: Handle ANI stats */
146 }
147 
148 /**
149  * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
150  *
151  * @ah: The &struct ath5k_hw
152  * @high: Flag to determine if we want to use high transmition rate
153  * for ACKs or not
154  *
155  * If high flag is set, we tell hw to use a set of control rates based on
156  * the current transmition rate (check out control_rates array inside reset.c).
157  * If not hw just uses the lowest rate available for the current modulation
158  * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
159  */
ath5k_hw_set_ack_bitrate_high(struct ath5k_hw * ah,bool high)160 void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
161 {
162 	if (ah->ah_version != AR5K_AR5212)
163 		return;
164 	else {
165 		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
166 		if (high)
167 			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
168 		else
169 			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
170 	}
171 }
172 
173 
174 /******************\
175 * ACK/CTS Timeouts *
176 \******************/
177 
178 /**
179  * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
180  *
181  * @ah: The &struct ath5k_hw
182  */
ath5k_hw_get_ack_timeout(struct ath5k_hw * ah)183 unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
184 {
185 	ATH5K_TRACE(ah->ah_sc);
186 
187 	return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
188 			AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
189 }
190 
191 /**
192  * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
193  *
194  * @ah: The &struct ath5k_hw
195  * @timeout: Timeout in usec
196  */
ath5k_hw_set_ack_timeout(struct ath5k_hw * ah,unsigned int timeout)197 int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
198 {
199 	ATH5K_TRACE(ah->ah_sc);
200 	if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
201 			ah->ah_turbo) <= timeout)
202 		return -EINVAL;
203 
204 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
205 		ath5k_hw_htoclock(timeout, ah->ah_turbo));
206 
207 	return 0;
208 }
209 
210 /**
211  * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
212  *
213  * @ah: The &struct ath5k_hw
214  */
ath5k_hw_get_cts_timeout(struct ath5k_hw * ah)215 unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
216 {
217 	ATH5K_TRACE(ah->ah_sc);
218 	return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
219 			AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
220 }
221 
222 /**
223  * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
224  *
225  * @ah: The &struct ath5k_hw
226  * @timeout: Timeout in usec
227  */
ath5k_hw_set_cts_timeout(struct ath5k_hw * ah,unsigned int timeout)228 int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
229 {
230 	ATH5K_TRACE(ah->ah_sc);
231 	if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
232 			ah->ah_turbo) <= timeout)
233 		return -EINVAL;
234 
235 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
236 			ath5k_hw_htoclock(timeout, ah->ah_turbo));
237 
238 	return 0;
239 }
240 
241 
242 /****************\
243 * BSSID handling *
244 \****************/
245 
246 /**
247  * ath5k_hw_get_lladdr - Get station id
248  *
249  * @ah: The &struct ath5k_hw
250  * @mac: The card's mac address
251  *
252  * Initialize ah->ah_sta_id using the mac address provided
253  * (just a memcpy).
254  *
255  * TODO: Remove it once we merge ath5k_softc and ath5k_hw
256  */
ath5k_hw_get_lladdr(struct ath5k_hw * ah,u8 * mac)257 void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
258 {
259 	ATH5K_TRACE(ah->ah_sc);
260 	memcpy(mac, ah->ah_sta_id, ETH_ALEN);
261 }
262 
263 /**
264  * ath5k_hw_set_lladdr - Set station id
265  *
266  * @ah: The &struct ath5k_hw
267  * @mac: The card's mac address
268  *
269  * Set station id on hw using the provided mac address
270  */
ath5k_hw_set_lladdr(struct ath5k_hw * ah,const u8 * mac)271 int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
272 {
273 	u32 low_id, high_id;
274 	u32 pcu_reg;
275 
276 	ATH5K_TRACE(ah->ah_sc);
277 	/* Set new station ID */
278 	memcpy(ah->ah_sta_id, mac, ETH_ALEN);
279 
280 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
281 
282 	low_id = AR5K_LOW_ID(mac);
283 	high_id = AR5K_HIGH_ID(mac);
284 
285 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
286 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
287 
288 	return 0;
289 }
290 
291 /**
292  * ath5k_hw_set_associd - Set BSSID for association
293  *
294  * @ah: The &struct ath5k_hw
295  * @bssid: BSSID
296  * @assoc_id: Assoc id
297  *
298  * Sets the BSSID which trigers the "SME Join" operation
299  */
ath5k_hw_set_associd(struct ath5k_hw * ah,const u8 * bssid,u16 assoc_id)300 void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
301 {
302 	u32 low_id, high_id;
303 	u16 tim_offset = 0;
304 
305 	/*
306 	 * Set simple BSSID mask on 5212
307 	 */
308 	if (ah->ah_version == AR5K_AR5212) {
309 		ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_bssid_mask),
310 							AR5K_BSS_IDM0);
311 		ath5k_hw_reg_write(ah, AR5K_HIGH_ID(ah->ah_bssid_mask),
312 							AR5K_BSS_IDM1);
313 	}
314 
315 	/*
316 	 * Set BSSID which triggers the "SME Join" operation
317 	 */
318 	low_id = AR5K_LOW_ID(bssid);
319 	high_id = AR5K_HIGH_ID(bssid);
320 	ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
321 	ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
322 				AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
323 
324 	if (assoc_id == 0) {
325 		ath5k_hw_disable_pspoll(ah);
326 		return;
327 	}
328 
329 	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
330 			tim_offset ? tim_offset + 4 : 0);
331 
332 	ath5k_hw_enable_pspoll(ah, NULL, 0);
333 }
334 
335 /**
336  * ath5k_hw_set_bssid_mask - filter out bssids we listen
337  *
338  * @ah: the &struct ath5k_hw
339  * @mask: the bssid_mask, a u8 array of size ETH_ALEN
340  *
341  * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
342  * which bits of the interface's MAC address should be looked at when trying
343  * to decide which packets to ACK. In station mode and AP mode with a single
344  * BSS every bit matters since we lock to only one BSS. In AP mode with
345  * multiple BSSes (virtual interfaces) not every bit matters because hw must
346  * accept frames for all BSSes and so we tweak some bits of our mac address
347  * in order to have multiple BSSes.
348  *
349  * NOTE: This is a simple filter and does *not* filter out all
350  * relevant frames. Some frames that are not for us might get ACKed from us
351  * by PCU because they just match the mask.
352  *
353  * When handling multiple BSSes you can get the BSSID mask by computing the
354  * set of  ~ ( MAC XOR BSSID ) for all bssids we handle.
355  *
356  * When you do this you are essentially computing the common bits of all your
357  * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with
358  * the MAC address to obtain the relevant bits and compare the result with
359  * (frame's BSSID & mask) to see if they match.
360  */
361 /*
362  * Simple example: on your card you have have two BSSes you have created with
363  * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
364  * There is another BSSID-03 but you are not part of it. For simplicity's sake,
365  * assuming only 4 bits for a mac address and for BSSIDs you can then have:
366  *
367  *                  \
368  * MAC:                0001 |
369  * BSSID-01:   0100 | --> Belongs to us
370  * BSSID-02:   1001 |
371  *                  /
372  * -------------------
373  * BSSID-03:   0110  | --> External
374  * -------------------
375  *
376  * Our bssid_mask would then be:
377  *
378  *             On loop iteration for BSSID-01:
379  *             ~(0001 ^ 0100)  -> ~(0101)
380  *                             ->   1010
381  *             bssid_mask      =    1010
382  *
383  *             On loop iteration for BSSID-02:
384  *             bssid_mask &= ~(0001   ^   1001)
385  *             bssid_mask =   (1010)  & ~(0001 ^ 1001)
386  *             bssid_mask =   (1010)  & ~(1001)
387  *             bssid_mask =   (1010)  &  (0110)
388  *             bssid_mask =   0010
389  *
390  * A bssid_mask of 0010 means "only pay attention to the second least
391  * significant bit". This is because its the only bit common
392  * amongst the MAC and all BSSIDs we support. To findout what the real
393  * common bit is we can simply "&" the bssid_mask now with any BSSID we have
394  * or our MAC address (we assume the hardware uses the MAC address).
395  *
396  * Now, suppose there's an incoming frame for BSSID-03:
397  *
398  * IFRAME-01:  0110
399  *
400  * An easy eye-inspeciton of this already should tell you that this frame
401  * will not pass our check. This is beacuse the bssid_mask tells the
402  * hardware to only look at the second least significant bit and the
403  * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
404  * as 1, which does not match 0.
405  *
406  * So with IFRAME-01 we *assume* the hardware will do:
407  *
408  *     allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
409  *  --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
410  *  --> allow = (0010) == 0000 ? 1 : 0;
411  *  --> allow = 0
412  *
413  *  Lets now test a frame that should work:
414  *
415  * IFRAME-02:  0001 (we should allow)
416  *
417  *     allow = (0001 & 1010) == 1010
418  *
419  *     allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
420  *  --> allow = (0001 & 0010) ==  (0010 & 0001) ? 1 :0;
421  *  --> allow = (0010) == (0010)
422  *  --> allow = 1
423  *
424  * Other examples:
425  *
426  * IFRAME-03:  0100 --> allowed
427  * IFRAME-04:  1001 --> allowed
428  * IFRAME-05:  1101 --> allowed but its not for us!!!
429  *
430  */
ath5k_hw_set_bssid_mask(struct ath5k_hw * ah,const u8 * mask)431 int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
432 {
433 	u32 low_id, high_id;
434 	ATH5K_TRACE(ah->ah_sc);
435 
436 	/* Cache bssid mask so that we can restore it
437 	 * on reset */
438 	memcpy(ah->ah_bssid_mask, mask, ETH_ALEN);
439 	if (ah->ah_version == AR5K_AR5212) {
440 		low_id = AR5K_LOW_ID(mask);
441 		high_id = AR5K_HIGH_ID(mask);
442 
443 		ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
444 		ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
445 
446 		return 0;
447 	}
448 
449 	return -EIO;
450 }
451 
452 
453 /************\
454 * RX Control *
455 \************/
456 
457 /**
458  * ath5k_hw_start_rx_pcu - Start RX engine
459  *
460  * @ah: The &struct ath5k_hw
461  *
462  * Starts RX engine on PCU so that hw can process RXed frames
463  * (ACK etc).
464  *
465  * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
466  * TODO: Init ANI here
467  */
ath5k_hw_start_rx_pcu(struct ath5k_hw * ah)468 void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
469 {
470 	ATH5K_TRACE(ah->ah_sc);
471 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
472 }
473 
474 /**
475  * at5k_hw_stop_rx_pcu - Stop RX engine
476  *
477  * @ah: The &struct ath5k_hw
478  *
479  * Stops RX engine on PCU
480  *
481  * TODO: Detach ANI here
482  */
ath5k_hw_stop_rx_pcu(struct ath5k_hw * ah)483 void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
484 {
485 	ATH5K_TRACE(ah->ah_sc);
486 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
487 }
488 
489 /*
490  * Set multicast filter
491  */
ath5k_hw_set_mcast_filter(struct ath5k_hw * ah,u32 filter0,u32 filter1)492 void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
493 {
494 	ATH5K_TRACE(ah->ah_sc);
495 	/* Set the multicat filter */
496 	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
497 	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
498 }
499 
500 /*
501  * Set multicast filter by index
502  */
ath5k_hw_set_mcast_filter_idx(struct ath5k_hw * ah,u32 index)503 int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
504 {
505 
506 	ATH5K_TRACE(ah->ah_sc);
507 	if (index >= 64)
508 		return -EINVAL;
509 	else if (index >= 32)
510 		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
511 				(1 << (index - 32)));
512 	else
513 		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
514 
515 	return 0;
516 }
517 
518 /*
519  * Clear Multicast filter by index
520  */
ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw * ah,u32 index)521 int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
522 {
523 
524 	ATH5K_TRACE(ah->ah_sc);
525 	if (index >= 64)
526 		return -EINVAL;
527 	else if (index >= 32)
528 		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
529 				(1 << (index - 32)));
530 	else
531 		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
532 
533 	return 0;
534 }
535 
536 /**
537  * ath5k_hw_get_rx_filter - Get current rx filter
538  *
539  * @ah: The &struct ath5k_hw
540  *
541  * Returns the RX filter by reading rx filter and
542  * phy error filter registers. RX filter is used
543  * to set the allowed frame types that PCU will accept
544  * and pass to the driver. For a list of frame types
545  * check out reg.h.
546  */
ath5k_hw_get_rx_filter(struct ath5k_hw * ah)547 u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
548 {
549 	u32 data, filter = 0;
550 
551 	ATH5K_TRACE(ah->ah_sc);
552 	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
553 
554 	/*Radar detection for 5212*/
555 	if (ah->ah_version == AR5K_AR5212) {
556 		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
557 
558 		if (data & AR5K_PHY_ERR_FIL_RADAR)
559 			filter |= AR5K_RX_FILTER_RADARERR;
560 		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
561 			filter |= AR5K_RX_FILTER_PHYERR;
562 	}
563 
564 	return filter;
565 }
566 
567 /**
568  * ath5k_hw_set_rx_filter - Set rx filter
569  *
570  * @ah: The &struct ath5k_hw
571  * @filter: RX filter mask (see reg.h)
572  *
573  * Sets RX filter register and also handles PHY error filter
574  * register on 5212 and newer chips so that we have proper PHY
575  * error reporting.
576  */
ath5k_hw_set_rx_filter(struct ath5k_hw * ah,u32 filter)577 void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
578 {
579 	u32 data = 0;
580 
581 	ATH5K_TRACE(ah->ah_sc);
582 
583 	/* Set PHY error filter register on 5212*/
584 	if (ah->ah_version == AR5K_AR5212) {
585 		if (filter & AR5K_RX_FILTER_RADARERR)
586 			data |= AR5K_PHY_ERR_FIL_RADAR;
587 		if (filter & AR5K_RX_FILTER_PHYERR)
588 			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
589 	}
590 
591 	/*
592 	 * The AR5210 uses promiscous mode to detect radar activity
593 	 */
594 	if (ah->ah_version == AR5K_AR5210 &&
595 			(filter & AR5K_RX_FILTER_RADARERR)) {
596 		filter &= ~AR5K_RX_FILTER_RADARERR;
597 		filter |= AR5K_RX_FILTER_PROM;
598 	}
599 
600 	/*Zero length DMA (phy error reporting) */
601 	if (data)
602 		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
603 	else
604 		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
605 
606 	/*Write RX Filter register*/
607 	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
608 
609 	/*Write PHY error filter register on 5212*/
610 	if (ah->ah_version == AR5K_AR5212)
611 		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
612 
613 }
614 
615 
616 /****************\
617 * Beacon control *
618 \****************/
619 
620 /**
621  * ath5k_hw_get_tsf32 - Get a 32bit TSF
622  *
623  * @ah: The &struct ath5k_hw
624  *
625  * Returns lower 32 bits of current TSF
626  */
ath5k_hw_get_tsf32(struct ath5k_hw * ah)627 u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
628 {
629 	ATH5K_TRACE(ah->ah_sc);
630 	return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
631 }
632 
633 /**
634  * ath5k_hw_get_tsf64 - Get the full 64bit TSF
635  *
636  * @ah: The &struct ath5k_hw
637  *
638  * Returns the current TSF
639  */
ath5k_hw_get_tsf64(struct ath5k_hw * ah)640 u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
641 {
642 	u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
643 	ATH5K_TRACE(ah->ah_sc);
644 
645 	return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
646 }
647 
648 /**
649  * ath5k_hw_reset_tsf - Force a TSF reset
650  *
651  * @ah: The &struct ath5k_hw
652  *
653  * Forces a TSF reset on PCU
654  */
ath5k_hw_reset_tsf(struct ath5k_hw * ah)655 void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
656 {
657 	u32 val;
658 
659 	ATH5K_TRACE(ah->ah_sc);
660 
661 	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
662 
663 	/*
664 	 * Each write to the RESET_TSF bit toggles a hardware internal
665 	 * signal to reset TSF, but if left high it will cause a TSF reset
666 	 * on the next chip reset as well.  Thus we always write the value
667 	 * twice to clear the signal.
668 	 */
669 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
670 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
671 }
672 
673 /*
674  * Initialize beacon timers
675  */
ath5k_hw_init_beacon(struct ath5k_hw * ah,u32 next_beacon,u32 interval)676 void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
677 {
678 	u32 timer1, timer2, timer3;
679 
680 	ATH5K_TRACE(ah->ah_sc);
681 	/*
682 	 * Set the additional timers by mode
683 	 */
684 	switch (ah->ah_op_mode) {
685 	case NL80211_IFTYPE_MONITOR:
686 	case NL80211_IFTYPE_STATION:
687 		/* In STA mode timer1 is used as next wakeup
688 		 * timer and timer2 as next CFP duration start
689 		 * timer. Both in 1/8TUs. */
690 		/* TODO: PCF handling */
691 		if (ah->ah_version == AR5K_AR5210) {
692 			timer1 = 0xffffffff;
693 			timer2 = 0xffffffff;
694 		} else {
695 			timer1 = 0x0000ffff;
696 			timer2 = 0x0007ffff;
697 		}
698 		/* Mark associated AP as PCF incapable for now */
699 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
700 		break;
701 	case NL80211_IFTYPE_ADHOC:
702 		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
703 	default:
704 		/* On non-STA modes timer1 is used as next DMA
705 		 * beacon alert (DBA) timer and timer2 as next
706 		 * software beacon alert. Both in 1/8TUs. */
707 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
708 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
709 		break;
710 	}
711 
712 	/* Timer3 marks the end of our ATIM window
713 	 * a zero length window is not allowed because
714 	 * we 'll get no beacons */
715 	timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
716 
717 	/*
718 	 * Set the beacon register and enable all timers.
719 	 */
720 	/* When in AP mode zero timer0 to start TSF */
721 	if (ah->ah_op_mode == NL80211_IFTYPE_AP)
722 		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
723 	else
724 		ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
725 	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
726 	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
727 	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
728 
729 	/* Force a TSF reset if requested and enable beacons */
730 	if (interval & AR5K_BEACON_RESET_TSF)
731 		ath5k_hw_reset_tsf(ah);
732 
733 	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
734 					AR5K_BEACON_ENABLE),
735 						AR5K_BEACON);
736 
737 	/* Flush any pending BMISS interrupts on ISR by
738 	 * performing a clear-on-write operation on PISR
739 	 * register for the BMISS bit (writing a bit on
740 	 * ISR togles a reset for that bit and leaves
741 	 * the rest bits intact) */
742 	if (ah->ah_version == AR5K_AR5210)
743 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
744 	else
745 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
746 
747 	/* TODO: Set enchanced sleep registers on AR5212
748 	 * based on vif->bss_conf params, until then
749 	 * disable power save reporting.*/
750 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
751 
752 }
753 
754 #if 0
755 /*
756  * Set beacon timers
757  */
758 int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
759 		const struct ath5k_beacon_state *state)
760 {
761 	u32 cfp_period, next_cfp, dtim, interval, next_beacon;
762 
763 	/*
764 	 * TODO: should be changed through *state
765 	 * review struct ath5k_beacon_state struct
766 	 *
767 	 * XXX: These are used for cfp period bellow, are they
768 	 * ok ? Is it O.K. for tsf here to be 0 or should we use
769 	 * get_tsf ?
770 	 */
771 	u32 dtim_count = 0; /* XXX */
772 	u32 cfp_count = 0; /* XXX */
773 	u32 tsf = 0; /* XXX */
774 
775 	ATH5K_TRACE(ah->ah_sc);
776 	/* Return on an invalid beacon state */
777 	if (state->bs_interval < 1)
778 		return -EINVAL;
779 
780 	interval = state->bs_interval;
781 	dtim = state->bs_dtim_period;
782 
783 	/*
784 	 * PCF support?
785 	 */
786 	if (state->bs_cfp_period > 0) {
787 		/*
788 		 * Enable PCF mode and set the CFP
789 		 * (Contention Free Period) and timer registers
790 		 */
791 		cfp_period = state->bs_cfp_period * state->bs_dtim_period *
792 			state->bs_interval;
793 		next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
794 			state->bs_interval;
795 
796 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
797 				AR5K_STA_ID1_DEFAULT_ANTENNA |
798 				AR5K_STA_ID1_PCF);
799 		ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
800 		ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
801 				AR5K_CFP_DUR);
802 		ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
803 						next_cfp)) << 3, AR5K_TIMER2);
804 	} else {
805 		/* Disable PCF mode */
806 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
807 				AR5K_STA_ID1_DEFAULT_ANTENNA |
808 				AR5K_STA_ID1_PCF);
809 	}
810 
811 	/*
812 	 * Enable the beacon timer register
813 	 */
814 	ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
815 
816 	/*
817 	 * Start the beacon timers
818 	 */
819 	ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
820 		~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
821 		AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
822 		AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
823 		AR5K_BEACON_PERIOD), AR5K_BEACON);
824 
825 	/*
826 	 * Write new beacon miss threshold, if it appears to be valid
827 	 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
828 	 * and return if its not in range. We can test this by reading value and
829 	 * setting value to a largest value and seeing which values register.
830 	 */
831 
832 	AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
833 			state->bs_bmiss_threshold);
834 
835 	/*
836 	 * Set sleep control register
837 	 * XXX: Didn't find this in 5210 code but since this register
838 	 * exists also in ar5k's 5210 headers i leave it as common code.
839 	 */
840 	AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
841 			(state->bs_sleep_duration - 3) << 3);
842 
843 	/*
844 	 * Set enhanced sleep registers on 5212
845 	 */
846 	if (ah->ah_version == AR5K_AR5212) {
847 		if (state->bs_sleep_duration > state->bs_interval &&
848 				roundup(state->bs_sleep_duration, interval) ==
849 				state->bs_sleep_duration)
850 			interval = state->bs_sleep_duration;
851 
852 		if (state->bs_sleep_duration > dtim && (dtim == 0 ||
853 				roundup(state->bs_sleep_duration, dtim) ==
854 				state->bs_sleep_duration))
855 			dtim = state->bs_sleep_duration;
856 
857 		if (interval > dtim)
858 			return -EINVAL;
859 
860 		next_beacon = interval == dtim ? state->bs_next_dtim :
861 			state->bs_next_beacon;
862 
863 		ath5k_hw_reg_write(ah,
864 			AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
865 			AR5K_SLEEP0_NEXT_DTIM) |
866 			AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
867 			AR5K_SLEEP0_ENH_SLEEP_EN |
868 			AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
869 
870 		ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
871 			AR5K_SLEEP1_NEXT_TIM) |
872 			AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
873 
874 		ath5k_hw_reg_write(ah,
875 			AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
876 			AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
877 	}
878 
879 	return 0;
880 }
881 
882 /*
883  * Reset beacon timers
884  */
885 void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
886 {
887 	ATH5K_TRACE(ah->ah_sc);
888 	/*
889 	 * Disable beacon timer
890 	 */
891 	ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
892 
893 	/*
894 	 * Disable some beacon register values
895 	 */
896 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
897 			AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
898 	ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
899 }
900 
901 /*
902  * Wait for beacon queue to finish
903  */
904 int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
905 {
906 	unsigned int i;
907 	int ret;
908 
909 	ATH5K_TRACE(ah->ah_sc);
910 
911 	/* 5210 doesn't have QCU*/
912 	if (ah->ah_version == AR5K_AR5210) {
913 		/*
914 		 * Wait for beaconn queue to finish by checking
915 		 * Control Register and Beacon Status Register.
916 		 */
917 		for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
918 			if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
919 					||
920 			    !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
921 				break;
922 			udelay(10);
923 		}
924 
925 		/* Timeout... */
926 		if (i <= 0) {
927 			/*
928 			 * Re-schedule the beacon queue
929 			 */
930 			ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
931 			ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
932 					AR5K_BCR);
933 
934 			return -EIO;
935 		}
936 		ret = 0;
937 	} else {
938 	/*5211/5212*/
939 		ret = ath5k_hw_register_timeout(ah,
940 			AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
941 			AR5K_QCU_STS_FRMPENDCNT, 0, false);
942 
943 		if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
944 			return -EIO;
945 	}
946 
947 	return ret;
948 }
949 #endif
950 
951 
952 /*********************\
953 * Key table functions *
954 \*********************/
955 
956 /*
957  * Reset a key entry on the table
958  */
ath5k_hw_reset_key(struct ath5k_hw * ah,u16 entry)959 int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
960 {
961 	unsigned int i, type;
962 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
963 
964 	ATH5K_TRACE(ah->ah_sc);
965 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
966 
967 	type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));
968 
969 	for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
970 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
971 
972 	/* Reset associated MIC entry if TKIP
973 	 * is enabled located at offset (entry + 64) */
974 	if (type == AR5K_KEYTABLE_TYPE_TKIP) {
975 		AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
976 		for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
977 			ath5k_hw_reg_write(ah, 0,
978 				AR5K_KEYTABLE_OFF(micentry, i));
979 	}
980 
981 	/*
982 	 * Set NULL encryption on AR5212+
983 	 *
984 	 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
985 	 *       AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
986 	 *
987 	 * Note2: Windows driver (ndiswrapper) sets this to
988 	 *        0x00000714 instead of 0x00000007
989 	 */
990 	if (ah->ah_version > AR5K_AR5211) {
991 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
992 				AR5K_KEYTABLE_TYPE(entry));
993 
994 		if (type == AR5K_KEYTABLE_TYPE_TKIP) {
995 			ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
996 				AR5K_KEYTABLE_TYPE(micentry));
997 		}
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 /*
1004  * Check if a table entry is valid
1005  */
ath5k_hw_is_key_valid(struct ath5k_hw * ah,u16 entry)1006 int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
1007 {
1008 	ATH5K_TRACE(ah->ah_sc);
1009 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1010 
1011 	/* Check the validation flag at the end of the entry */
1012 	return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
1013 		AR5K_KEYTABLE_VALID;
1014 }
1015 
1016 static
ath5k_keycache_type(const struct ieee80211_key_conf * key)1017 int ath5k_keycache_type(const struct ieee80211_key_conf *key)
1018 {
1019 	switch (key->alg) {
1020 	case ALG_TKIP:
1021 		return AR5K_KEYTABLE_TYPE_TKIP;
1022 	case ALG_CCMP:
1023 		return AR5K_KEYTABLE_TYPE_CCM;
1024 	case ALG_WEP:
1025 		if (key->keylen == LEN_WEP40)
1026 			return AR5K_KEYTABLE_TYPE_40;
1027 		else if (key->keylen == LEN_WEP104)
1028 			return AR5K_KEYTABLE_TYPE_104;
1029 	}
1030 	return -EINVAL;
1031 }
1032 
1033 /*
1034  * Set a key entry on the table
1035  */
ath5k_hw_set_key(struct ath5k_hw * ah,u16 entry,const struct ieee80211_key_conf * key,const u8 * mac)1036 int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
1037 		const struct ieee80211_key_conf *key, const u8 *mac)
1038 {
1039 	unsigned int i;
1040 	int keylen;
1041 	__le32 key_v[5] = {};
1042 	__le32 key0 = 0, key1 = 0;
1043 	__le32 *rxmic, *txmic;
1044 	u32 keytype;
1045 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
1046 	bool is_tkip;
1047 	const u8 *key_ptr;
1048 
1049 	ATH5K_TRACE(ah->ah_sc);
1050 
1051 	is_tkip = (key->alg == ALG_TKIP);
1052 
1053 	/*
1054 	 * key->keylen comes in from mac80211 in bytes.
1055 	 * TKIP is 128 bit + 128 bit mic
1056 	 */
1057 	keylen = (is_tkip) ? (128 / 8) : key->keylen;
1058 
1059 	if (entry > AR5K_KEYTABLE_SIZE ||
1060 		(is_tkip && micentry > AR5K_KEYTABLE_SIZE))
1061 		return -EOPNOTSUPP;
1062 
1063 	if (unlikely(keylen > 16))
1064 		return -EOPNOTSUPP;
1065 
1066 	keytype = ath5k_keycache_type(key);
1067 	if (keytype < 0)
1068 		return keytype;
1069 
1070 	/*
1071 	 * each key block is 6 bytes wide, written as pairs of
1072 	 * alternating 32 and 16 bit le values.
1073 	 */
1074 	key_ptr = key->key;
1075 	for (i = 0; keylen >= 6; keylen -= 6) {
1076 		memcpy(&key_v[i], key_ptr, 6);
1077 		i += 2;
1078 		key_ptr += 6;
1079 	}
1080 	if (keylen)
1081 		memcpy(&key_v[i], key_ptr, keylen);
1082 
1083 	/* intentionally corrupt key until mic is installed */
1084 	if (is_tkip) {
1085 		key0 = key_v[0] = ~key_v[0];
1086 		key1 = key_v[1] = ~key_v[1];
1087 	}
1088 
1089 	for (i = 0; i < ARRAY_SIZE(key_v); i++)
1090 		ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1091 				AR5K_KEYTABLE_OFF(entry, i));
1092 
1093 	ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
1094 
1095 	if (is_tkip) {
1096 		/* Install rx/tx MIC */
1097 		rxmic = (__le32 *) &key->key[16];
1098 		txmic = (__le32 *) &key->key[24];
1099 
1100 		if (ah->ah_combined_mic) {
1101 			key_v[0] = rxmic[0];
1102 			key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16);
1103 			key_v[2] = rxmic[1];
1104 			key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff);
1105 			key_v[4] = txmic[1];
1106 		} else {
1107 			key_v[0] = rxmic[0];
1108 			key_v[1] = 0;
1109 			key_v[2] = rxmic[1];
1110 			key_v[3] = 0;
1111 			key_v[4] = 0;
1112 		}
1113 		for (i = 0; i < ARRAY_SIZE(key_v); i++)
1114 			ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1115 				AR5K_KEYTABLE_OFF(micentry, i));
1116 
1117 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1118 			AR5K_KEYTABLE_TYPE(micentry));
1119 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry));
1120 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry));
1121 
1122 		/* restore first 2 words of key */
1123 		ath5k_hw_reg_write(ah, le32_to_cpu(~key0),
1124 			AR5K_KEYTABLE_OFF(entry, 0));
1125 		ath5k_hw_reg_write(ah, le32_to_cpu(~key1),
1126 			AR5K_KEYTABLE_OFF(entry, 1));
1127 	}
1128 
1129 	return ath5k_hw_set_key_lladdr(ah, entry, mac);
1130 }
1131 
ath5k_hw_set_key_lladdr(struct ath5k_hw * ah,u16 entry,const u8 * mac)1132 int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
1133 {
1134 	u32 low_id, high_id;
1135 
1136 	ATH5K_TRACE(ah->ah_sc);
1137 	 /* Invalid entry (key table overflow) */
1138 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1139 
1140 	/* MAC may be NULL if it's a broadcast key. In this case no need to
1141 	 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
1142 	if (unlikely(mac == NULL)) {
1143 		low_id = 0xffffffff;
1144 		high_id = 0xffff | AR5K_KEYTABLE_VALID;
1145 	} else {
1146 		low_id = AR5K_LOW_ID(mac);
1147 		high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
1148 	}
1149 
1150 	ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
1151 	ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
1152 
1153 	return 0;
1154 }
1155 
1156