• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 	Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, write to the
17 	Free Software Foundation, Inc.,
18 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22 	Module: rt2500pci
23 	Abstract: rt2500pci device specific routines.
24 	Supported chipsets: RT2560.
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pci.h>
33 #include <linux/eeprom_93cx6.h>
34 
35 #include "rt2x00.h"
36 #include "rt2x00pci.h"
37 #include "rt2500pci.h"
38 
39 /*
40  * Register access.
41  * All access to the CSR registers will go through the methods
42  * rt2x00pci_register_read and rt2x00pci_register_write.
43  * BBP and RF register require indirect register access,
44  * and use the CSR registers BBPCSR and RFCSR to achieve this.
45  * These indirect registers work with busy bits,
46  * and we will try maximal REGISTER_BUSY_COUNT times to access
47  * the register while taking a REGISTER_BUSY_DELAY us delay
48  * between each attampt. When the busy bit is still set at that time,
49  * the access attempt is considered to have failed,
50  * and we will print an error.
51  */
52 #define WAIT_FOR_BBP(__dev, __reg) \
53 	rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
54 #define WAIT_FOR_RF(__dev, __reg) \
55 	rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
56 
rt2500pci_bbp_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u8 value)57 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
58 				const unsigned int word, const u8 value)
59 {
60 	u32 reg;
61 
62 	mutex_lock(&rt2x00dev->csr_mutex);
63 
64 	/*
65 	 * Wait until the BBP becomes available, afterwards we
66 	 * can safely write the new data into the register.
67 	 */
68 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
69 		reg = 0;
70 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
71 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
72 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
73 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
74 
75 		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
76 	}
77 
78 	mutex_unlock(&rt2x00dev->csr_mutex);
79 }
80 
rt2500pci_bbp_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u8 * value)81 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
82 			       const unsigned int word, u8 *value)
83 {
84 	u32 reg;
85 
86 	mutex_lock(&rt2x00dev->csr_mutex);
87 
88 	/*
89 	 * Wait until the BBP becomes available, afterwards we
90 	 * can safely write the read request into the register.
91 	 * After the data has been written, we wait until hardware
92 	 * returns the correct value, if at any time the register
93 	 * doesn't become available in time, reg will be 0xffffffff
94 	 * which means we return 0xff to the caller.
95 	 */
96 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
97 		reg = 0;
98 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
99 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
100 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
101 
102 		rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
103 
104 		WAIT_FOR_BBP(rt2x00dev, &reg);
105 	}
106 
107 	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
108 
109 	mutex_unlock(&rt2x00dev->csr_mutex);
110 }
111 
rt2500pci_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u32 value)112 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
113 			       const unsigned int word, const u32 value)
114 {
115 	u32 reg;
116 
117 	if (!word)
118 		return;
119 
120 	mutex_lock(&rt2x00dev->csr_mutex);
121 
122 	/*
123 	 * Wait until the RF becomes available, afterwards we
124 	 * can safely write the new data into the register.
125 	 */
126 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
127 		reg = 0;
128 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
129 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
130 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
131 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
132 
133 		rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
134 		rt2x00_rf_write(rt2x00dev, word, value);
135 	}
136 
137 	mutex_unlock(&rt2x00dev->csr_mutex);
138 }
139 
rt2500pci_eepromregister_read(struct eeprom_93cx6 * eeprom)140 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
141 {
142 	struct rt2x00_dev *rt2x00dev = eeprom->data;
143 	u32 reg;
144 
145 	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
146 
147 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
148 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
149 	eeprom->reg_data_clock =
150 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
151 	eeprom->reg_chip_select =
152 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
153 }
154 
rt2500pci_eepromregister_write(struct eeprom_93cx6 * eeprom)155 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
156 {
157 	struct rt2x00_dev *rt2x00dev = eeprom->data;
158 	u32 reg = 0;
159 
160 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
161 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
162 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
163 			   !!eeprom->reg_data_clock);
164 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
165 			   !!eeprom->reg_chip_select);
166 
167 	rt2x00pci_register_write(rt2x00dev, CSR21, reg);
168 }
169 
170 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
171 static const struct rt2x00debug rt2500pci_rt2x00debug = {
172 	.owner	= THIS_MODULE,
173 	.csr	= {
174 		.read		= rt2x00pci_register_read,
175 		.write		= rt2x00pci_register_write,
176 		.flags		= RT2X00DEBUGFS_OFFSET,
177 		.word_base	= CSR_REG_BASE,
178 		.word_size	= sizeof(u32),
179 		.word_count	= CSR_REG_SIZE / sizeof(u32),
180 	},
181 	.eeprom	= {
182 		.read		= rt2x00_eeprom_read,
183 		.write		= rt2x00_eeprom_write,
184 		.word_base	= EEPROM_BASE,
185 		.word_size	= sizeof(u16),
186 		.word_count	= EEPROM_SIZE / sizeof(u16),
187 	},
188 	.bbp	= {
189 		.read		= rt2500pci_bbp_read,
190 		.write		= rt2500pci_bbp_write,
191 		.word_base	= BBP_BASE,
192 		.word_size	= sizeof(u8),
193 		.word_count	= BBP_SIZE / sizeof(u8),
194 	},
195 	.rf	= {
196 		.read		= rt2x00_rf_read,
197 		.write		= rt2500pci_rf_write,
198 		.word_base	= RF_BASE,
199 		.word_size	= sizeof(u32),
200 		.word_count	= RF_SIZE / sizeof(u32),
201 	},
202 };
203 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
204 
205 #ifdef CONFIG_RT2X00_LIB_RFKILL
rt2500pci_rfkill_poll(struct rt2x00_dev * rt2x00dev)206 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
207 {
208 	u32 reg;
209 
210 	rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
211 	return rt2x00_get_field32(reg, GPIOCSR_BIT0);
212 }
213 #else
214 #define rt2500pci_rfkill_poll	NULL
215 #endif /* CONFIG_RT2X00_LIB_RFKILL */
216 
217 #ifdef CONFIG_RT2X00_LIB_LEDS
rt2500pci_brightness_set(struct led_classdev * led_cdev,enum led_brightness brightness)218 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
219 				     enum led_brightness brightness)
220 {
221 	struct rt2x00_led *led =
222 	    container_of(led_cdev, struct rt2x00_led, led_dev);
223 	unsigned int enabled = brightness != LED_OFF;
224 	u32 reg;
225 
226 	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
227 
228 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
229 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
230 	else if (led->type == LED_TYPE_ACTIVITY)
231 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
232 
233 	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
234 }
235 
rt2500pci_blink_set(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)236 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
237 			       unsigned long *delay_on,
238 			       unsigned long *delay_off)
239 {
240 	struct rt2x00_led *led =
241 	    container_of(led_cdev, struct rt2x00_led, led_dev);
242 	u32 reg;
243 
244 	rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
245 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
246 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
247 	rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
248 
249 	return 0;
250 }
251 
rt2500pci_init_led(struct rt2x00_dev * rt2x00dev,struct rt2x00_led * led,enum led_type type)252 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
253 			       struct rt2x00_led *led,
254 			       enum led_type type)
255 {
256 	led->rt2x00dev = rt2x00dev;
257 	led->type = type;
258 	led->led_dev.brightness_set = rt2500pci_brightness_set;
259 	led->led_dev.blink_set = rt2500pci_blink_set;
260 	led->flags = LED_INITIALIZED;
261 }
262 #endif /* CONFIG_RT2X00_LIB_LEDS */
263 
264 /*
265  * Configuration handlers.
266  */
rt2500pci_config_filter(struct rt2x00_dev * rt2x00dev,const unsigned int filter_flags)267 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
268 				    const unsigned int filter_flags)
269 {
270 	u32 reg;
271 
272 	/*
273 	 * Start configuration steps.
274 	 * Note that the version error will always be dropped
275 	 * and broadcast frames will always be accepted since
276 	 * there is no filter for it at this time.
277 	 */
278 	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
279 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
280 			   !(filter_flags & FIF_FCSFAIL));
281 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
282 			   !(filter_flags & FIF_PLCPFAIL));
283 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
284 			   !(filter_flags & FIF_CONTROL));
285 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
286 			   !(filter_flags & FIF_PROMISC_IN_BSS));
287 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
288 			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
289 			   !rt2x00dev->intf_ap_count);
290 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
291 	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
292 			   !(filter_flags & FIF_ALLMULTI));
293 	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
294 	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
295 }
296 
rt2500pci_config_intf(struct rt2x00_dev * rt2x00dev,struct rt2x00_intf * intf,struct rt2x00intf_conf * conf,const unsigned int flags)297 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
298 				  struct rt2x00_intf *intf,
299 				  struct rt2x00intf_conf *conf,
300 				  const unsigned int flags)
301 {
302 	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
303 	unsigned int bcn_preload;
304 	u32 reg;
305 
306 	if (flags & CONFIG_UPDATE_TYPE) {
307 		/*
308 		 * Enable beacon config
309 		 */
310 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
311 		rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
312 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
313 		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
314 		rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
315 
316 		/*
317 		 * Enable synchronisation.
318 		 */
319 		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
320 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
321 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
322 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
323 		rt2x00pci_register_write(rt2x00dev, CSR14, reg);
324 	}
325 
326 	if (flags & CONFIG_UPDATE_MAC)
327 		rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
328 					      conf->mac, sizeof(conf->mac));
329 
330 	if (flags & CONFIG_UPDATE_BSSID)
331 		rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
332 					      conf->bssid, sizeof(conf->bssid));
333 }
334 
rt2500pci_config_erp(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_erp * erp)335 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
336 				 struct rt2x00lib_erp *erp)
337 {
338 	int preamble_mask;
339 	u32 reg;
340 
341 	/*
342 	 * When short preamble is enabled, we should set bit 0x08
343 	 */
344 	preamble_mask = erp->short_preamble << 3;
345 
346 	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
347 	rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
348 			   erp->ack_timeout);
349 	rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
350 			   erp->ack_consume_time);
351 	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
352 
353 	rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
354 	rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
355 	rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
356 	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
357 	rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
358 
359 	rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
360 	rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
361 	rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
362 	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
363 	rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
364 
365 	rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
366 	rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
367 	rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
368 	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
369 	rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
370 
371 	rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
372 	rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
373 	rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
374 	rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
375 	rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
376 
377 	rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
378 
379 	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
380 	rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
381 	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
382 
383 	rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
384 	rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
385 	rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
386 	rt2x00pci_register_write(rt2x00dev, CSR18, reg);
387 
388 	rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
389 	rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
390 	rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
391 	rt2x00pci_register_write(rt2x00dev, CSR19, reg);
392 }
393 
rt2500pci_config_ant(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)394 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
395 				 struct antenna_setup *ant)
396 {
397 	u32 reg;
398 	u8 r14;
399 	u8 r2;
400 
401 	/*
402 	 * We should never come here because rt2x00lib is supposed
403 	 * to catch this and send us the correct antenna explicitely.
404 	 */
405 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
406 	       ant->tx == ANTENNA_SW_DIVERSITY);
407 
408 	rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
409 	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
410 	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
411 
412 	/*
413 	 * Configure the TX antenna.
414 	 */
415 	switch (ant->tx) {
416 	case ANTENNA_A:
417 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
418 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
419 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
420 		break;
421 	case ANTENNA_B:
422 	default:
423 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
424 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
425 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
426 		break;
427 	}
428 
429 	/*
430 	 * Configure the RX antenna.
431 	 */
432 	switch (ant->rx) {
433 	case ANTENNA_A:
434 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
435 		break;
436 	case ANTENNA_B:
437 	default:
438 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
439 		break;
440 	}
441 
442 	/*
443 	 * RT2525E and RT5222 need to flip TX I/Q
444 	 */
445 	if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
446 	    rt2x00_rf(&rt2x00dev->chip, RF5222)) {
447 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
448 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
449 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
450 
451 		/*
452 		 * RT2525E does not need RX I/Q Flip.
453 		 */
454 		if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
455 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
456 	} else {
457 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
458 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
459 	}
460 
461 	rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
462 	rt2500pci_bbp_write(rt2x00dev, 14, r14);
463 	rt2500pci_bbp_write(rt2x00dev, 2, r2);
464 }
465 
rt2500pci_config_channel(struct rt2x00_dev * rt2x00dev,struct rf_channel * rf,const int txpower)466 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
467 				     struct rf_channel *rf, const int txpower)
468 {
469 	u8 r70;
470 
471 	/*
472 	 * Set TXpower.
473 	 */
474 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
475 
476 	/*
477 	 * Switch on tuning bits.
478 	 * For RT2523 devices we do not need to update the R1 register.
479 	 */
480 	if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
481 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
482 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
483 
484 	/*
485 	 * For RT2525 we should first set the channel to half band higher.
486 	 */
487 	if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
488 		static const u32 vals[] = {
489 			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
490 			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
491 			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
492 			0x00080d2e, 0x00080d3a
493 		};
494 
495 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
496 		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
497 		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
498 		if (rf->rf4)
499 			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
500 	}
501 
502 	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
503 	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
504 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
505 	if (rf->rf4)
506 		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
507 
508 	/*
509 	 * Channel 14 requires the Japan filter bit to be set.
510 	 */
511 	r70 = 0x46;
512 	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
513 	rt2500pci_bbp_write(rt2x00dev, 70, r70);
514 
515 	msleep(1);
516 
517 	/*
518 	 * Switch off tuning bits.
519 	 * For RT2523 devices we do not need to update the R1 register.
520 	 */
521 	if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
522 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
523 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
524 	}
525 
526 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
527 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
528 
529 	/*
530 	 * Clear false CRC during channel switch.
531 	 */
532 	rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
533 }
534 
rt2500pci_config_txpower(struct rt2x00_dev * rt2x00dev,const int txpower)535 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
536 				     const int txpower)
537 {
538 	u32 rf3;
539 
540 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
541 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
542 	rt2500pci_rf_write(rt2x00dev, 3, rf3);
543 }
544 
rt2500pci_config_retry_limit(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)545 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
546 					 struct rt2x00lib_conf *libconf)
547 {
548 	u32 reg;
549 
550 	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
551 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
552 			   libconf->conf->long_frame_max_tx_count);
553 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
554 			   libconf->conf->short_frame_max_tx_count);
555 	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
556 }
557 
rt2500pci_config_duration(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)558 static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
559 				      struct rt2x00lib_conf *libconf)
560 {
561 	u32 reg;
562 
563 	rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
564 	rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
565 	rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
566 	rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
567 
568 	rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
569 	rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
570 			   libconf->conf->beacon_int * 16);
571 	rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
572 			   libconf->conf->beacon_int * 16);
573 	rt2x00pci_register_write(rt2x00dev, CSR12, reg);
574 }
575 
rt2500pci_config(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf,const unsigned int flags)576 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
577 			     struct rt2x00lib_conf *libconf,
578 			     const unsigned int flags)
579 {
580 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
581 		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
582 					 libconf->conf->power_level);
583 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
584 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
585 		rt2500pci_config_txpower(rt2x00dev,
586 					 libconf->conf->power_level);
587 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
588 		rt2500pci_config_retry_limit(rt2x00dev, libconf);
589 	if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
590 		rt2500pci_config_duration(rt2x00dev, libconf);
591 }
592 
593 /*
594  * Link tuning
595  */
rt2500pci_link_stats(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)596 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
597 				 struct link_qual *qual)
598 {
599 	u32 reg;
600 
601 	/*
602 	 * Update FCS error count from register.
603 	 */
604 	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
605 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
606 
607 	/*
608 	 * Update False CCA count from register.
609 	 */
610 	rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
611 	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
612 }
613 
rt2500pci_reset_tuner(struct rt2x00_dev * rt2x00dev)614 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
615 {
616 	rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
617 	rt2x00dev->link.vgc_level = 0x48;
618 }
619 
rt2500pci_link_tuner(struct rt2x00_dev * rt2x00dev)620 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
621 {
622 	int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
623 	u8 r17;
624 
625 	/*
626 	 * To prevent collisions with MAC ASIC on chipsets
627 	 * up to version C the link tuning should halt after 20
628 	 * seconds while being associated.
629 	 */
630 	if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
631 	    rt2x00dev->intf_associated &&
632 	    rt2x00dev->link.count > 20)
633 		return;
634 
635 	rt2500pci_bbp_read(rt2x00dev, 17, &r17);
636 
637 	/*
638 	 * Chipset versions C and lower should directly continue
639 	 * to the dynamic CCA tuning. Chipset version D and higher
640 	 * should go straight to dynamic CCA tuning when they
641 	 * are not associated.
642 	 */
643 	if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
644 	    !rt2x00dev->intf_associated)
645 		goto dynamic_cca_tune;
646 
647 	/*
648 	 * A too low RSSI will cause too much false CCA which will
649 	 * then corrupt the R17 tuning. To remidy this the tuning should
650 	 * be stopped (While making sure the R17 value will not exceed limits)
651 	 */
652 	if (rssi < -80 && rt2x00dev->link.count > 20) {
653 		if (r17 >= 0x41) {
654 			r17 = rt2x00dev->link.vgc_level;
655 			rt2500pci_bbp_write(rt2x00dev, 17, r17);
656 		}
657 		return;
658 	}
659 
660 	/*
661 	 * Special big-R17 for short distance
662 	 */
663 	if (rssi >= -58) {
664 		if (r17 != 0x50)
665 			rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
666 		return;
667 	}
668 
669 	/*
670 	 * Special mid-R17 for middle distance
671 	 */
672 	if (rssi >= -74) {
673 		if (r17 != 0x41)
674 			rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
675 		return;
676 	}
677 
678 	/*
679 	 * Leave short or middle distance condition, restore r17
680 	 * to the dynamic tuning range.
681 	 */
682 	if (r17 >= 0x41) {
683 		rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
684 		return;
685 	}
686 
687 dynamic_cca_tune:
688 
689 	/*
690 	 * R17 is inside the dynamic tuning range,
691 	 * start tuning the link based on the false cca counter.
692 	 */
693 	if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
694 		rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
695 		rt2x00dev->link.vgc_level = r17;
696 	} else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
697 		rt2500pci_bbp_write(rt2x00dev, 17, --r17);
698 		rt2x00dev->link.vgc_level = r17;
699 	}
700 }
701 
702 /*
703  * Initialization functions.
704  */
rt2500pci_get_entry_state(struct queue_entry * entry)705 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
706 {
707 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
708 	u32 word;
709 
710 	if (entry->queue->qid == QID_RX) {
711 		rt2x00_desc_read(entry_priv->desc, 0, &word);
712 
713 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
714 	} else {
715 		rt2x00_desc_read(entry_priv->desc, 0, &word);
716 
717 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
718 		        rt2x00_get_field32(word, TXD_W0_VALID));
719 	}
720 }
721 
rt2500pci_clear_entry(struct queue_entry * entry)722 static void rt2500pci_clear_entry(struct queue_entry *entry)
723 {
724 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
725 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
726 	u32 word;
727 
728 	if (entry->queue->qid == QID_RX) {
729 		rt2x00_desc_read(entry_priv->desc, 1, &word);
730 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
731 		rt2x00_desc_write(entry_priv->desc, 1, word);
732 
733 		rt2x00_desc_read(entry_priv->desc, 0, &word);
734 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
735 		rt2x00_desc_write(entry_priv->desc, 0, word);
736 	} else {
737 		rt2x00_desc_read(entry_priv->desc, 0, &word);
738 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
739 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
740 		rt2x00_desc_write(entry_priv->desc, 0, word);
741 	}
742 }
743 
rt2500pci_init_queues(struct rt2x00_dev * rt2x00dev)744 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
745 {
746 	struct queue_entry_priv_pci *entry_priv;
747 	u32 reg;
748 
749 	/*
750 	 * Initialize registers.
751 	 */
752 	rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
753 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
754 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
755 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
756 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
757 	rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
758 
759 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
760 	rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
761 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
762 			   entry_priv->desc_dma);
763 	rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
764 
765 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
766 	rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
767 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
768 			   entry_priv->desc_dma);
769 	rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
770 
771 	entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
772 	rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
773 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
774 			   entry_priv->desc_dma);
775 	rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
776 
777 	entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
778 	rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
779 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
780 			   entry_priv->desc_dma);
781 	rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
782 
783 	rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
784 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
785 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
786 	rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
787 
788 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
789 	rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
790 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
791 			   entry_priv->desc_dma);
792 	rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
793 
794 	return 0;
795 }
796 
rt2500pci_init_registers(struct rt2x00_dev * rt2x00dev)797 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
798 {
799 	u32 reg;
800 
801 	rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
802 	rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
803 	rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
804 	rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
805 
806 	rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
807 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
808 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
809 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
810 	rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
811 
812 	rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
813 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
814 			   rt2x00dev->rx->data_size / 128);
815 	rt2x00pci_register_write(rt2x00dev, CSR9, reg);
816 
817 	/*
818 	 * Always use CWmin and CWmax set in descriptor.
819 	 */
820 	rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
821 	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
822 	rt2x00pci_register_write(rt2x00dev, CSR11, reg);
823 
824 	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
825 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
826 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
827 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
828 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
829 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
830 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
831 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
832 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
833 	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
834 
835 	rt2x00pci_register_write(rt2x00dev, CNT3, 0);
836 
837 	rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
838 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
839 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
840 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
841 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
842 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
843 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
844 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
845 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
846 	rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
847 
848 	rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
849 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
850 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
851 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
852 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
853 	rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
854 
855 	rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
856 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
857 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
858 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
859 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
860 	rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
861 
862 	rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
863 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
864 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
865 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
866 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
867 	rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
868 
869 	rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
870 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
871 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
872 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
873 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
874 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
875 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
876 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
877 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
878 	rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
879 
880 	rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
881 	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
882 	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
883 	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
884 	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
885 	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
886 	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
887 	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
888 	rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
889 
890 	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
891 
892 	rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
893 	rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
894 
895 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
896 		return -EBUSY;
897 
898 	rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
899 	rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
900 
901 	rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
902 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
903 	rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
904 
905 	rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
906 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
907 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
908 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
909 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
910 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
911 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
912 	rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
913 
914 	rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
915 
916 	rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
917 
918 	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
919 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
920 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
921 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
922 	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
923 
924 	rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
925 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
926 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
927 	rt2x00pci_register_write(rt2x00dev, CSR1, reg);
928 
929 	/*
930 	 * We must clear the FCS and FIFO error count.
931 	 * These registers are cleared on read,
932 	 * so we may pass a useless variable to store the value.
933 	 */
934 	rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
935 	rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
936 
937 	return 0;
938 }
939 
rt2500pci_wait_bbp_ready(struct rt2x00_dev * rt2x00dev)940 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
941 {
942 	unsigned int i;
943 	u8 value;
944 
945 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
946 		rt2500pci_bbp_read(rt2x00dev, 0, &value);
947 		if ((value != 0xff) && (value != 0x00))
948 			return 0;
949 		udelay(REGISTER_BUSY_DELAY);
950 	}
951 
952 	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
953 	return -EACCES;
954 }
955 
rt2500pci_init_bbp(struct rt2x00_dev * rt2x00dev)956 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
957 {
958 	unsigned int i;
959 	u16 eeprom;
960 	u8 reg_id;
961 	u8 value;
962 
963 	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
964 		return -EACCES;
965 
966 	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
967 	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
968 	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
969 	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
970 	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
971 	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
972 	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
973 	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
974 	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
975 	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
976 	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
977 	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
978 	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
979 	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
980 	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
981 	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
982 	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
983 	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
984 	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
985 	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
986 	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
987 	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
988 	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
989 	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
990 	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
991 	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
992 	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
993 	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
994 	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
995 	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
996 
997 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
998 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
999 
1000 		if (eeprom != 0xffff && eeprom != 0x0000) {
1001 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1002 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1003 			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1004 		}
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  * Device state switch handlers.
1012  */
rt2500pci_toggle_rx(struct rt2x00_dev * rt2x00dev,enum dev_state state)1013 static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1014 				enum dev_state state)
1015 {
1016 	u32 reg;
1017 
1018 	rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1019 	rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1020 			   (state == STATE_RADIO_RX_OFF) ||
1021 			   (state == STATE_RADIO_RX_OFF_LINK));
1022 	rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1023 }
1024 
rt2500pci_toggle_irq(struct rt2x00_dev * rt2x00dev,enum dev_state state)1025 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1026 				 enum dev_state state)
1027 {
1028 	int mask = (state == STATE_RADIO_IRQ_OFF);
1029 	u32 reg;
1030 
1031 	/*
1032 	 * When interrupts are being enabled, the interrupt registers
1033 	 * should clear the register to assure a clean state.
1034 	 */
1035 	if (state == STATE_RADIO_IRQ_ON) {
1036 		rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1037 		rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1038 	}
1039 
1040 	/*
1041 	 * Only toggle the interrupts bits we are going to use.
1042 	 * Non-checked interrupt bits are disabled by default.
1043 	 */
1044 	rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1045 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1046 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1047 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1048 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1049 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1050 	rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1051 }
1052 
rt2500pci_enable_radio(struct rt2x00_dev * rt2x00dev)1053 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1054 {
1055 	/*
1056 	 * Initialize all registers.
1057 	 */
1058 	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1059 		     rt2500pci_init_registers(rt2x00dev) ||
1060 		     rt2500pci_init_bbp(rt2x00dev)))
1061 		return -EIO;
1062 
1063 	return 0;
1064 }
1065 
rt2500pci_disable_radio(struct rt2x00_dev * rt2x00dev)1066 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1067 {
1068 	u32 reg;
1069 
1070 	rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1071 
1072 	/*
1073 	 * Disable synchronisation.
1074 	 */
1075 	rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1076 
1077 	/*
1078 	 * Cancel RX and TX.
1079 	 */
1080 	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1081 	rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1082 	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1083 }
1084 
rt2500pci_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1085 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1086 			       enum dev_state state)
1087 {
1088 	u32 reg;
1089 	unsigned int i;
1090 	char put_to_sleep;
1091 	char bbp_state;
1092 	char rf_state;
1093 
1094 	put_to_sleep = (state != STATE_AWAKE);
1095 
1096 	rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1097 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1098 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1099 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1100 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1101 	rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1102 
1103 	/*
1104 	 * Device is not guaranteed to be in the requested state yet.
1105 	 * We must wait until the register indicates that the
1106 	 * device has entered the correct state.
1107 	 */
1108 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1109 		rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1110 		bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1111 		rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1112 		if (bbp_state == state && rf_state == state)
1113 			return 0;
1114 		msleep(10);
1115 	}
1116 
1117 	return -EBUSY;
1118 }
1119 
rt2500pci_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1120 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1121 				      enum dev_state state)
1122 {
1123 	int retval = 0;
1124 
1125 	switch (state) {
1126 	case STATE_RADIO_ON:
1127 		retval = rt2500pci_enable_radio(rt2x00dev);
1128 		break;
1129 	case STATE_RADIO_OFF:
1130 		rt2500pci_disable_radio(rt2x00dev);
1131 		break;
1132 	case STATE_RADIO_RX_ON:
1133 	case STATE_RADIO_RX_ON_LINK:
1134 	case STATE_RADIO_RX_OFF:
1135 	case STATE_RADIO_RX_OFF_LINK:
1136 		rt2500pci_toggle_rx(rt2x00dev, state);
1137 		break;
1138 	case STATE_RADIO_IRQ_ON:
1139 	case STATE_RADIO_IRQ_OFF:
1140 		rt2500pci_toggle_irq(rt2x00dev, state);
1141 		break;
1142 	case STATE_DEEP_SLEEP:
1143 	case STATE_SLEEP:
1144 	case STATE_STANDBY:
1145 	case STATE_AWAKE:
1146 		retval = rt2500pci_set_state(rt2x00dev, state);
1147 		break;
1148 	default:
1149 		retval = -ENOTSUPP;
1150 		break;
1151 	}
1152 
1153 	if (unlikely(retval))
1154 		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1155 		      state, retval);
1156 
1157 	return retval;
1158 }
1159 
1160 /*
1161  * TX descriptor initialization
1162  */
rt2500pci_write_tx_desc(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)1163 static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1164 				    struct sk_buff *skb,
1165 				    struct txentry_desc *txdesc)
1166 {
1167 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1168 	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
1169 	__le32 *txd = skbdesc->desc;
1170 	u32 word;
1171 
1172 	/*
1173 	 * Start writing the descriptor words.
1174 	 */
1175 	rt2x00_desc_read(entry_priv->desc, 1, &word);
1176 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1177 	rt2x00_desc_write(entry_priv->desc, 1, word);
1178 
1179 	rt2x00_desc_read(txd, 2, &word);
1180 	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1181 	rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
1182 	rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
1183 	rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
1184 	rt2x00_desc_write(txd, 2, word);
1185 
1186 	rt2x00_desc_read(txd, 3, &word);
1187 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
1188 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
1189 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
1190 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
1191 	rt2x00_desc_write(txd, 3, word);
1192 
1193 	rt2x00_desc_read(txd, 10, &word);
1194 	rt2x00_set_field32(&word, TXD_W10_RTS,
1195 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1196 	rt2x00_desc_write(txd, 10, word);
1197 
1198 	rt2x00_desc_read(txd, 0, &word);
1199 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1200 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1201 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1202 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1203 	rt2x00_set_field32(&word, TXD_W0_ACK,
1204 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1205 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1206 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1207 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1208 			   test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1209 	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1210 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1211 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1212 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1213 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1214 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1215 	rt2x00_desc_write(txd, 0, word);
1216 }
1217 
1218 /*
1219  * TX data initialization
1220  */
rt2500pci_write_beacon(struct queue_entry * entry)1221 static void rt2500pci_write_beacon(struct queue_entry *entry)
1222 {
1223 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1224 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1225 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1226 	u32 word;
1227 	u32 reg;
1228 
1229 	/*
1230 	 * Disable beaconing while we are reloading the beacon data,
1231 	 * otherwise we might be sending out invalid data.
1232 	 */
1233 	rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1234 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
1235 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
1236 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1237 	rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1238 
1239 	/*
1240 	 * Replace rt2x00lib allocated descriptor with the
1241 	 * pointer to the _real_ hardware descriptor.
1242 	 * After that, map the beacon to DMA and update the
1243 	 * descriptor.
1244 	 */
1245 	memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
1246 	skbdesc->desc = entry_priv->desc;
1247 
1248 	rt2x00queue_map_txskb(rt2x00dev, entry->skb);
1249 
1250 	rt2x00_desc_read(entry_priv->desc, 1, &word);
1251 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1252 	rt2x00_desc_write(entry_priv->desc, 1, word);
1253 }
1254 
rt2500pci_kick_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1255 static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1256 				    const enum data_queue_qid queue)
1257 {
1258 	u32 reg;
1259 
1260 	if (queue == QID_BEACON) {
1261 		rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1262 		if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1263 			rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
1264 			rt2x00_set_field32(&reg, CSR14_TBCN, 1);
1265 			rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1266 			rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1267 		}
1268 		return;
1269 	}
1270 
1271 	rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1272 	rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
1273 	rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
1274 	rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
1275 	rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1276 }
1277 
1278 /*
1279  * RX control handlers
1280  */
rt2500pci_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)1281 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1282 				  struct rxdone_entry_desc *rxdesc)
1283 {
1284 	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1285 	u32 word0;
1286 	u32 word2;
1287 
1288 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1289 	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1290 
1291 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1292 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1293 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1294 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1295 
1296 	/*
1297 	 * Obtain the status about this packet.
1298 	 * When frame was received with an OFDM bitrate,
1299 	 * the signal is the PLCP value. If it was received with
1300 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1301 	 */
1302 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1303 	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1304 	    entry->queue->rt2x00dev->rssi_offset;
1305 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1306 
1307 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1308 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1309 	else
1310 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1311 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1312 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1313 }
1314 
1315 /*
1316  * Interrupt functions.
1317  */
rt2500pci_txdone(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue_idx)1318 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1319 			     const enum data_queue_qid queue_idx)
1320 {
1321 	struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
1322 	struct queue_entry_priv_pci *entry_priv;
1323 	struct queue_entry *entry;
1324 	struct txdone_entry_desc txdesc;
1325 	u32 word;
1326 
1327 	while (!rt2x00queue_empty(queue)) {
1328 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1329 		entry_priv = entry->priv_data;
1330 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1331 
1332 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1333 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1334 			break;
1335 
1336 		/*
1337 		 * Obtain the status about this packet.
1338 		 */
1339 		txdesc.flags = 0;
1340 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1341 		case 0: /* Success */
1342 		case 1: /* Success with retry */
1343 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1344 			break;
1345 		case 2: /* Failure, excessive retries */
1346 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1347 			/* Don't break, this is a failed frame! */
1348 		default: /* Failure */
1349 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1350 		}
1351 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1352 
1353 		rt2x00lib_txdone(entry, &txdesc);
1354 	}
1355 }
1356 
rt2500pci_interrupt(int irq,void * dev_instance)1357 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1358 {
1359 	struct rt2x00_dev *rt2x00dev = dev_instance;
1360 	u32 reg;
1361 
1362 	/*
1363 	 * Get the interrupt sources & saved to local variable.
1364 	 * Write register value back to clear pending interrupts.
1365 	 */
1366 	rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1367 	rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1368 
1369 	if (!reg)
1370 		return IRQ_NONE;
1371 
1372 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1373 		return IRQ_HANDLED;
1374 
1375 	/*
1376 	 * Handle interrupts, walk through all bits
1377 	 * and run the tasks, the bits are checked in order of
1378 	 * priority.
1379 	 */
1380 
1381 	/*
1382 	 * 1 - Beacon timer expired interrupt.
1383 	 */
1384 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1385 		rt2x00lib_beacondone(rt2x00dev);
1386 
1387 	/*
1388 	 * 2 - Rx ring done interrupt.
1389 	 */
1390 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1391 		rt2x00pci_rxdone(rt2x00dev);
1392 
1393 	/*
1394 	 * 3 - Atim ring transmit done interrupt.
1395 	 */
1396 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1397 		rt2500pci_txdone(rt2x00dev, QID_ATIM);
1398 
1399 	/*
1400 	 * 4 - Priority ring transmit done interrupt.
1401 	 */
1402 	if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1403 		rt2500pci_txdone(rt2x00dev, QID_AC_BE);
1404 
1405 	/*
1406 	 * 5 - Tx ring transmit done interrupt.
1407 	 */
1408 	if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1409 		rt2500pci_txdone(rt2x00dev, QID_AC_BK);
1410 
1411 	return IRQ_HANDLED;
1412 }
1413 
1414 /*
1415  * Device probe functions.
1416  */
rt2500pci_validate_eeprom(struct rt2x00_dev * rt2x00dev)1417 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1418 {
1419 	struct eeprom_93cx6 eeprom;
1420 	u32 reg;
1421 	u16 word;
1422 	u8 *mac;
1423 
1424 	rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1425 
1426 	eeprom.data = rt2x00dev;
1427 	eeprom.register_read = rt2500pci_eepromregister_read;
1428 	eeprom.register_write = rt2500pci_eepromregister_write;
1429 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1430 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1431 	eeprom.reg_data_in = 0;
1432 	eeprom.reg_data_out = 0;
1433 	eeprom.reg_data_clock = 0;
1434 	eeprom.reg_chip_select = 0;
1435 
1436 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1437 			       EEPROM_SIZE / sizeof(u16));
1438 
1439 	/*
1440 	 * Start validation of the data that has been read.
1441 	 */
1442 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1443 	if (!is_valid_ether_addr(mac)) {
1444 		random_ether_addr(mac);
1445 		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1446 	}
1447 
1448 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1449 	if (word == 0xffff) {
1450 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1451 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1452 				   ANTENNA_SW_DIVERSITY);
1453 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1454 				   ANTENNA_SW_DIVERSITY);
1455 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1456 				   LED_MODE_DEFAULT);
1457 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1458 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1459 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1460 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1461 		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1462 	}
1463 
1464 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1465 	if (word == 0xffff) {
1466 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1467 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1468 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1469 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1470 		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1471 	}
1472 
1473 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1474 	if (word == 0xffff) {
1475 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1476 				   DEFAULT_RSSI_OFFSET);
1477 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1478 		EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1479 	}
1480 
1481 	return 0;
1482 }
1483 
rt2500pci_init_eeprom(struct rt2x00_dev * rt2x00dev)1484 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1485 {
1486 	u32 reg;
1487 	u16 value;
1488 	u16 eeprom;
1489 
1490 	/*
1491 	 * Read EEPROM word for configuration.
1492 	 */
1493 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1494 
1495 	/*
1496 	 * Identify RF chipset.
1497 	 */
1498 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1499 	rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1500 	rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1501 
1502 	if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1503 	    !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1504 	    !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1505 	    !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1506 	    !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1507 	    !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1508 		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1509 		return -ENODEV;
1510 	}
1511 
1512 	/*
1513 	 * Identify default antenna configuration.
1514 	 */
1515 	rt2x00dev->default_ant.tx =
1516 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1517 	rt2x00dev->default_ant.rx =
1518 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1519 
1520 	/*
1521 	 * Store led mode, for correct led behaviour.
1522 	 */
1523 #ifdef CONFIG_RT2X00_LIB_LEDS
1524 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1525 
1526 	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1527 	if (value == LED_MODE_TXRX_ACTIVITY)
1528 		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1529 				   LED_TYPE_ACTIVITY);
1530 #endif /* CONFIG_RT2X00_LIB_LEDS */
1531 
1532 	/*
1533 	 * Detect if this device has an hardware controlled radio.
1534 	 */
1535 #ifdef CONFIG_RT2X00_LIB_RFKILL
1536 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1537 		__set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1538 #endif /* CONFIG_RT2X00_LIB_RFKILL */
1539 
1540 	/*
1541 	 * Check if the BBP tuning should be enabled.
1542 	 */
1543 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1544 
1545 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1546 		__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1547 
1548 	/*
1549 	 * Read the RSSI <-> dBm offset information.
1550 	 */
1551 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1552 	rt2x00dev->rssi_offset =
1553 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1554 
1555 	return 0;
1556 }
1557 
1558 /*
1559  * RF value list for RF2522
1560  * Supports: 2.4 GHz
1561  */
1562 static const struct rf_channel rf_vals_bg_2522[] = {
1563 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1564 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1565 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1566 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1567 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1568 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1569 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1570 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1571 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1572 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1573 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1574 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1575 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1576 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1577 };
1578 
1579 /*
1580  * RF value list for RF2523
1581  * Supports: 2.4 GHz
1582  */
1583 static const struct rf_channel rf_vals_bg_2523[] = {
1584 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1585 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1586 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1587 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1588 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1589 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1590 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1591 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1592 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1593 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1594 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1595 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1596 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1597 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1598 };
1599 
1600 /*
1601  * RF value list for RF2524
1602  * Supports: 2.4 GHz
1603  */
1604 static const struct rf_channel rf_vals_bg_2524[] = {
1605 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1606 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1607 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1608 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1609 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1610 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1611 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1612 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1613 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1614 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1615 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1616 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1617 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1618 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1619 };
1620 
1621 /*
1622  * RF value list for RF2525
1623  * Supports: 2.4 GHz
1624  */
1625 static const struct rf_channel rf_vals_bg_2525[] = {
1626 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1627 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1628 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1629 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1630 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1631 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1632 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1633 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1634 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1635 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1636 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1637 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1638 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1639 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1640 };
1641 
1642 /*
1643  * RF value list for RF2525e
1644  * Supports: 2.4 GHz
1645  */
1646 static const struct rf_channel rf_vals_bg_2525e[] = {
1647 	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1648 	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1649 	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1650 	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1651 	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1652 	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1653 	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1654 	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1655 	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1656 	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1657 	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1658 	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1659 	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1660 	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1661 };
1662 
1663 /*
1664  * RF value list for RF5222
1665  * Supports: 2.4 GHz & 5.2 GHz
1666  */
1667 static const struct rf_channel rf_vals_5222[] = {
1668 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1669 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1670 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1671 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1672 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1673 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1674 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1675 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1676 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1677 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1678 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1679 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1680 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1681 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1682 
1683 	/* 802.11 UNI / HyperLan 2 */
1684 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1685 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1686 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1687 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1688 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1689 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1690 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1691 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1692 
1693 	/* 802.11 HyperLan 2 */
1694 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1695 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1696 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1697 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1698 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1699 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1700 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1701 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1702 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1703 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1704 
1705 	/* 802.11 UNII */
1706 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1707 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1708 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1709 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1710 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1711 };
1712 
rt2500pci_probe_hw_mode(struct rt2x00_dev * rt2x00dev)1713 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1714 {
1715 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1716 	struct channel_info *info;
1717 	char *tx_power;
1718 	unsigned int i;
1719 
1720 	/*
1721 	 * Initialize all hw fields.
1722 	 */
1723 	rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1724 			       IEEE80211_HW_SIGNAL_DBM;
1725 
1726 	rt2x00dev->hw->extra_tx_headroom = 0;
1727 
1728 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1729 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1730 				rt2x00_eeprom_addr(rt2x00dev,
1731 						   EEPROM_MAC_ADDR_0));
1732 
1733 	/*
1734 	 * Initialize hw_mode information.
1735 	 */
1736 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1737 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1738 
1739 	if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1740 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1741 		spec->channels = rf_vals_bg_2522;
1742 	} else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1743 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1744 		spec->channels = rf_vals_bg_2523;
1745 	} else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1746 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1747 		spec->channels = rf_vals_bg_2524;
1748 	} else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1749 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1750 		spec->channels = rf_vals_bg_2525;
1751 	} else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1752 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1753 		spec->channels = rf_vals_bg_2525e;
1754 	} else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1755 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1756 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1757 		spec->channels = rf_vals_5222;
1758 	}
1759 
1760 	/*
1761 	 * Create channel information array
1762 	 */
1763 	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1764 	if (!info)
1765 		return -ENOMEM;
1766 
1767 	spec->channels_info = info;
1768 
1769 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1770 	for (i = 0; i < 14; i++)
1771 		info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1772 
1773 	if (spec->num_channels > 14) {
1774 		for (i = 14; i < spec->num_channels; i++)
1775 			info[i].tx_power1 = DEFAULT_TXPOWER;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
rt2500pci_probe_hw(struct rt2x00_dev * rt2x00dev)1781 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1782 {
1783 	int retval;
1784 
1785 	/*
1786 	 * Allocate eeprom data.
1787 	 */
1788 	retval = rt2500pci_validate_eeprom(rt2x00dev);
1789 	if (retval)
1790 		return retval;
1791 
1792 	retval = rt2500pci_init_eeprom(rt2x00dev);
1793 	if (retval)
1794 		return retval;
1795 
1796 	/*
1797 	 * Initialize hw specifications.
1798 	 */
1799 	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1800 	if (retval)
1801 		return retval;
1802 
1803 	/*
1804 	 * This device requires the atim queue and DMA-mapped skbs.
1805 	 */
1806 	__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1807 	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1808 
1809 	/*
1810 	 * Set the rssi offset.
1811 	 */
1812 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1813 
1814 	return 0;
1815 }
1816 
1817 /*
1818  * IEEE80211 stack callback functions.
1819  */
rt2500pci_get_tsf(struct ieee80211_hw * hw)1820 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1821 {
1822 	struct rt2x00_dev *rt2x00dev = hw->priv;
1823 	u64 tsf;
1824 	u32 reg;
1825 
1826 	rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1827 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1828 	rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1829 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1830 
1831 	return tsf;
1832 }
1833 
rt2500pci_tx_last_beacon(struct ieee80211_hw * hw)1834 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1835 {
1836 	struct rt2x00_dev *rt2x00dev = hw->priv;
1837 	u32 reg;
1838 
1839 	rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1840 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1841 }
1842 
1843 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1844 	.tx			= rt2x00mac_tx,
1845 	.start			= rt2x00mac_start,
1846 	.stop			= rt2x00mac_stop,
1847 	.add_interface		= rt2x00mac_add_interface,
1848 	.remove_interface	= rt2x00mac_remove_interface,
1849 	.config			= rt2x00mac_config,
1850 	.config_interface	= rt2x00mac_config_interface,
1851 	.configure_filter	= rt2x00mac_configure_filter,
1852 	.get_stats		= rt2x00mac_get_stats,
1853 	.bss_info_changed	= rt2x00mac_bss_info_changed,
1854 	.conf_tx		= rt2x00mac_conf_tx,
1855 	.get_tx_stats		= rt2x00mac_get_tx_stats,
1856 	.get_tsf		= rt2500pci_get_tsf,
1857 	.tx_last_beacon		= rt2500pci_tx_last_beacon,
1858 };
1859 
1860 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1861 	.irq_handler		= rt2500pci_interrupt,
1862 	.probe_hw		= rt2500pci_probe_hw,
1863 	.initialize		= rt2x00pci_initialize,
1864 	.uninitialize		= rt2x00pci_uninitialize,
1865 	.get_entry_state	= rt2500pci_get_entry_state,
1866 	.clear_entry		= rt2500pci_clear_entry,
1867 	.set_device_state	= rt2500pci_set_device_state,
1868 	.rfkill_poll		= rt2500pci_rfkill_poll,
1869 	.link_stats		= rt2500pci_link_stats,
1870 	.reset_tuner		= rt2500pci_reset_tuner,
1871 	.link_tuner		= rt2500pci_link_tuner,
1872 	.write_tx_desc		= rt2500pci_write_tx_desc,
1873 	.write_tx_data		= rt2x00pci_write_tx_data,
1874 	.write_beacon		= rt2500pci_write_beacon,
1875 	.kick_tx_queue		= rt2500pci_kick_tx_queue,
1876 	.fill_rxdone		= rt2500pci_fill_rxdone,
1877 	.config_filter		= rt2500pci_config_filter,
1878 	.config_intf		= rt2500pci_config_intf,
1879 	.config_erp		= rt2500pci_config_erp,
1880 	.config_ant		= rt2500pci_config_ant,
1881 	.config			= rt2500pci_config,
1882 };
1883 
1884 static const struct data_queue_desc rt2500pci_queue_rx = {
1885 	.entry_num		= RX_ENTRIES,
1886 	.data_size		= DATA_FRAME_SIZE,
1887 	.desc_size		= RXD_DESC_SIZE,
1888 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1889 };
1890 
1891 static const struct data_queue_desc rt2500pci_queue_tx = {
1892 	.entry_num		= TX_ENTRIES,
1893 	.data_size		= DATA_FRAME_SIZE,
1894 	.desc_size		= TXD_DESC_SIZE,
1895 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1896 };
1897 
1898 static const struct data_queue_desc rt2500pci_queue_bcn = {
1899 	.entry_num		= BEACON_ENTRIES,
1900 	.data_size		= MGMT_FRAME_SIZE,
1901 	.desc_size		= TXD_DESC_SIZE,
1902 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1903 };
1904 
1905 static const struct data_queue_desc rt2500pci_queue_atim = {
1906 	.entry_num		= ATIM_ENTRIES,
1907 	.data_size		= DATA_FRAME_SIZE,
1908 	.desc_size		= TXD_DESC_SIZE,
1909 	.priv_size		= sizeof(struct queue_entry_priv_pci),
1910 };
1911 
1912 static const struct rt2x00_ops rt2500pci_ops = {
1913 	.name		= KBUILD_MODNAME,
1914 	.max_sta_intf	= 1,
1915 	.max_ap_intf	= 1,
1916 	.eeprom_size	= EEPROM_SIZE,
1917 	.rf_size	= RF_SIZE,
1918 	.tx_queues	= NUM_TX_QUEUES,
1919 	.rx		= &rt2500pci_queue_rx,
1920 	.tx		= &rt2500pci_queue_tx,
1921 	.bcn		= &rt2500pci_queue_bcn,
1922 	.atim		= &rt2500pci_queue_atim,
1923 	.lib		= &rt2500pci_rt2x00_ops,
1924 	.hw		= &rt2500pci_mac80211_ops,
1925 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1926 	.debugfs	= &rt2500pci_rt2x00debug,
1927 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1928 };
1929 
1930 /*
1931  * RT2500pci module information.
1932  */
1933 static struct pci_device_id rt2500pci_device_table[] = {
1934 	{ PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1935 	{ 0, }
1936 };
1937 
1938 MODULE_AUTHOR(DRV_PROJECT);
1939 MODULE_VERSION(DRV_VERSION);
1940 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1941 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1942 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1943 MODULE_LICENSE("GPL");
1944 
1945 static struct pci_driver rt2500pci_driver = {
1946 	.name		= KBUILD_MODNAME,
1947 	.id_table	= rt2500pci_device_table,
1948 	.probe		= rt2x00pci_probe,
1949 	.remove		= __devexit_p(rt2x00pci_remove),
1950 	.suspend	= rt2x00pci_suspend,
1951 	.resume		= rt2x00pci_resume,
1952 };
1953 
rt2500pci_init(void)1954 static int __init rt2500pci_init(void)
1955 {
1956 	return pci_register_driver(&rt2500pci_driver);
1957 }
1958 
rt2500pci_exit(void)1959 static void __exit rt2500pci_exit(void)
1960 {
1961 	pci_unregister_driver(&rt2500pci_driver);
1962 }
1963 
1964 module_init(rt2500pci_init);
1965 module_exit(rt2500pci_exit);
1966