• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/nl80211.h>
18 #include "core.h"
19 #include "reg.h"
20 #include "hw.h"
21 
22 #define ATH_PCI_VERSION "0.1"
23 
24 static char *dev_info = "ath9k";
25 
26 MODULE_AUTHOR("Atheros Communications");
27 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
28 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
29 MODULE_LICENSE("Dual BSD/GPL");
30 
31 static struct pci_device_id ath_pci_id_table[] __devinitdata = {
32 	{ PCI_VDEVICE(ATHEROS, 0x0023) }, /* PCI   */
33 	{ PCI_VDEVICE(ATHEROS, 0x0024) }, /* PCI-E */
34 	{ PCI_VDEVICE(ATHEROS, 0x0027) }, /* PCI   */
35 	{ PCI_VDEVICE(ATHEROS, 0x0029) }, /* PCI   */
36 	{ PCI_VDEVICE(ATHEROS, 0x002A) }, /* PCI-E */
37 	{ PCI_VDEVICE(ATHEROS, 0x002B) }, /* PCI-E */
38 	{ 0 }
39 };
40 
41 static void ath_detach(struct ath_softc *sc);
42 
43 /* return bus cachesize in 4B word units */
44 
bus_read_cachesize(struct ath_softc * sc,int * csz)45 static void bus_read_cachesize(struct ath_softc *sc, int *csz)
46 {
47 	u8 u8tmp;
48 
49 	pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
50 	*csz = (int)u8tmp;
51 
52 	/*
53 	 * This check was put in to avoid "unplesant" consequences if
54 	 * the bootrom has not fully initialized all PCI devices.
55 	 * Sometimes the cache line size register is not set
56 	 */
57 
58 	if (*csz == 0)
59 		*csz = DEFAULT_CACHELINE >> 2;   /* Use the default size */
60 }
61 
ath_setcurmode(struct ath_softc * sc,enum wireless_mode mode)62 static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
63 {
64 	sc->cur_rate_table = sc->hw_rate_table[mode];
65 	/*
66 	 * All protection frames are transmited at 2Mb/s for
67 	 * 11g, otherwise at 1Mb/s.
68 	 * XXX select protection rate index from rate table.
69 	 */
70 	sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
71 }
72 
ath_chan2mode(struct ath9k_channel * chan)73 static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
74 {
75 	if (chan->chanmode == CHANNEL_A)
76 		return ATH9K_MODE_11A;
77 	else if (chan->chanmode == CHANNEL_G)
78 		return ATH9K_MODE_11G;
79 	else if (chan->chanmode == CHANNEL_B)
80 		return ATH9K_MODE_11B;
81 	else if (chan->chanmode == CHANNEL_A_HT20)
82 		return ATH9K_MODE_11NA_HT20;
83 	else if (chan->chanmode == CHANNEL_G_HT20)
84 		return ATH9K_MODE_11NG_HT20;
85 	else if (chan->chanmode == CHANNEL_A_HT40PLUS)
86 		return ATH9K_MODE_11NA_HT40PLUS;
87 	else if (chan->chanmode == CHANNEL_A_HT40MINUS)
88 		return ATH9K_MODE_11NA_HT40MINUS;
89 	else if (chan->chanmode == CHANNEL_G_HT40PLUS)
90 		return ATH9K_MODE_11NG_HT40PLUS;
91 	else if (chan->chanmode == CHANNEL_G_HT40MINUS)
92 		return ATH9K_MODE_11NG_HT40MINUS;
93 
94 	WARN_ON(1); /* should not get here */
95 
96 	return ATH9K_MODE_11B;
97 }
98 
ath_update_txpow(struct ath_softc * sc)99 static void ath_update_txpow(struct ath_softc *sc)
100 {
101 	struct ath_hal *ah = sc->sc_ah;
102 	u32 txpow;
103 
104 	if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
105 		ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
106 		/* read back in case value is clamped */
107 		ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
108 		sc->sc_curtxpow = txpow;
109 	}
110 }
111 
parse_mpdudensity(u8 mpdudensity)112 static u8 parse_mpdudensity(u8 mpdudensity)
113 {
114 	/*
115 	 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
116 	 *   0 for no restriction
117 	 *   1 for 1/4 us
118 	 *   2 for 1/2 us
119 	 *   3 for 1 us
120 	 *   4 for 2 us
121 	 *   5 for 4 us
122 	 *   6 for 8 us
123 	 *   7 for 16 us
124 	 */
125 	switch (mpdudensity) {
126 	case 0:
127 		return 0;
128 	case 1:
129 	case 2:
130 	case 3:
131 		/* Our lower layer calculations limit our precision to
132 		   1 microsecond */
133 		return 1;
134 	case 4:
135 		return 2;
136 	case 5:
137 		return 4;
138 	case 6:
139 		return 8;
140 	case 7:
141 		return 16;
142 	default:
143 		return 0;
144 	}
145 }
146 
ath_setup_rates(struct ath_softc * sc,enum ieee80211_band band)147 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
148 {
149 	struct ath_rate_table *rate_table = NULL;
150 	struct ieee80211_supported_band *sband;
151 	struct ieee80211_rate *rate;
152 	int i, maxrates;
153 
154 	switch (band) {
155 	case IEEE80211_BAND_2GHZ:
156 		rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
157 		break;
158 	case IEEE80211_BAND_5GHZ:
159 		rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
160 		break;
161 	default:
162 		break;
163 	}
164 
165 	if (rate_table == NULL)
166 		return;
167 
168 	sband = &sc->sbands[band];
169 	rate = sc->rates[band];
170 
171 	if (rate_table->rate_cnt > ATH_RATE_MAX)
172 		maxrates = ATH_RATE_MAX;
173 	else
174 		maxrates = rate_table->rate_cnt;
175 
176 	for (i = 0; i < maxrates; i++) {
177 		rate[i].bitrate = rate_table->info[i].ratekbps / 100;
178 		rate[i].hw_value = rate_table->info[i].ratecode;
179 		sband->n_bitrates++;
180 		DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
181 			rate[i].bitrate / 10, rate[i].hw_value);
182 	}
183 }
184 
ath_setup_channels(struct ath_softc * sc)185 static int ath_setup_channels(struct ath_softc *sc)
186 {
187 	struct ath_hal *ah = sc->sc_ah;
188 	int nchan, i, a = 0, b = 0;
189 	u8 regclassids[ATH_REGCLASSIDS_MAX];
190 	u32 nregclass = 0;
191 	struct ieee80211_supported_band *band_2ghz;
192 	struct ieee80211_supported_band *band_5ghz;
193 	struct ieee80211_channel *chan_2ghz;
194 	struct ieee80211_channel *chan_5ghz;
195 	struct ath9k_channel *c;
196 
197 	/* Fill in ah->ah_channels */
198 	if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
199 				      regclassids, ATH_REGCLASSIDS_MAX,
200 				      &nregclass, CTRY_DEFAULT, false, 1)) {
201 		u32 rd = ah->ah_currentRD;
202 		DPRINTF(sc, ATH_DBG_FATAL,
203 			"Unable to collect channel list; "
204 			"regdomain likely %u country code %u\n",
205 			rd, CTRY_DEFAULT);
206 		return -EINVAL;
207 	}
208 
209 	band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
210 	band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
211 	chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
212 	chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
213 
214 	for (i = 0; i < nchan; i++) {
215 		c = &ah->ah_channels[i];
216 		if (IS_CHAN_2GHZ(c)) {
217 			chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
218 			chan_2ghz[a].center_freq = c->channel;
219 			chan_2ghz[a].max_power = c->maxTxPower;
220 
221 			if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
222 				chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
223 			if (c->channelFlags & CHANNEL_PASSIVE)
224 				chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
225 
226 			band_2ghz->n_channels = ++a;
227 
228 			DPRINTF(sc, ATH_DBG_CONFIG, "2MHz channel: %d, "
229 				"channelFlags: 0x%x\n",
230 				c->channel, c->channelFlags);
231 		} else if (IS_CHAN_5GHZ(c)) {
232 			chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
233 			chan_5ghz[b].center_freq = c->channel;
234 			chan_5ghz[b].max_power = c->maxTxPower;
235 
236 			if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
237 				chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
238 			if (c->channelFlags & CHANNEL_PASSIVE)
239 				chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
240 
241 			band_5ghz->n_channels = ++b;
242 
243 			DPRINTF(sc, ATH_DBG_CONFIG, "5MHz channel: %d, "
244 				"channelFlags: 0x%x\n",
245 				c->channel, c->channelFlags);
246 		}
247 	}
248 
249 	return 0;
250 }
251 
252 /*
253  * Set/change channels.  If the channel is really being changed, it's done
254  * by reseting the chip.  To accomplish this we must first cleanup any pending
255  * DMA, then restart stuff.
256 */
ath_set_channel(struct ath_softc * sc,struct ath9k_channel * hchan)257 static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
258 {
259 	struct ath_hal *ah = sc->sc_ah;
260 	bool fastcc = true, stopped;
261 
262 	if (sc->sc_flags & SC_OP_INVALID)
263 		return -EIO;
264 
265 	if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
266 	    hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
267 	    (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
268 	    (sc->sc_flags & SC_OP_FULL_RESET)) {
269 		int status;
270 		/*
271 		 * This is only performed if the channel settings have
272 		 * actually changed.
273 		 *
274 		 * To switch channels clear any pending DMA operations;
275 		 * wait long enough for the RX fifo to drain, reset the
276 		 * hardware at the new frequency, and then re-enable
277 		 * the relevant bits of the h/w.
278 		 */
279 		ath9k_hw_set_interrupts(ah, 0);
280 		ath_draintxq(sc, false);
281 		stopped = ath_stoprecv(sc);
282 
283 		/* XXX: do not flush receive queue here. We don't want
284 		 * to flush data frames already in queue because of
285 		 * changing channel. */
286 
287 		if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
288 			fastcc = false;
289 
290 		DPRINTF(sc, ATH_DBG_CONFIG,
291 			"(%u MHz) -> (%u MHz), cflags:%x, chanwidth: %d\n",
292 			sc->sc_ah->ah_curchan->channel,
293 			hchan->channel, hchan->channelFlags, sc->tx_chan_width);
294 
295 		spin_lock_bh(&sc->sc_resetlock);
296 		if (!ath9k_hw_reset(ah, hchan, sc->tx_chan_width,
297 				    sc->sc_tx_chainmask, sc->sc_rx_chainmask,
298 				    sc->sc_ht_extprotspacing, fastcc, &status)) {
299 			DPRINTF(sc, ATH_DBG_FATAL,
300 				"Unable to reset channel %u (%uMhz) "
301 				"flags 0x%x hal status %u\n",
302 				ath9k_hw_mhz2ieee(ah, hchan->channel,
303 						  hchan->channelFlags),
304 				hchan->channel, hchan->channelFlags, status);
305 			spin_unlock_bh(&sc->sc_resetlock);
306 			return -EIO;
307 		}
308 		spin_unlock_bh(&sc->sc_resetlock);
309 
310 		sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
311 		sc->sc_flags &= ~SC_OP_FULL_RESET;
312 
313 		if (ath_startrecv(sc) != 0) {
314 			DPRINTF(sc, ATH_DBG_FATAL,
315 				"Unable to restart recv logic\n");
316 			return -EIO;
317 		}
318 
319 		ath_setcurmode(sc, ath_chan2mode(hchan));
320 		ath_update_txpow(sc);
321 		ath9k_hw_set_interrupts(ah, sc->sc_imask);
322 	}
323 	return 0;
324 }
325 
326 /*
327  *  This routine performs the periodic noise floor calibration function
328  *  that is used to adjust and optimize the chip performance.  This
329  *  takes environmental changes (location, temperature) into account.
330  *  When the task is complete, it reschedules itself depending on the
331  *  appropriate interval that was calculated.
332  */
ath_ani_calibrate(unsigned long data)333 static void ath_ani_calibrate(unsigned long data)
334 {
335 	struct ath_softc *sc;
336 	struct ath_hal *ah;
337 	bool longcal = false;
338 	bool shortcal = false;
339 	bool aniflag = false;
340 	unsigned int timestamp = jiffies_to_msecs(jiffies);
341 	u32 cal_interval;
342 
343 	sc = (struct ath_softc *)data;
344 	ah = sc->sc_ah;
345 
346 	/*
347 	* don't calibrate when we're scanning.
348 	* we are most likely not on our home channel.
349 	*/
350 	if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)
351 		return;
352 
353 	/* Long calibration runs independently of short calibration. */
354 	if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
355 		longcal = true;
356 		DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357 		sc->sc_ani.sc_longcal_timer = timestamp;
358 	}
359 
360 	/* Short calibration applies only while sc_caldone is false */
361 	if (!sc->sc_ani.sc_caldone) {
362 		if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
363 		    ATH_SHORT_CALINTERVAL) {
364 			shortcal = true;
365 			DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
366 			sc->sc_ani.sc_shortcal_timer = timestamp;
367 			sc->sc_ani.sc_resetcal_timer = timestamp;
368 		}
369 	} else {
370 		if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
371 		    ATH_RESTART_CALINTERVAL) {
372 			ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
373 						&sc->sc_ani.sc_caldone);
374 			if (sc->sc_ani.sc_caldone)
375 				sc->sc_ani.sc_resetcal_timer = timestamp;
376 		}
377 	}
378 
379 	/* Verify whether we must check ANI */
380 	if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
381 	   ATH_ANI_POLLINTERVAL) {
382 		aniflag = true;
383 		sc->sc_ani.sc_checkani_timer = timestamp;
384 	}
385 
386 	/* Skip all processing if there's nothing to do. */
387 	if (longcal || shortcal || aniflag) {
388 		/* Call ANI routine if necessary */
389 		if (aniflag)
390 			ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
391 					     ah->ah_curchan);
392 
393 		/* Perform calibration if necessary */
394 		if (longcal || shortcal) {
395 			bool iscaldone = false;
396 
397 			if (ath9k_hw_calibrate(ah, ah->ah_curchan,
398 					       sc->sc_rx_chainmask, longcal,
399 					       &iscaldone)) {
400 				if (longcal)
401 					sc->sc_ani.sc_noise_floor =
402 						ath9k_hw_getchan_noise(ah,
403 							       ah->ah_curchan);
404 
405 				DPRINTF(sc, ATH_DBG_ANI,
406 					"calibrate chan %u/%x nf: %d\n",
407 					ah->ah_curchan->channel,
408 					ah->ah_curchan->channelFlags,
409 					sc->sc_ani.sc_noise_floor);
410 			} else {
411 				DPRINTF(sc, ATH_DBG_ANY,
412 					"calibrate chan %u/%x failed\n",
413 					ah->ah_curchan->channel,
414 					ah->ah_curchan->channelFlags);
415 			}
416 			sc->sc_ani.sc_caldone = iscaldone;
417 		}
418 	}
419 
420 	/*
421 	* Set timer interval based on previous results.
422 	* The interval must be the shortest necessary to satisfy ANI,
423 	* short calibration and long calibration.
424 	*/
425 	cal_interval = ATH_LONG_CALINTERVAL;
426 	if (sc->sc_ah->ah_config.enable_ani)
427 		cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
428 	if (!sc->sc_ani.sc_caldone)
429 		cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
430 
431 	mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
432 }
433 
434 /*
435  * Update tx/rx chainmask. For legacy association,
436  * hard code chainmask to 1x1, for 11n association, use
437  * the chainmask configuration.
438  */
ath_update_chainmask(struct ath_softc * sc,int is_ht)439 static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
440 {
441 	sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
442 	if (is_ht) {
443 		sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
444 		sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
445 	} else {
446 		sc->sc_tx_chainmask = 1;
447 		sc->sc_rx_chainmask = 1;
448 	}
449 
450 	DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
451 		sc->sc_tx_chainmask, sc->sc_rx_chainmask);
452 }
453 
ath_node_attach(struct ath_softc * sc,struct ieee80211_sta * sta)454 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
455 {
456 	struct ath_node *an;
457 
458 	an = (struct ath_node *)sta->drv_priv;
459 
460 	if (sc->sc_flags & SC_OP_TXAGGR)
461 		ath_tx_node_init(sc, an);
462 
463 	an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
464 			     sta->ht_cap.ampdu_factor);
465 	an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 }
467 
ath_node_detach(struct ath_softc * sc,struct ieee80211_sta * sta)468 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
469 {
470 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
471 
472 	if (sc->sc_flags & SC_OP_TXAGGR)
473 		ath_tx_node_cleanup(sc, an);
474 }
475 
ath9k_tasklet(unsigned long data)476 static void ath9k_tasklet(unsigned long data)
477 {
478 	struct ath_softc *sc = (struct ath_softc *)data;
479 	u32 status = sc->sc_intrstatus;
480 
481 	if (status & ATH9K_INT_FATAL) {
482 		/* need a chip reset */
483 		ath_reset(sc, false);
484 		return;
485 	} else {
486 
487 		if (status &
488 		    (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
489 			spin_lock_bh(&sc->rx.rxflushlock);
490 			ath_rx_tasklet(sc, 0);
491 			spin_unlock_bh(&sc->rx.rxflushlock);
492 		}
493 		/* XXX: optimize this */
494 		if (status & ATH9K_INT_TX)
495 			ath_tx_tasklet(sc);
496 	}
497 
498 	/* re-enable hardware interrupt */
499 	ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
500 }
501 
ath_isr(int irq,void * dev)502 static irqreturn_t ath_isr(int irq, void *dev)
503 {
504 	struct ath_softc *sc = dev;
505 	struct ath_hal *ah = sc->sc_ah;
506 	enum ath9k_int status;
507 	bool sched = false;
508 
509 	do {
510 		if (sc->sc_flags & SC_OP_INVALID) {
511 			/*
512 			 * The hardware is not ready/present, don't
513 			 * touch anything. Note this can happen early
514 			 * on if the IRQ is shared.
515 			 */
516 			return IRQ_NONE;
517 		}
518 		if (!ath9k_hw_intrpend(ah)) {	/* shared irq, not for us */
519 			return IRQ_NONE;
520 		}
521 
522 		/*
523 		 * Figure out the reason(s) for the interrupt.  Note
524 		 * that the hal returns a pseudo-ISR that may include
525 		 * bits we haven't explicitly enabled so we mask the
526 		 * value to insure we only process bits we requested.
527 		 */
528 		ath9k_hw_getisr(ah, &status);	/* NB: clears ISR too */
529 
530 		status &= sc->sc_imask;	/* discard unasked-for bits */
531 
532 		/*
533 		 * If there are no status bits set, then this interrupt was not
534 		 * for me (should have been caught above).
535 		 */
536 		if (!status)
537 			return IRQ_NONE;
538 
539 		sc->sc_intrstatus = status;
540 
541 		if (status & ATH9K_INT_FATAL) {
542 			/* need a chip reset */
543 			sched = true;
544 		} else if (status & ATH9K_INT_RXORN) {
545 			/* need a chip reset */
546 			sched = true;
547 		} else {
548 			if (status & ATH9K_INT_SWBA) {
549 				/* schedule a tasklet for beacon handling */
550 				tasklet_schedule(&sc->bcon_tasklet);
551 			}
552 			if (status & ATH9K_INT_RXEOL) {
553 				/*
554 				 * NB: the hardware should re-read the link when
555 				 *     RXE bit is written, but it doesn't work
556 				 *     at least on older hardware revs.
557 				 */
558 				sched = true;
559 			}
560 
561 			if (status & ATH9K_INT_TXURN)
562 				/* bump tx trigger level */
563 				ath9k_hw_updatetxtriglevel(ah, true);
564 			/* XXX: optimize this */
565 			if (status & ATH9K_INT_RX)
566 				sched = true;
567 			if (status & ATH9K_INT_TX)
568 				sched = true;
569 			if (status & ATH9K_INT_BMISS)
570 				sched = true;
571 			/* carrier sense timeout */
572 			if (status & ATH9K_INT_CST)
573 				sched = true;
574 			if (status & ATH9K_INT_MIB) {
575 				/*
576 				 * Disable interrupts until we service the MIB
577 				 * interrupt; otherwise it will continue to
578 				 * fire.
579 				 */
580 				ath9k_hw_set_interrupts(ah, 0);
581 				/*
582 				 * Let the hal handle the event. We assume
583 				 * it will clear whatever condition caused
584 				 * the interrupt.
585 				 */
586 				ath9k_hw_procmibevent(ah, &sc->sc_halstats);
587 				ath9k_hw_set_interrupts(ah, sc->sc_imask);
588 			}
589 			if (status & ATH9K_INT_TIM_TIMER) {
590 				if (!(ah->ah_caps.hw_caps &
591 				      ATH9K_HW_CAP_AUTOSLEEP)) {
592 					/* Clear RxAbort bit so that we can
593 					 * receive frames */
594 					ath9k_hw_setrxabort(ah, 0);
595 					sched = true;
596 				}
597 			}
598 		}
599 	} while (0);
600 
601 	ath_debug_stat_interrupt(sc, status);
602 
603 	if (sched) {
604 		/* turn off every interrupt except SWBA */
605 		ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
606 		tasklet_schedule(&sc->intr_tq);
607 	}
608 
609 	return IRQ_HANDLED;
610 }
611 
ath_get_channel(struct ath_softc * sc,struct ieee80211_channel * chan)612 static int ath_get_channel(struct ath_softc *sc,
613 			   struct ieee80211_channel *chan)
614 {
615 	int i;
616 
617 	for (i = 0; i < sc->sc_ah->ah_nchan; i++) {
618 		if (sc->sc_ah->ah_channels[i].channel == chan->center_freq)
619 			return i;
620 	}
621 
622 	return -1;
623 }
624 
ath_get_extchanmode(struct ath_softc * sc,struct ieee80211_channel * chan,enum nl80211_channel_type channel_type)625 static u32 ath_get_extchanmode(struct ath_softc *sc,
626 			       struct ieee80211_channel *chan,
627 			       enum nl80211_channel_type channel_type)
628 {
629 	u32 chanmode = 0;
630 
631 	switch (chan->band) {
632 	case IEEE80211_BAND_2GHZ:
633 		switch(channel_type) {
634 		case NL80211_CHAN_NO_HT:
635 		case NL80211_CHAN_HT20:
636 			chanmode = CHANNEL_G_HT20;
637 			break;
638 		case NL80211_CHAN_HT40PLUS:
639 			chanmode = CHANNEL_G_HT40PLUS;
640 			break;
641 		case NL80211_CHAN_HT40MINUS:
642 			chanmode = CHANNEL_G_HT40MINUS;
643 			break;
644 		}
645 		break;
646 	case IEEE80211_BAND_5GHZ:
647 		switch(channel_type) {
648 		case NL80211_CHAN_NO_HT:
649 		case NL80211_CHAN_HT20:
650 			chanmode = CHANNEL_A_HT20;
651 			break;
652 		case NL80211_CHAN_HT40PLUS:
653 			chanmode = CHANNEL_A_HT40PLUS;
654 			break;
655 		case NL80211_CHAN_HT40MINUS:
656 			chanmode = CHANNEL_A_HT40MINUS;
657 			break;
658 		}
659 		break;
660 	default:
661 		break;
662 	}
663 
664 	return chanmode;
665 }
666 
ath_keyset(struct ath_softc * sc,u16 keyix,struct ath9k_keyval * hk,const u8 mac[ETH_ALEN])667 static int ath_keyset(struct ath_softc *sc, u16 keyix,
668 	       struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
669 {
670 	bool status;
671 
672 	status = ath9k_hw_set_keycache_entry(sc->sc_ah,
673 		keyix, hk, mac, false);
674 
675 	return status != false;
676 }
677 
ath_setkey_tkip(struct ath_softc * sc,u16 keyix,const u8 * key,struct ath9k_keyval * hk,const u8 * addr)678 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
679 			   struct ath9k_keyval *hk,
680 			   const u8 *addr)
681 {
682 	const u8 *key_rxmic;
683 	const u8 *key_txmic;
684 
685 	key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
686 	key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
687 
688 	if (addr == NULL) {
689 		/* Group key installation */
690 		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
691 		return ath_keyset(sc, keyix, hk, addr);
692 	}
693 	if (!sc->sc_splitmic) {
694 		/*
695 		 * data key goes at first index,
696 		 * the hal handles the MIC keys at index+64.
697 		 */
698 		memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
699 		memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
700 		return ath_keyset(sc, keyix, hk, addr);
701 	}
702 	/*
703 	 * TX key goes at first index, RX key at +32.
704 	 * The hal handles the MIC keys at index+64.
705 	 */
706 	memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
707 	if (!ath_keyset(sc, keyix, hk, NULL)) {
708 		/* Txmic entry failed. No need to proceed further */
709 		DPRINTF(sc, ATH_DBG_KEYCACHE,
710 			"Setting TX MIC Key Failed\n");
711 		return 0;
712 	}
713 
714 	memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
715 	/* XXX delete tx key on failure? */
716 	return ath_keyset(sc, keyix + 32, hk, addr);
717 }
718 
ath_reserve_key_cache_slot_tkip(struct ath_softc * sc)719 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
720 {
721 	int i;
722 
723 	for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
724 		if (test_bit(i, sc->sc_keymap) ||
725 		    test_bit(i + 64, sc->sc_keymap))
726 			continue; /* At least one part of TKIP key allocated */
727 		if (sc->sc_splitmic &&
728 		    (test_bit(i + 32, sc->sc_keymap) ||
729 		     test_bit(i + 64 + 32, sc->sc_keymap)))
730 			continue; /* At least one part of TKIP key allocated */
731 
732 		/* Found a free slot for a TKIP key */
733 		return i;
734 	}
735 	return -1;
736 }
737 
ath_reserve_key_cache_slot(struct ath_softc * sc)738 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
739 {
740 	int i;
741 
742 	/* First, try to find slots that would not be available for TKIP. */
743 	if (sc->sc_splitmic) {
744 		for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) {
745 			if (!test_bit(i, sc->sc_keymap) &&
746 			    (test_bit(i + 32, sc->sc_keymap) ||
747 			     test_bit(i + 64, sc->sc_keymap) ||
748 			     test_bit(i + 64 + 32, sc->sc_keymap)))
749 				return i;
750 			if (!test_bit(i + 32, sc->sc_keymap) &&
751 			    (test_bit(i, sc->sc_keymap) ||
752 			     test_bit(i + 64, sc->sc_keymap) ||
753 			     test_bit(i + 64 + 32, sc->sc_keymap)))
754 				return i + 32;
755 			if (!test_bit(i + 64, sc->sc_keymap) &&
756 			    (test_bit(i , sc->sc_keymap) ||
757 			     test_bit(i + 32, sc->sc_keymap) ||
758 			     test_bit(i + 64 + 32, sc->sc_keymap)))
759 				return i + 64;
760 			if (!test_bit(i + 64 + 32, sc->sc_keymap) &&
761 			    (test_bit(i, sc->sc_keymap) ||
762 			     test_bit(i + 32, sc->sc_keymap) ||
763 			     test_bit(i + 64, sc->sc_keymap)))
764 				return i + 64 + 32;
765 		}
766 	} else {
767 		for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) {
768 			if (!test_bit(i, sc->sc_keymap) &&
769 			    test_bit(i + 64, sc->sc_keymap))
770 				return i;
771 			if (test_bit(i, sc->sc_keymap) &&
772 			    !test_bit(i + 64, sc->sc_keymap))
773 				return i + 64;
774 		}
775 	}
776 
777 	/* No partially used TKIP slots, pick any available slot */
778 	for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) {
779 		/* Do not allow slots that could be needed for TKIP group keys
780 		 * to be used. This limitation could be removed if we know that
781 		 * TKIP will not be used. */
782 		if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
783 			continue;
784 		if (sc->sc_splitmic) {
785 			if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
786 				continue;
787 			if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
788 				continue;
789 		}
790 
791 		if (!test_bit(i, sc->sc_keymap))
792 			return i; /* Found a free slot for a key */
793 	}
794 
795 	/* No free slot found */
796 	return -1;
797 }
798 
ath_key_config(struct ath_softc * sc,const u8 * addr,struct ieee80211_key_conf * key)799 static int ath_key_config(struct ath_softc *sc,
800 			  const u8 *addr,
801 			  struct ieee80211_key_conf *key)
802 {
803 	struct ath9k_keyval hk;
804 	const u8 *mac = NULL;
805 	int ret = 0;
806 	int idx;
807 
808 	memset(&hk, 0, sizeof(hk));
809 
810 	switch (key->alg) {
811 	case ALG_WEP:
812 		hk.kv_type = ATH9K_CIPHER_WEP;
813 		break;
814 	case ALG_TKIP:
815 		hk.kv_type = ATH9K_CIPHER_TKIP;
816 		break;
817 	case ALG_CCMP:
818 		hk.kv_type = ATH9K_CIPHER_AES_CCM;
819 		break;
820 	default:
821 		return -EINVAL;
822 	}
823 
824 	hk.kv_len = key->keylen;
825 	memcpy(hk.kv_val, key->key, key->keylen);
826 
827 	if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
828 		/* For now, use the default keys for broadcast keys. This may
829 		 * need to change with virtual interfaces. */
830 		idx = key->keyidx;
831 	} else if (key->keyidx) {
832 		struct ieee80211_vif *vif;
833 
834 		mac = addr;
835 		vif = sc->sc_vaps[0];
836 		if (vif->type != NL80211_IFTYPE_AP) {
837 			/* Only keyidx 0 should be used with unicast key, but
838 			 * allow this for client mode for now. */
839 			idx = key->keyidx;
840 		} else
841 			return -EIO;
842 	} else {
843 		mac = addr;
844 		if (key->alg == ALG_TKIP)
845 			idx = ath_reserve_key_cache_slot_tkip(sc);
846 		else
847 			idx = ath_reserve_key_cache_slot(sc);
848 		if (idx < 0)
849 			return -EIO; /* no free key cache entries */
850 	}
851 
852 	if (key->alg == ALG_TKIP)
853 		ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac);
854 	else
855 		ret = ath_keyset(sc, idx, &hk, mac);
856 
857 	if (!ret)
858 		return -EIO;
859 
860 	set_bit(idx, sc->sc_keymap);
861 	if (key->alg == ALG_TKIP) {
862 		set_bit(idx + 64, sc->sc_keymap);
863 		if (sc->sc_splitmic) {
864 			set_bit(idx + 32, sc->sc_keymap);
865 			set_bit(idx + 64 + 32, sc->sc_keymap);
866 		}
867 	}
868 
869 	return idx;
870 }
871 
ath_key_delete(struct ath_softc * sc,struct ieee80211_key_conf * key)872 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
873 {
874 	ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
875 	if (key->hw_key_idx < IEEE80211_WEP_NKID)
876 		return;
877 
878 	clear_bit(key->hw_key_idx, sc->sc_keymap);
879 	if (key->alg != ALG_TKIP)
880 		return;
881 
882 	clear_bit(key->hw_key_idx + 64, sc->sc_keymap);
883 	if (sc->sc_splitmic) {
884 		clear_bit(key->hw_key_idx + 32, sc->sc_keymap);
885 		clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap);
886 	}
887 }
888 
setup_ht_cap(struct ieee80211_sta_ht_cap * ht_info)889 static void setup_ht_cap(struct ieee80211_sta_ht_cap *ht_info)
890 {
891 #define	ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3	/* 2 ^ 16 */
892 #define	ATH9K_HT_CAP_MPDUDENSITY_8 0x6		/* 8 usec */
893 
894 	ht_info->ht_supported = true;
895 	ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
896 		       IEEE80211_HT_CAP_SM_PS |
897 		       IEEE80211_HT_CAP_SGI_40 |
898 		       IEEE80211_HT_CAP_DSSSCCK40;
899 
900 	ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
901 	ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
902 	/* set up supported mcs set */
903 	memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
904 	ht_info->mcs.rx_mask[0] = 0xff;
905 	ht_info->mcs.rx_mask[1] = 0xff;
906 	ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
907 }
908 
ath9k_bss_assoc_info(struct ath_softc * sc,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf)909 static void ath9k_bss_assoc_info(struct ath_softc *sc,
910 				 struct ieee80211_vif *vif,
911 				 struct ieee80211_bss_conf *bss_conf)
912 {
913 	struct ath_vap *avp = (void *)vif->drv_priv;
914 
915 	if (bss_conf->assoc) {
916 		DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
917 			bss_conf->aid, sc->sc_curbssid);
918 
919 		/* New association, store aid */
920 		if (avp->av_opmode == NL80211_IFTYPE_STATION) {
921 			sc->sc_curaid = bss_conf->aid;
922 			ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
923 					       sc->sc_curaid);
924 		}
925 
926 		/* Configure the beacon */
927 		ath_beacon_config(sc, 0);
928 		sc->sc_flags |= SC_OP_BEACONS;
929 
930 		/* Reset rssi stats */
931 		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
932 		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
933 		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
934 		sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
935 
936 		/* Start ANI */
937 		mod_timer(&sc->sc_ani.timer,
938 			jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
939 
940 	} else {
941 		DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n");
942 		sc->sc_curaid = 0;
943 	}
944 }
945 
946 /********************************/
947 /*	 LED functions		*/
948 /********************************/
949 
ath_led_brightness(struct led_classdev * led_cdev,enum led_brightness brightness)950 static void ath_led_brightness(struct led_classdev *led_cdev,
951 			       enum led_brightness brightness)
952 {
953 	struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
954 	struct ath_softc *sc = led->sc;
955 
956 	switch (brightness) {
957 	case LED_OFF:
958 		if (led->led_type == ATH_LED_ASSOC ||
959 		    led->led_type == ATH_LED_RADIO)
960 			sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
961 		ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
962 				(led->led_type == ATH_LED_RADIO) ? 1 :
963 				!!(sc->sc_flags & SC_OP_LED_ASSOCIATED));
964 		break;
965 	case LED_FULL:
966 		if (led->led_type == ATH_LED_ASSOC)
967 			sc->sc_flags |= SC_OP_LED_ASSOCIATED;
968 		ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
969 		break;
970 	default:
971 		break;
972 	}
973 }
974 
ath_register_led(struct ath_softc * sc,struct ath_led * led,char * trigger)975 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
976 			    char *trigger)
977 {
978 	int ret;
979 
980 	led->sc = sc;
981 	led->led_cdev.name = led->name;
982 	led->led_cdev.default_trigger = trigger;
983 	led->led_cdev.brightness_set = ath_led_brightness;
984 
985 	ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
986 	if (ret)
987 		DPRINTF(sc, ATH_DBG_FATAL,
988 			"Failed to register led:%s", led->name);
989 	else
990 		led->registered = 1;
991 	return ret;
992 }
993 
ath_unregister_led(struct ath_led * led)994 static void ath_unregister_led(struct ath_led *led)
995 {
996 	if (led->registered) {
997 		led_classdev_unregister(&led->led_cdev);
998 		led->registered = 0;
999 	}
1000 }
1001 
ath_deinit_leds(struct ath_softc * sc)1002 static void ath_deinit_leds(struct ath_softc *sc)
1003 {
1004 	ath_unregister_led(&sc->assoc_led);
1005 	sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1006 	ath_unregister_led(&sc->tx_led);
1007 	ath_unregister_led(&sc->rx_led);
1008 	ath_unregister_led(&sc->radio_led);
1009 	ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1010 }
1011 
ath_init_leds(struct ath_softc * sc)1012 static void ath_init_leds(struct ath_softc *sc)
1013 {
1014 	char *trigger;
1015 	int ret;
1016 
1017 	/* Configure gpio 1 for output */
1018 	ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1019 			    AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1020 	/* LED off, active low */
1021 	ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1022 
1023 	trigger = ieee80211_get_radio_led_name(sc->hw);
1024 	snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1025 		"ath9k-%s:radio", wiphy_name(sc->hw->wiphy));
1026 	ret = ath_register_led(sc, &sc->radio_led, trigger);
1027 	sc->radio_led.led_type = ATH_LED_RADIO;
1028 	if (ret)
1029 		goto fail;
1030 
1031 	trigger = ieee80211_get_assoc_led_name(sc->hw);
1032 	snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1033 		"ath9k-%s:assoc", wiphy_name(sc->hw->wiphy));
1034 	ret = ath_register_led(sc, &sc->assoc_led, trigger);
1035 	sc->assoc_led.led_type = ATH_LED_ASSOC;
1036 	if (ret)
1037 		goto fail;
1038 
1039 	trigger = ieee80211_get_tx_led_name(sc->hw);
1040 	snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1041 		"ath9k-%s:tx", wiphy_name(sc->hw->wiphy));
1042 	ret = ath_register_led(sc, &sc->tx_led, trigger);
1043 	sc->tx_led.led_type = ATH_LED_TX;
1044 	if (ret)
1045 		goto fail;
1046 
1047 	trigger = ieee80211_get_rx_led_name(sc->hw);
1048 	snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1049 		"ath9k-%s:rx", wiphy_name(sc->hw->wiphy));
1050 	ret = ath_register_led(sc, &sc->rx_led, trigger);
1051 	sc->rx_led.led_type = ATH_LED_RX;
1052 	if (ret)
1053 		goto fail;
1054 
1055 	return;
1056 
1057 fail:
1058 	ath_deinit_leds(sc);
1059 }
1060 
1061 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1062 
1063 /*******************/
1064 /*	Rfkill	   */
1065 /*******************/
1066 
ath_radio_enable(struct ath_softc * sc)1067 static void ath_radio_enable(struct ath_softc *sc)
1068 {
1069 	struct ath_hal *ah = sc->sc_ah;
1070 	int status;
1071 
1072 	spin_lock_bh(&sc->sc_resetlock);
1073 	if (!ath9k_hw_reset(ah, ah->ah_curchan,
1074 			    sc->tx_chan_width,
1075 			    sc->sc_tx_chainmask,
1076 			    sc->sc_rx_chainmask,
1077 			    sc->sc_ht_extprotspacing,
1078 			    false, &status)) {
1079 		DPRINTF(sc, ATH_DBG_FATAL,
1080 			"Unable to reset channel %u (%uMhz) "
1081 			"flags 0x%x hal status %u\n",
1082 			ath9k_hw_mhz2ieee(ah,
1083 					  ah->ah_curchan->channel,
1084 					  ah->ah_curchan->channelFlags),
1085 			ah->ah_curchan->channel,
1086 			ah->ah_curchan->channelFlags, status);
1087 	}
1088 	spin_unlock_bh(&sc->sc_resetlock);
1089 
1090 	ath_update_txpow(sc);
1091 	if (ath_startrecv(sc) != 0) {
1092 		DPRINTF(sc, ATH_DBG_FATAL,
1093 			"Unable to restart recv logic\n");
1094 		return;
1095 	}
1096 
1097 	if (sc->sc_flags & SC_OP_BEACONS)
1098 		ath_beacon_config(sc, ATH_IF_ID_ANY);	/* restart beacons */
1099 
1100 	/* Re-Enable  interrupts */
1101 	ath9k_hw_set_interrupts(ah, sc->sc_imask);
1102 
1103 	/* Enable LED */
1104 	ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1105 			    AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1106 	ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1107 
1108 	ieee80211_wake_queues(sc->hw);
1109 }
1110 
ath_radio_disable(struct ath_softc * sc)1111 static void ath_radio_disable(struct ath_softc *sc)
1112 {
1113 	struct ath_hal *ah = sc->sc_ah;
1114 	int status;
1115 
1116 
1117 	ieee80211_stop_queues(sc->hw);
1118 
1119 	/* Disable LED */
1120 	ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1121 	ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1122 
1123 	/* Disable interrupts */
1124 	ath9k_hw_set_interrupts(ah, 0);
1125 
1126 	ath_draintxq(sc, false);	/* clear pending tx frames */
1127 	ath_stoprecv(sc);		/* turn off frame recv */
1128 	ath_flushrecv(sc);		/* flush recv queue */
1129 
1130 	spin_lock_bh(&sc->sc_resetlock);
1131 	if (!ath9k_hw_reset(ah, ah->ah_curchan,
1132 			    sc->tx_chan_width,
1133 			    sc->sc_tx_chainmask,
1134 			    sc->sc_rx_chainmask,
1135 			    sc->sc_ht_extprotspacing,
1136 			    false, &status)) {
1137 		DPRINTF(sc, ATH_DBG_FATAL,
1138 			"Unable to reset channel %u (%uMhz) "
1139 			"flags 0x%x hal status %u\n",
1140 			ath9k_hw_mhz2ieee(ah,
1141 				ah->ah_curchan->channel,
1142 				ah->ah_curchan->channelFlags),
1143 			ah->ah_curchan->channel,
1144 			ah->ah_curchan->channelFlags, status);
1145 	}
1146 	spin_unlock_bh(&sc->sc_resetlock);
1147 
1148 	ath9k_hw_phy_disable(ah);
1149 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1150 }
1151 
ath_is_rfkill_set(struct ath_softc * sc)1152 static bool ath_is_rfkill_set(struct ath_softc *sc)
1153 {
1154 	struct ath_hal *ah = sc->sc_ah;
1155 
1156 	return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) ==
1157 				  ah->ah_rfkill_polarity;
1158 }
1159 
1160 /* h/w rfkill poll function */
ath_rfkill_poll(struct work_struct * work)1161 static void ath_rfkill_poll(struct work_struct *work)
1162 {
1163 	struct ath_softc *sc = container_of(work, struct ath_softc,
1164 					    rf_kill.rfkill_poll.work);
1165 	bool radio_on;
1166 
1167 	if (sc->sc_flags & SC_OP_INVALID)
1168 		return;
1169 
1170 	radio_on = !ath_is_rfkill_set(sc);
1171 
1172 	/*
1173 	 * enable/disable radio only when there is a
1174 	 * state change in RF switch
1175 	 */
1176 	if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) {
1177 		enum rfkill_state state;
1178 
1179 		if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) {
1180 			state = radio_on ? RFKILL_STATE_SOFT_BLOCKED
1181 				: RFKILL_STATE_HARD_BLOCKED;
1182 		} else if (radio_on) {
1183 			ath_radio_enable(sc);
1184 			state = RFKILL_STATE_UNBLOCKED;
1185 		} else {
1186 			ath_radio_disable(sc);
1187 			state = RFKILL_STATE_HARD_BLOCKED;
1188 		}
1189 
1190 		if (state == RFKILL_STATE_HARD_BLOCKED)
1191 			sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED;
1192 		else
1193 			sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED;
1194 
1195 		rfkill_force_state(sc->rf_kill.rfkill, state);
1196 	}
1197 
1198 	queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll,
1199 			   msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL));
1200 }
1201 
1202 /* s/w rfkill handler */
ath_sw_toggle_radio(void * data,enum rfkill_state state)1203 static int ath_sw_toggle_radio(void *data, enum rfkill_state state)
1204 {
1205 	struct ath_softc *sc = data;
1206 
1207 	switch (state) {
1208 	case RFKILL_STATE_SOFT_BLOCKED:
1209 		if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED |
1210 		    SC_OP_RFKILL_SW_BLOCKED)))
1211 			ath_radio_disable(sc);
1212 		sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED;
1213 		return 0;
1214 	case RFKILL_STATE_UNBLOCKED:
1215 		if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) {
1216 			sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED;
1217 			if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) {
1218 				DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the"
1219 					"radio as it is disabled by h/w\n");
1220 				return -EPERM;
1221 			}
1222 			ath_radio_enable(sc);
1223 		}
1224 		return 0;
1225 	default:
1226 		return -EINVAL;
1227 	}
1228 }
1229 
1230 /* Init s/w rfkill */
ath_init_sw_rfkill(struct ath_softc * sc)1231 static int ath_init_sw_rfkill(struct ath_softc *sc)
1232 {
1233 	sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy),
1234 					     RFKILL_TYPE_WLAN);
1235 	if (!sc->rf_kill.rfkill) {
1236 		DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1237 		return -ENOMEM;
1238 	}
1239 
1240 	snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1241 		"ath9k-%s:rfkill", wiphy_name(sc->hw->wiphy));
1242 	sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name;
1243 	sc->rf_kill.rfkill->data = sc;
1244 	sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio;
1245 	sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED;
1246 	sc->rf_kill.rfkill->user_claim_unsupported = 1;
1247 
1248 	return 0;
1249 }
1250 
1251 /* Deinitialize rfkill */
ath_deinit_rfkill(struct ath_softc * sc)1252 static void ath_deinit_rfkill(struct ath_softc *sc)
1253 {
1254 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1255 		cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
1256 
1257 	if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1258 		rfkill_unregister(sc->rf_kill.rfkill);
1259 		sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1260 		sc->rf_kill.rfkill = NULL;
1261 	}
1262 }
1263 
ath_start_rfkill_poll(struct ath_softc * sc)1264 static int ath_start_rfkill_poll(struct ath_softc *sc)
1265 {
1266 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1267 		queue_delayed_work(sc->hw->workqueue,
1268 				   &sc->rf_kill.rfkill_poll, 0);
1269 
1270 	if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1271 		if (rfkill_register(sc->rf_kill.rfkill)) {
1272 			DPRINTF(sc, ATH_DBG_FATAL,
1273 				"Unable to register rfkill\n");
1274 			rfkill_free(sc->rf_kill.rfkill);
1275 
1276 			/* Deinitialize the device */
1277 			ath_detach(sc);
1278 			if (sc->pdev->irq)
1279 				free_irq(sc->pdev->irq, sc);
1280 			pci_iounmap(sc->pdev, sc->mem);
1281 			pci_release_region(sc->pdev, 0);
1282 			pci_disable_device(sc->pdev);
1283 			ieee80211_free_hw(sc->hw);
1284 			return -EIO;
1285 		} else {
1286 			sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1287 		}
1288 	}
1289 
1290 	return 0;
1291 }
1292 #endif /* CONFIG_RFKILL */
1293 
ath_detach(struct ath_softc * sc)1294 static void ath_detach(struct ath_softc *sc)
1295 {
1296 	struct ieee80211_hw *hw = sc->hw;
1297 	int i = 0;
1298 
1299 	DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1300 
1301 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1302 	ath_deinit_rfkill(sc);
1303 #endif
1304 	ath_deinit_leds(sc);
1305 
1306 	ieee80211_unregister_hw(hw);
1307 	ath_rx_cleanup(sc);
1308 	ath_tx_cleanup(sc);
1309 
1310 	tasklet_kill(&sc->intr_tq);
1311 	tasklet_kill(&sc->bcon_tasklet);
1312 
1313 	if (!(sc->sc_flags & SC_OP_INVALID))
1314 		ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1315 
1316 	/* cleanup tx queues */
1317 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1318 		if (ATH_TXQ_SETUP(sc, i))
1319 			ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1320 
1321 	ath9k_hw_detach(sc->sc_ah);
1322 	ath9k_exit_debug(sc);
1323 }
1324 
ath_init(u16 devid,struct ath_softc * sc)1325 static int ath_init(u16 devid, struct ath_softc *sc)
1326 {
1327 	struct ath_hal *ah = NULL;
1328 	int status;
1329 	int error = 0, i;
1330 	int csz = 0;
1331 
1332 	/* XXX: hardware will not be ready until ath_open() being called */
1333 	sc->sc_flags |= SC_OP_INVALID;
1334 
1335 	if (ath9k_init_debug(sc) < 0)
1336 		printk(KERN_ERR "Unable to create debugfs files\n");
1337 
1338 	spin_lock_init(&sc->sc_resetlock);
1339 	spin_lock_init(&sc->sc_serial_rw);
1340 	mutex_init(&sc->mutex);
1341 	tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1342 	tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1343 		     (unsigned long)sc);
1344 
1345 	/*
1346 	 * Cache line size is used to size and align various
1347 	 * structures used to communicate with the hardware.
1348 	 */
1349 	bus_read_cachesize(sc, &csz);
1350 	/* XXX assert csz is non-zero */
1351 	sc->sc_cachelsz = csz << 2;	/* convert to bytes */
1352 
1353 	ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1354 	if (ah == NULL) {
1355 		DPRINTF(sc, ATH_DBG_FATAL,
1356 			"Unable to attach hardware; HAL status %u\n", status);
1357 		error = -ENXIO;
1358 		goto bad;
1359 	}
1360 	sc->sc_ah = ah;
1361 
1362 	/* Get the hardware key cache size. */
1363 	sc->sc_keymax = ah->ah_caps.keycache_size;
1364 	if (sc->sc_keymax > ATH_KEYMAX) {
1365 		DPRINTF(sc, ATH_DBG_KEYCACHE,
1366 			"Warning, using only %u entries in %u key cache\n",
1367 			ATH_KEYMAX, sc->sc_keymax);
1368 		sc->sc_keymax = ATH_KEYMAX;
1369 	}
1370 
1371 	/*
1372 	 * Reset the key cache since some parts do not
1373 	 * reset the contents on initial power up.
1374 	 */
1375 	for (i = 0; i < sc->sc_keymax; i++)
1376 		ath9k_hw_keyreset(ah, (u16) i);
1377 
1378 	/* Collect the channel list using the default country code */
1379 
1380 	error = ath_setup_channels(sc);
1381 	if (error)
1382 		goto bad;
1383 
1384 	/* default to MONITOR mode */
1385 	sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR;
1386 
1387 
1388 	/* Setup rate tables */
1389 
1390 	ath_rate_attach(sc);
1391 	ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1392 	ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1393 
1394 	/*
1395 	 * Allocate hardware transmit queues: one queue for
1396 	 * beacon frames and one data queue for each QoS
1397 	 * priority.  Note that the hal handles reseting
1398 	 * these queues at the needed time.
1399 	 */
1400 	sc->beacon.beaconq = ath_beaconq_setup(ah);
1401 	if (sc->beacon.beaconq == -1) {
1402 		DPRINTF(sc, ATH_DBG_FATAL,
1403 			"Unable to setup a beacon xmit queue\n");
1404 		error = -EIO;
1405 		goto bad2;
1406 	}
1407 	sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1408 	if (sc->beacon.cabq == NULL) {
1409 		DPRINTF(sc, ATH_DBG_FATAL,
1410 			"Unable to setup CAB xmit queue\n");
1411 		error = -EIO;
1412 		goto bad2;
1413 	}
1414 
1415 	sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1416 	ath_cabq_update(sc);
1417 
1418 	for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1419 		sc->tx.hwq_map[i] = -1;
1420 
1421 	/* Setup data queues */
1422 	/* NB: ensure BK queue is the lowest priority h/w queue */
1423 	if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1424 		DPRINTF(sc, ATH_DBG_FATAL,
1425 			"Unable to setup xmit queue for BK traffic\n");
1426 		error = -EIO;
1427 		goto bad2;
1428 	}
1429 
1430 	if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1431 		DPRINTF(sc, ATH_DBG_FATAL,
1432 			"Unable to setup xmit queue for BE traffic\n");
1433 		error = -EIO;
1434 		goto bad2;
1435 	}
1436 	if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1437 		DPRINTF(sc, ATH_DBG_FATAL,
1438 			"Unable to setup xmit queue for VI traffic\n");
1439 		error = -EIO;
1440 		goto bad2;
1441 	}
1442 	if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1443 		DPRINTF(sc, ATH_DBG_FATAL,
1444 			"Unable to setup xmit queue for VO traffic\n");
1445 		error = -EIO;
1446 		goto bad2;
1447 	}
1448 
1449 	/* Initializes the noise floor to a reasonable default value.
1450 	 * Later on this will be updated during ANI processing. */
1451 
1452 	sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1453 	setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1454 
1455 	if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1456 				   ATH9K_CIPHER_TKIP, NULL)) {
1457 		/*
1458 		 * Whether we should enable h/w TKIP MIC.
1459 		 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1460 		 * report WMM capable, so it's always safe to turn on
1461 		 * TKIP MIC in this case.
1462 		 */
1463 		ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1464 				       0, 1, NULL);
1465 	}
1466 
1467 	/*
1468 	 * Check whether the separate key cache entries
1469 	 * are required to handle both tx+rx MIC keys.
1470 	 * With split mic keys the number of stations is limited
1471 	 * to 27 otherwise 59.
1472 	 */
1473 	if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1474 				   ATH9K_CIPHER_TKIP, NULL)
1475 	    && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1476 				      ATH9K_CIPHER_MIC, NULL)
1477 	    && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1478 				      0, NULL))
1479 		sc->sc_splitmic = 1;
1480 
1481 	/* turn on mcast key search if possible */
1482 	if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1483 		(void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1484 					     1, NULL);
1485 
1486 	sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1487 	sc->sc_config.txpowlimit_override = 0;
1488 
1489 	/* 11n Capabilities */
1490 	if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1491 		sc->sc_flags |= SC_OP_TXAGGR;
1492 		sc->sc_flags |= SC_OP_RXAGGR;
1493 	}
1494 
1495 	sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1496 	sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1497 
1498 	ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1499 	sc->rx.defant = ath9k_hw_getdefantenna(ah);
1500 
1501 	ath9k_hw_getmac(ah, sc->sc_myaddr);
1502 	if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1503 		ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1504 		ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1505 		ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1506 	}
1507 
1508 	sc->beacon.slottime = ATH9K_SLOT_TIME_9;	/* default to short slot time */
1509 
1510 	/* initialize beacon slots */
1511 	for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
1512 		sc->beacon.bslot[i] = ATH_IF_ID_ANY;
1513 
1514 	/* save MISC configurations */
1515 	sc->sc_config.swBeaconProcess = 1;
1516 
1517 	/* setup channels and rates */
1518 
1519 	sc->sbands[IEEE80211_BAND_2GHZ].channels =
1520 		sc->channels[IEEE80211_BAND_2GHZ];
1521 	sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1522 		sc->rates[IEEE80211_BAND_2GHZ];
1523 	sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1524 
1525 	if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1526 		sc->sbands[IEEE80211_BAND_5GHZ].channels =
1527 			sc->channels[IEEE80211_BAND_5GHZ];
1528 		sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1529 			sc->rates[IEEE80211_BAND_5GHZ];
1530 		sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1531 	}
1532 
1533 	return 0;
1534 bad2:
1535 	/* cleanup tx queues */
1536 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1537 		if (ATH_TXQ_SETUP(sc, i))
1538 			ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1539 bad:
1540 	if (ah)
1541 		ath9k_hw_detach(ah);
1542 	ath9k_exit_debug(sc);
1543 
1544 	return error;
1545 }
1546 
ath_attach(u16 devid,struct ath_softc * sc)1547 static int ath_attach(u16 devid, struct ath_softc *sc)
1548 {
1549 	struct ieee80211_hw *hw = sc->hw;
1550 	int error = 0, i;
1551 
1552 	DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1553 
1554 	error = ath_init(devid, sc);
1555 	if (error != 0)
1556 		return error;
1557 
1558 	/* get mac address from hardware and set in mac80211 */
1559 
1560 	SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr);
1561 
1562 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1563 		IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1564 		IEEE80211_HW_SIGNAL_DBM |
1565 		IEEE80211_HW_AMPDU_AGGREGATION;
1566 
1567 	hw->wiphy->interface_modes =
1568 		BIT(NL80211_IFTYPE_AP) |
1569 		BIT(NL80211_IFTYPE_STATION) |
1570 		BIT(NL80211_IFTYPE_ADHOC);
1571 
1572 	hw->queues = 4;
1573 	hw->max_rates = 4;
1574 	hw->max_rate_tries = ATH_11N_TXMAXTRY;
1575 	hw->sta_data_size = sizeof(struct ath_node);
1576 	hw->vif_data_size = sizeof(struct ath_vap);
1577 
1578 	hw->rate_control_algorithm = "ath9k_rate_control";
1579 
1580 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1581 		setup_ht_cap(&sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1582 		if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1583 			setup_ht_cap(&sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1584 	}
1585 
1586 	hw->wiphy->bands[IEEE80211_BAND_2GHZ] =	&sc->sbands[IEEE80211_BAND_2GHZ];
1587 	if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes))
1588 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1589 			&sc->sbands[IEEE80211_BAND_5GHZ];
1590 
1591 	/* initialize tx/rx engine */
1592 	error = ath_tx_init(sc, ATH_TXBUF);
1593 	if (error != 0)
1594 		goto error_attach;
1595 
1596 	error = ath_rx_init(sc, ATH_RXBUF);
1597 	if (error != 0)
1598 		goto error_attach;
1599 
1600 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1601 	/* Initialze h/w Rfkill */
1602 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1603 		INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll);
1604 
1605 	/* Initialize s/w rfkill */
1606 	error = ath_init_sw_rfkill(sc);
1607 	if (error)
1608 		goto error_attach;
1609 #endif
1610 
1611 	error = ieee80211_register_hw(hw);
1612 
1613 	/* Initialize LED control */
1614 	ath_init_leds(sc);
1615 
1616 	return 0;
1617 
1618 error_attach:
1619 	/* cleanup tx queues */
1620 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1621 		if (ATH_TXQ_SETUP(sc, i))
1622 			ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1623 
1624 	ath9k_hw_detach(sc->sc_ah);
1625 	ath9k_exit_debug(sc);
1626 
1627 	return error;
1628 }
1629 
ath_reset(struct ath_softc * sc,bool retry_tx)1630 int ath_reset(struct ath_softc *sc, bool retry_tx)
1631 {
1632 	struct ath_hal *ah = sc->sc_ah;
1633 	int status;
1634 	int error = 0;
1635 
1636 	ath9k_hw_set_interrupts(ah, 0);
1637 	ath_draintxq(sc, retry_tx);
1638 	ath_stoprecv(sc);
1639 	ath_flushrecv(sc);
1640 
1641 	spin_lock_bh(&sc->sc_resetlock);
1642 	if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
1643 			    sc->tx_chan_width,
1644 			    sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1645 			    sc->sc_ht_extprotspacing, false, &status)) {
1646 		DPRINTF(sc, ATH_DBG_FATAL,
1647 			"Unable to reset hardware; hal status %u\n", status);
1648 		error = -EIO;
1649 	}
1650 	spin_unlock_bh(&sc->sc_resetlock);
1651 
1652 	if (ath_startrecv(sc) != 0)
1653 		DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1654 
1655 	/*
1656 	 * We may be doing a reset in response to a request
1657 	 * that changes the channel so update any state that
1658 	 * might change as a result.
1659 	 */
1660 	ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
1661 
1662 	ath_update_txpow(sc);
1663 
1664 	if (sc->sc_flags & SC_OP_BEACONS)
1665 		ath_beacon_config(sc, ATH_IF_ID_ANY);	/* restart beacons */
1666 
1667 	ath9k_hw_set_interrupts(ah, sc->sc_imask);
1668 
1669 	if (retry_tx) {
1670 		int i;
1671 		for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1672 			if (ATH_TXQ_SETUP(sc, i)) {
1673 				spin_lock_bh(&sc->tx.txq[i].axq_lock);
1674 				ath_txq_schedule(sc, &sc->tx.txq[i]);
1675 				spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1676 			}
1677 		}
1678 	}
1679 
1680 	return error;
1681 }
1682 
1683 /*
1684  *  This function will allocate both the DMA descriptor structure, and the
1685  *  buffers it contains.  These are used to contain the descriptors used
1686  *  by the system.
1687 */
ath_descdma_setup(struct ath_softc * sc,struct ath_descdma * dd,struct list_head * head,const char * name,int nbuf,int ndesc)1688 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1689 		      struct list_head *head, const char *name,
1690 		      int nbuf, int ndesc)
1691 {
1692 #define	DS2PHYS(_dd, _ds)						\
1693 	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1694 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1695 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1696 
1697 	struct ath_desc *ds;
1698 	struct ath_buf *bf;
1699 	int i, bsize, error;
1700 
1701 	DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1702 		name, nbuf, ndesc);
1703 
1704 	/* ath_desc must be a multiple of DWORDs */
1705 	if ((sizeof(struct ath_desc) % 4) != 0) {
1706 		DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1707 		ASSERT((sizeof(struct ath_desc) % 4) == 0);
1708 		error = -ENOMEM;
1709 		goto fail;
1710 	}
1711 
1712 	dd->dd_name = name;
1713 	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1714 
1715 	/*
1716 	 * Need additional DMA memory because we can't use
1717 	 * descriptors that cross the 4K page boundary. Assume
1718 	 * one skipped descriptor per 4K page.
1719 	 */
1720 	if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1721 		u32 ndesc_skipped =
1722 			ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1723 		u32 dma_len;
1724 
1725 		while (ndesc_skipped) {
1726 			dma_len = ndesc_skipped * sizeof(struct ath_desc);
1727 			dd->dd_desc_len += dma_len;
1728 
1729 			ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1730 		};
1731 	}
1732 
1733 	/* allocate descriptors */
1734 	dd->dd_desc = pci_alloc_consistent(sc->pdev,
1735 			      dd->dd_desc_len,
1736 			      &dd->dd_desc_paddr);
1737 	if (dd->dd_desc == NULL) {
1738 		error = -ENOMEM;
1739 		goto fail;
1740 	}
1741 	ds = dd->dd_desc;
1742 	DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1743 		dd->dd_name, ds, (u32) dd->dd_desc_len,
1744 		ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1745 
1746 	/* allocate buffers */
1747 	bsize = sizeof(struct ath_buf) * nbuf;
1748 	bf = kmalloc(bsize, GFP_KERNEL);
1749 	if (bf == NULL) {
1750 		error = -ENOMEM;
1751 		goto fail2;
1752 	}
1753 	memset(bf, 0, bsize);
1754 	dd->dd_bufptr = bf;
1755 
1756 	INIT_LIST_HEAD(head);
1757 	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1758 		bf->bf_desc = ds;
1759 		bf->bf_daddr = DS2PHYS(dd, ds);
1760 
1761 		if (!(sc->sc_ah->ah_caps.hw_caps &
1762 		      ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1763 			/*
1764 			 * Skip descriptor addresses which can cause 4KB
1765 			 * boundary crossing (addr + length) with a 32 dword
1766 			 * descriptor fetch.
1767 			 */
1768 			while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1769 				ASSERT((caddr_t) bf->bf_desc <
1770 				       ((caddr_t) dd->dd_desc +
1771 					dd->dd_desc_len));
1772 
1773 				ds += ndesc;
1774 				bf->bf_desc = ds;
1775 				bf->bf_daddr = DS2PHYS(dd, ds);
1776 			}
1777 		}
1778 		list_add_tail(&bf->list, head);
1779 	}
1780 	return 0;
1781 fail2:
1782 	pci_free_consistent(sc->pdev,
1783 		dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1784 fail:
1785 	memset(dd, 0, sizeof(*dd));
1786 	return error;
1787 #undef ATH_DESC_4KB_BOUND_CHECK
1788 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1789 #undef DS2PHYS
1790 }
1791 
ath_descdma_cleanup(struct ath_softc * sc,struct ath_descdma * dd,struct list_head * head)1792 void ath_descdma_cleanup(struct ath_softc *sc,
1793 			 struct ath_descdma *dd,
1794 			 struct list_head *head)
1795 {
1796 	pci_free_consistent(sc->pdev,
1797 		dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1798 
1799 	INIT_LIST_HEAD(head);
1800 	kfree(dd->dd_bufptr);
1801 	memset(dd, 0, sizeof(*dd));
1802 }
1803 
ath_get_hal_qnum(u16 queue,struct ath_softc * sc)1804 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1805 {
1806 	int qnum;
1807 
1808 	switch (queue) {
1809 	case 0:
1810 		qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1811 		break;
1812 	case 1:
1813 		qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1814 		break;
1815 	case 2:
1816 		qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1817 		break;
1818 	case 3:
1819 		qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1820 		break;
1821 	default:
1822 		qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1823 		break;
1824 	}
1825 
1826 	return qnum;
1827 }
1828 
ath_get_mac80211_qnum(u32 queue,struct ath_softc * sc)1829 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1830 {
1831 	int qnum;
1832 
1833 	switch (queue) {
1834 	case ATH9K_WME_AC_VO:
1835 		qnum = 0;
1836 		break;
1837 	case ATH9K_WME_AC_VI:
1838 		qnum = 1;
1839 		break;
1840 	case ATH9K_WME_AC_BE:
1841 		qnum = 2;
1842 		break;
1843 	case ATH9K_WME_AC_BK:
1844 		qnum = 3;
1845 		break;
1846 	default:
1847 		qnum = -1;
1848 		break;
1849 	}
1850 
1851 	return qnum;
1852 }
1853 
1854 /**********************/
1855 /* mac80211 callbacks */
1856 /**********************/
1857 
ath9k_start(struct ieee80211_hw * hw)1858 static int ath9k_start(struct ieee80211_hw *hw)
1859 {
1860 	struct ath_softc *sc = hw->priv;
1861 	struct ieee80211_channel *curchan = hw->conf.channel;
1862 	struct ath9k_channel *init_channel;
1863 	int error = 0, pos, status;
1864 
1865 	DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1866 		"initial channel: %d MHz\n", curchan->center_freq);
1867 
1868 	/* setup initial channel */
1869 
1870 	pos = ath_get_channel(sc, curchan);
1871 	if (pos == -1) {
1872 		DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n", curchan->center_freq);
1873 		error = -EINVAL;
1874 		goto error;
1875 	}
1876 
1877 	sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1878 	sc->sc_ah->ah_channels[pos].chanmode =
1879 		(curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1880 	init_channel = &sc->sc_ah->ah_channels[pos];
1881 
1882 	/* Reset SERDES registers */
1883 	ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1884 
1885 	/*
1886 	 * The basic interface to setting the hardware in a good
1887 	 * state is ``reset''.  On return the hardware is known to
1888 	 * be powered up and with interrupts disabled.  This must
1889 	 * be followed by initialization of the appropriate bits
1890 	 * and then setup of the interrupt mask.
1891 	 */
1892 	spin_lock_bh(&sc->sc_resetlock);
1893 	if (!ath9k_hw_reset(sc->sc_ah, init_channel,
1894 			    sc->tx_chan_width,
1895 			    sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1896 			    sc->sc_ht_extprotspacing, false, &status)) {
1897 		DPRINTF(sc, ATH_DBG_FATAL,
1898 			"Unable to reset hardware; hal status %u "
1899 			"(freq %u flags 0x%x)\n", status,
1900 			init_channel->channel, init_channel->channelFlags);
1901 		error = -EIO;
1902 		spin_unlock_bh(&sc->sc_resetlock);
1903 		goto error;
1904 	}
1905 	spin_unlock_bh(&sc->sc_resetlock);
1906 
1907 	/*
1908 	 * This is needed only to setup initial state
1909 	 * but it's best done after a reset.
1910 	 */
1911 	ath_update_txpow(sc);
1912 
1913 	/*
1914 	 * Setup the hardware after reset:
1915 	 * The receive engine is set going.
1916 	 * Frame transmit is handled entirely
1917 	 * in the frame output path; there's nothing to do
1918 	 * here except setup the interrupt mask.
1919 	 */
1920 	if (ath_startrecv(sc) != 0) {
1921 		DPRINTF(sc, ATH_DBG_FATAL,
1922 			"Unable to start recv logic\n");
1923 		error = -EIO;
1924 		goto error;
1925 	}
1926 
1927 	/* Setup our intr mask. */
1928 	sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1929 		| ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1930 		| ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1931 
1932 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1933 		sc->sc_imask |= ATH9K_INT_GTT;
1934 
1935 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1936 		sc->sc_imask |= ATH9K_INT_CST;
1937 
1938 	/*
1939 	 * Enable MIB interrupts when there are hardware phy counters.
1940 	 * Note we only do this (at the moment) for station mode.
1941 	 */
1942 	if (ath9k_hw_phycounters(sc->sc_ah) &&
1943 	    ((sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) ||
1944 	     (sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC)))
1945 		sc->sc_imask |= ATH9K_INT_MIB;
1946 	/*
1947 	 * Some hardware processes the TIM IE and fires an
1948 	 * interrupt when the TIM bit is set.  For hardware
1949 	 * that does, if not overridden by configuration,
1950 	 * enable the TIM interrupt when operating as station.
1951 	 */
1952 	if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1953 	    (sc->sc_ah->ah_opmode == NL80211_IFTYPE_STATION) &&
1954 	    !sc->sc_config.swBeaconProcess)
1955 		sc->sc_imask |= ATH9K_INT_TIM;
1956 
1957 	ath_setcurmode(sc, ath_chan2mode(init_channel));
1958 
1959 	sc->sc_flags &= ~SC_OP_INVALID;
1960 
1961 	/* Disable BMISS interrupt when we're not associated */
1962 	sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1963 	ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1964 
1965 	ieee80211_wake_queues(sc->hw);
1966 
1967 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1968 	error = ath_start_rfkill_poll(sc);
1969 #endif
1970 
1971 error:
1972 	return error;
1973 }
1974 
ath9k_tx(struct ieee80211_hw * hw,struct sk_buff * skb)1975 static int ath9k_tx(struct ieee80211_hw *hw,
1976 		    struct sk_buff *skb)
1977 {
1978 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1979 	struct ath_softc *sc = hw->priv;
1980 	struct ath_tx_control txctl;
1981 	int hdrlen, padsize;
1982 
1983 	memset(&txctl, 0, sizeof(struct ath_tx_control));
1984 
1985 	/*
1986 	 * As a temporary workaround, assign seq# here; this will likely need
1987 	 * to be cleaned up to work better with Beacon transmission and virtual
1988 	 * BSSes.
1989 	 */
1990 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1991 		struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1992 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1993 			sc->tx.seq_no += 0x10;
1994 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1995 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1996 	}
1997 
1998 	/* Add the padding after the header if this is not already done */
1999 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2000 	if (hdrlen & 3) {
2001 		padsize = hdrlen % 4;
2002 		if (skb_headroom(skb) < padsize)
2003 			return -1;
2004 		skb_push(skb, padsize);
2005 		memmove(skb->data, skb->data + padsize, hdrlen);
2006 	}
2007 
2008 	/* Check if a tx queue is available */
2009 
2010 	txctl.txq = ath_test_get_txq(sc, skb);
2011 	if (!txctl.txq)
2012 		goto exit;
2013 
2014 	DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2015 
2016 	if (ath_tx_start(sc, skb, &txctl) != 0) {
2017 		DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2018 		goto exit;
2019 	}
2020 
2021 	return 0;
2022 exit:
2023 	dev_kfree_skb_any(skb);
2024 	return 0;
2025 }
2026 
ath9k_stop(struct ieee80211_hw * hw)2027 static void ath9k_stop(struct ieee80211_hw *hw)
2028 {
2029 	struct ath_softc *sc = hw->priv;
2030 
2031 	if (sc->sc_flags & SC_OP_INVALID) {
2032 		DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2033 		return;
2034 	}
2035 
2036 	DPRINTF(sc, ATH_DBG_CONFIG, "Cleaning up\n");
2037 
2038 	ieee80211_stop_queues(sc->hw);
2039 
2040 	/* make sure h/w will not generate any interrupt
2041 	 * before setting the invalid flag. */
2042 	ath9k_hw_set_interrupts(sc->sc_ah, 0);
2043 
2044 	if (!(sc->sc_flags & SC_OP_INVALID)) {
2045 		ath_draintxq(sc, false);
2046 		ath_stoprecv(sc);
2047 		ath9k_hw_phy_disable(sc->sc_ah);
2048 	} else
2049 		sc->rx.rxlink = NULL;
2050 
2051 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2052 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2053 		cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2054 #endif
2055 	/* disable HAL and put h/w to sleep */
2056 	ath9k_hw_disable(sc->sc_ah);
2057 	ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2058 
2059 	sc->sc_flags |= SC_OP_INVALID;
2060 
2061 	DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2062 }
2063 
ath9k_add_interface(struct ieee80211_hw * hw,struct ieee80211_if_init_conf * conf)2064 static int ath9k_add_interface(struct ieee80211_hw *hw,
2065 			       struct ieee80211_if_init_conf *conf)
2066 {
2067 	struct ath_softc *sc = hw->priv;
2068 	struct ath_vap *avp = (void *)conf->vif->drv_priv;
2069 	enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2070 
2071 	/* Support only vap for now */
2072 
2073 	if (sc->sc_nvaps)
2074 		return -ENOBUFS;
2075 
2076 	switch (conf->type) {
2077 	case NL80211_IFTYPE_STATION:
2078 		ic_opmode = NL80211_IFTYPE_STATION;
2079 		break;
2080 	case NL80211_IFTYPE_ADHOC:
2081 		ic_opmode = NL80211_IFTYPE_ADHOC;
2082 		break;
2083 	case NL80211_IFTYPE_AP:
2084 		ic_opmode = NL80211_IFTYPE_AP;
2085 		break;
2086 	default:
2087 		DPRINTF(sc, ATH_DBG_FATAL,
2088 			"Interface type %d not yet supported\n", conf->type);
2089 		return -EOPNOTSUPP;
2090 	}
2091 
2092 	DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode);
2093 
2094 	/* Set the VAP opmode */
2095 	avp->av_opmode = ic_opmode;
2096 	avp->av_bslot = -1;
2097 
2098 	if (ic_opmode == NL80211_IFTYPE_AP)
2099 		ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2100 
2101 	sc->sc_vaps[0] = conf->vif;
2102 	sc->sc_nvaps++;
2103 
2104 	/* Set the device opmode */
2105 	sc->sc_ah->ah_opmode = ic_opmode;
2106 
2107 	if (conf->type == NL80211_IFTYPE_AP) {
2108 		/* TODO: is this a suitable place to start ANI for AP mode? */
2109 		/* Start ANI */
2110 		mod_timer(&sc->sc_ani.timer,
2111 			  jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
2112 	}
2113 
2114 	return 0;
2115 }
2116 
ath9k_remove_interface(struct ieee80211_hw * hw,struct ieee80211_if_init_conf * conf)2117 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2118 				   struct ieee80211_if_init_conf *conf)
2119 {
2120 	struct ath_softc *sc = hw->priv;
2121 	struct ath_vap *avp = (void *)conf->vif->drv_priv;
2122 
2123 	DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2124 
2125 	/* Stop ANI */
2126 	del_timer_sync(&sc->sc_ani.timer);
2127 
2128 	/* Reclaim beacon resources */
2129 	if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP ||
2130 	    sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) {
2131 		ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2132 		ath_beacon_return(sc, avp);
2133 	}
2134 
2135 	sc->sc_flags &= ~SC_OP_BEACONS;
2136 
2137 	sc->sc_vaps[0] = NULL;
2138 	sc->sc_nvaps--;
2139 }
2140 
ath9k_config(struct ieee80211_hw * hw,u32 changed)2141 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2142 {
2143 	struct ath_softc *sc = hw->priv;
2144 	struct ieee80211_conf *conf = &hw->conf;
2145 
2146 	mutex_lock(&sc->mutex);
2147 	if (changed & (IEEE80211_CONF_CHANGE_CHANNEL |
2148 		       IEEE80211_CONF_CHANGE_HT)) {
2149 		struct ieee80211_channel *curchan = hw->conf.channel;
2150 		int pos;
2151 
2152 		DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2153 			curchan->center_freq);
2154 
2155 		pos = ath_get_channel(sc, curchan);
2156 		if (pos == -1) {
2157 			DPRINTF(sc, ATH_DBG_FATAL, "Invalid channel: %d\n",
2158 				curchan->center_freq);
2159 			mutex_unlock(&sc->mutex);
2160 			return -EINVAL;
2161 		}
2162 
2163 		sc->tx_chan_width = ATH9K_HT_MACMODE_20;
2164 		sc->sc_ah->ah_channels[pos].chanmode =
2165 			(curchan->band == IEEE80211_BAND_2GHZ) ?
2166 			CHANNEL_G : CHANNEL_A;
2167 
2168 		if (conf->ht.enabled) {
2169 			if (conf->ht.channel_type == NL80211_CHAN_HT40PLUS ||
2170 			    conf->ht.channel_type == NL80211_CHAN_HT40MINUS)
2171 				sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
2172 
2173 			sc->sc_ah->ah_channels[pos].chanmode =
2174 				ath_get_extchanmode(sc, curchan,
2175 						    conf->ht.channel_type);
2176 		}
2177 
2178 		ath_update_chainmask(sc, conf->ht.enabled);
2179 
2180 		if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) {
2181 			DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2182 			mutex_unlock(&sc->mutex);
2183 			return -EINVAL;
2184 		}
2185 	}
2186 
2187 	if (changed & IEEE80211_CONF_CHANGE_POWER)
2188 		sc->sc_config.txpowlimit = 2 * conf->power_level;
2189 
2190 	mutex_unlock(&sc->mutex);
2191 	return 0;
2192 }
2193 
ath9k_config_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_if_conf * conf)2194 static int ath9k_config_interface(struct ieee80211_hw *hw,
2195 				  struct ieee80211_vif *vif,
2196 				  struct ieee80211_if_conf *conf)
2197 {
2198 	struct ath_softc *sc = hw->priv;
2199 	struct ath_hal *ah = sc->sc_ah;
2200 	struct ath_vap *avp = (void *)vif->drv_priv;
2201 	u32 rfilt = 0;
2202 	int error, i;
2203 
2204 	/* TODO: Need to decide which hw opmode to use for multi-interface
2205 	 * cases */
2206 	if (vif->type == NL80211_IFTYPE_AP &&
2207 	    ah->ah_opmode != NL80211_IFTYPE_AP) {
2208 		ah->ah_opmode = NL80211_IFTYPE_STATION;
2209 		ath9k_hw_setopmode(ah);
2210 		ath9k_hw_write_associd(ah, sc->sc_myaddr, 0);
2211 		/* Request full reset to get hw opmode changed properly */
2212 		sc->sc_flags |= SC_OP_FULL_RESET;
2213 	}
2214 
2215 	if ((conf->changed & IEEE80211_IFCC_BSSID) &&
2216 	    !is_zero_ether_addr(conf->bssid)) {
2217 		switch (vif->type) {
2218 		case NL80211_IFTYPE_STATION:
2219 		case NL80211_IFTYPE_ADHOC:
2220 			/* Set BSSID */
2221 			memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN);
2222 			sc->sc_curaid = 0;
2223 			ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid,
2224 					       sc->sc_curaid);
2225 
2226 			/* Set aggregation protection mode parameters */
2227 			sc->sc_config.ath_aggr_prot = 0;
2228 
2229 			DPRINTF(sc, ATH_DBG_CONFIG,
2230 				"RX filter 0x%x bssid %pM aid 0x%x\n",
2231 				rfilt, sc->sc_curbssid, sc->sc_curaid);
2232 
2233 			/* need to reconfigure the beacon */
2234 			sc->sc_flags &= ~SC_OP_BEACONS ;
2235 
2236 			break;
2237 		default:
2238 			break;
2239 		}
2240 	}
2241 
2242 	if ((conf->changed & IEEE80211_IFCC_BEACON) &&
2243 	    ((vif->type == NL80211_IFTYPE_ADHOC) ||
2244 	     (vif->type == NL80211_IFTYPE_AP))) {
2245 		/*
2246 		 * Allocate and setup the beacon frame.
2247 		 *
2248 		 * Stop any previous beacon DMA.  This may be
2249 		 * necessary, for example, when an ibss merge
2250 		 * causes reconfiguration; we may be called
2251 		 * with beacon transmission active.
2252 		 */
2253 		ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2254 
2255 		error = ath_beacon_alloc(sc, 0);
2256 		if (error != 0)
2257 			return error;
2258 
2259 		ath_beacon_sync(sc, 0);
2260 	}
2261 
2262 	/* Check for WLAN_CAPABILITY_PRIVACY ? */
2263 	if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2264 		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2265 			if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2266 				ath9k_hw_keysetmac(sc->sc_ah,
2267 						   (u16)i,
2268 						   sc->sc_curbssid);
2269 	}
2270 
2271 	/* Only legacy IBSS for now */
2272 	if (vif->type == NL80211_IFTYPE_ADHOC)
2273 		ath_update_chainmask(sc, 0);
2274 
2275 	return 0;
2276 }
2277 
2278 #define SUPPORTED_FILTERS			\
2279 	(FIF_PROMISC_IN_BSS |			\
2280 	FIF_ALLMULTI |				\
2281 	FIF_CONTROL |				\
2282 	FIF_OTHER_BSS |				\
2283 	FIF_BCN_PRBRESP_PROMISC |		\
2284 	FIF_FCSFAIL)
2285 
2286 /* FIXME: sc->sc_full_reset ? */
ath9k_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * total_flags,int mc_count,struct dev_mc_list * mclist)2287 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2288 				   unsigned int changed_flags,
2289 				   unsigned int *total_flags,
2290 				   int mc_count,
2291 				   struct dev_mc_list *mclist)
2292 {
2293 	struct ath_softc *sc = hw->priv;
2294 	u32 rfilt;
2295 
2296 	changed_flags &= SUPPORTED_FILTERS;
2297 	*total_flags &= SUPPORTED_FILTERS;
2298 
2299 	sc->rx.rxfilter = *total_flags;
2300 	rfilt = ath_calcrxfilter(sc);
2301 	ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2302 
2303 	if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
2304 		if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
2305 			ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0);
2306 	}
2307 
2308 	DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2309 }
2310 
ath9k_sta_notify(struct ieee80211_hw * hw,struct ieee80211_vif * vif,enum sta_notify_cmd cmd,struct ieee80211_sta * sta)2311 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2312 			     struct ieee80211_vif *vif,
2313 			     enum sta_notify_cmd cmd,
2314 			     struct ieee80211_sta *sta)
2315 {
2316 	struct ath_softc *sc = hw->priv;
2317 
2318 	switch (cmd) {
2319 	case STA_NOTIFY_ADD:
2320 		ath_node_attach(sc, sta);
2321 		break;
2322 	case STA_NOTIFY_REMOVE:
2323 		ath_node_detach(sc, sta);
2324 		break;
2325 	default:
2326 		break;
2327 	}
2328 }
2329 
ath9k_conf_tx(struct ieee80211_hw * hw,u16 queue,const struct ieee80211_tx_queue_params * params)2330 static int ath9k_conf_tx(struct ieee80211_hw *hw,
2331 			 u16 queue,
2332 			 const struct ieee80211_tx_queue_params *params)
2333 {
2334 	struct ath_softc *sc = hw->priv;
2335 	struct ath9k_tx_queue_info qi;
2336 	int ret = 0, qnum;
2337 
2338 	if (queue >= WME_NUM_AC)
2339 		return 0;
2340 
2341 	qi.tqi_aifs = params->aifs;
2342 	qi.tqi_cwmin = params->cw_min;
2343 	qi.tqi_cwmax = params->cw_max;
2344 	qi.tqi_burstTime = params->txop;
2345 	qnum = ath_get_hal_qnum(queue, sc);
2346 
2347 	DPRINTF(sc, ATH_DBG_CONFIG,
2348 		"Configure tx [queue/halq] [%d/%d],  "
2349 		"aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2350 		queue, qnum, params->aifs, params->cw_min,
2351 		params->cw_max, params->txop);
2352 
2353 	ret = ath_txq_update(sc, qnum, &qi);
2354 	if (ret)
2355 		DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2356 
2357 	return ret;
2358 }
2359 
ath9k_set_key(struct ieee80211_hw * hw,enum set_key_cmd cmd,const u8 * local_addr,const u8 * addr,struct ieee80211_key_conf * key)2360 static int ath9k_set_key(struct ieee80211_hw *hw,
2361 			 enum set_key_cmd cmd,
2362 			 const u8 *local_addr,
2363 			 const u8 *addr,
2364 			 struct ieee80211_key_conf *key)
2365 {
2366 	struct ath_softc *sc = hw->priv;
2367 	int ret = 0;
2368 
2369 	DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n");
2370 
2371 	switch (cmd) {
2372 	case SET_KEY:
2373 		ret = ath_key_config(sc, addr, key);
2374 		if (ret >= 0) {
2375 			key->hw_key_idx = ret;
2376 			/* push IV and Michael MIC generation to stack */
2377 			key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2378 			if (key->alg == ALG_TKIP)
2379 				key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2380 			ret = 0;
2381 		}
2382 		break;
2383 	case DISABLE_KEY:
2384 		ath_key_delete(sc, key);
2385 		break;
2386 	default:
2387 		ret = -EINVAL;
2388 	}
2389 
2390 	return ret;
2391 }
2392 
ath9k_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changed)2393 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2394 				   struct ieee80211_vif *vif,
2395 				   struct ieee80211_bss_conf *bss_conf,
2396 				   u32 changed)
2397 {
2398 	struct ath_softc *sc = hw->priv;
2399 
2400 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2401 		DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2402 			bss_conf->use_short_preamble);
2403 		if (bss_conf->use_short_preamble)
2404 			sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2405 		else
2406 			sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2407 	}
2408 
2409 	if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2410 		DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2411 			bss_conf->use_cts_prot);
2412 		if (bss_conf->use_cts_prot &&
2413 		    hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2414 			sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2415 		else
2416 			sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2417 	}
2418 
2419 	if (changed & BSS_CHANGED_ASSOC) {
2420 		DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2421 			bss_conf->assoc);
2422 		ath9k_bss_assoc_info(sc, vif, bss_conf);
2423 	}
2424 }
2425 
ath9k_get_tsf(struct ieee80211_hw * hw)2426 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2427 {
2428 	u64 tsf;
2429 	struct ath_softc *sc = hw->priv;
2430 	struct ath_hal *ah = sc->sc_ah;
2431 
2432 	tsf = ath9k_hw_gettsf64(ah);
2433 
2434 	return tsf;
2435 }
2436 
ath9k_reset_tsf(struct ieee80211_hw * hw)2437 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2438 {
2439 	struct ath_softc *sc = hw->priv;
2440 	struct ath_hal *ah = sc->sc_ah;
2441 
2442 	ath9k_hw_reset_tsf(ah);
2443 }
2444 
ath9k_ampdu_action(struct ieee80211_hw * hw,enum ieee80211_ampdu_mlme_action action,struct ieee80211_sta * sta,u16 tid,u16 * ssn)2445 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2446 		       enum ieee80211_ampdu_mlme_action action,
2447 		       struct ieee80211_sta *sta,
2448 		       u16 tid, u16 *ssn)
2449 {
2450 	struct ath_softc *sc = hw->priv;
2451 	int ret = 0;
2452 
2453 	switch (action) {
2454 	case IEEE80211_AMPDU_RX_START:
2455 		if (!(sc->sc_flags & SC_OP_RXAGGR))
2456 			ret = -ENOTSUPP;
2457 		break;
2458 	case IEEE80211_AMPDU_RX_STOP:
2459 		break;
2460 	case IEEE80211_AMPDU_TX_START:
2461 		ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2462 		if (ret < 0)
2463 			DPRINTF(sc, ATH_DBG_FATAL,
2464 				"Unable to start TX aggregation\n");
2465 		else
2466 			ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2467 		break;
2468 	case IEEE80211_AMPDU_TX_STOP:
2469 		ret = ath_tx_aggr_stop(sc, sta, tid);
2470 		if (ret < 0)
2471 			DPRINTF(sc, ATH_DBG_FATAL,
2472 				"Unable to stop TX aggregation\n");
2473 
2474 		ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2475 		break;
2476 	case IEEE80211_AMPDU_TX_RESUME:
2477 		ath_tx_aggr_resume(sc, sta, tid);
2478 		break;
2479 	default:
2480 		DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2481 	}
2482 
2483 	return ret;
2484 }
2485 
2486 static struct ieee80211_ops ath9k_ops = {
2487 	.tx 		    = ath9k_tx,
2488 	.start 		    = ath9k_start,
2489 	.stop 		    = ath9k_stop,
2490 	.add_interface 	    = ath9k_add_interface,
2491 	.remove_interface   = ath9k_remove_interface,
2492 	.config 	    = ath9k_config,
2493 	.config_interface   = ath9k_config_interface,
2494 	.configure_filter   = ath9k_configure_filter,
2495 	.sta_notify         = ath9k_sta_notify,
2496 	.conf_tx 	    = ath9k_conf_tx,
2497 	.bss_info_changed   = ath9k_bss_info_changed,
2498 	.set_key            = ath9k_set_key,
2499 	.get_tsf 	    = ath9k_get_tsf,
2500 	.reset_tsf 	    = ath9k_reset_tsf,
2501 	.ampdu_action       = ath9k_ampdu_action,
2502 };
2503 
2504 static struct {
2505 	u32 version;
2506 	const char * name;
2507 } ath_mac_bb_names[] = {
2508 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2509 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2510 	{ AR_SREV_VERSION_9100,		"9100" },
2511 	{ AR_SREV_VERSION_9160,		"9160" },
2512 	{ AR_SREV_VERSION_9280,		"9280" },
2513 	{ AR_SREV_VERSION_9285,		"9285" }
2514 };
2515 
2516 static struct {
2517 	u16 version;
2518 	const char * name;
2519 } ath_rf_names[] = {
2520 	{ 0,				"5133" },
2521 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2522 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2523 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2524 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2525 };
2526 
2527 /*
2528  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2529  */
2530 static const char *
ath_mac_bb_name(u32 mac_bb_version)2531 ath_mac_bb_name(u32 mac_bb_version)
2532 {
2533 	int i;
2534 
2535 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2536 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2537 			return ath_mac_bb_names[i].name;
2538 		}
2539 	}
2540 
2541 	return "????";
2542 }
2543 
2544 /*
2545  * Return the RF name. "????" is returned if the RF is unknown.
2546  */
2547 static const char *
ath_rf_name(u16 rf_version)2548 ath_rf_name(u16 rf_version)
2549 {
2550 	int i;
2551 
2552 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2553 		if (ath_rf_names[i].version == rf_version) {
2554 			return ath_rf_names[i].name;
2555 		}
2556 	}
2557 
2558 	return "????";
2559 }
2560 
ath_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)2561 static int ath_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2562 {
2563 	void __iomem *mem;
2564 	struct ath_softc *sc;
2565 	struct ieee80211_hw *hw;
2566 	u8 csz;
2567 	u32 val;
2568 	int ret = 0;
2569 	struct ath_hal *ah;
2570 
2571 	if (pci_enable_device(pdev))
2572 		return -EIO;
2573 
2574 	ret =  pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2575 
2576 	if (ret) {
2577 		printk(KERN_ERR "ath9k: 32-bit DMA not available\n");
2578 		goto bad;
2579 	}
2580 
2581 	ret = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2582 
2583 	if (ret) {
2584 		printk(KERN_ERR "ath9k: 32-bit DMA consistent "
2585 			"DMA enable failed\n");
2586 		goto bad;
2587 	}
2588 
2589 	/*
2590 	 * Cache line size is used to size and align various
2591 	 * structures used to communicate with the hardware.
2592 	 */
2593 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
2594 	if (csz == 0) {
2595 		/*
2596 		 * Linux 2.4.18 (at least) writes the cache line size
2597 		 * register as a 16-bit wide register which is wrong.
2598 		 * We must have this setup properly for rx buffer
2599 		 * DMA to work so force a reasonable value here if it
2600 		 * comes up zero.
2601 		 */
2602 		csz = L1_CACHE_BYTES / sizeof(u32);
2603 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
2604 	}
2605 	/*
2606 	 * The default setting of latency timer yields poor results,
2607 	 * set it to the value used by other systems. It may be worth
2608 	 * tweaking this setting more.
2609 	 */
2610 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
2611 
2612 	pci_set_master(pdev);
2613 
2614 	/*
2615 	 * Disable the RETRY_TIMEOUT register (0x41) to keep
2616 	 * PCI Tx retries from interfering with C3 CPU state.
2617 	 */
2618 	pci_read_config_dword(pdev, 0x40, &val);
2619 	if ((val & 0x0000ff00) != 0)
2620 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2621 
2622 	ret = pci_request_region(pdev, 0, "ath9k");
2623 	if (ret) {
2624 		dev_err(&pdev->dev, "PCI memory region reserve error\n");
2625 		ret = -ENODEV;
2626 		goto bad;
2627 	}
2628 
2629 	mem = pci_iomap(pdev, 0, 0);
2630 	if (!mem) {
2631 		printk(KERN_ERR "PCI memory map error\n") ;
2632 		ret = -EIO;
2633 		goto bad1;
2634 	}
2635 
2636 	hw = ieee80211_alloc_hw(sizeof(struct ath_softc), &ath9k_ops);
2637 	if (hw == NULL) {
2638 		printk(KERN_ERR "ath_pci: no memory for ieee80211_hw\n");
2639 		goto bad2;
2640 	}
2641 
2642 	SET_IEEE80211_DEV(hw, &pdev->dev);
2643 	pci_set_drvdata(pdev, hw);
2644 
2645 	sc = hw->priv;
2646 	sc->hw = hw;
2647 	sc->pdev = pdev;
2648 	sc->mem = mem;
2649 
2650 	if (ath_attach(id->device, sc) != 0) {
2651 		ret = -ENODEV;
2652 		goto bad3;
2653 	}
2654 
2655 	/* setup interrupt service routine */
2656 
2657 	if (request_irq(pdev->irq, ath_isr, IRQF_SHARED, "ath", sc)) {
2658 		printk(KERN_ERR "%s: request_irq failed\n",
2659 			wiphy_name(hw->wiphy));
2660 		ret = -EIO;
2661 		goto bad4;
2662 	}
2663 
2664 	ah = sc->sc_ah;
2665 	printk(KERN_INFO
2666 	       "%s: Atheros AR%s MAC/BB Rev:%x "
2667 	       "AR%s RF Rev:%x: mem=0x%lx, irq=%d\n",
2668 	       wiphy_name(hw->wiphy),
2669 	       ath_mac_bb_name(ah->ah_macVersion),
2670 	       ah->ah_macRev,
2671 	       ath_rf_name((ah->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR)),
2672 	       ah->ah_phyRev,
2673 	       (unsigned long)mem, pdev->irq);
2674 
2675 	return 0;
2676 bad4:
2677 	ath_detach(sc);
2678 bad3:
2679 	ieee80211_free_hw(hw);
2680 bad2:
2681 	pci_iounmap(pdev, mem);
2682 bad1:
2683 	pci_release_region(pdev, 0);
2684 bad:
2685 	pci_disable_device(pdev);
2686 	return ret;
2687 }
2688 
ath_pci_remove(struct pci_dev * pdev)2689 static void ath_pci_remove(struct pci_dev *pdev)
2690 {
2691 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2692 	struct ath_softc *sc = hw->priv;
2693 
2694 	ath_detach(sc);
2695 	if (pdev->irq)
2696 		free_irq(pdev->irq, sc);
2697 	pci_iounmap(pdev, sc->mem);
2698 	pci_release_region(pdev, 0);
2699 	pci_disable_device(pdev);
2700 	ieee80211_free_hw(hw);
2701 }
2702 
2703 #ifdef CONFIG_PM
2704 
ath_pci_suspend(struct pci_dev * pdev,pm_message_t state)2705 static int ath_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2706 {
2707 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2708 	struct ath_softc *sc = hw->priv;
2709 
2710 	ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2711 
2712 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2713 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2714 		cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2715 #endif
2716 
2717 	pci_save_state(pdev);
2718 	pci_disable_device(pdev);
2719 	pci_set_power_state(pdev, 3);
2720 
2721 	return 0;
2722 }
2723 
ath_pci_resume(struct pci_dev * pdev)2724 static int ath_pci_resume(struct pci_dev *pdev)
2725 {
2726 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
2727 	struct ath_softc *sc = hw->priv;
2728 	u32 val;
2729 	int err;
2730 
2731 	err = pci_enable_device(pdev);
2732 	if (err)
2733 		return err;
2734 	pci_restore_state(pdev);
2735 	/*
2736 	 * Suspend/Resume resets the PCI configuration space, so we have to
2737 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep
2738 	 * PCI Tx retries from interfering with C3 CPU state
2739 	 */
2740 	pci_read_config_dword(pdev, 0x40, &val);
2741 	if ((val & 0x0000ff00) != 0)
2742 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2743 
2744 	/* Enable LED */
2745 	ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
2746 			    AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
2747 	ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
2748 
2749 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2750 	/*
2751 	 * check the h/w rfkill state on resume
2752 	 * and start the rfkill poll timer
2753 	 */
2754 	if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2755 		queue_delayed_work(sc->hw->workqueue,
2756 				   &sc->rf_kill.rfkill_poll, 0);
2757 #endif
2758 
2759 	return 0;
2760 }
2761 
2762 #endif /* CONFIG_PM */
2763 
2764 MODULE_DEVICE_TABLE(pci, ath_pci_id_table);
2765 
2766 static struct pci_driver ath_pci_driver = {
2767 	.name       = "ath9k",
2768 	.id_table   = ath_pci_id_table,
2769 	.probe      = ath_pci_probe,
2770 	.remove     = ath_pci_remove,
2771 #ifdef CONFIG_PM
2772 	.suspend    = ath_pci_suspend,
2773 	.resume     = ath_pci_resume,
2774 #endif /* CONFIG_PM */
2775 };
2776 
init_ath_pci(void)2777 static int __init init_ath_pci(void)
2778 {
2779 	int error;
2780 
2781 	printk(KERN_INFO "%s: %s\n", dev_info, ATH_PCI_VERSION);
2782 
2783 	/* Register rate control algorithm */
2784 	error = ath_rate_control_register();
2785 	if (error != 0) {
2786 		printk(KERN_ERR
2787 			"Unable to register rate control algorithm: %d\n",
2788 			error);
2789 		ath_rate_control_unregister();
2790 		return error;
2791 	}
2792 
2793 	if (pci_register_driver(&ath_pci_driver) < 0) {
2794 		printk(KERN_ERR
2795 			"ath_pci: No devices found, driver not installed.\n");
2796 		ath_rate_control_unregister();
2797 		pci_unregister_driver(&ath_pci_driver);
2798 		return -ENODEV;
2799 	}
2800 
2801 	return 0;
2802 }
2803 module_init(init_ath_pci);
2804 
exit_ath_pci(void)2805 static void __exit exit_ath_pci(void)
2806 {
2807 	ath_rate_control_unregister();
2808 	pci_unregister_driver(&ath_pci_driver);
2809 	printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2810 }
2811 module_exit(exit_ath_pci);
2812