• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62 
63 #include <net/mac80211.h>
64 
65 #include "iwl-dev.h"
66 #include "iwl-core.h"
67 #include "iwl-calib.h"
68 
69 /*****************************************************************************
70  * INIT calibrations framework
71  *****************************************************************************/
72 
73 struct statistics_general_data {
74 	u32 beacon_silence_rssi_a;
75 	u32 beacon_silence_rssi_b;
76 	u32 beacon_silence_rssi_c;
77 	u32 beacon_energy_a;
78 	u32 beacon_energy_b;
79 	u32 beacon_energy_c;
80 };
81 
iwl_send_calib_results(struct iwl_priv * priv)82 int iwl_send_calib_results(struct iwl_priv *priv)
83 {
84 	int ret = 0;
85 	int i = 0;
86 
87 	struct iwl_host_cmd hcmd = {
88 		.id = REPLY_PHY_CALIBRATION_CMD,
89 		.meta.flags = CMD_SIZE_HUGE,
90 	};
91 
92 	for (i = 0; i < IWL_CALIB_MAX; i++) {
93 		if ((BIT(i) & priv->hw_params.calib_init_cfg) &&
94 		    priv->calib_results[i].buf) {
95 			hcmd.len = priv->calib_results[i].buf_len;
96 			hcmd.data = priv->calib_results[i].buf;
97 			ret = iwl_send_cmd_sync(priv, &hcmd);
98 			if (ret)
99 				goto err;
100 		}
101 	}
102 
103 	return 0;
104 err:
105 	IWL_ERROR("Error %d iteration %d\n", ret, i);
106 	return ret;
107 }
108 EXPORT_SYMBOL(iwl_send_calib_results);
109 
iwl_calib_set(struct iwl_calib_result * res,const u8 * buf,int len)110 int iwl_calib_set(struct iwl_calib_result *res, const u8 *buf, int len)
111 {
112 	if (res->buf_len != len) {
113 		kfree(res->buf);
114 		res->buf = kzalloc(len, GFP_ATOMIC);
115 	}
116 	if (unlikely(res->buf == NULL))
117 		return -ENOMEM;
118 
119 	res->buf_len = len;
120 	memcpy(res->buf, buf, len);
121 	return 0;
122 }
123 EXPORT_SYMBOL(iwl_calib_set);
124 
iwl_calib_free_results(struct iwl_priv * priv)125 void iwl_calib_free_results(struct iwl_priv *priv)
126 {
127 	int i;
128 
129 	for (i = 0; i < IWL_CALIB_MAX; i++) {
130 		kfree(priv->calib_results[i].buf);
131 		priv->calib_results[i].buf = NULL;
132 		priv->calib_results[i].buf_len = 0;
133 	}
134 }
135 
136 /*****************************************************************************
137  * RUNTIME calibrations framework
138  *****************************************************************************/
139 
140 /* "false alarms" are signals that our DSP tries to lock onto,
141  *   but then determines that they are either noise, or transmissions
142  *   from a distant wireless network (also "noise", really) that get
143  *   "stepped on" by stronger transmissions within our own network.
144  * This algorithm attempts to set a sensitivity level that is high
145  *   enough to receive all of our own network traffic, but not so
146  *   high that our DSP gets too busy trying to lock onto non-network
147  *   activity/noise. */
iwl_sens_energy_cck(struct iwl_priv * priv,u32 norm_fa,u32 rx_enable_time,struct statistics_general_data * rx_info)148 static int iwl_sens_energy_cck(struct iwl_priv *priv,
149 				   u32 norm_fa,
150 				   u32 rx_enable_time,
151 				   struct statistics_general_data *rx_info)
152 {
153 	u32 max_nrg_cck = 0;
154 	int i = 0;
155 	u8 max_silence_rssi = 0;
156 	u32 silence_ref = 0;
157 	u8 silence_rssi_a = 0;
158 	u8 silence_rssi_b = 0;
159 	u8 silence_rssi_c = 0;
160 	u32 val;
161 
162 	/* "false_alarms" values below are cross-multiplications to assess the
163 	 *   numbers of false alarms within the measured period of actual Rx
164 	 *   (Rx is off when we're txing), vs the min/max expected false alarms
165 	 *   (some should be expected if rx is sensitive enough) in a
166 	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
167 	 *
168 	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
169 	 *
170 	 * */
171 	u32 false_alarms = norm_fa * 200 * 1024;
172 	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
173 	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
174 	struct iwl_sensitivity_data *data = NULL;
175 	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
176 
177 	data = &(priv->sensitivity_data);
178 
179 	data->nrg_auto_corr_silence_diff = 0;
180 
181 	/* Find max silence rssi among all 3 receivers.
182 	 * This is background noise, which may include transmissions from other
183 	 *    networks, measured during silence before our network's beacon */
184 	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
185 			    ALL_BAND_FILTER) >> 8);
186 	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
187 			    ALL_BAND_FILTER) >> 8);
188 	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
189 			    ALL_BAND_FILTER) >> 8);
190 
191 	val = max(silence_rssi_b, silence_rssi_c);
192 	max_silence_rssi = max(silence_rssi_a, (u8) val);
193 
194 	/* Store silence rssi in 20-beacon history table */
195 	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
196 	data->nrg_silence_idx++;
197 	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
198 		data->nrg_silence_idx = 0;
199 
200 	/* Find max silence rssi across 20 beacon history */
201 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
202 		val = data->nrg_silence_rssi[i];
203 		silence_ref = max(silence_ref, val);
204 	}
205 	IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n",
206 			silence_rssi_a, silence_rssi_b, silence_rssi_c,
207 			silence_ref);
208 
209 	/* Find max rx energy (min value!) among all 3 receivers,
210 	 *   measured during beacon frame.
211 	 * Save it in 10-beacon history table. */
212 	i = data->nrg_energy_idx;
213 	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
214 	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
215 
216 	data->nrg_energy_idx++;
217 	if (data->nrg_energy_idx >= 10)
218 		data->nrg_energy_idx = 0;
219 
220 	/* Find min rx energy (max value) across 10 beacon history.
221 	 * This is the minimum signal level that we want to receive well.
222 	 * Add backoff (margin so we don't miss slightly lower energy frames).
223 	 * This establishes an upper bound (min value) for energy threshold. */
224 	max_nrg_cck = data->nrg_value[0];
225 	for (i = 1; i < 10; i++)
226 		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
227 	max_nrg_cck += 6;
228 
229 	IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
230 			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
231 			rx_info->beacon_energy_c, max_nrg_cck - 6);
232 
233 	/* Count number of consecutive beacons with fewer-than-desired
234 	 *   false alarms. */
235 	if (false_alarms < min_false_alarms)
236 		data->num_in_cck_no_fa++;
237 	else
238 		data->num_in_cck_no_fa = 0;
239 	IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n",
240 			data->num_in_cck_no_fa);
241 
242 	/* If we got too many false alarms this time, reduce sensitivity */
243 	if ((false_alarms > max_false_alarms) &&
244 		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
245 		IWL_DEBUG_CALIB("norm FA %u > max FA %u\n",
246 		     false_alarms, max_false_alarms);
247 		IWL_DEBUG_CALIB("... reducing sensitivity\n");
248 		data->nrg_curr_state = IWL_FA_TOO_MANY;
249 		/* Store for "fewer than desired" on later beacon */
250 		data->nrg_silence_ref = silence_ref;
251 
252 		/* increase energy threshold (reduce nrg value)
253 		 *   to decrease sensitivity */
254 		if (data->nrg_th_cck >
255 			(ranges->max_nrg_cck + NRG_STEP_CCK))
256 			data->nrg_th_cck = data->nrg_th_cck
257 						 - NRG_STEP_CCK;
258 		else
259 			data->nrg_th_cck = ranges->max_nrg_cck;
260 	/* Else if we got fewer than desired, increase sensitivity */
261 	} else if (false_alarms < min_false_alarms) {
262 		data->nrg_curr_state = IWL_FA_TOO_FEW;
263 
264 		/* Compare silence level with silence level for most recent
265 		 *   healthy number or too many false alarms */
266 		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
267 						   (s32)silence_ref;
268 
269 		IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n",
270 			 false_alarms, min_false_alarms,
271 			 data->nrg_auto_corr_silence_diff);
272 
273 		/* Increase value to increase sensitivity, but only if:
274 		 * 1a) previous beacon did *not* have *too many* false alarms
275 		 * 1b) AND there's a significant difference in Rx levels
276 		 *      from a previous beacon with too many, or healthy # FAs
277 		 * OR 2) We've seen a lot of beacons (100) with too few
278 		 *       false alarms */
279 		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
280 			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
281 			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
282 
283 			IWL_DEBUG_CALIB("... increasing sensitivity\n");
284 			/* Increase nrg value to increase sensitivity */
285 			val = data->nrg_th_cck + NRG_STEP_CCK;
286 			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
287 		} else {
288 			IWL_DEBUG_CALIB("... but not changing sensitivity\n");
289 		}
290 
291 	/* Else we got a healthy number of false alarms, keep status quo */
292 	} else {
293 		IWL_DEBUG_CALIB(" FA in safe zone\n");
294 		data->nrg_curr_state = IWL_FA_GOOD_RANGE;
295 
296 		/* Store for use in "fewer than desired" with later beacon */
297 		data->nrg_silence_ref = silence_ref;
298 
299 		/* If previous beacon had too many false alarms,
300 		 *   give it some extra margin by reducing sensitivity again
301 		 *   (but don't go below measured energy of desired Rx) */
302 		if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
303 			IWL_DEBUG_CALIB("... increasing margin\n");
304 			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
305 				data->nrg_th_cck -= NRG_MARGIN;
306 			else
307 				data->nrg_th_cck = max_nrg_cck;
308 		}
309 	}
310 
311 	/* Make sure the energy threshold does not go above the measured
312 	 * energy of the desired Rx signals (reduced by backoff margin),
313 	 * or else we might start missing Rx frames.
314 	 * Lower value is higher energy, so we use max()!
315 	 */
316 	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
317 	IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
318 
319 	data->nrg_prev_state = data->nrg_curr_state;
320 
321 	/* Auto-correlation CCK algorithm */
322 	if (false_alarms > min_false_alarms) {
323 
324 		/* increase auto_corr values to decrease sensitivity
325 		 * so the DSP won't be disturbed by the noise
326 		 */
327 		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
328 			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
329 		else {
330 			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
331 			data->auto_corr_cck =
332 				min((u32)ranges->auto_corr_max_cck, val);
333 		}
334 		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
335 		data->auto_corr_cck_mrc =
336 			min((u32)ranges->auto_corr_max_cck_mrc, val);
337 	} else if ((false_alarms < min_false_alarms) &&
338 	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
339 	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
340 
341 		/* Decrease auto_corr values to increase sensitivity */
342 		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
343 		data->auto_corr_cck =
344 			max((u32)ranges->auto_corr_min_cck, val);
345 		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
346 		data->auto_corr_cck_mrc =
347 			max((u32)ranges->auto_corr_min_cck_mrc, val);
348 	}
349 
350 	return 0;
351 }
352 
353 
iwl_sens_auto_corr_ofdm(struct iwl_priv * priv,u32 norm_fa,u32 rx_enable_time)354 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
355 				       u32 norm_fa,
356 				       u32 rx_enable_time)
357 {
358 	u32 val;
359 	u32 false_alarms = norm_fa * 200 * 1024;
360 	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
361 	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
362 	struct iwl_sensitivity_data *data = NULL;
363 	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
364 
365 	data = &(priv->sensitivity_data);
366 
367 	/* If we got too many false alarms this time, reduce sensitivity */
368 	if (false_alarms > max_false_alarms) {
369 
370 		IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n",
371 			     false_alarms, max_false_alarms);
372 
373 		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
374 		data->auto_corr_ofdm =
375 			min((u32)ranges->auto_corr_max_ofdm, val);
376 
377 		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
378 		data->auto_corr_ofdm_mrc =
379 			min((u32)ranges->auto_corr_max_ofdm_mrc, val);
380 
381 		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
382 		data->auto_corr_ofdm_x1 =
383 			min((u32)ranges->auto_corr_max_ofdm_x1, val);
384 
385 		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
386 		data->auto_corr_ofdm_mrc_x1 =
387 			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
388 	}
389 
390 	/* Else if we got fewer than desired, increase sensitivity */
391 	else if (false_alarms < min_false_alarms) {
392 
393 		IWL_DEBUG_CALIB("norm FA %u < min FA %u\n",
394 			     false_alarms, min_false_alarms);
395 
396 		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
397 		data->auto_corr_ofdm =
398 			max((u32)ranges->auto_corr_min_ofdm, val);
399 
400 		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
401 		data->auto_corr_ofdm_mrc =
402 			max((u32)ranges->auto_corr_min_ofdm_mrc, val);
403 
404 		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
405 		data->auto_corr_ofdm_x1 =
406 			max((u32)ranges->auto_corr_min_ofdm_x1, val);
407 
408 		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
409 		data->auto_corr_ofdm_mrc_x1 =
410 			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
411 	} else {
412 		IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
413 			 min_false_alarms, false_alarms, max_false_alarms);
414 	}
415 	return 0;
416 }
417 
418 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
iwl_sensitivity_write(struct iwl_priv * priv)419 static int iwl_sensitivity_write(struct iwl_priv *priv)
420 {
421 	int ret = 0;
422 	struct iwl_sensitivity_cmd cmd ;
423 	struct iwl_sensitivity_data *data = NULL;
424 	struct iwl_host_cmd cmd_out = {
425 		.id = SENSITIVITY_CMD,
426 		.len = sizeof(struct iwl_sensitivity_cmd),
427 		.meta.flags = CMD_ASYNC,
428 		.data = &cmd,
429 	};
430 
431 	data = &(priv->sensitivity_data);
432 
433 	memset(&cmd, 0, sizeof(cmd));
434 
435 	cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
436 				cpu_to_le16((u16)data->auto_corr_ofdm);
437 	cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
438 				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
439 	cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
440 				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
441 	cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
442 				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
443 
444 	cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
445 				cpu_to_le16((u16)data->auto_corr_cck);
446 	cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
447 				cpu_to_le16((u16)data->auto_corr_cck_mrc);
448 
449 	cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
450 				cpu_to_le16((u16)data->nrg_th_cck);
451 	cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
452 				cpu_to_le16((u16)data->nrg_th_ofdm);
453 
454 	cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
455 				__constant_cpu_to_le16(190);
456 	cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
457 				__constant_cpu_to_le16(390);
458 	cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
459 				__constant_cpu_to_le16(62);
460 
461 	IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
462 			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
463 			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
464 			data->nrg_th_ofdm);
465 
466 	IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n",
467 			data->auto_corr_cck, data->auto_corr_cck_mrc,
468 			data->nrg_th_cck);
469 
470 	/* Update uCode's "work" table, and copy it to DSP */
471 	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
472 
473 	/* Don't send command to uCode if nothing has changed */
474 	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
475 		    sizeof(u16)*HD_TABLE_SIZE)) {
476 		IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n");
477 		return 0;
478 	}
479 
480 	/* Copy table for comparison next time */
481 	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
482 	       sizeof(u16)*HD_TABLE_SIZE);
483 
484 	ret = iwl_send_cmd(priv, &cmd_out);
485 	if (ret)
486 		IWL_ERROR("SENSITIVITY_CMD failed\n");
487 
488 	return ret;
489 }
490 
iwl_init_sensitivity(struct iwl_priv * priv)491 void iwl_init_sensitivity(struct iwl_priv *priv)
492 {
493 	int ret = 0;
494 	int i;
495 	struct iwl_sensitivity_data *data = NULL;
496 	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
497 
498 	if (priv->disable_sens_cal)
499 		return;
500 
501 	IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n");
502 
503 	/* Clear driver's sensitivity algo data */
504 	data = &(priv->sensitivity_data);
505 
506 	if (ranges == NULL)
507 		return;
508 
509 	memset(data, 0, sizeof(struct iwl_sensitivity_data));
510 
511 	data->num_in_cck_no_fa = 0;
512 	data->nrg_curr_state = IWL_FA_TOO_MANY;
513 	data->nrg_prev_state = IWL_FA_TOO_MANY;
514 	data->nrg_silence_ref = 0;
515 	data->nrg_silence_idx = 0;
516 	data->nrg_energy_idx = 0;
517 
518 	for (i = 0; i < 10; i++)
519 		data->nrg_value[i] = 0;
520 
521 	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
522 		data->nrg_silence_rssi[i] = 0;
523 
524 	data->auto_corr_ofdm = 90;
525 	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
526 	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
527 	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
528 	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
529 	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
530 	data->nrg_th_cck = ranges->nrg_th_cck;
531 	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
532 
533 	data->last_bad_plcp_cnt_ofdm = 0;
534 	data->last_fa_cnt_ofdm = 0;
535 	data->last_bad_plcp_cnt_cck = 0;
536 	data->last_fa_cnt_cck = 0;
537 
538 	ret |= iwl_sensitivity_write(priv);
539 	IWL_DEBUG_CALIB("<<return 0x%X\n", ret);
540 }
541 EXPORT_SYMBOL(iwl_init_sensitivity);
542 
iwl_sensitivity_calibration(struct iwl_priv * priv,struct iwl_notif_statistics * resp)543 void iwl_sensitivity_calibration(struct iwl_priv *priv,
544 				    struct iwl_notif_statistics *resp)
545 {
546 	u32 rx_enable_time;
547 	u32 fa_cck;
548 	u32 fa_ofdm;
549 	u32 bad_plcp_cck;
550 	u32 bad_plcp_ofdm;
551 	u32 norm_fa_ofdm;
552 	u32 norm_fa_cck;
553 	struct iwl_sensitivity_data *data = NULL;
554 	struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
555 	struct statistics_rx *statistics = &(resp->rx);
556 	unsigned long flags;
557 	struct statistics_general_data statis;
558 
559 	if (priv->disable_sens_cal)
560 		return;
561 
562 	data = &(priv->sensitivity_data);
563 
564 	if (!iwl_is_associated(priv)) {
565 		IWL_DEBUG_CALIB("<< - not associated\n");
566 		return;
567 	}
568 
569 	spin_lock_irqsave(&priv->lock, flags);
570 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
571 		IWL_DEBUG_CALIB("<< invalid data.\n");
572 		spin_unlock_irqrestore(&priv->lock, flags);
573 		return;
574 	}
575 
576 	/* Extract Statistics: */
577 	rx_enable_time = le32_to_cpu(rx_info->channel_load);
578 	fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
579 	fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
580 	bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
581 	bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
582 
583 	statis.beacon_silence_rssi_a =
584 			le32_to_cpu(statistics->general.beacon_silence_rssi_a);
585 	statis.beacon_silence_rssi_b =
586 			le32_to_cpu(statistics->general.beacon_silence_rssi_b);
587 	statis.beacon_silence_rssi_c =
588 			le32_to_cpu(statistics->general.beacon_silence_rssi_c);
589 	statis.beacon_energy_a =
590 			le32_to_cpu(statistics->general.beacon_energy_a);
591 	statis.beacon_energy_b =
592 			le32_to_cpu(statistics->general.beacon_energy_b);
593 	statis.beacon_energy_c =
594 			le32_to_cpu(statistics->general.beacon_energy_c);
595 
596 	spin_unlock_irqrestore(&priv->lock, flags);
597 
598 	IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
599 
600 	if (!rx_enable_time) {
601 		IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n");
602 		return;
603 	}
604 
605 	/* These statistics increase monotonically, and do not reset
606 	 *   at each beacon.  Calculate difference from last value, or just
607 	 *   use the new statistics value if it has reset or wrapped around. */
608 	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
609 		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
610 	else {
611 		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
612 		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
613 	}
614 
615 	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
616 		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
617 	else {
618 		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
619 		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
620 	}
621 
622 	if (data->last_fa_cnt_ofdm > fa_ofdm)
623 		data->last_fa_cnt_ofdm = fa_ofdm;
624 	else {
625 		fa_ofdm -= data->last_fa_cnt_ofdm;
626 		data->last_fa_cnt_ofdm += fa_ofdm;
627 	}
628 
629 	if (data->last_fa_cnt_cck > fa_cck)
630 		data->last_fa_cnt_cck = fa_cck;
631 	else {
632 		fa_cck -= data->last_fa_cnt_cck;
633 		data->last_fa_cnt_cck += fa_cck;
634 	}
635 
636 	/* Total aborted signal locks */
637 	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
638 	norm_fa_cck = fa_cck + bad_plcp_cck;
639 
640 	IWL_DEBUG_CALIB("cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
641 			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
642 
643 	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
644 	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
645 	iwl_sensitivity_write(priv);
646 
647 	return;
648 }
649 EXPORT_SYMBOL(iwl_sensitivity_calibration);
650 
651 /*
652  * Accumulate 20 beacons of signal and noise statistics for each of
653  *   3 receivers/antennas/rx-chains, then figure out:
654  * 1)  Which antennas are connected.
655  * 2)  Differential rx gain settings to balance the 3 receivers.
656  */
iwl_chain_noise_calibration(struct iwl_priv * priv,struct iwl_notif_statistics * stat_resp)657 void iwl_chain_noise_calibration(struct iwl_priv *priv,
658 				 struct iwl_notif_statistics *stat_resp)
659 {
660 	struct iwl_chain_noise_data *data = NULL;
661 
662 	u32 chain_noise_a;
663 	u32 chain_noise_b;
664 	u32 chain_noise_c;
665 	u32 chain_sig_a;
666 	u32 chain_sig_b;
667 	u32 chain_sig_c;
668 	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
669 	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
670 	u32 max_average_sig;
671 	u16 max_average_sig_antenna_i;
672 	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
673 	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
674 	u16 i = 0;
675 	u16 rxon_chnum = INITIALIZATION_VALUE;
676 	u16 stat_chnum = INITIALIZATION_VALUE;
677 	u8 rxon_band24;
678 	u8 stat_band24;
679 	u32 active_chains = 0;
680 	u8 num_tx_chains;
681 	unsigned long flags;
682 	struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
683 
684 	if (priv->disable_chain_noise_cal)
685 		return;
686 
687 	data = &(priv->chain_noise_data);
688 
689 	/* Accumulate just the first 20 beacons after the first association,
690 	 *   then we're done forever. */
691 	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
692 		if (data->state == IWL_CHAIN_NOISE_ALIVE)
693 			IWL_DEBUG_CALIB("Wait for noise calib reset\n");
694 		return;
695 	}
696 
697 	spin_lock_irqsave(&priv->lock, flags);
698 	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
699 		IWL_DEBUG_CALIB(" << Interference data unavailable\n");
700 		spin_unlock_irqrestore(&priv->lock, flags);
701 		return;
702 	}
703 
704 	rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK);
705 	rxon_chnum = le16_to_cpu(priv->staging_rxon.channel);
706 	stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
707 	stat_chnum = le32_to_cpu(stat_resp->flag) >> 16;
708 
709 	/* Make sure we accumulate data for just the associated channel
710 	 *   (even if scanning). */
711 	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
712 		IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n",
713 				rxon_chnum, rxon_band24);
714 		spin_unlock_irqrestore(&priv->lock, flags);
715 		return;
716 	}
717 
718 	/* Accumulate beacon statistics values across 20 beacons */
719 	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
720 				IN_BAND_FILTER;
721 	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
722 				IN_BAND_FILTER;
723 	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
724 				IN_BAND_FILTER;
725 
726 	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
727 	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
728 	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
729 
730 	spin_unlock_irqrestore(&priv->lock, flags);
731 
732 	data->beacon_count++;
733 
734 	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
735 	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
736 	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
737 
738 	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
739 	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
740 	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
741 
742 	IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n",
743 			rxon_chnum, rxon_band24, data->beacon_count);
744 	IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n",
745 			chain_sig_a, chain_sig_b, chain_sig_c);
746 	IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n",
747 			chain_noise_a, chain_noise_b, chain_noise_c);
748 
749 	/* If this is the 20th beacon, determine:
750 	 * 1)  Disconnected antennas (using signal strengths)
751 	 * 2)  Differential gain (using silence noise) to balance receivers */
752 	if (data->beacon_count != CAL_NUM_OF_BEACONS)
753 		return;
754 
755 	/* Analyze signal for disconnected antenna */
756 	average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
757 	average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
758 	average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
759 
760 	if (average_sig[0] >= average_sig[1]) {
761 		max_average_sig = average_sig[0];
762 		max_average_sig_antenna_i = 0;
763 		active_chains = (1 << max_average_sig_antenna_i);
764 	} else {
765 		max_average_sig = average_sig[1];
766 		max_average_sig_antenna_i = 1;
767 		active_chains = (1 << max_average_sig_antenna_i);
768 	}
769 
770 	if (average_sig[2] >= max_average_sig) {
771 		max_average_sig = average_sig[2];
772 		max_average_sig_antenna_i = 2;
773 		active_chains = (1 << max_average_sig_antenna_i);
774 	}
775 
776 	IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n",
777 		     average_sig[0], average_sig[1], average_sig[2]);
778 	IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n",
779 		     max_average_sig, max_average_sig_antenna_i);
780 
781 	/* Compare signal strengths for all 3 receivers. */
782 	for (i = 0; i < NUM_RX_CHAINS; i++) {
783 		if (i != max_average_sig_antenna_i) {
784 			s32 rssi_delta = (max_average_sig - average_sig[i]);
785 
786 			/* If signal is very weak, compared with
787 			 * strongest, mark it as disconnected. */
788 			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
789 				data->disconn_array[i] = 1;
790 			else
791 				active_chains |= (1 << i);
792 			IWL_DEBUG_CALIB("i = %d  rssiDelta = %d  "
793 			     "disconn_array[i] = %d\n",
794 			     i, rssi_delta, data->disconn_array[i]);
795 		}
796 	}
797 
798 	num_tx_chains = 0;
799 	for (i = 0; i < NUM_RX_CHAINS; i++) {
800 		/* loops on all the bits of
801 		 * priv->hw_setting.valid_tx_ant */
802 		u8 ant_msk = (1 << i);
803 		if (!(priv->hw_params.valid_tx_ant & ant_msk))
804 			continue;
805 
806 		num_tx_chains++;
807 		if (data->disconn_array[i] == 0)
808 			/* there is a Tx antenna connected */
809 			break;
810 		if (num_tx_chains == priv->hw_params.tx_chains_num &&
811 		data->disconn_array[i]) {
812 			/* This is the last TX antenna and is also
813 			 * disconnected connect it anyway */
814 			data->disconn_array[i] = 0;
815 			active_chains |= ant_msk;
816 			IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - "
817 				"declare %d as connected\n", i);
818 			break;
819 		}
820 	}
821 
822 	/* Save for use within RXON, TX, SCAN commands, etc. */
823 	priv->chain_noise_data.active_chains = active_chains;
824 	IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n",
825 			active_chains);
826 
827 	/* Analyze noise for rx balance */
828 	average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
829 	average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
830 	average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
831 
832 	for (i = 0; i < NUM_RX_CHAINS; i++) {
833 		if (!(data->disconn_array[i]) &&
834 		   (average_noise[i] <= min_average_noise)) {
835 			/* This means that chain i is active and has
836 			 * lower noise values so far: */
837 			min_average_noise = average_noise[i];
838 			min_average_noise_antenna_i = i;
839 		}
840 	}
841 
842 	IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n",
843 			average_noise[0], average_noise[1],
844 			average_noise[2]);
845 
846 	IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n",
847 			min_average_noise, min_average_noise_antenna_i);
848 
849 	priv->cfg->ops->utils->gain_computation(priv, average_noise,
850 		min_average_noise_antenna_i, min_average_noise);
851 
852 	/* Some power changes may have been made during the calibration.
853 	 * Update and commit the RXON
854 	 */
855 	if (priv->cfg->ops->lib->update_chain_flags)
856 		priv->cfg->ops->lib->update_chain_flags(priv);
857 
858 	data->state = IWL_CHAIN_NOISE_DONE;
859 	iwl_power_enable_management(priv);
860 }
861 EXPORT_SYMBOL(iwl_chain_noise_calibration);
862 
863 
iwl_reset_run_time_calib(struct iwl_priv * priv)864 void iwl_reset_run_time_calib(struct iwl_priv *priv)
865 {
866 	int i;
867 	memset(&(priv->sensitivity_data), 0,
868 	       sizeof(struct iwl_sensitivity_data));
869 	memset(&(priv->chain_noise_data), 0,
870 	       sizeof(struct iwl_chain_noise_data));
871 	for (i = 0; i < NUM_RX_CHAINS; i++)
872 		priv->chain_noise_data.delta_gain_code[i] =
873 				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
874 
875 	/* Ask for statistics now, the uCode will send notification
876 	 * periodically after association */
877 	iwl_send_statistics_request(priv, CMD_ASYNC);
878 }
879 EXPORT_SYMBOL(iwl_reset_run_time_calib);
880 
881