• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Common code for mac80211 Prism54 drivers
3  *
4  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5  * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  *
8  * Based on:
9  * - the islsm (softmac prism54) driver, which is:
10  *   Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11  * - stlc45xx driver
12  *   Copyright (C) 2008 Nokia Corporation and/or its subsidiary(-ies).
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/init.h>
20 #include <linux/firmware.h>
21 #include <linux/etherdevice.h>
22 
23 #include <net/mac80211.h>
24 
25 #include "p54.h"
26 #include "p54common.h"
27 
28 static int modparam_nohwcrypt;
29 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
30 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
31 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
32 MODULE_DESCRIPTION("Softmac Prism54 common code");
33 MODULE_LICENSE("GPL");
34 MODULE_ALIAS("prism54common");
35 
36 static struct ieee80211_rate p54_bgrates[] = {
37 	{ .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
38 	{ .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
39 	{ .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
40 	{ .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
41 	{ .bitrate = 60, .hw_value = 4, },
42 	{ .bitrate = 90, .hw_value = 5, },
43 	{ .bitrate = 120, .hw_value = 6, },
44 	{ .bitrate = 180, .hw_value = 7, },
45 	{ .bitrate = 240, .hw_value = 8, },
46 	{ .bitrate = 360, .hw_value = 9, },
47 	{ .bitrate = 480, .hw_value = 10, },
48 	{ .bitrate = 540, .hw_value = 11, },
49 };
50 
51 static struct ieee80211_channel p54_bgchannels[] = {
52 	{ .center_freq = 2412, .hw_value = 1, },
53 	{ .center_freq = 2417, .hw_value = 2, },
54 	{ .center_freq = 2422, .hw_value = 3, },
55 	{ .center_freq = 2427, .hw_value = 4, },
56 	{ .center_freq = 2432, .hw_value = 5, },
57 	{ .center_freq = 2437, .hw_value = 6, },
58 	{ .center_freq = 2442, .hw_value = 7, },
59 	{ .center_freq = 2447, .hw_value = 8, },
60 	{ .center_freq = 2452, .hw_value = 9, },
61 	{ .center_freq = 2457, .hw_value = 10, },
62 	{ .center_freq = 2462, .hw_value = 11, },
63 	{ .center_freq = 2467, .hw_value = 12, },
64 	{ .center_freq = 2472, .hw_value = 13, },
65 	{ .center_freq = 2484, .hw_value = 14, },
66 };
67 
68 static struct ieee80211_supported_band band_2GHz = {
69 	.channels = p54_bgchannels,
70 	.n_channels = ARRAY_SIZE(p54_bgchannels),
71 	.bitrates = p54_bgrates,
72 	.n_bitrates = ARRAY_SIZE(p54_bgrates),
73 };
74 
75 static struct ieee80211_rate p54_arates[] = {
76 	{ .bitrate = 60, .hw_value = 4, },
77 	{ .bitrate = 90, .hw_value = 5, },
78 	{ .bitrate = 120, .hw_value = 6, },
79 	{ .bitrate = 180, .hw_value = 7, },
80 	{ .bitrate = 240, .hw_value = 8, },
81 	{ .bitrate = 360, .hw_value = 9, },
82 	{ .bitrate = 480, .hw_value = 10, },
83 	{ .bitrate = 540, .hw_value = 11, },
84 };
85 
86 static struct ieee80211_channel p54_achannels[] = {
87 	{ .center_freq = 4920 },
88 	{ .center_freq = 4940 },
89 	{ .center_freq = 4960 },
90 	{ .center_freq = 4980 },
91 	{ .center_freq = 5040 },
92 	{ .center_freq = 5060 },
93 	{ .center_freq = 5080 },
94 	{ .center_freq = 5170 },
95 	{ .center_freq = 5180 },
96 	{ .center_freq = 5190 },
97 	{ .center_freq = 5200 },
98 	{ .center_freq = 5210 },
99 	{ .center_freq = 5220 },
100 	{ .center_freq = 5230 },
101 	{ .center_freq = 5240 },
102 	{ .center_freq = 5260 },
103 	{ .center_freq = 5280 },
104 	{ .center_freq = 5300 },
105 	{ .center_freq = 5320 },
106 	{ .center_freq = 5500 },
107 	{ .center_freq = 5520 },
108 	{ .center_freq = 5540 },
109 	{ .center_freq = 5560 },
110 	{ .center_freq = 5580 },
111 	{ .center_freq = 5600 },
112 	{ .center_freq = 5620 },
113 	{ .center_freq = 5640 },
114 	{ .center_freq = 5660 },
115 	{ .center_freq = 5680 },
116 	{ .center_freq = 5700 },
117 	{ .center_freq = 5745 },
118 	{ .center_freq = 5765 },
119 	{ .center_freq = 5785 },
120 	{ .center_freq = 5805 },
121 	{ .center_freq = 5825 },
122 };
123 
124 static struct ieee80211_supported_band band_5GHz = {
125 	.channels = p54_achannels,
126 	.n_channels = ARRAY_SIZE(p54_achannels),
127 	.bitrates = p54_arates,
128 	.n_bitrates = ARRAY_SIZE(p54_arates),
129 };
130 
p54_parse_firmware(struct ieee80211_hw * dev,const struct firmware * fw)131 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
132 {
133 	struct p54_common *priv = dev->priv;
134 	struct bootrec_exp_if *exp_if;
135 	struct bootrec *bootrec;
136 	u32 *data = (u32 *)fw->data;
137 	u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
138 	u8 *fw_version = NULL;
139 	size_t len;
140 	int i;
141 	int maxlen;
142 
143 	if (priv->rx_start)
144 		return 0;
145 
146 	while (data < end_data && *data)
147 		data++;
148 
149 	while (data < end_data && !*data)
150 		data++;
151 
152 	bootrec = (struct bootrec *) data;
153 
154 	while (bootrec->data <= end_data &&
155 	       (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
156 		u32 code = le32_to_cpu(bootrec->code);
157 		switch (code) {
158 		case BR_CODE_COMPONENT_ID:
159 			priv->fw_interface = be32_to_cpup((__be32 *)
160 					     bootrec->data);
161 			switch (priv->fw_interface) {
162 			case FW_LM86:
163 			case FW_LM20:
164 			case FW_LM87: {
165 				char *iftype = (char *)bootrec->data;
166 				printk(KERN_INFO "%s: p54 detected a LM%c%c "
167 						 "firmware\n",
168 					wiphy_name(dev->wiphy),
169 					iftype[2], iftype[3]);
170 				break;
171 				}
172 			case FW_FMAC:
173 			default:
174 				printk(KERN_ERR "%s: unsupported firmware\n",
175 					wiphy_name(dev->wiphy));
176 				return -ENODEV;
177 			}
178 			break;
179 		case BR_CODE_COMPONENT_VERSION:
180 			/* 24 bytes should be enough for all firmwares */
181 			if (strnlen((unsigned char*)bootrec->data, 24) < 24)
182 				fw_version = (unsigned char*)bootrec->data;
183 			break;
184 		case BR_CODE_DESCR: {
185 			struct bootrec_desc *desc =
186 				(struct bootrec_desc *)bootrec->data;
187 			priv->rx_start = le32_to_cpu(desc->rx_start);
188 			/* FIXME add sanity checking */
189 			priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
190 			priv->headroom = desc->headroom;
191 			priv->tailroom = desc->tailroom;
192 			priv->privacy_caps = desc->privacy_caps;
193 			priv->rx_keycache_size = desc->rx_keycache_size;
194 			if (le32_to_cpu(bootrec->len) == 11)
195 				priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
196 			else
197 				priv->rx_mtu = (size_t)
198 					0x620 - priv->tx_hdr_len;
199 			maxlen = priv->tx_hdr_len + /* USB devices */
200 				 sizeof(struct p54_rx_data) +
201 				 4 + /* rx alignment */
202 				 IEEE80211_MAX_FRAG_THRESHOLD;
203 			if (priv->rx_mtu > maxlen && PAGE_SIZE == 4096) {
204 				printk(KERN_INFO "p54: rx_mtu reduced from %d "
205 					         "to %d\n", priv->rx_mtu,
206 						 maxlen);
207 				priv->rx_mtu = maxlen;
208 			}
209 			break;
210 			}
211 		case BR_CODE_EXPOSED_IF:
212 			exp_if = (struct bootrec_exp_if *) bootrec->data;
213 			for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
214 				if (exp_if[i].if_id == cpu_to_le16(0x1a))
215 					priv->fw_var = le16_to_cpu(exp_if[i].variant);
216 			break;
217 		case BR_CODE_DEPENDENT_IF:
218 			break;
219 		case BR_CODE_END_OF_BRA:
220 		case LEGACY_BR_CODE_END_OF_BRA:
221 			end_data = NULL;
222 			break;
223 		default:
224 			break;
225 		}
226 		bootrec = (struct bootrec *)&bootrec->data[len];
227 	}
228 
229 	if (fw_version)
230 		printk(KERN_INFO "%s: FW rev %s - Softmac protocol %x.%x\n",
231 			wiphy_name(dev->wiphy), fw_version,
232 			priv->fw_var >> 8, priv->fw_var & 0xff);
233 
234 	if (priv->fw_var < 0x500)
235 		printk(KERN_INFO "%s: you are using an obsolete firmware. "
236 		       "visit http://wireless.kernel.org/en/users/Drivers/p54 "
237 		       "and grab one for \"kernel >= 2.6.28\"!\n",
238 			wiphy_name(dev->wiphy));
239 
240 	if (priv->fw_var >= 0x300) {
241 		/* Firmware supports QoS, use it! */
242 		priv->tx_stats[4].limit = 3;		/* AC_VO */
243 		priv->tx_stats[5].limit = 4;		/* AC_VI */
244 		priv->tx_stats[6].limit = 3;		/* AC_BE */
245 		priv->tx_stats[7].limit = 2;		/* AC_BK */
246 		dev->queues = 4;
247 	}
248 
249 	if (!modparam_nohwcrypt)
250 		printk(KERN_INFO "%s: cryptographic accelerator "
251 				 "WEP:%s, TKIP:%s, CCMP:%s\n",
252 			wiphy_name(dev->wiphy),
253 			(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP) ? "YES" :
254 			"no", (priv->privacy_caps & (BR_DESC_PRIV_CAP_TKIP |
255 			 BR_DESC_PRIV_CAP_MICHAEL)) ? "YES" : "no",
256 			(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP) ?
257 			"YES" : "no");
258 
259 	return 0;
260 }
261 EXPORT_SYMBOL_GPL(p54_parse_firmware);
262 
p54_convert_rev0(struct ieee80211_hw * dev,struct pda_pa_curve_data * curve_data)263 static int p54_convert_rev0(struct ieee80211_hw *dev,
264 			    struct pda_pa_curve_data *curve_data)
265 {
266 	struct p54_common *priv = dev->priv;
267 	struct p54_pa_curve_data_sample *dst;
268 	struct pda_pa_curve_data_sample_rev0 *src;
269 	size_t cd_len = sizeof(*curve_data) +
270 		(curve_data->points_per_channel*sizeof(*dst) + 2) *
271 		 curve_data->channels;
272 	unsigned int i, j;
273 	void *source, *target;
274 
275 	priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
276 	if (!priv->curve_data)
277 		return -ENOMEM;
278 
279 	memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
280 	source = curve_data->data;
281 	target = priv->curve_data->data;
282 	for (i = 0; i < curve_data->channels; i++) {
283 		__le16 *freq = source;
284 		source += sizeof(__le16);
285 		*((__le16 *)target) = *freq;
286 		target += sizeof(__le16);
287 		for (j = 0; j < curve_data->points_per_channel; j++) {
288 			dst = target;
289 			src = source;
290 
291 			dst->rf_power = src->rf_power;
292 			dst->pa_detector = src->pa_detector;
293 			dst->data_64qam = src->pcv;
294 			/* "invent" the points for the other modulations */
295 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
296 			dst->data_16qam = SUB(src->pcv, 12);
297 			dst->data_qpsk = SUB(dst->data_16qam, 12);
298 			dst->data_bpsk = SUB(dst->data_qpsk, 12);
299 			dst->data_barker = SUB(dst->data_bpsk, 14);
300 #undef SUB
301 			target += sizeof(*dst);
302 			source += sizeof(*src);
303 		}
304 	}
305 
306 	return 0;
307 }
308 
p54_convert_rev1(struct ieee80211_hw * dev,struct pda_pa_curve_data * curve_data)309 static int p54_convert_rev1(struct ieee80211_hw *dev,
310 			    struct pda_pa_curve_data *curve_data)
311 {
312 	struct p54_common *priv = dev->priv;
313 	struct p54_pa_curve_data_sample *dst;
314 	struct pda_pa_curve_data_sample_rev1 *src;
315 	size_t cd_len = sizeof(*curve_data) +
316 		(curve_data->points_per_channel*sizeof(*dst) + 2) *
317 		 curve_data->channels;
318 	unsigned int i, j;
319 	void *source, *target;
320 
321 	priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
322 	if (!priv->curve_data)
323 		return -ENOMEM;
324 
325 	memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
326 	source = curve_data->data;
327 	target = priv->curve_data->data;
328 	for (i = 0; i < curve_data->channels; i++) {
329 		__le16 *freq = source;
330 		source += sizeof(__le16);
331 		*((__le16 *)target) = *freq;
332 		target += sizeof(__le16);
333 		for (j = 0; j < curve_data->points_per_channel; j++) {
334 			memcpy(target, source, sizeof(*src));
335 
336 			target += sizeof(*dst);
337 			source += sizeof(*src);
338 		}
339 		source++;
340 	}
341 
342 	return 0;
343 }
344 
345 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
346                               "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
347 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
348 
p54_parse_rssical(struct ieee80211_hw * dev,void * data,int len,u16 type)349 static void p54_parse_rssical(struct ieee80211_hw *dev, void *data, int len,
350 			     u16 type)
351 {
352 	struct p54_common *priv = dev->priv;
353 	int offset = (type == PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED) ? 2 : 0;
354 	int entry_size = sizeof(struct pda_rssi_cal_entry) + offset;
355 	int num_entries = (type == PDR_RSSI_LINEAR_APPROXIMATION) ? 1 : 2;
356 	int i;
357 
358 	if (len != (entry_size * num_entries)) {
359 		printk(KERN_ERR "%s: unknown rssi calibration data packing "
360 				 " type:(%x) len:%d.\n",
361 		       wiphy_name(dev->wiphy), type, len);
362 
363 		print_hex_dump_bytes("rssical:", DUMP_PREFIX_NONE,
364 				     data, len);
365 
366 		printk(KERN_ERR "%s: please report this issue.\n",
367 			wiphy_name(dev->wiphy));
368 		return;
369 	}
370 
371 	for (i = 0; i < num_entries; i++) {
372 		struct pda_rssi_cal_entry *cal = data +
373 						 (offset + i * entry_size);
374 		priv->rssical_db[i].mul = (s16) le16_to_cpu(cal->mul);
375 		priv->rssical_db[i].add = (s16) le16_to_cpu(cal->add);
376 	}
377 }
378 
p54_parse_eeprom(struct ieee80211_hw * dev,void * eeprom,int len)379 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
380 {
381 	struct p54_common *priv = dev->priv;
382 	struct eeprom_pda_wrap *wrap = NULL;
383 	struct pda_entry *entry;
384 	unsigned int data_len, entry_len;
385 	void *tmp;
386 	int err;
387 	u8 *end = (u8 *)eeprom + len;
388 	u16 synth = 0;
389 
390 	wrap = (struct eeprom_pda_wrap *) eeprom;
391 	entry = (void *)wrap->data + le16_to_cpu(wrap->len);
392 
393 	/* verify that at least the entry length/code fits */
394 	while ((u8 *)entry <= end - sizeof(*entry)) {
395 		entry_len = le16_to_cpu(entry->len);
396 		data_len = ((entry_len - 1) << 1);
397 
398 		/* abort if entry exceeds whole structure */
399 		if ((u8 *)entry + sizeof(*entry) + data_len > end)
400 			break;
401 
402 		switch (le16_to_cpu(entry->code)) {
403 		case PDR_MAC_ADDRESS:
404 			SET_IEEE80211_PERM_ADDR(dev, entry->data);
405 			break;
406 		case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
407 			if (data_len < 2) {
408 				err = -EINVAL;
409 				goto err;
410 			}
411 
412 			if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
413 				err = -EINVAL;
414 				goto err;
415 			}
416 
417 			priv->output_limit = kmalloc(entry->data[1] *
418 				sizeof(*priv->output_limit), GFP_KERNEL);
419 
420 			if (!priv->output_limit) {
421 				err = -ENOMEM;
422 				goto err;
423 			}
424 
425 			memcpy(priv->output_limit, &entry->data[2],
426 			       entry->data[1]*sizeof(*priv->output_limit));
427 			priv->output_limit_len = entry->data[1];
428 			break;
429 		case PDR_PRISM_PA_CAL_CURVE_DATA: {
430 			struct pda_pa_curve_data *curve_data =
431 				(struct pda_pa_curve_data *)entry->data;
432 			if (data_len < sizeof(*curve_data)) {
433 				err = -EINVAL;
434 				goto err;
435 			}
436 
437 			switch (curve_data->cal_method_rev) {
438 			case 0:
439 				err = p54_convert_rev0(dev, curve_data);
440 				break;
441 			case 1:
442 				err = p54_convert_rev1(dev, curve_data);
443 				break;
444 			default:
445 				printk(KERN_ERR "%s: unknown curve data "
446 						"revision %d\n",
447 						wiphy_name(dev->wiphy),
448 						curve_data->cal_method_rev);
449 				err = -ENODEV;
450 				break;
451 			}
452 			if (err)
453 				goto err;
454 			}
455 			break;
456 		case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
457 			priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
458 			if (!priv->iq_autocal) {
459 				err = -ENOMEM;
460 				goto err;
461 			}
462 
463 			memcpy(priv->iq_autocal, entry->data, data_len);
464 			priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
465 			break;
466 		case PDR_INTERFACE_LIST:
467 			tmp = entry->data;
468 			while ((u8 *)tmp < entry->data + data_len) {
469 				struct bootrec_exp_if *exp_if = tmp;
470 				if (le16_to_cpu(exp_if->if_id) == 0xf)
471 					synth = le16_to_cpu(exp_if->variant);
472 				tmp += sizeof(struct bootrec_exp_if);
473 			}
474 			break;
475 		case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
476 			priv->version = *(u8 *)(entry->data + 1);
477 			break;
478 		case PDR_RSSI_LINEAR_APPROXIMATION:
479 		case PDR_RSSI_LINEAR_APPROXIMATION_DUAL_BAND:
480 		case PDR_RSSI_LINEAR_APPROXIMATION_EXTENDED:
481 			p54_parse_rssical(dev, entry->data, data_len,
482 					  le16_to_cpu(entry->code));
483 			break;
484 		case PDR_END:
485 			/* make it overrun */
486 			entry_len = len;
487 			break;
488 		case PDR_MANUFACTURING_PART_NUMBER:
489 		case PDR_PDA_VERSION:
490 		case PDR_NIC_SERIAL_NUMBER:
491 		case PDR_REGULATORY_DOMAIN_LIST:
492 		case PDR_TEMPERATURE_TYPE:
493 		case PDR_PRISM_PCI_IDENTIFIER:
494 		case PDR_COUNTRY_INFORMATION:
495 		case PDR_OEM_NAME:
496 		case PDR_PRODUCT_NAME:
497 		case PDR_UTF8_OEM_NAME:
498 		case PDR_UTF8_PRODUCT_NAME:
499 		case PDR_COUNTRY_LIST:
500 		case PDR_DEFAULT_COUNTRY:
501 		case PDR_ANTENNA_GAIN:
502 		case PDR_PRISM_INDIGO_PA_CALIBRATION_DATA:
503 		case PDR_REGULATORY_POWER_LIMITS:
504 		case PDR_RADIATED_TRANSMISSION_CORRECTION:
505 		case PDR_PRISM_TX_IQ_CALIBRATION:
506 		case PDR_BASEBAND_REGISTERS:
507 		case PDR_PER_CHANNEL_BASEBAND_REGISTERS:
508 			break;
509 		default:
510 			printk(KERN_INFO "%s: unknown eeprom code : 0x%x\n",
511 				wiphy_name(dev->wiphy),
512 				le16_to_cpu(entry->code));
513 			break;
514 		}
515 
516 		entry = (void *)entry + (entry_len + 1)*2;
517 	}
518 
519 	if (!synth || !priv->iq_autocal || !priv->output_limit ||
520 	    !priv->curve_data) {
521 		printk(KERN_ERR "%s: not all required entries found in eeprom!\n",
522 			wiphy_name(dev->wiphy));
523 		err = -EINVAL;
524 		goto err;
525 	}
526 
527 	priv->rxhw = synth & PDR_SYNTH_FRONTEND_MASK;
528 	if (priv->rxhw == 4)
529 		p54_init_xbow_synth(dev);
530 	if (!(synth & PDR_SYNTH_24_GHZ_DISABLED))
531 		dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
532 	if (!(synth & PDR_SYNTH_5_GHZ_DISABLED))
533 		dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
534 
535 	if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
536 		u8 perm_addr[ETH_ALEN];
537 
538 		printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
539 			wiphy_name(dev->wiphy));
540 		random_ether_addr(perm_addr);
541 		SET_IEEE80211_PERM_ADDR(dev, perm_addr);
542 	}
543 
544 	printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
545 		wiphy_name(dev->wiphy),
546 		dev->wiphy->perm_addr,
547 		priv->version, p54_rf_chips[priv->rxhw]);
548 
549 	return 0;
550 
551   err:
552 	if (priv->iq_autocal) {
553 		kfree(priv->iq_autocal);
554 		priv->iq_autocal = NULL;
555 	}
556 
557 	if (priv->output_limit) {
558 		kfree(priv->output_limit);
559 		priv->output_limit = NULL;
560 	}
561 
562 	if (priv->curve_data) {
563 		kfree(priv->curve_data);
564 		priv->curve_data = NULL;
565 	}
566 
567 	printk(KERN_ERR "%s: eeprom parse failed!\n",
568 		wiphy_name(dev->wiphy));
569 	return err;
570 }
571 
p54_rssi_to_dbm(struct ieee80211_hw * dev,int rssi)572 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
573 {
574 	struct p54_common *priv = dev->priv;
575 	int band = dev->conf.channel->band;
576 
577 	return ((rssi * priv->rssical_db[band].mul) / 64 +
578 			 priv->rssical_db[band].add) / 4;
579 }
580 
p54_rx_data(struct ieee80211_hw * dev,struct sk_buff * skb)581 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
582 {
583 	struct p54_common *priv = dev->priv;
584 	struct p54_rx_data *hdr = (struct p54_rx_data *) skb->data;
585 	struct ieee80211_rx_status rx_status = {0};
586 	u16 freq = le16_to_cpu(hdr->freq);
587 	size_t header_len = sizeof(*hdr);
588 	u32 tsf32;
589 	u8 rate = hdr->rate & 0xf;
590 
591 	/*
592 	 * If the device is in a unspecified state we have to
593 	 * ignore all data frames. Else we could end up with a
594 	 * nasty crash.
595 	 */
596 	if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
597 		return 0;
598 
599 	if (!(hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_IN_FCS_GOOD))) {
600 		if (priv->filter_flags & FIF_FCSFAIL)
601 			rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
602 		else
603 			return 0;
604 	}
605 
606 	if (hdr->decrypt_status == P54_DECRYPT_OK)
607 		rx_status.flag |= RX_FLAG_DECRYPTED;
608 	if ((hdr->decrypt_status == P54_DECRYPT_FAIL_MICHAEL) ||
609 	    (hdr->decrypt_status == P54_DECRYPT_FAIL_TKIP))
610 		rx_status.flag |= RX_FLAG_MMIC_ERROR;
611 
612 	rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
613 	rx_status.noise = priv->noise;
614 	/* XX correct? */
615 	rx_status.qual = (100 * hdr->rssi) / 127;
616 	if (hdr->rate & 0x10)
617 		rx_status.flag |= RX_FLAG_SHORTPRE;
618 	if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
619 		rx_status.rate_idx = (rate < 4) ? 0 : rate - 4;
620 	else
621 		rx_status.rate_idx = rate;
622 
623 	rx_status.freq = freq;
624 	rx_status.band =  dev->conf.channel->band;
625 	rx_status.antenna = hdr->antenna;
626 
627 	tsf32 = le32_to_cpu(hdr->tsf32);
628 	if (tsf32 < priv->tsf_low32)
629 		priv->tsf_high32++;
630 	rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
631 	priv->tsf_low32 = tsf32;
632 
633 	rx_status.flag |= RX_FLAG_TSFT;
634 
635 	if (hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
636 		header_len += hdr->align[0];
637 
638 	skb_pull(skb, header_len);
639 	skb_trim(skb, le16_to_cpu(hdr->len));
640 
641 	ieee80211_rx_irqsafe(dev, skb, &rx_status);
642 
643 	queue_delayed_work(dev->workqueue, &priv->work,
644 			   msecs_to_jiffies(P54_STATISTICS_UPDATE));
645 
646 	return -1;
647 }
648 
p54_wake_free_queues(struct ieee80211_hw * dev)649 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
650 {
651 	struct p54_common *priv = dev->priv;
652 	int i;
653 
654 	if (priv->mode == NL80211_IFTYPE_UNSPECIFIED)
655 		return ;
656 
657 	for (i = 0; i < dev->queues; i++)
658 		if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
659 			ieee80211_wake_queue(dev, i);
660 }
661 
p54_free_skb(struct ieee80211_hw * dev,struct sk_buff * skb)662 void p54_free_skb(struct ieee80211_hw *dev, struct sk_buff *skb)
663 {
664 	struct p54_common *priv = dev->priv;
665 	struct ieee80211_tx_info *info;
666 	struct memrecord *range;
667 	unsigned long flags;
668 	u32 freed = 0, last_addr = priv->rx_start;
669 
670 	if (unlikely(!skb || !dev || !skb_queue_len(&priv->tx_queue)))
671 		return;
672 
673 	/*
674 	 * don't try to free an already unlinked skb
675 	 */
676 	if (unlikely((!skb->next) || (!skb->prev)))
677 		return;
678 
679 	spin_lock_irqsave(&priv->tx_queue.lock, flags);
680 	info = IEEE80211_SKB_CB(skb);
681 	range = (void *)info->rate_driver_data;
682 	if (skb->prev != (struct sk_buff *)&priv->tx_queue) {
683 		struct ieee80211_tx_info *ni;
684 		struct memrecord *mr;
685 
686 		ni = IEEE80211_SKB_CB(skb->prev);
687 		mr = (struct memrecord *)ni->rate_driver_data;
688 		last_addr = mr->end_addr;
689 	}
690 	if (skb->next != (struct sk_buff *)&priv->tx_queue) {
691 		struct ieee80211_tx_info *ni;
692 		struct memrecord *mr;
693 
694 		ni = IEEE80211_SKB_CB(skb->next);
695 		mr = (struct memrecord *)ni->rate_driver_data;
696 		freed = mr->start_addr - last_addr;
697 	} else
698 		freed = priv->rx_end - last_addr;
699 	__skb_unlink(skb, &priv->tx_queue);
700 	spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
701 	dev_kfree_skb_any(skb);
702 
703 	if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
704 		     IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
705 		p54_wake_free_queues(dev);
706 }
707 EXPORT_SYMBOL_GPL(p54_free_skb);
708 
p54_find_tx_entry(struct ieee80211_hw * dev,__le32 req_id)709 static struct sk_buff *p54_find_tx_entry(struct ieee80211_hw *dev,
710 					   __le32 req_id)
711 {
712 	struct p54_common *priv = dev->priv;
713 	struct sk_buff *entry;
714 	unsigned long flags;
715 
716 	spin_lock_irqsave(&priv->tx_queue.lock, flags);
717 	entry = priv->tx_queue.next;
718 	while (entry != (struct sk_buff *)&priv->tx_queue) {
719 		struct p54_hdr *hdr = (struct p54_hdr *) entry->data;
720 
721 		if (hdr->req_id == req_id) {
722 			spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
723 			return entry;
724 		}
725 		entry = entry->next;
726 	}
727 	spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
728 	return NULL;
729 }
730 
p54_rx_frame_sent(struct ieee80211_hw * dev,struct sk_buff * skb)731 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
732 {
733 	struct p54_common *priv = dev->priv;
734 	struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
735 	struct p54_frame_sent *payload = (struct p54_frame_sent *) hdr->data;
736 	struct sk_buff *entry;
737 	u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
738 	struct memrecord *range = NULL;
739 	u32 freed = 0;
740 	u32 last_addr = priv->rx_start;
741 	unsigned long flags;
742 	int count, idx;
743 
744 	spin_lock_irqsave(&priv->tx_queue.lock, flags);
745 	entry = (struct sk_buff *) priv->tx_queue.next;
746 	while (entry != (struct sk_buff *)&priv->tx_queue) {
747 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
748 		struct p54_hdr *entry_hdr;
749 		struct p54_tx_data *entry_data;
750 		unsigned int pad = 0, frame_len;
751 
752 		range = (void *)info->rate_driver_data;
753 		if (range->start_addr != addr) {
754 			last_addr = range->end_addr;
755 			entry = entry->next;
756 			continue;
757 		}
758 
759 		if (entry->next != (struct sk_buff *)&priv->tx_queue) {
760 			struct ieee80211_tx_info *ni;
761 			struct memrecord *mr;
762 
763 			ni = IEEE80211_SKB_CB(entry->next);
764 			mr = (struct memrecord *)ni->rate_driver_data;
765 			freed = mr->start_addr - last_addr;
766 		} else
767 			freed = priv->rx_end - last_addr;
768 
769 		last_addr = range->end_addr;
770 		__skb_unlink(entry, &priv->tx_queue);
771 		spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
772 
773 		frame_len = entry->len;
774 		entry_hdr = (struct p54_hdr *) entry->data;
775 		entry_data = (struct p54_tx_data *) entry_hdr->data;
776 		priv->tx_stats[entry_data->hw_queue].len--;
777 		priv->stats.dot11ACKFailureCount += payload->tries - 1;
778 
779 		if (unlikely(entry == priv->cached_beacon)) {
780 			kfree_skb(entry);
781 			priv->cached_beacon = NULL;
782 			goto out;
783 		}
784 
785 		/*
786 		 * Clear manually, ieee80211_tx_info_clear_status would
787 		 * clear the counts too and we need them.
788 		 */
789 		memset(&info->status.ampdu_ack_len, 0,
790 		       sizeof(struct ieee80211_tx_info) -
791 		       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
792 		BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
793 				      status.ampdu_ack_len) != 23);
794 
795 		if (entry_hdr->flags & cpu_to_le16(P54_HDR_FLAG_DATA_ALIGN))
796 			pad = entry_data->align[0];
797 
798 		/* walk through the rates array and adjust the counts */
799 		count = payload->tries;
800 		for (idx = 0; idx < 4; idx++) {
801 			if (count >= info->status.rates[idx].count) {
802 				count -= info->status.rates[idx].count;
803 			} else if (count > 0) {
804 				info->status.rates[idx].count = count;
805 				count = 0;
806 			} else {
807 				info->status.rates[idx].idx = -1;
808 				info->status.rates[idx].count = 0;
809 			}
810 		}
811 
812 		if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
813 		     (!payload->status))
814 			info->flags |= IEEE80211_TX_STAT_ACK;
815 		if (payload->status & P54_TX_PSM_CANCELLED)
816 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
817 		info->status.ack_signal = p54_rssi_to_dbm(dev,
818 				(int)payload->ack_rssi);
819 
820 		/* Undo all changes to the frame. */
821 		switch (entry_data->key_type) {
822 		case P54_CRYPTO_TKIPMICHAEL: {
823 			u8 *iv = (u8 *)(entry_data->align + pad +
824 					entry_data->crypt_offset);
825 
826 			/* Restore the original TKIP IV. */
827 			iv[2] = iv[0];
828 			iv[0] = iv[1];
829 			iv[1] = (iv[0] | 0x20) & 0x7f;	/* WEPSeed - 8.3.2.2 */
830 
831 			frame_len -= 12; /* remove TKIP_MMIC + TKIP_ICV */
832 			break;
833 			}
834 		case P54_CRYPTO_AESCCMP:
835 			frame_len -= 8; /* remove CCMP_MIC */
836 			break;
837 		case P54_CRYPTO_WEP:
838 			frame_len -= 4; /* remove WEP_ICV */
839 			break;
840 		}
841 		skb_trim(entry, frame_len);
842 		skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
843 		ieee80211_tx_status_irqsafe(dev, entry);
844 		goto out;
845 	}
846 	spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
847 
848 out:
849 	if (freed >= priv->headroom + sizeof(struct p54_hdr) + 48 +
850 		     IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
851 		p54_wake_free_queues(dev);
852 }
853 
p54_rx_eeprom_readback(struct ieee80211_hw * dev,struct sk_buff * skb)854 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
855 				   struct sk_buff *skb)
856 {
857 	struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
858 	struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
859 	struct p54_common *priv = dev->priv;
860 
861 	if (!priv->eeprom)
862 		return ;
863 
864 	if (priv->fw_var >= 0x509) {
865 		memcpy(priv->eeprom, eeprom->v2.data,
866 		       le16_to_cpu(eeprom->v2.len));
867 	} else {
868 		memcpy(priv->eeprom, eeprom->v1.data,
869 		       le16_to_cpu(eeprom->v1.len));
870 	}
871 
872 	complete(&priv->eeprom_comp);
873 }
874 
p54_rx_stats(struct ieee80211_hw * dev,struct sk_buff * skb)875 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
876 {
877 	struct p54_common *priv = dev->priv;
878 	struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
879 	struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
880 	u32 tsf32;
881 
882 	if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
883 		return ;
884 
885 	tsf32 = le32_to_cpu(stats->tsf32);
886 	if (tsf32 < priv->tsf_low32)
887 		priv->tsf_high32++;
888 	priv->tsf_low32 = tsf32;
889 
890 	priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
891 	priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
892 	priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
893 
894 	priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
895 
896 	p54_free_skb(dev, p54_find_tx_entry(dev, hdr->req_id));
897 }
898 
p54_rx_trap(struct ieee80211_hw * dev,struct sk_buff * skb)899 static void p54_rx_trap(struct ieee80211_hw *dev, struct sk_buff *skb)
900 {
901 	struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
902 	struct p54_trap *trap = (struct p54_trap *) hdr->data;
903 	u16 event = le16_to_cpu(trap->event);
904 	u16 freq = le16_to_cpu(trap->frequency);
905 
906 	switch (event) {
907 	case P54_TRAP_BEACON_TX:
908 		break;
909 	case P54_TRAP_RADAR:
910 		printk(KERN_INFO "%s: radar (freq:%d MHz)\n",
911 			wiphy_name(dev->wiphy), freq);
912 		break;
913 	case P54_TRAP_NO_BEACON:
914 		break;
915 	case P54_TRAP_SCAN:
916 		break;
917 	case P54_TRAP_TBTT:
918 		break;
919 	case P54_TRAP_TIMER:
920 		break;
921 	default:
922 		printk(KERN_INFO "%s: received event:%x freq:%d\n",
923 		       wiphy_name(dev->wiphy), event, freq);
924 		break;
925 	}
926 }
927 
p54_rx_control(struct ieee80211_hw * dev,struct sk_buff * skb)928 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
929 {
930 	struct p54_hdr *hdr = (struct p54_hdr *) skb->data;
931 
932 	switch (le16_to_cpu(hdr->type)) {
933 	case P54_CONTROL_TYPE_TXDONE:
934 		p54_rx_frame_sent(dev, skb);
935 		break;
936 	case P54_CONTROL_TYPE_TRAP:
937 		p54_rx_trap(dev, skb);
938 		break;
939 	case P54_CONTROL_TYPE_BBP:
940 		break;
941 	case P54_CONTROL_TYPE_STAT_READBACK:
942 		p54_rx_stats(dev, skb);
943 		break;
944 	case P54_CONTROL_TYPE_EEPROM_READBACK:
945 		p54_rx_eeprom_readback(dev, skb);
946 		break;
947 	default:
948 		printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
949 		       wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
950 		break;
951 	}
952 
953 	return 0;
954 }
955 
956 /* returns zero if skb can be reused */
p54_rx(struct ieee80211_hw * dev,struct sk_buff * skb)957 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
958 {
959 	u16 type = le16_to_cpu(*((__le16 *)skb->data));
960 
961 	if (type & P54_HDR_FLAG_CONTROL)
962 		return p54_rx_control(dev, skb);
963 	else
964 		return p54_rx_data(dev, skb);
965 }
966 EXPORT_SYMBOL_GPL(p54_rx);
967 
968 /*
969  * So, the firmware is somewhat stupid and doesn't know what places in its
970  * memory incoming data should go to. By poking around in the firmware, we
971  * can find some unused memory to upload our packets to. However, data that we
972  * want the card to TX needs to stay intact until the card has told us that
973  * it is done with it. This function finds empty places we can upload to and
974  * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
975  * allocated areas.
976  */
p54_assign_address(struct ieee80211_hw * dev,struct sk_buff * skb,struct p54_hdr * data,u32 len)977 static int p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
978 			       struct p54_hdr *data, u32 len)
979 {
980 	struct p54_common *priv = dev->priv;
981 	struct sk_buff *entry;
982 	struct sk_buff *target_skb = NULL;
983 	struct ieee80211_tx_info *info;
984 	struct memrecord *range;
985 	u32 last_addr = priv->rx_start;
986 	u32 largest_hole = 0;
987 	u32 target_addr = priv->rx_start;
988 	unsigned long flags;
989 	unsigned int left;
990 	len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
991 
992 	if (!skb)
993 		return -EINVAL;
994 
995 	spin_lock_irqsave(&priv->tx_queue.lock, flags);
996 
997 	left = skb_queue_len(&priv->tx_queue);
998 	if (unlikely(left >= 28)) {
999 		/*
1000 		 * The tx_queue is nearly full!
1001 		 * We have throttle normal data traffic, because we must
1002 		 * have a few spare slots for control frames left.
1003 		 */
1004 		ieee80211_stop_queues(dev);
1005 		queue_delayed_work(dev->workqueue, &priv->work,
1006 				   msecs_to_jiffies(P54_TX_TIMEOUT));
1007 
1008 		if (unlikely(left == 32)) {
1009 			/*
1010 			 * The tx_queue is now really full.
1011 			 *
1012 			 * TODO: check if the device has crashed and reset it.
1013 			 */
1014 			spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1015 			return -ENOSPC;
1016 		}
1017 	}
1018 
1019 	entry = priv->tx_queue.next;
1020 	while (left--) {
1021 		u32 hole_size;
1022 		info = IEEE80211_SKB_CB(entry);
1023 		range = (void *)info->rate_driver_data;
1024 		hole_size = range->start_addr - last_addr;
1025 		if (!target_skb && hole_size >= len) {
1026 			target_skb = entry->prev;
1027 			hole_size -= len;
1028 			target_addr = last_addr;
1029 		}
1030 		largest_hole = max(largest_hole, hole_size);
1031 		last_addr = range->end_addr;
1032 		entry = entry->next;
1033 	}
1034 	if (!target_skb && priv->rx_end - last_addr >= len) {
1035 		target_skb = priv->tx_queue.prev;
1036 		largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
1037 		if (!skb_queue_empty(&priv->tx_queue)) {
1038 			info = IEEE80211_SKB_CB(target_skb);
1039 			range = (void *)info->rate_driver_data;
1040 			target_addr = range->end_addr;
1041 		}
1042 	} else
1043 		largest_hole = max(largest_hole, priv->rx_end - last_addr);
1044 
1045 	if (!target_skb) {
1046 		spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1047 		ieee80211_stop_queues(dev);
1048 		return -ENOSPC;
1049 	}
1050 
1051 	info = IEEE80211_SKB_CB(skb);
1052 	range = (void *)info->rate_driver_data;
1053 	range->start_addr = target_addr;
1054 	range->end_addr = target_addr + len;
1055 	__skb_queue_after(&priv->tx_queue, target_skb, skb);
1056 	spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
1057 
1058 	if (largest_hole < priv->headroom + sizeof(struct p54_hdr) +
1059 			   48 + IEEE80211_MAX_RTS_THRESHOLD + priv->tailroom)
1060 		ieee80211_stop_queues(dev);
1061 
1062 	data->req_id = cpu_to_le32(target_addr + priv->headroom);
1063 	return 0;
1064 }
1065 
p54_alloc_skb(struct ieee80211_hw * dev,u16 hdr_flags,u16 len,u16 type,gfp_t memflags)1066 static struct sk_buff *p54_alloc_skb(struct ieee80211_hw *dev,
1067 		u16 hdr_flags, u16 len, u16 type, gfp_t memflags)
1068 {
1069 	struct p54_common *priv = dev->priv;
1070 	struct p54_hdr *hdr;
1071 	struct sk_buff *skb;
1072 
1073 	skb = __dev_alloc_skb(len + priv->tx_hdr_len, memflags);
1074 	if (!skb)
1075 		return NULL;
1076 	skb_reserve(skb, priv->tx_hdr_len);
1077 
1078 	hdr = (struct p54_hdr *) skb_put(skb, sizeof(*hdr));
1079 	hdr->flags = cpu_to_le16(hdr_flags);
1080 	hdr->len = cpu_to_le16(len - sizeof(*hdr));
1081 	hdr->type = cpu_to_le16(type);
1082 	hdr->tries = hdr->rts_tries = 0;
1083 
1084 	if (unlikely(p54_assign_address(dev, skb, hdr, len))) {
1085 		kfree_skb(skb);
1086 		return NULL;
1087 	}
1088 	return skb;
1089 }
1090 
p54_read_eeprom(struct ieee80211_hw * dev)1091 int p54_read_eeprom(struct ieee80211_hw *dev)
1092 {
1093 	struct p54_common *priv = dev->priv;
1094 	struct p54_hdr *hdr = NULL;
1095 	struct p54_eeprom_lm86 *eeprom_hdr;
1096 	struct sk_buff *skb;
1097 	size_t eeprom_size = 0x2020, offset = 0, blocksize, maxblocksize;
1098 	int ret = -ENOMEM;
1099 	void *eeprom = NULL;
1100 
1101 	maxblocksize = EEPROM_READBACK_LEN;
1102 	if (priv->fw_var >= 0x509)
1103 		maxblocksize -= 0xc;
1104 	else
1105 		maxblocksize -= 0x4;
1106 
1107 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(*hdr) +
1108 			    sizeof(*eeprom_hdr) + maxblocksize,
1109 			    P54_CONTROL_TYPE_EEPROM_READBACK, GFP_KERNEL);
1110 	if (!skb)
1111 		goto free;
1112 	priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
1113 	if (!priv->eeprom)
1114 		goto free;
1115 	eeprom = kzalloc(eeprom_size, GFP_KERNEL);
1116 	if (!eeprom)
1117 		goto free;
1118 
1119 	eeprom_hdr = (struct p54_eeprom_lm86 *) skb_put(skb,
1120 		     sizeof(*eeprom_hdr) + maxblocksize);
1121 
1122 	while (eeprom_size) {
1123 		blocksize = min(eeprom_size, maxblocksize);
1124 		if (priv->fw_var < 0x509) {
1125 			eeprom_hdr->v1.offset = cpu_to_le16(offset);
1126 			eeprom_hdr->v1.len = cpu_to_le16(blocksize);
1127 		} else {
1128 			eeprom_hdr->v2.offset = cpu_to_le32(offset);
1129 			eeprom_hdr->v2.len = cpu_to_le16(blocksize);
1130 			eeprom_hdr->v2.magic2 = 0xf;
1131 			memcpy(eeprom_hdr->v2.magic, (const char *)"LOCK", 4);
1132 		}
1133 		priv->tx(dev, skb);
1134 
1135 		if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
1136 			printk(KERN_ERR "%s: device does not respond!\n",
1137 				wiphy_name(dev->wiphy));
1138 			ret = -EBUSY;
1139 			goto free;
1140 	        }
1141 
1142 		memcpy(eeprom + offset, priv->eeprom, blocksize);
1143 		offset += blocksize;
1144 		eeprom_size -= blocksize;
1145 	}
1146 
1147 	ret = p54_parse_eeprom(dev, eeprom, offset);
1148 free:
1149 	kfree(priv->eeprom);
1150 	priv->eeprom = NULL;
1151 	p54_free_skb(dev, skb);
1152 	kfree(eeprom);
1153 
1154 	return ret;
1155 }
1156 EXPORT_SYMBOL_GPL(p54_read_eeprom);
1157 
p54_set_tim(struct ieee80211_hw * dev,struct ieee80211_sta * sta,bool set)1158 static int p54_set_tim(struct ieee80211_hw *dev, struct ieee80211_sta *sta,
1159 		bool set)
1160 {
1161 	struct p54_common *priv = dev->priv;
1162 	struct sk_buff *skb;
1163 	struct p54_tim *tim;
1164 
1165 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1166 		      sizeof(struct p54_hdr) + sizeof(*tim),
1167 		      P54_CONTROL_TYPE_TIM, GFP_ATOMIC);
1168 	if (!skb)
1169 		return -ENOMEM;
1170 
1171 	tim = (struct p54_tim *) skb_put(skb, sizeof(*tim));
1172 	tim->count = 1;
1173 	tim->entry[0] = cpu_to_le16(set ? (sta->aid | 0x8000) : sta->aid);
1174 	priv->tx(dev, skb);
1175 	return 0;
1176 }
1177 
p54_sta_unlock(struct ieee80211_hw * dev,u8 * addr)1178 static int p54_sta_unlock(struct ieee80211_hw *dev, u8 *addr)
1179 {
1180 	struct p54_common *priv = dev->priv;
1181 	struct sk_buff *skb;
1182 	struct p54_sta_unlock *sta;
1183 
1184 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1185 		sizeof(struct p54_hdr) + sizeof(*sta),
1186 		P54_CONTROL_TYPE_PSM_STA_UNLOCK, GFP_ATOMIC);
1187 	if (!skb)
1188 		return -ENOMEM;
1189 
1190 	sta = (struct p54_sta_unlock *)skb_put(skb, sizeof(*sta));
1191 	memcpy(sta->addr, addr, ETH_ALEN);
1192 	priv->tx(dev, skb);
1193 	return 0;
1194 }
1195 
p54_sta_notify(struct ieee80211_hw * dev,struct ieee80211_vif * vif,enum sta_notify_cmd notify_cmd,struct ieee80211_sta * sta)1196 static void p54_sta_notify(struct ieee80211_hw *dev, struct ieee80211_vif *vif,
1197 			      enum sta_notify_cmd notify_cmd,
1198 			      struct ieee80211_sta *sta)
1199 {
1200 	switch (notify_cmd) {
1201 	case STA_NOTIFY_ADD:
1202 	case STA_NOTIFY_REMOVE:
1203 		/*
1204 		 * Notify the firmware that we don't want or we don't
1205 		 * need to buffer frames for this station anymore.
1206 		 */
1207 
1208 		p54_sta_unlock(dev, sta->addr);
1209 		break;
1210 	case STA_NOTIFY_AWAKE:
1211 		/* update the firmware's filter table */
1212 		p54_sta_unlock(dev, sta->addr);
1213 		break;
1214 	default:
1215 		break;
1216 	}
1217 }
1218 
p54_tx_cancel(struct ieee80211_hw * dev,struct sk_buff * entry)1219 static int p54_tx_cancel(struct ieee80211_hw *dev, struct sk_buff *entry)
1220 {
1221 	struct p54_common *priv = dev->priv;
1222 	struct sk_buff *skb;
1223 	struct p54_hdr *hdr;
1224 	struct p54_txcancel *cancel;
1225 
1226 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET,
1227 		sizeof(struct p54_hdr) + sizeof(*cancel),
1228 		P54_CONTROL_TYPE_TXCANCEL, GFP_ATOMIC);
1229 	if (!skb)
1230 		return -ENOMEM;
1231 
1232 	hdr = (void *)entry->data;
1233 	cancel = (struct p54_txcancel *)skb_put(skb, sizeof(*cancel));
1234 	cancel->req_id = hdr->req_id;
1235 	priv->tx(dev, skb);
1236 	return 0;
1237 }
1238 
p54_tx_fill(struct ieee80211_hw * dev,struct sk_buff * skb,struct ieee80211_tx_info * info,u8 * queue,size_t * extra_len,u16 * flags,u16 * aid)1239 static int p54_tx_fill(struct ieee80211_hw *dev, struct sk_buff *skb,
1240 		struct ieee80211_tx_info *info, u8 *queue, size_t *extra_len,
1241 		u16 *flags, u16 *aid)
1242 {
1243 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1244 	struct p54_common *priv = dev->priv;
1245 	int ret = 0;
1246 
1247 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
1248 		if (ieee80211_is_beacon(hdr->frame_control)) {
1249 			*aid = 0;
1250 			*queue = 0;
1251 			*extra_len = IEEE80211_MAX_TIM_LEN;
1252 			*flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP;
1253 			return 0;
1254 		} else if (ieee80211_is_probe_resp(hdr->frame_control)) {
1255 			*aid = 0;
1256 			*queue = 2;
1257 			*flags = P54_HDR_FLAG_DATA_OUT_TIMESTAMP |
1258 				 P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1259 			return 0;
1260 		} else {
1261 			*queue = 2;
1262 			ret = 0;
1263 		}
1264 	} else {
1265 		*queue += 4;
1266 		ret = 1;
1267 	}
1268 
1269 	switch (priv->mode) {
1270 	case NL80211_IFTYPE_STATION:
1271 		*aid = 1;
1272 		break;
1273 	case NL80211_IFTYPE_AP:
1274 	case NL80211_IFTYPE_ADHOC:
1275 	case NL80211_IFTYPE_MESH_POINT:
1276 		if (info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) {
1277 			*aid = 0;
1278 			*queue = 3;
1279 			return 0;
1280 		}
1281 		if (info->control.sta)
1282 			*aid = info->control.sta->aid;
1283 		else
1284 			*flags |= P54_HDR_FLAG_DATA_OUT_NOCANCEL;
1285 	}
1286 	return ret;
1287 }
1288 
p54_convert_algo(enum ieee80211_key_alg alg)1289 static u8 p54_convert_algo(enum ieee80211_key_alg alg)
1290 {
1291 	switch (alg) {
1292 	case ALG_WEP:
1293 		return P54_CRYPTO_WEP;
1294 	case ALG_TKIP:
1295 		return P54_CRYPTO_TKIPMICHAEL;
1296 	case ALG_CCMP:
1297 		return P54_CRYPTO_AESCCMP;
1298 	default:
1299 		return 0;
1300 	}
1301 }
1302 
p54_tx(struct ieee80211_hw * dev,struct sk_buff * skb)1303 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
1304 {
1305 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1306 	struct ieee80211_tx_queue_stats *current_queue = NULL;
1307 	struct p54_common *priv = dev->priv;
1308 	struct p54_hdr *hdr;
1309 	struct p54_tx_data *txhdr;
1310 	size_t padding, len, tim_len = 0;
1311 	int i, j, ridx, ret;
1312 	u16 hdr_flags = 0, aid = 0;
1313 	u8 rate, queue, crypt_offset = 0;
1314 	u8 cts_rate = 0x20;
1315 	u8 rc_flags;
1316 	u8 calculated_tries[4];
1317 	u8 nrates = 0, nremaining = 8;
1318 
1319 	queue = skb_get_queue_mapping(skb);
1320 
1321 	ret = p54_tx_fill(dev, skb, info, &queue, &tim_len, &hdr_flags, &aid);
1322 	current_queue = &priv->tx_stats[queue];
1323 	if (unlikely((current_queue->len > current_queue->limit) && ret))
1324 		return NETDEV_TX_BUSY;
1325 	current_queue->len++;
1326 	current_queue->count++;
1327 	if ((current_queue->len == current_queue->limit) && ret)
1328 		ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
1329 
1330 	padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
1331 	len = skb->len;
1332 
1333 	if (info->control.hw_key) {
1334 		crypt_offset = ieee80211_get_hdrlen_from_skb(skb);
1335 		if (info->control.hw_key->alg == ALG_TKIP) {
1336 			u8 *iv = (u8 *)(skb->data + crypt_offset);
1337 			/*
1338 			 * The firmware excepts that the IV has to have
1339 			 * this special format
1340 			 */
1341 			iv[1] = iv[0];
1342 			iv[0] = iv[2];
1343 			iv[2] = 0;
1344 		}
1345 	}
1346 
1347 	txhdr = (struct p54_tx_data *) skb_push(skb, sizeof(*txhdr) + padding);
1348 	hdr = (struct p54_hdr *) skb_push(skb, sizeof(*hdr));
1349 
1350 	if (padding)
1351 		hdr_flags |= P54_HDR_FLAG_DATA_ALIGN;
1352 	hdr->type = cpu_to_le16(aid);
1353 	hdr->rts_tries = info->control.rates[0].count;
1354 
1355 	/*
1356 	 * we register the rates in perfect order, and
1357 	 * RTS/CTS won't happen on 5 GHz
1358 	 */
1359 	cts_rate = info->control.rts_cts_rate_idx;
1360 
1361 	memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
1362 
1363 	/* see how many rates got used */
1364 	for (i = 0; i < 4; i++) {
1365 		if (info->control.rates[i].idx < 0)
1366 			break;
1367 		nrates++;
1368 	}
1369 
1370 	/* limit tries to 8/nrates per rate */
1371 	for (i = 0; i < nrates; i++) {
1372 		/*
1373 		 * The magic expression here is equivalent to 8/nrates for
1374 		 * all values that matter, but avoids division and jumps.
1375 		 * Note that nrates can only take the values 1 through 4.
1376 		 */
1377 		calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
1378 						 info->control.rates[i].count);
1379 		nremaining -= calculated_tries[i];
1380 	}
1381 
1382 	/* if there are tries left, distribute from back to front */
1383 	for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
1384 		int tmp = info->control.rates[i].count - calculated_tries[i];
1385 
1386 		if (tmp <= 0)
1387 			continue;
1388 		/* RC requested more tries at this rate */
1389 
1390 		tmp = min_t(int, tmp, nremaining);
1391 		calculated_tries[i] += tmp;
1392 		nremaining -= tmp;
1393 	}
1394 
1395 	ridx = 0;
1396 	for (i = 0; i < nrates && ridx < 8; i++) {
1397 		/* we register the rates in perfect order */
1398 		rate = info->control.rates[i].idx;
1399 		if (info->band == IEEE80211_BAND_5GHZ)
1400 			rate += 4;
1401 
1402 		/* store the count we actually calculated for TX status */
1403 		info->control.rates[i].count = calculated_tries[i];
1404 
1405 		rc_flags = info->control.rates[i].flags;
1406 		if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
1407 			rate |= 0x10;
1408 			cts_rate |= 0x10;
1409 		}
1410 		if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
1411 			rate |= 0x40;
1412 		else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
1413 			rate |= 0x20;
1414 		for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
1415 			txhdr->rateset[ridx] = rate;
1416 			ridx++;
1417 		}
1418 	}
1419 
1420 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
1421 		hdr_flags |= P54_HDR_FLAG_DATA_OUT_SEQNR;
1422 
1423 	/* TODO: enable bursting */
1424 	hdr->flags = cpu_to_le16(hdr_flags);
1425 	hdr->tries = ridx;
1426 	txhdr->rts_rate_idx = 0;
1427 	if (info->control.hw_key) {
1428 		txhdr->key_type = p54_convert_algo(info->control.hw_key->alg);
1429 		txhdr->key_len = min((u8)16, info->control.hw_key->keylen);
1430 		memcpy(txhdr->key, info->control.hw_key->key, txhdr->key_len);
1431 		if (info->control.hw_key->alg == ALG_TKIP) {
1432 			if (unlikely(skb_tailroom(skb) < 12))
1433 				goto err;
1434 			/* reserve space for the MIC key */
1435 			len += 8;
1436 			memcpy(skb_put(skb, 8), &(info->control.hw_key->key
1437 				[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY]), 8);
1438 		}
1439 		/* reserve some space for ICV */
1440 		len += info->control.hw_key->icv_len;
1441 		memset(skb_put(skb, info->control.hw_key->icv_len), 0,
1442 		       info->control.hw_key->icv_len);
1443 	} else {
1444 		txhdr->key_type = 0;
1445 		txhdr->key_len = 0;
1446 	}
1447 	txhdr->crypt_offset = crypt_offset;
1448 	txhdr->hw_queue = queue;
1449 	if (current_queue)
1450 		txhdr->backlog = current_queue->len;
1451 	else
1452 		txhdr->backlog = 0;
1453 	memset(txhdr->durations, 0, sizeof(txhdr->durations));
1454 	txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
1455 		2 : info->antenna_sel_tx - 1;
1456 	txhdr->output_power = priv->output_power;
1457 	txhdr->cts_rate = cts_rate;
1458 	if (padding)
1459 		txhdr->align[0] = padding;
1460 
1461 	hdr->len = cpu_to_le16(len);
1462 	/* modifies skb->cb and with it info, so must be last! */
1463 	if (unlikely(p54_assign_address(dev, skb, hdr, skb->len + tim_len)))
1464 		goto err;
1465 	priv->tx(dev, skb);
1466 
1467 	queue_delayed_work(dev->workqueue, &priv->work,
1468 			   msecs_to_jiffies(P54_TX_FRAME_LIFETIME));
1469 
1470 	return 0;
1471 
1472  err:
1473 	skb_pull(skb, sizeof(*hdr) + sizeof(*txhdr) + padding);
1474 	if (current_queue) {
1475 		current_queue->len--;
1476 		current_queue->count--;
1477 	}
1478 	return NETDEV_TX_BUSY;
1479 }
1480 
p54_setup_mac(struct ieee80211_hw * dev)1481 static int p54_setup_mac(struct ieee80211_hw *dev)
1482 {
1483 	struct p54_common *priv = dev->priv;
1484 	struct sk_buff *skb;
1485 	struct p54_setup_mac *setup;
1486 	u16 mode;
1487 
1488 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*setup) +
1489 			    sizeof(struct p54_hdr), P54_CONTROL_TYPE_SETUP,
1490 			    GFP_ATOMIC);
1491 	if (!skb)
1492 		return -ENOMEM;
1493 
1494 	setup = (struct p54_setup_mac *) skb_put(skb, sizeof(*setup));
1495 	if (dev->conf.radio_enabled) {
1496 		switch (priv->mode) {
1497 		case NL80211_IFTYPE_STATION:
1498 			mode = P54_FILTER_TYPE_STATION;
1499 			break;
1500 		case NL80211_IFTYPE_AP:
1501 			mode = P54_FILTER_TYPE_AP;
1502 			break;
1503 		case NL80211_IFTYPE_ADHOC:
1504 		case NL80211_IFTYPE_MESH_POINT:
1505 			mode = P54_FILTER_TYPE_IBSS;
1506 			break;
1507 		default:
1508 			mode = P54_FILTER_TYPE_NONE;
1509 			break;
1510 		}
1511 		if (priv->filter_flags & FIF_PROMISC_IN_BSS)
1512 			mode |= P54_FILTER_TYPE_TRANSPARENT;
1513 	} else
1514 		mode = P54_FILTER_TYPE_RX_DISABLED;
1515 
1516 	setup->mac_mode = cpu_to_le16(mode);
1517 	memcpy(setup->mac_addr, priv->mac_addr, ETH_ALEN);
1518 	memcpy(setup->bssid, priv->bssid, ETH_ALEN);
1519 	setup->rx_antenna = 2; /* automatic */
1520 	setup->rx_align = 0;
1521 	if (priv->fw_var < 0x500) {
1522 		setup->v1.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1523 		memset(setup->v1.rts_rates, 0, 8);
1524 		setup->v1.rx_addr = cpu_to_le32(priv->rx_end);
1525 		setup->v1.max_rx = cpu_to_le16(priv->rx_mtu);
1526 		setup->v1.rxhw = cpu_to_le16(priv->rxhw);
1527 		setup->v1.wakeup_timer = cpu_to_le16(priv->wakeup_timer);
1528 		setup->v1.unalloc0 = cpu_to_le16(0);
1529 	} else {
1530 		setup->v2.rx_addr = cpu_to_le32(priv->rx_end);
1531 		setup->v2.max_rx = cpu_to_le16(priv->rx_mtu);
1532 		setup->v2.rxhw = cpu_to_le16(priv->rxhw);
1533 		setup->v2.timer = cpu_to_le16(priv->wakeup_timer);
1534 		setup->v2.truncate = cpu_to_le16(48896);
1535 		setup->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1536 		setup->v2.sbss_offset = 0;
1537 		setup->v2.mcast_window = 0;
1538 		setup->v2.rx_rssi_threshold = 0;
1539 		setup->v2.rx_ed_threshold = 0;
1540 		setup->v2.ref_clock = cpu_to_le32(644245094);
1541 		setup->v2.lpf_bandwidth = cpu_to_le16(65535);
1542 		setup->v2.osc_start_delay = cpu_to_le16(65535);
1543 	}
1544 	priv->tx(dev, skb);
1545 	return 0;
1546 }
1547 
p54_scan(struct ieee80211_hw * dev,u16 mode,u16 dwell)1548 static int p54_scan(struct ieee80211_hw *dev, u16 mode, u16 dwell)
1549 {
1550 	struct p54_common *priv = dev->priv;
1551 	struct sk_buff *skb;
1552 	struct p54_scan *chan;
1553 	unsigned int i;
1554 	void *entry;
1555 	__le16 freq = cpu_to_le16(dev->conf.channel->center_freq);
1556 	int band = dev->conf.channel->band;
1557 
1558 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*chan) +
1559 			    sizeof(struct p54_hdr), P54_CONTROL_TYPE_SCAN,
1560 			    GFP_ATOMIC);
1561 	if (!skb)
1562 		return -ENOMEM;
1563 
1564 	chan = (struct p54_scan *) skb_put(skb, sizeof(*chan));
1565 	memset(chan->padding1, 0, sizeof(chan->padding1));
1566 	chan->mode = cpu_to_le16(mode);
1567 	chan->dwell = cpu_to_le16(dwell);
1568 
1569 	for (i = 0; i < priv->iq_autocal_len; i++) {
1570 		if (priv->iq_autocal[i].freq != freq)
1571 			continue;
1572 
1573 		memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1574 		       sizeof(*priv->iq_autocal));
1575 		break;
1576 	}
1577 	if (i == priv->iq_autocal_len)
1578 		goto err;
1579 
1580 	for (i = 0; i < priv->output_limit_len; i++) {
1581 		if (priv->output_limit[i].freq != freq)
1582 			continue;
1583 
1584 		chan->val_barker = 0x38;
1585 		chan->val_bpsk = chan->dup_bpsk =
1586 			priv->output_limit[i].val_bpsk;
1587 		chan->val_qpsk = chan->dup_qpsk =
1588 			priv->output_limit[i].val_qpsk;
1589 		chan->val_16qam = chan->dup_16qam =
1590 			priv->output_limit[i].val_16qam;
1591 		chan->val_64qam = chan->dup_64qam =
1592 			priv->output_limit[i].val_64qam;
1593 		break;
1594 	}
1595 	if (i == priv->output_limit_len)
1596 		goto err;
1597 
1598 	entry = priv->curve_data->data;
1599 	for (i = 0; i < priv->curve_data->channels; i++) {
1600 		if (*((__le16 *)entry) != freq) {
1601 			entry += sizeof(__le16);
1602 			entry += sizeof(struct p54_pa_curve_data_sample) *
1603 				 priv->curve_data->points_per_channel;
1604 			continue;
1605 		}
1606 
1607 		entry += sizeof(__le16);
1608 		chan->pa_points_per_curve = 8;
1609 		memset(chan->curve_data, 0, sizeof(*chan->curve_data));
1610 		memcpy(chan->curve_data, entry,
1611 		       sizeof(struct p54_pa_curve_data_sample) *
1612 		       min((u8)8, priv->curve_data->points_per_channel));
1613 		break;
1614 	}
1615 
1616 	if (priv->fw_var < 0x500) {
1617 		chan->v1_rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1618 		chan->v1_rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1619 	} else {
1620 		chan->v2.rssi.mul = cpu_to_le16(priv->rssical_db[band].mul);
1621 		chan->v2.rssi.add = cpu_to_le16(priv->rssical_db[band].add);
1622 		chan->v2.basic_rate_mask = cpu_to_le32(priv->basic_rate_mask);
1623 		memset(chan->v2.rts_rates, 0, 8);
1624 	}
1625 	priv->tx(dev, skb);
1626 	return 0;
1627 
1628  err:
1629 	printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1630 	p54_free_skb(dev, skb);
1631 	return -EINVAL;
1632 }
1633 
p54_set_leds(struct ieee80211_hw * dev,int mode,int link,int act)1634 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1635 {
1636 	struct p54_common *priv = dev->priv;
1637 	struct sk_buff *skb;
1638 	struct p54_led *led;
1639 
1640 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*led) +
1641 			sizeof(struct p54_hdr),	P54_CONTROL_TYPE_LED,
1642 			GFP_ATOMIC);
1643 	if (!skb)
1644 		return -ENOMEM;
1645 
1646 	led = (struct p54_led *)skb_put(skb, sizeof(*led));
1647 	led->mode = cpu_to_le16(mode);
1648 	led->led_permanent = cpu_to_le16(link);
1649 	led->led_temporary = cpu_to_le16(act);
1650 	led->duration = cpu_to_le16(1000);
1651 	priv->tx(dev, skb);
1652 	return 0;
1653 }
1654 
1655 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop)	\
1656 do {	 							\
1657 	queue.aifs = cpu_to_le16(ai_fs);			\
1658 	queue.cwmin = cpu_to_le16(cw_min);			\
1659 	queue.cwmax = cpu_to_le16(cw_max);			\
1660 	queue.txop = cpu_to_le16(_txop);			\
1661 } while(0)
1662 
p54_set_edcf(struct ieee80211_hw * dev)1663 static int p54_set_edcf(struct ieee80211_hw *dev)
1664 {
1665 	struct p54_common *priv = dev->priv;
1666 	struct sk_buff *skb;
1667 	struct p54_edcf *edcf;
1668 
1669 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*edcf) +
1670 			sizeof(struct p54_hdr), P54_CONTROL_TYPE_DCFINIT,
1671 			GFP_ATOMIC);
1672 	if (!skb)
1673 		return -ENOMEM;
1674 
1675 	edcf = (struct p54_edcf *)skb_put(skb, sizeof(*edcf));
1676 	if (priv->use_short_slot) {
1677 		edcf->slottime = 9;
1678 		edcf->sifs = 0x10;
1679 		edcf->eofpad = 0x00;
1680 	} else {
1681 		edcf->slottime = 20;
1682 		edcf->sifs = 0x0a;
1683 		edcf->eofpad = 0x06;
1684 	}
1685 	/* (see prism54/isl_oid.h for further details) */
1686 	edcf->frameburst = cpu_to_le16(0);
1687 	edcf->round_trip_delay = cpu_to_le16(0);
1688 	edcf->flags = 0;
1689 	memset(edcf->mapping, 0, sizeof(edcf->mapping));
1690 	memcpy(edcf->queue, priv->qos_params, sizeof(edcf->queue));
1691 	priv->tx(dev, skb);
1692 	return 0;
1693 }
1694 
p54_beacon_tim(struct sk_buff * skb)1695 static int p54_beacon_tim(struct sk_buff *skb)
1696 {
1697 	/*
1698 	 * the good excuse for this mess is ... the firmware.
1699 	 * The dummy TIM MUST be at the end of the beacon frame,
1700 	 * because it'll be overwritten!
1701 	 */
1702 
1703 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
1704 	u8 *pos, *end;
1705 
1706 	if (skb->len <= sizeof(mgmt))
1707 		return -EINVAL;
1708 
1709 	pos = (u8 *)mgmt->u.beacon.variable;
1710 	end = skb->data + skb->len;
1711 	while (pos < end) {
1712 		if (pos + 2 + pos[1] > end)
1713 			return -EINVAL;
1714 
1715 		if (pos[0] == WLAN_EID_TIM) {
1716 			u8 dtim_len = pos[1];
1717 			u8 dtim_period = pos[3];
1718 			u8 *next = pos + 2 + dtim_len;
1719 
1720 			if (dtim_len < 3)
1721 				return -EINVAL;
1722 
1723 			memmove(pos, next, end - next);
1724 
1725 			if (dtim_len > 3)
1726 				skb_trim(skb, skb->len - (dtim_len - 3));
1727 
1728 			pos = end - (dtim_len + 2);
1729 
1730 			/* add the dummy at the end */
1731 			pos[0] = WLAN_EID_TIM;
1732 			pos[1] = 3;
1733 			pos[2] = 0;
1734 			pos[3] = dtim_period;
1735 			pos[4] = 0;
1736 			return 0;
1737 		}
1738 		pos += 2 + pos[1];
1739 	}
1740 	return 0;
1741 }
1742 
p54_beacon_update(struct ieee80211_hw * dev,struct ieee80211_vif * vif)1743 static int p54_beacon_update(struct ieee80211_hw *dev,
1744 			struct ieee80211_vif *vif)
1745 {
1746 	struct p54_common *priv = dev->priv;
1747 	struct sk_buff *beacon;
1748 	int ret;
1749 
1750 	if (priv->cached_beacon) {
1751 		p54_tx_cancel(dev, priv->cached_beacon);
1752 		/* wait for the last beacon the be freed */
1753 		msleep(10);
1754 	}
1755 
1756 	beacon = ieee80211_beacon_get(dev, vif);
1757 	if (!beacon)
1758 		return -ENOMEM;
1759 	ret = p54_beacon_tim(beacon);
1760 	if (ret)
1761 		return ret;
1762 	ret = p54_tx(dev, beacon);
1763 	if (ret)
1764 		return ret;
1765 	priv->cached_beacon = beacon;
1766 	priv->tsf_high32 = 0;
1767 	priv->tsf_low32 = 0;
1768 
1769 	return 0;
1770 }
1771 
p54_start(struct ieee80211_hw * dev)1772 static int p54_start(struct ieee80211_hw *dev)
1773 {
1774 	struct p54_common *priv = dev->priv;
1775 	int err;
1776 
1777 	mutex_lock(&priv->conf_mutex);
1778 	err = priv->open(dev);
1779 	if (err)
1780 		goto out;
1781 	P54_SET_QUEUE(priv->qos_params[0], 0x0002, 0x0003, 0x0007, 47);
1782 	P54_SET_QUEUE(priv->qos_params[1], 0x0002, 0x0007, 0x000f, 94);
1783 	P54_SET_QUEUE(priv->qos_params[2], 0x0003, 0x000f, 0x03ff, 0);
1784 	P54_SET_QUEUE(priv->qos_params[3], 0x0007, 0x000f, 0x03ff, 0);
1785 	err = p54_set_edcf(dev);
1786 	if (err)
1787 		goto out;
1788 
1789 	memset(priv->bssid, ~0, ETH_ALEN);
1790 	priv->mode = NL80211_IFTYPE_MONITOR;
1791 	err = p54_setup_mac(dev);
1792 	if (err) {
1793 		priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1794 		goto out;
1795 	}
1796 
1797 	queue_delayed_work(dev->workqueue, &priv->work, 0);
1798 
1799 out:
1800 	mutex_unlock(&priv->conf_mutex);
1801 	return err;
1802 }
1803 
p54_stop(struct ieee80211_hw * dev)1804 static void p54_stop(struct ieee80211_hw *dev)
1805 {
1806 	struct p54_common *priv = dev->priv;
1807 	struct sk_buff *skb;
1808 
1809 	mutex_lock(&priv->conf_mutex);
1810 	priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1811 	cancel_delayed_work_sync(&priv->work);
1812 	if (priv->cached_beacon)
1813 		p54_tx_cancel(dev, priv->cached_beacon);
1814 
1815 	priv->stop(dev);
1816 	while ((skb = skb_dequeue(&priv->tx_queue)))
1817 		kfree_skb(skb);
1818 	priv->cached_beacon = NULL;
1819 	priv->tsf_high32 = priv->tsf_low32 = 0;
1820 	mutex_unlock(&priv->conf_mutex);
1821 }
1822 
p54_add_interface(struct ieee80211_hw * dev,struct ieee80211_if_init_conf * conf)1823 static int p54_add_interface(struct ieee80211_hw *dev,
1824 			     struct ieee80211_if_init_conf *conf)
1825 {
1826 	struct p54_common *priv = dev->priv;
1827 
1828 	mutex_lock(&priv->conf_mutex);
1829 	if (priv->mode != NL80211_IFTYPE_MONITOR) {
1830 		mutex_unlock(&priv->conf_mutex);
1831 		return -EOPNOTSUPP;
1832 	}
1833 
1834 	switch (conf->type) {
1835 	case NL80211_IFTYPE_STATION:
1836 	case NL80211_IFTYPE_ADHOC:
1837 	case NL80211_IFTYPE_AP:
1838 	case NL80211_IFTYPE_MESH_POINT:
1839 		priv->mode = conf->type;
1840 		break;
1841 	default:
1842 		mutex_unlock(&priv->conf_mutex);
1843 		return -EOPNOTSUPP;
1844 	}
1845 
1846 	memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1847 	p54_setup_mac(dev);
1848 	p54_set_leds(dev, 1, 0, 0);
1849 	mutex_unlock(&priv->conf_mutex);
1850 	return 0;
1851 }
1852 
p54_remove_interface(struct ieee80211_hw * dev,struct ieee80211_if_init_conf * conf)1853 static void p54_remove_interface(struct ieee80211_hw *dev,
1854 				 struct ieee80211_if_init_conf *conf)
1855 {
1856 	struct p54_common *priv = dev->priv;
1857 
1858 	mutex_lock(&priv->conf_mutex);
1859 	if (priv->cached_beacon)
1860 		p54_tx_cancel(dev, priv->cached_beacon);
1861 	priv->mode = NL80211_IFTYPE_MONITOR;
1862 	memset(priv->mac_addr, 0, ETH_ALEN);
1863 	memset(priv->bssid, 0, ETH_ALEN);
1864 	p54_setup_mac(dev);
1865 	mutex_unlock(&priv->conf_mutex);
1866 }
1867 
p54_config(struct ieee80211_hw * dev,u32 changed)1868 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1869 {
1870 	int ret = 0;
1871 	struct p54_common *priv = dev->priv;
1872 	struct ieee80211_conf *conf = &dev->conf;
1873 
1874 	mutex_lock(&priv->conf_mutex);
1875 	if (changed & IEEE80211_CONF_CHANGE_POWER)
1876 		priv->output_power = conf->power_level << 2;
1877 	if (changed & IEEE80211_CONF_CHANGE_RADIO_ENABLED) {
1878 		ret = p54_setup_mac(dev);
1879 		if (ret)
1880 			goto out;
1881 	}
1882 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1883 		ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1884 		if (ret)
1885 			goto out;
1886 	}
1887 
1888 out:
1889 	mutex_unlock(&priv->conf_mutex);
1890 	return ret;
1891 }
1892 
p54_config_interface(struct ieee80211_hw * dev,struct ieee80211_vif * vif,struct ieee80211_if_conf * conf)1893 static int p54_config_interface(struct ieee80211_hw *dev,
1894 				struct ieee80211_vif *vif,
1895 				struct ieee80211_if_conf *conf)
1896 {
1897 	struct p54_common *priv = dev->priv;
1898 	int ret = 0;
1899 
1900 	mutex_lock(&priv->conf_mutex);
1901 	if (conf->changed & IEEE80211_IFCC_BSSID) {
1902 		memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1903 		ret = p54_setup_mac(dev);
1904 		if (ret)
1905 			goto out;
1906 	}
1907 
1908 	if (conf->changed & IEEE80211_IFCC_BEACON) {
1909 		ret = p54_scan(dev, P54_SCAN_EXIT, 0);
1910 		if (ret)
1911 			goto out;
1912 		ret = p54_setup_mac(dev);
1913 		if (ret)
1914 			goto out;
1915 		ret = p54_beacon_update(dev, vif);
1916 		if (ret)
1917 			goto out;
1918 		ret = p54_set_edcf(dev);
1919 		if (ret)
1920 			goto out;
1921 	}
1922 
1923 	ret = p54_set_leds(dev, 1, !is_multicast_ether_addr(priv->bssid), 0);
1924 
1925 out:
1926 	mutex_unlock(&priv->conf_mutex);
1927 	return ret;
1928 }
1929 
p54_configure_filter(struct ieee80211_hw * dev,unsigned int changed_flags,unsigned int * total_flags,int mc_count,struct dev_mc_list * mclist)1930 static void p54_configure_filter(struct ieee80211_hw *dev,
1931 				 unsigned int changed_flags,
1932 				 unsigned int *total_flags,
1933 				 int mc_count, struct dev_mc_list *mclist)
1934 {
1935 	struct p54_common *priv = dev->priv;
1936 
1937 	*total_flags &= FIF_PROMISC_IN_BSS |
1938 			(*total_flags & FIF_PROMISC_IN_BSS) ?
1939 				FIF_FCSFAIL : 0;
1940 
1941 	priv->filter_flags = *total_flags;
1942 
1943 	if (changed_flags & FIF_PROMISC_IN_BSS)
1944 		p54_setup_mac(dev);
1945 }
1946 
p54_conf_tx(struct ieee80211_hw * dev,u16 queue,const struct ieee80211_tx_queue_params * params)1947 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1948 		       const struct ieee80211_tx_queue_params *params)
1949 {
1950 	struct p54_common *priv = dev->priv;
1951 	int ret;
1952 
1953 	mutex_lock(&priv->conf_mutex);
1954 	if ((params) && !(queue > 4)) {
1955 		P54_SET_QUEUE(priv->qos_params[queue], params->aifs,
1956 			params->cw_min, params->cw_max, params->txop);
1957 		ret = p54_set_edcf(dev);
1958 	} else
1959 		ret = -EINVAL;
1960 	mutex_unlock(&priv->conf_mutex);
1961 	return ret;
1962 }
1963 
p54_init_xbow_synth(struct ieee80211_hw * dev)1964 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1965 {
1966 	struct p54_common *priv = dev->priv;
1967 	struct sk_buff *skb;
1968 	struct p54_xbow_synth *xbow;
1969 
1970 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*xbow) +
1971 			    sizeof(struct p54_hdr),
1972 			    P54_CONTROL_TYPE_XBOW_SYNTH_CFG,
1973 			    GFP_KERNEL);
1974 	if (!skb)
1975 		return -ENOMEM;
1976 
1977 	xbow = (struct p54_xbow_synth *)skb_put(skb, sizeof(*xbow));
1978 	xbow->magic1 = cpu_to_le16(0x1);
1979 	xbow->magic2 = cpu_to_le16(0x2);
1980 	xbow->freq = cpu_to_le16(5390);
1981 	memset(xbow->padding, 0, sizeof(xbow->padding));
1982 	priv->tx(dev, skb);
1983 	return 0;
1984 }
1985 
p54_work(struct work_struct * work)1986 static void p54_work(struct work_struct *work)
1987 {
1988 	struct p54_common *priv = container_of(work, struct p54_common,
1989 					       work.work);
1990 	struct ieee80211_hw *dev = priv->hw;
1991 	struct sk_buff *skb;
1992 
1993 	if (unlikely(priv->mode == NL80211_IFTYPE_UNSPECIFIED))
1994 		return ;
1995 
1996 	/*
1997 	 * TODO: walk through tx_queue and do the following tasks
1998 	 * 	1. initiate bursts.
1999 	 *      2. cancel stuck frames / reset the device if necessary.
2000 	 */
2001 
2002 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL, sizeof(struct p54_hdr) +
2003 			    sizeof(struct p54_statistics),
2004 			    P54_CONTROL_TYPE_STAT_READBACK, GFP_KERNEL);
2005 	if (!skb)
2006 		return ;
2007 
2008 	priv->tx(dev, skb);
2009 }
2010 
p54_get_stats(struct ieee80211_hw * dev,struct ieee80211_low_level_stats * stats)2011 static int p54_get_stats(struct ieee80211_hw *dev,
2012 			 struct ieee80211_low_level_stats *stats)
2013 {
2014 	struct p54_common *priv = dev->priv;
2015 
2016 	memcpy(stats, &priv->stats, sizeof(*stats));
2017 	return 0;
2018 }
2019 
p54_get_tx_stats(struct ieee80211_hw * dev,struct ieee80211_tx_queue_stats * stats)2020 static int p54_get_tx_stats(struct ieee80211_hw *dev,
2021 			    struct ieee80211_tx_queue_stats *stats)
2022 {
2023 	struct p54_common *priv = dev->priv;
2024 
2025 	memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
2026 
2027 	return 0;
2028 }
2029 
p54_bss_info_changed(struct ieee80211_hw * dev,struct ieee80211_vif * vif,struct ieee80211_bss_conf * info,u32 changed)2030 static void p54_bss_info_changed(struct ieee80211_hw *dev,
2031 				 struct ieee80211_vif *vif,
2032 				 struct ieee80211_bss_conf *info,
2033 				 u32 changed)
2034 {
2035 	struct p54_common *priv = dev->priv;
2036 
2037 	if (changed & BSS_CHANGED_ERP_SLOT) {
2038 		priv->use_short_slot = info->use_short_slot;
2039 		p54_set_edcf(dev);
2040 	}
2041 	if (changed & BSS_CHANGED_BASIC_RATES) {
2042 		if (dev->conf.channel->band == IEEE80211_BAND_5GHZ)
2043 			priv->basic_rate_mask = (info->basic_rates << 4);
2044 		else
2045 			priv->basic_rate_mask = info->basic_rates;
2046 		p54_setup_mac(dev);
2047 		if (priv->fw_var >= 0x500)
2048 			p54_scan(dev, P54_SCAN_EXIT, 0);
2049 	}
2050 	if (changed & BSS_CHANGED_ASSOC) {
2051 		if (info->assoc) {
2052 			priv->aid = info->aid;
2053 			priv->wakeup_timer = info->beacon_int *
2054 					     info->dtim_period * 5;
2055 			p54_setup_mac(dev);
2056 		}
2057 	}
2058 
2059 }
2060 
p54_set_key(struct ieee80211_hw * dev,enum set_key_cmd cmd,const u8 * local_address,const u8 * address,struct ieee80211_key_conf * key)2061 static int p54_set_key(struct ieee80211_hw *dev, enum set_key_cmd cmd,
2062 		       const u8 *local_address, const u8 *address,
2063 		       struct ieee80211_key_conf *key)
2064 {
2065 	struct p54_common *priv = dev->priv;
2066 	struct sk_buff *skb;
2067 	struct p54_keycache *rxkey;
2068 	u8 algo = 0;
2069 
2070 	if (modparam_nohwcrypt)
2071 		return -EOPNOTSUPP;
2072 
2073 	if (cmd == DISABLE_KEY)
2074 		algo = 0;
2075 	else {
2076 		switch (key->alg) {
2077 		case ALG_TKIP:
2078 			if (!(priv->privacy_caps & (BR_DESC_PRIV_CAP_MICHAEL |
2079 			      BR_DESC_PRIV_CAP_TKIP)))
2080 				return -EOPNOTSUPP;
2081 			key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2082 			algo = P54_CRYPTO_TKIPMICHAEL;
2083 			break;
2084 		case ALG_WEP:
2085 			if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_WEP))
2086 				return -EOPNOTSUPP;
2087 			key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2088 			algo = P54_CRYPTO_WEP;
2089 			break;
2090 		case ALG_CCMP:
2091 			if (!(priv->privacy_caps & BR_DESC_PRIV_CAP_AESCCMP))
2092 				return -EOPNOTSUPP;
2093 			key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2094 			algo = P54_CRYPTO_AESCCMP;
2095 			break;
2096 		default:
2097 			return -EOPNOTSUPP;
2098 		}
2099 	}
2100 
2101 	if (key->keyidx > priv->rx_keycache_size) {
2102 		/*
2103 		 * The device supports the choosen algorithm, but the firmware
2104 		 * does not provide enough key slots to store all of them.
2105 		 * So, incoming frames have to be decoded by the mac80211 stack,
2106 		 * but we can still offload encryption for outgoing frames.
2107 		 */
2108 
2109 		return 0;
2110 	}
2111 
2112 	mutex_lock(&priv->conf_mutex);
2113 	skb = p54_alloc_skb(dev, P54_HDR_FLAG_CONTROL_OPSET, sizeof(*rxkey) +
2114 			sizeof(struct p54_hdr),	P54_CONTROL_TYPE_RX_KEYCACHE,
2115 			GFP_ATOMIC);
2116 	if (!skb) {
2117 		mutex_unlock(&priv->conf_mutex);
2118 		return -ENOMEM;
2119 	}
2120 
2121 	/* TODO: some devices have 4 more free slots for rx keys */
2122 	rxkey = (struct p54_keycache *)skb_put(skb, sizeof(*rxkey));
2123 	rxkey->entry = key->keyidx;
2124 	rxkey->key_id = key->keyidx;
2125 	rxkey->key_type = algo;
2126 	if (address)
2127 		memcpy(rxkey->mac, address, ETH_ALEN);
2128 	else
2129 		memset(rxkey->mac, ~0, ETH_ALEN);
2130 	if (key->alg != ALG_TKIP) {
2131 		rxkey->key_len = min((u8)16, key->keylen);
2132 		memcpy(rxkey->key, key->key, rxkey->key_len);
2133 	} else {
2134 		rxkey->key_len = 24;
2135 		memcpy(rxkey->key, key->key, 16);
2136 		memcpy(&(rxkey->key[16]), &(key->key
2137 			[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]), 8);
2138 	}
2139 
2140 	priv->tx(dev, skb);
2141 	mutex_unlock(&priv->conf_mutex);
2142 	return 0;
2143 }
2144 
2145 static const struct ieee80211_ops p54_ops = {
2146 	.tx			= p54_tx,
2147 	.start			= p54_start,
2148 	.stop			= p54_stop,
2149 	.add_interface		= p54_add_interface,
2150 	.remove_interface	= p54_remove_interface,
2151 	.set_tim		= p54_set_tim,
2152 	.sta_notify		= p54_sta_notify,
2153 	.set_key		= p54_set_key,
2154 	.config			= p54_config,
2155 	.config_interface	= p54_config_interface,
2156 	.bss_info_changed	= p54_bss_info_changed,
2157 	.configure_filter	= p54_configure_filter,
2158 	.conf_tx		= p54_conf_tx,
2159 	.get_stats		= p54_get_stats,
2160 	.get_tx_stats		= p54_get_tx_stats
2161 };
2162 
p54_init_common(size_t priv_data_len)2163 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
2164 {
2165 	struct ieee80211_hw *dev;
2166 	struct p54_common *priv;
2167 
2168 	dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
2169 	if (!dev)
2170 		return NULL;
2171 
2172 	priv = dev->priv;
2173 	priv->hw = dev;
2174 	priv->mode = NL80211_IFTYPE_UNSPECIFIED;
2175 	priv->basic_rate_mask = 0x15f;
2176 	skb_queue_head_init(&priv->tx_queue);
2177 	dev->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2178 		     IEEE80211_HW_SIGNAL_DBM |
2179 		     IEEE80211_HW_NOISE_DBM;
2180 
2181 	dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2182 				      BIT(NL80211_IFTYPE_ADHOC) |
2183 				      BIT(NL80211_IFTYPE_AP) |
2184 				      BIT(NL80211_IFTYPE_MESH_POINT);
2185 
2186 	dev->channel_change_time = 1000;	/* TODO: find actual value */
2187 	priv->tx_stats[0].limit = 1;		/* Beacon queue */
2188 	priv->tx_stats[1].limit = 1;		/* Probe queue for HW scan */
2189 	priv->tx_stats[2].limit = 3;		/* queue for MLMEs */
2190 	priv->tx_stats[3].limit = 3;		/* Broadcast / MC queue */
2191 	priv->tx_stats[4].limit = 5;		/* Data */
2192 	dev->queues = 1;
2193 	priv->noise = -94;
2194 	/*
2195 	 * We support at most 8 tries no matter which rate they're at,
2196 	 * we cannot support max_rates * max_rate_tries as we set it
2197 	 * here, but setting it correctly to 4/2 or so would limit us
2198 	 * artificially if the RC algorithm wants just two rates, so
2199 	 * let's say 4/7, we'll redistribute it at TX time, see the
2200 	 * comments there.
2201 	 */
2202 	dev->max_rates = 4;
2203 	dev->max_rate_tries = 7;
2204 	dev->extra_tx_headroom = sizeof(struct p54_hdr) + 4 +
2205 				 sizeof(struct p54_tx_data);
2206 
2207 	mutex_init(&priv->conf_mutex);
2208 	init_completion(&priv->eeprom_comp);
2209 	INIT_DELAYED_WORK(&priv->work, p54_work);
2210 
2211 	return dev;
2212 }
2213 EXPORT_SYMBOL_GPL(p54_init_common);
2214 
p54_free_common(struct ieee80211_hw * dev)2215 void p54_free_common(struct ieee80211_hw *dev)
2216 {
2217 	struct p54_common *priv = dev->priv;
2218 	kfree(priv->iq_autocal);
2219 	kfree(priv->output_limit);
2220 	kfree(priv->curve_data);
2221 }
2222 EXPORT_SYMBOL_GPL(p54_free_common);
2223 
p54_init(void)2224 static int __init p54_init(void)
2225 {
2226 	return 0;
2227 }
2228 
p54_exit(void)2229 static void __exit p54_exit(void)
2230 {
2231 }
2232 
2233 module_init(p54_init);
2234 module_exit(p54_exit);
2235