• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 	Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, write to the
17 	Free Software Foundation, Inc.,
18 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22 	Module: rt2x00lib
23 	Abstract: rt2x00 generic device routines.
24  */
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 
29 #include "rt2x00.h"
30 #include "rt2x00lib.h"
31 
32 /*
33  * Link tuning handlers
34  */
rt2x00lib_reset_link_tuner(struct rt2x00_dev * rt2x00dev)35 void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
36 {
37 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
38 		return;
39 
40 	/*
41 	 * Reset link information.
42 	 * Both the currently active vgc level as well as
43 	 * the link tuner counter should be reset. Resetting
44 	 * the counter is important for devices where the
45 	 * device should only perform link tuning during the
46 	 * first minute after being enabled.
47 	 */
48 	rt2x00dev->link.count = 0;
49 	rt2x00dev->link.vgc_level = 0;
50 
51 	/*
52 	 * Reset the link tuner.
53 	 */
54 	rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
55 }
56 
rt2x00lib_start_link_tuner(struct rt2x00_dev * rt2x00dev)57 static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
58 {
59 	/*
60 	 * Clear all (possibly) pre-existing quality statistics.
61 	 */
62 	memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
63 
64 	/*
65 	 * The RX and TX percentage should start at 50%
66 	 * this will assure we will get at least get some
67 	 * decent value when the link tuner starts.
68 	 * The value will be dropped and overwritten with
69 	 * the correct (measured )value anyway during the
70 	 * first run of the link tuner.
71 	 */
72 	rt2x00dev->link.qual.rx_percentage = 50;
73 	rt2x00dev->link.qual.tx_percentage = 50;
74 
75 	rt2x00lib_reset_link_tuner(rt2x00dev);
76 
77 	queue_delayed_work(rt2x00dev->hw->workqueue,
78 			   &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
79 }
80 
rt2x00lib_stop_link_tuner(struct rt2x00_dev * rt2x00dev)81 static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
82 {
83 	cancel_delayed_work_sync(&rt2x00dev->link.work);
84 }
85 
86 /*
87  * Radio control handlers.
88  */
rt2x00lib_enable_radio(struct rt2x00_dev * rt2x00dev)89 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
90 {
91 	int status;
92 
93 	/*
94 	 * Don't enable the radio twice.
95 	 * And check if the hardware button has been disabled.
96 	 */
97 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags) ||
98 	    test_bit(DEVICE_STATE_DISABLED_RADIO_HW, &rt2x00dev->flags))
99 		return 0;
100 
101 	/*
102 	 * Initialize all data queues.
103 	 */
104 	rt2x00queue_init_queues(rt2x00dev);
105 
106 	/*
107 	 * Enable radio.
108 	 */
109 	status =
110 	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
111 	if (status)
112 		return status;
113 
114 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
115 
116 	rt2x00leds_led_radio(rt2x00dev, true);
117 	rt2x00led_led_activity(rt2x00dev, true);
118 
119 	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
120 
121 	/*
122 	 * Enable RX.
123 	 */
124 	rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
125 
126 	/*
127 	 * Start the TX queues.
128 	 */
129 	ieee80211_wake_queues(rt2x00dev->hw);
130 
131 	return 0;
132 }
133 
rt2x00lib_disable_radio(struct rt2x00_dev * rt2x00dev)134 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
135 {
136 	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
137 		return;
138 
139 	/*
140 	 * Stop the TX queues.
141 	 */
142 	ieee80211_stop_queues(rt2x00dev->hw);
143 
144 	/*
145 	 * Disable RX.
146 	 */
147 	rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
148 
149 	/*
150 	 * Disable radio.
151 	 */
152 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
153 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
154 	rt2x00led_led_activity(rt2x00dev, false);
155 	rt2x00leds_led_radio(rt2x00dev, false);
156 }
157 
rt2x00lib_toggle_rx(struct rt2x00_dev * rt2x00dev,enum dev_state state)158 void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
159 {
160 	/*
161 	 * When we are disabling the RX, we should also stop the link tuner.
162 	 */
163 	if (state == STATE_RADIO_RX_OFF)
164 		rt2x00lib_stop_link_tuner(rt2x00dev);
165 
166 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
167 
168 	/*
169 	 * When we are enabling the RX, we should also start the link tuner.
170 	 */
171 	if (state == STATE_RADIO_RX_ON &&
172 	    (rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
173 		rt2x00lib_start_link_tuner(rt2x00dev);
174 }
175 
rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev * rt2x00dev)176 static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
177 {
178 	struct antenna_setup ant;
179 	int sample_a =
180 	    rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
181 	int sample_b =
182 	    rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
183 
184 	memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
185 
186 	/*
187 	 * We are done sampling. Now we should evaluate the results.
188 	 */
189 	rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
190 
191 	/*
192 	 * During the last period we have sampled the RSSI
193 	 * from both antenna's. It now is time to determine
194 	 * which antenna demonstrated the best performance.
195 	 * When we are already on the antenna with the best
196 	 * performance, then there really is nothing for us
197 	 * left to do.
198 	 */
199 	if (sample_a == sample_b)
200 		return;
201 
202 	if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
203 		ant.rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
204 
205 	if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
206 		ant.tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
207 
208 	rt2x00lib_config_antenna(rt2x00dev, &ant);
209 }
210 
rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev * rt2x00dev)211 static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
212 {
213 	struct antenna_setup ant;
214 	int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
215 	int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
216 
217 	memcpy(&ant, &rt2x00dev->link.ant.active, sizeof(ant));
218 
219 	/*
220 	 * Legacy driver indicates that we should swap antenna's
221 	 * when the difference in RSSI is greater that 5. This
222 	 * also should be done when the RSSI was actually better
223 	 * then the previous sample.
224 	 * When the difference exceeds the threshold we should
225 	 * sample the rssi from the other antenna to make a valid
226 	 * comparison between the 2 antennas.
227 	 */
228 	if (abs(rssi_curr - rssi_old) < 5)
229 		return;
230 
231 	rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
232 
233 	if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
234 		ant.rx = (ant.rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
235 
236 	if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
237 		ant.tx = (ant.tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
238 
239 	rt2x00lib_config_antenna(rt2x00dev, &ant);
240 }
241 
rt2x00lib_evaluate_antenna(struct rt2x00_dev * rt2x00dev)242 static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
243 {
244 	/*
245 	 * Determine if software diversity is enabled for
246 	 * either the TX or RX antenna (or both).
247 	 * Always perform this check since within the link
248 	 * tuner interval the configuration might have changed.
249 	 */
250 	rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
251 	rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
252 
253 	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
254 		rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
255 	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
256 		rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
257 
258 	if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
259 	    !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
260 		rt2x00dev->link.ant.flags = 0;
261 		return;
262 	}
263 
264 	/*
265 	 * If we have only sampled the data over the last period
266 	 * we should now harvest the data. Otherwise just evaluate
267 	 * the data. The latter should only be performed once
268 	 * every 2 seconds.
269 	 */
270 	if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
271 		rt2x00lib_evaluate_antenna_sample(rt2x00dev);
272 	else if (rt2x00dev->link.count & 1)
273 		rt2x00lib_evaluate_antenna_eval(rt2x00dev);
274 }
275 
rt2x00lib_update_link_stats(struct link * link,int rssi)276 static void rt2x00lib_update_link_stats(struct link *link, int rssi)
277 {
278 	int avg_rssi = rssi;
279 
280 	/*
281 	 * Update global RSSI
282 	 */
283 	if (link->qual.avg_rssi)
284 		avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
285 	link->qual.avg_rssi = avg_rssi;
286 
287 	/*
288 	 * Update antenna RSSI
289 	 */
290 	if (link->ant.rssi_ant)
291 		rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
292 	link->ant.rssi_ant = rssi;
293 }
294 
rt2x00lib_precalculate_link_signal(struct link_qual * qual)295 static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
296 {
297 	if (qual->rx_failed || qual->rx_success)
298 		qual->rx_percentage =
299 		    (qual->rx_success * 100) /
300 		    (qual->rx_failed + qual->rx_success);
301 	else
302 		qual->rx_percentage = 50;
303 
304 	if (qual->tx_failed || qual->tx_success)
305 		qual->tx_percentage =
306 		    (qual->tx_success * 100) /
307 		    (qual->tx_failed + qual->tx_success);
308 	else
309 		qual->tx_percentage = 50;
310 
311 	qual->rx_success = 0;
312 	qual->rx_failed = 0;
313 	qual->tx_success = 0;
314 	qual->tx_failed = 0;
315 }
316 
rt2x00lib_calculate_link_signal(struct rt2x00_dev * rt2x00dev,int rssi)317 static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
318 					   int rssi)
319 {
320 	int rssi_percentage = 0;
321 	int signal;
322 
323 	/*
324 	 * We need a positive value for the RSSI.
325 	 */
326 	if (rssi < 0)
327 		rssi += rt2x00dev->rssi_offset;
328 
329 	/*
330 	 * Calculate the different percentages,
331 	 * which will be used for the signal.
332 	 */
333 	if (rt2x00dev->rssi_offset)
334 		rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
335 
336 	/*
337 	 * Add the individual percentages and use the WEIGHT
338 	 * defines to calculate the current link signal.
339 	 */
340 	signal = ((WEIGHT_RSSI * rssi_percentage) +
341 		  (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
342 		  (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
343 
344 	return (signal > 100) ? 100 : signal;
345 }
346 
rt2x00lib_link_tuner(struct work_struct * work)347 static void rt2x00lib_link_tuner(struct work_struct *work)
348 {
349 	struct rt2x00_dev *rt2x00dev =
350 	    container_of(work, struct rt2x00_dev, link.work.work);
351 
352 	/*
353 	 * When the radio is shutting down we should
354 	 * immediately cease all link tuning.
355 	 */
356 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
357 		return;
358 
359 	/*
360 	 * Update statistics.
361 	 */
362 	rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
363 	rt2x00dev->low_level_stats.dot11FCSErrorCount +=
364 	    rt2x00dev->link.qual.rx_failed;
365 
366 	/*
367 	 * Only perform the link tuning when Link tuning
368 	 * has been enabled (This could have been disabled from the EEPROM).
369 	 */
370 	if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
371 		rt2x00dev->ops->lib->link_tuner(rt2x00dev);
372 
373 	/*
374 	 * Precalculate a portion of the link signal which is
375 	 * in based on the tx/rx success/failure counters.
376 	 */
377 	rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
378 
379 	/*
380 	 * Send a signal to the led to update the led signal strength.
381 	 */
382 	rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
383 
384 	/*
385 	 * Evaluate antenna setup, make this the last step since this could
386 	 * possibly reset some statistics.
387 	 */
388 	rt2x00lib_evaluate_antenna(rt2x00dev);
389 
390 	/*
391 	 * Increase tuner counter, and reschedule the next link tuner run.
392 	 */
393 	rt2x00dev->link.count++;
394 	queue_delayed_work(rt2x00dev->hw->workqueue,
395 			   &rt2x00dev->link.work, LINK_TUNE_INTERVAL);
396 }
397 
rt2x00lib_packetfilter_scheduled(struct work_struct * work)398 static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
399 {
400 	struct rt2x00_dev *rt2x00dev =
401 	    container_of(work, struct rt2x00_dev, filter_work);
402 
403 	rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
404 }
405 
rt2x00lib_intf_scheduled_iter(void * data,u8 * mac,struct ieee80211_vif * vif)406 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
407 					  struct ieee80211_vif *vif)
408 {
409 	struct rt2x00_dev *rt2x00dev = data;
410 	struct rt2x00_intf *intf = vif_to_intf(vif);
411 	struct ieee80211_bss_conf conf;
412 	int delayed_flags;
413 
414 	/*
415 	 * Copy all data we need during this action under the protection
416 	 * of a spinlock. Otherwise race conditions might occur which results
417 	 * into an invalid configuration.
418 	 */
419 	spin_lock(&intf->lock);
420 
421 	memcpy(&conf, &vif->bss_conf, sizeof(conf));
422 	delayed_flags = intf->delayed_flags;
423 	intf->delayed_flags = 0;
424 
425 	spin_unlock(&intf->lock);
426 
427 	/*
428 	 * It is possible the radio was disabled while the work had been
429 	 * scheduled. If that happens we should return here immediately,
430 	 * note that in the spinlock protected area above the delayed_flags
431 	 * have been cleared correctly.
432 	 */
433 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
434 		return;
435 
436 	if (delayed_flags & DELAYED_UPDATE_BEACON)
437 		rt2x00queue_update_beacon(rt2x00dev, vif);
438 
439 	if (delayed_flags & DELAYED_CONFIG_ERP)
440 		rt2x00lib_config_erp(rt2x00dev, intf, &conf);
441 
442 	if (delayed_flags & DELAYED_LED_ASSOC)
443 		rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
444 }
445 
rt2x00lib_intf_scheduled(struct work_struct * work)446 static void rt2x00lib_intf_scheduled(struct work_struct *work)
447 {
448 	struct rt2x00_dev *rt2x00dev =
449 	    container_of(work, struct rt2x00_dev, intf_work);
450 
451 	/*
452 	 * Iterate over each interface and perform the
453 	 * requested configurations.
454 	 */
455 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
456 					    rt2x00lib_intf_scheduled_iter,
457 					    rt2x00dev);
458 }
459 
460 /*
461  * Interrupt context handlers.
462  */
rt2x00lib_beacondone_iter(void * data,u8 * mac,struct ieee80211_vif * vif)463 static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
464 				      struct ieee80211_vif *vif)
465 {
466 	struct rt2x00_dev *rt2x00dev = data;
467 	struct rt2x00_intf *intf = vif_to_intf(vif);
468 
469 	if (vif->type != NL80211_IFTYPE_AP &&
470 	    vif->type != NL80211_IFTYPE_ADHOC)
471 		return;
472 
473 	/*
474 	 * Clean up the beacon skb.
475 	 */
476 	rt2x00queue_free_skb(rt2x00dev, intf->beacon->skb);
477 	intf->beacon->skb = NULL;
478 
479 	spin_lock(&intf->lock);
480 	intf->delayed_flags |= DELAYED_UPDATE_BEACON;
481 	spin_unlock(&intf->lock);
482 }
483 
rt2x00lib_beacondone(struct rt2x00_dev * rt2x00dev)484 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
485 {
486 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
487 		return;
488 
489 	ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
490 						   rt2x00lib_beacondone_iter,
491 						   rt2x00dev);
492 
493 	schedule_work(&rt2x00dev->intf_work);
494 }
495 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
496 
rt2x00lib_txdone(struct queue_entry * entry,struct txdone_entry_desc * txdesc)497 void rt2x00lib_txdone(struct queue_entry *entry,
498 		      struct txdone_entry_desc *txdesc)
499 {
500 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
501 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
502 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
503 	enum data_queue_qid qid = skb_get_queue_mapping(entry->skb);
504 	u8 rate_idx, rate_flags;
505 
506 	/*
507 	 * Unmap the skb.
508 	 */
509 	rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
510 
511 	/*
512 	 * If the IV/EIV data was stripped from the frame before it was
513 	 * passed to the hardware, we should now reinsert it again because
514 	 * mac80211 will expect the the same data to be present it the
515 	 * frame as it was passed to us.
516 	 */
517 	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags))
518 		rt2x00crypto_tx_insert_iv(entry->skb);
519 
520 	/*
521 	 * Send frame to debugfs immediately, after this call is completed
522 	 * we are going to overwrite the skb->cb array.
523 	 */
524 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
525 
526 	/*
527 	 * Update TX statistics.
528 	 */
529 	rt2x00dev->link.qual.tx_success +=
530 	    test_bit(TXDONE_SUCCESS, &txdesc->flags);
531 	rt2x00dev->link.qual.tx_failed +=
532 	    test_bit(TXDONE_FAILURE, &txdesc->flags);
533 
534 	rate_idx = skbdesc->tx_rate_idx;
535 	rate_flags = skbdesc->tx_rate_flags;
536 
537 	/*
538 	 * Initialize TX status
539 	 */
540 	memset(&tx_info->status, 0, sizeof(tx_info->status));
541 	tx_info->status.ack_signal = 0;
542 	tx_info->status.rates[0].idx = rate_idx;
543 	tx_info->status.rates[0].flags = rate_flags;
544 	tx_info->status.rates[0].count = txdesc->retry + 1;
545 	tx_info->status.rates[1].idx = -1; /* terminate */
546 
547 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
548 		if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
549 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
550 		else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
551 			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
552 	}
553 
554 	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
555 		if (test_bit(TXDONE_SUCCESS, &txdesc->flags))
556 			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
557 		else if (test_bit(TXDONE_FAILURE, &txdesc->flags))
558 			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
559 	}
560 
561 	/*
562 	 * Only send the status report to mac80211 when TX status was
563 	 * requested by it. If this was a extra frame coming through
564 	 * a mac80211 library call (RTS/CTS) then we should not send the
565 	 * status report back.
566 	 */
567 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
568 		ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb);
569 	else
570 		dev_kfree_skb_irq(entry->skb);
571 
572 	/*
573 	 * Make this entry available for reuse.
574 	 */
575 	entry->skb = NULL;
576 	entry->flags = 0;
577 
578 	rt2x00dev->ops->lib->clear_entry(entry);
579 
580 	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
581 	rt2x00queue_index_inc(entry->queue, Q_INDEX_DONE);
582 
583 	/*
584 	 * If the data queue was below the threshold before the txdone
585 	 * handler we must make sure the packet queue in the mac80211 stack
586 	 * is reenabled when the txdone handler has finished.
587 	 */
588 	if (!rt2x00queue_threshold(entry->queue))
589 		ieee80211_wake_queue(rt2x00dev->hw, qid);
590 }
591 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
592 
rt2x00lib_rxdone(struct rt2x00_dev * rt2x00dev,struct queue_entry * entry)593 void rt2x00lib_rxdone(struct rt2x00_dev *rt2x00dev,
594 		      struct queue_entry *entry)
595 {
596 	struct rxdone_entry_desc rxdesc;
597 	struct sk_buff *skb;
598 	struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
599 	struct ieee80211_supported_band *sband;
600 	struct ieee80211_hdr *hdr;
601 	const struct rt2x00_rate *rate;
602 	unsigned int header_length;
603 	unsigned int align;
604 	unsigned int i;
605 	int idx = -1;
606 
607 	/*
608 	 * Allocate a new sk_buffer. If no new buffer available, drop the
609 	 * received frame and reuse the existing buffer.
610 	 */
611 	skb = rt2x00queue_alloc_rxskb(rt2x00dev, entry);
612 	if (!skb)
613 		return;
614 
615 	/*
616 	 * Unmap the skb.
617 	 */
618 	rt2x00queue_unmap_skb(rt2x00dev, entry->skb);
619 
620 	/*
621 	 * Extract the RXD details.
622 	 */
623 	memset(&rxdesc, 0, sizeof(rxdesc));
624 	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
625 
626 	/*
627 	 * The data behind the ieee80211 header must be
628 	 * aligned on a 4 byte boundary.
629 	 */
630 	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
631 	align = ((unsigned long)(entry->skb->data + header_length)) & 3;
632 
633 	/*
634 	 * Hardware might have stripped the IV/EIV/ICV data,
635 	 * in that case it is possible that the data was
636 	 * provided seperately (through hardware descriptor)
637 	 * in which case we should reinsert the data into the frame.
638 	 */
639 	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
640 	    (rxdesc.flags & RX_FLAG_IV_STRIPPED)) {
641 		rt2x00crypto_rx_insert_iv(entry->skb, align,
642 					  header_length, &rxdesc);
643 	} else if (align) {
644 		skb_push(entry->skb, align);
645 		/* Move entire frame in 1 command */
646 		memmove(entry->skb->data, entry->skb->data + align,
647 			rxdesc.size);
648 	}
649 
650 	/* Update data pointers, trim buffer to correct size */
651 	skb_trim(entry->skb, rxdesc.size);
652 
653 	/*
654 	 * Update RX statistics.
655 	 */
656 	sband = &rt2x00dev->bands[rt2x00dev->curr_band];
657 	for (i = 0; i < sband->n_bitrates; i++) {
658 		rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
659 
660 		if (((rxdesc.dev_flags & RXDONE_SIGNAL_PLCP) &&
661 		     (rate->plcp == rxdesc.signal)) ||
662 		    ((rxdesc.dev_flags & RXDONE_SIGNAL_BITRATE) &&
663 		      (rate->bitrate == rxdesc.signal))) {
664 			idx = i;
665 			break;
666 		}
667 	}
668 
669 	if (idx < 0) {
670 		WARNING(rt2x00dev, "Frame received with unrecognized signal,"
671 			"signal=0x%.2x, plcp=%d.\n", rxdesc.signal,
672 			!!(rxdesc.dev_flags & RXDONE_SIGNAL_PLCP));
673 		idx = 0;
674 	}
675 
676 	/*
677 	 * Only update link status if this is a beacon frame carrying our bssid.
678 	 */
679 	hdr = (struct ieee80211_hdr *)entry->skb->data;
680 	if (ieee80211_is_beacon(hdr->frame_control) &&
681 	    (rxdesc.dev_flags & RXDONE_MY_BSS))
682 		rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc.rssi);
683 
684 	rt2x00debug_update_crypto(rt2x00dev,
685 				  rxdesc.cipher,
686 				  rxdesc.cipher_status);
687 
688 	rt2x00dev->link.qual.rx_success++;
689 
690 	rx_status->mactime = rxdesc.timestamp;
691 	rx_status->rate_idx = idx;
692 	rx_status->qual =
693 	    rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc.rssi);
694 	rx_status->signal = rxdesc.rssi;
695 	rx_status->flag = rxdesc.flags;
696 	rx_status->antenna = rt2x00dev->link.ant.active.rx;
697 
698 	/*
699 	 * Send frame to mac80211 & debugfs.
700 	 * mac80211 will clean up the skb structure.
701 	 */
702 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
703 	ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
704 
705 	/*
706 	 * Replace the skb with the freshly allocated one.
707 	 */
708 	entry->skb = skb;
709 	entry->flags = 0;
710 
711 	rt2x00dev->ops->lib->clear_entry(entry);
712 
713 	rt2x00queue_index_inc(entry->queue, Q_INDEX);
714 }
715 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
716 
717 /*
718  * Driver initialization handlers.
719  */
720 const struct rt2x00_rate rt2x00_supported_rates[12] = {
721 	{
722 		.flags = DEV_RATE_CCK,
723 		.bitrate = 10,
724 		.ratemask = BIT(0),
725 		.plcp = 0x00,
726 	},
727 	{
728 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
729 		.bitrate = 20,
730 		.ratemask = BIT(1),
731 		.plcp = 0x01,
732 	},
733 	{
734 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
735 		.bitrate = 55,
736 		.ratemask = BIT(2),
737 		.plcp = 0x02,
738 	},
739 	{
740 		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
741 		.bitrate = 110,
742 		.ratemask = BIT(3),
743 		.plcp = 0x03,
744 	},
745 	{
746 		.flags = DEV_RATE_OFDM,
747 		.bitrate = 60,
748 		.ratemask = BIT(4),
749 		.plcp = 0x0b,
750 	},
751 	{
752 		.flags = DEV_RATE_OFDM,
753 		.bitrate = 90,
754 		.ratemask = BIT(5),
755 		.plcp = 0x0f,
756 	},
757 	{
758 		.flags = DEV_RATE_OFDM,
759 		.bitrate = 120,
760 		.ratemask = BIT(6),
761 		.plcp = 0x0a,
762 	},
763 	{
764 		.flags = DEV_RATE_OFDM,
765 		.bitrate = 180,
766 		.ratemask = BIT(7),
767 		.plcp = 0x0e,
768 	},
769 	{
770 		.flags = DEV_RATE_OFDM,
771 		.bitrate = 240,
772 		.ratemask = BIT(8),
773 		.plcp = 0x09,
774 	},
775 	{
776 		.flags = DEV_RATE_OFDM,
777 		.bitrate = 360,
778 		.ratemask = BIT(9),
779 		.plcp = 0x0d,
780 	},
781 	{
782 		.flags = DEV_RATE_OFDM,
783 		.bitrate = 480,
784 		.ratemask = BIT(10),
785 		.plcp = 0x08,
786 	},
787 	{
788 		.flags = DEV_RATE_OFDM,
789 		.bitrate = 540,
790 		.ratemask = BIT(11),
791 		.plcp = 0x0c,
792 	},
793 };
794 
rt2x00lib_channel(struct ieee80211_channel * entry,const int channel,const int tx_power,const int value)795 static void rt2x00lib_channel(struct ieee80211_channel *entry,
796 			      const int channel, const int tx_power,
797 			      const int value)
798 {
799 	entry->center_freq = ieee80211_channel_to_frequency(channel);
800 	entry->hw_value = value;
801 	entry->max_power = tx_power;
802 	entry->max_antenna_gain = 0xff;
803 }
804 
rt2x00lib_rate(struct ieee80211_rate * entry,const u16 index,const struct rt2x00_rate * rate)805 static void rt2x00lib_rate(struct ieee80211_rate *entry,
806 			   const u16 index, const struct rt2x00_rate *rate)
807 {
808 	entry->flags = 0;
809 	entry->bitrate = rate->bitrate;
810 	entry->hw_value =index;
811 	entry->hw_value_short = index;
812 
813 	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
814 		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
815 }
816 
rt2x00lib_probe_hw_modes(struct rt2x00_dev * rt2x00dev,struct hw_mode_spec * spec)817 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
818 				    struct hw_mode_spec *spec)
819 {
820 	struct ieee80211_hw *hw = rt2x00dev->hw;
821 	struct ieee80211_channel *channels;
822 	struct ieee80211_rate *rates;
823 	unsigned int num_rates;
824 	unsigned int i;
825 
826 	num_rates = 0;
827 	if (spec->supported_rates & SUPPORT_RATE_CCK)
828 		num_rates += 4;
829 	if (spec->supported_rates & SUPPORT_RATE_OFDM)
830 		num_rates += 8;
831 
832 	channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
833 	if (!channels)
834 		return -ENOMEM;
835 
836 	rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
837 	if (!rates)
838 		goto exit_free_channels;
839 
840 	/*
841 	 * Initialize Rate list.
842 	 */
843 	for (i = 0; i < num_rates; i++)
844 		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
845 
846 	/*
847 	 * Initialize Channel list.
848 	 */
849 	for (i = 0; i < spec->num_channels; i++) {
850 		rt2x00lib_channel(&channels[i],
851 				  spec->channels[i].channel,
852 				  spec->channels_info[i].tx_power1, i);
853 	}
854 
855 	/*
856 	 * Intitialize 802.11b, 802.11g
857 	 * Rates: CCK, OFDM.
858 	 * Channels: 2.4 GHz
859 	 */
860 	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
861 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
862 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
863 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
864 		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
865 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
866 		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
867 	}
868 
869 	/*
870 	 * Intitialize 802.11a
871 	 * Rates: OFDM.
872 	 * Channels: OFDM, UNII, HiperLAN2.
873 	 */
874 	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
875 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
876 		    spec->num_channels - 14;
877 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
878 		    num_rates - 4;
879 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
880 		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
881 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
882 		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
883 	}
884 
885 	return 0;
886 
887  exit_free_channels:
888 	kfree(channels);
889 	ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
890 	return -ENOMEM;
891 }
892 
rt2x00lib_remove_hw(struct rt2x00_dev * rt2x00dev)893 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
894 {
895 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
896 		ieee80211_unregister_hw(rt2x00dev->hw);
897 
898 	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
899 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
900 		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
901 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
902 		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
903 	}
904 
905 	kfree(rt2x00dev->spec.channels_info);
906 }
907 
rt2x00lib_probe_hw(struct rt2x00_dev * rt2x00dev)908 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
909 {
910 	struct hw_mode_spec *spec = &rt2x00dev->spec;
911 	int status;
912 
913 	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
914 		return 0;
915 
916 	/*
917 	 * Initialize HW modes.
918 	 */
919 	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
920 	if (status)
921 		return status;
922 
923 	/*
924 	 * Initialize HW fields.
925 	 */
926 	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
927 
928 	/*
929 	 * Register HW.
930 	 */
931 	status = ieee80211_register_hw(rt2x00dev->hw);
932 	if (status) {
933 		rt2x00lib_remove_hw(rt2x00dev);
934 		return status;
935 	}
936 
937 	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
938 
939 	return 0;
940 }
941 
942 /*
943  * Initialization/uninitialization handlers.
944  */
rt2x00lib_uninitialize(struct rt2x00_dev * rt2x00dev)945 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
946 {
947 	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
948 		return;
949 
950 	/*
951 	 * Unregister extra components.
952 	 */
953 	rt2x00rfkill_unregister(rt2x00dev);
954 
955 	/*
956 	 * Allow the HW to uninitialize.
957 	 */
958 	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
959 
960 	/*
961 	 * Free allocated queue entries.
962 	 */
963 	rt2x00queue_uninitialize(rt2x00dev);
964 }
965 
rt2x00lib_initialize(struct rt2x00_dev * rt2x00dev)966 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
967 {
968 	int status;
969 
970 	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
971 		return 0;
972 
973 	/*
974 	 * Allocate all queue entries.
975 	 */
976 	status = rt2x00queue_initialize(rt2x00dev);
977 	if (status)
978 		return status;
979 
980 	/*
981 	 * Initialize the device.
982 	 */
983 	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
984 	if (status) {
985 		rt2x00queue_uninitialize(rt2x00dev);
986 		return status;
987 	}
988 
989 	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
990 
991 	/*
992 	 * Register the extra components.
993 	 */
994 	rt2x00rfkill_register(rt2x00dev);
995 
996 	return 0;
997 }
998 
rt2x00lib_start(struct rt2x00_dev * rt2x00dev)999 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1000 {
1001 	int retval;
1002 
1003 	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1004 		return 0;
1005 
1006 	/*
1007 	 * If this is the first interface which is added,
1008 	 * we should load the firmware now.
1009 	 */
1010 	retval = rt2x00lib_load_firmware(rt2x00dev);
1011 	if (retval)
1012 		return retval;
1013 
1014 	/*
1015 	 * Initialize the device.
1016 	 */
1017 	retval = rt2x00lib_initialize(rt2x00dev);
1018 	if (retval)
1019 		return retval;
1020 
1021 	rt2x00dev->intf_ap_count = 0;
1022 	rt2x00dev->intf_sta_count = 0;
1023 	rt2x00dev->intf_associated = 0;
1024 
1025 	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1026 
1027 	return 0;
1028 }
1029 
rt2x00lib_stop(struct rt2x00_dev * rt2x00dev)1030 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1031 {
1032 	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1033 		return;
1034 
1035 	/*
1036 	 * Perhaps we can add something smarter here,
1037 	 * but for now just disabling the radio should do.
1038 	 */
1039 	rt2x00lib_disable_radio(rt2x00dev);
1040 
1041 	rt2x00dev->intf_ap_count = 0;
1042 	rt2x00dev->intf_sta_count = 0;
1043 	rt2x00dev->intf_associated = 0;
1044 }
1045 
1046 /*
1047  * driver allocation handlers.
1048  */
rt2x00lib_probe_dev(struct rt2x00_dev * rt2x00dev)1049 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1050 {
1051 	int retval = -ENOMEM;
1052 
1053 	mutex_init(&rt2x00dev->csr_mutex);
1054 
1055 	/*
1056 	 * Make room for rt2x00_intf inside the per-interface
1057 	 * structure ieee80211_vif.
1058 	 */
1059 	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1060 
1061 	/*
1062 	 * Determine which operating modes are supported, all modes
1063 	 * which require beaconing, depend on the availability of
1064 	 * beacon entries.
1065 	 */
1066 	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1067 	if (rt2x00dev->ops->bcn->entry_num > 0)
1068 		rt2x00dev->hw->wiphy->interface_modes |=
1069 		    BIT(NL80211_IFTYPE_ADHOC) |
1070 		    BIT(NL80211_IFTYPE_AP);
1071 
1072 	/*
1073 	 * Let the driver probe the device to detect the capabilities.
1074 	 */
1075 	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1076 	if (retval) {
1077 		ERROR(rt2x00dev, "Failed to allocate device.\n");
1078 		goto exit;
1079 	}
1080 
1081 	/*
1082 	 * Initialize configuration work.
1083 	 */
1084 	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1085 	INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
1086 	INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
1087 
1088 	/*
1089 	 * Allocate queue array.
1090 	 */
1091 	retval = rt2x00queue_allocate(rt2x00dev);
1092 	if (retval)
1093 		goto exit;
1094 
1095 	/*
1096 	 * Initialize ieee80211 structure.
1097 	 */
1098 	retval = rt2x00lib_probe_hw(rt2x00dev);
1099 	if (retval) {
1100 		ERROR(rt2x00dev, "Failed to initialize hw.\n");
1101 		goto exit;
1102 	}
1103 
1104 	/*
1105 	 * Register extra components.
1106 	 */
1107 	rt2x00leds_register(rt2x00dev);
1108 	rt2x00rfkill_allocate(rt2x00dev);
1109 	rt2x00debug_register(rt2x00dev);
1110 
1111 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1112 
1113 	return 0;
1114 
1115 exit:
1116 	rt2x00lib_remove_dev(rt2x00dev);
1117 
1118 	return retval;
1119 }
1120 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1121 
rt2x00lib_remove_dev(struct rt2x00_dev * rt2x00dev)1122 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1123 {
1124 	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1125 
1126 	/*
1127 	 * Disable radio.
1128 	 */
1129 	rt2x00lib_disable_radio(rt2x00dev);
1130 
1131 	/*
1132 	 * Uninitialize device.
1133 	 */
1134 	rt2x00lib_uninitialize(rt2x00dev);
1135 
1136 	/*
1137 	 * Free extra components
1138 	 */
1139 	rt2x00debug_deregister(rt2x00dev);
1140 	rt2x00rfkill_free(rt2x00dev);
1141 	rt2x00leds_unregister(rt2x00dev);
1142 
1143 	/*
1144 	 * Free ieee80211_hw memory.
1145 	 */
1146 	rt2x00lib_remove_hw(rt2x00dev);
1147 
1148 	/*
1149 	 * Free firmware image.
1150 	 */
1151 	rt2x00lib_free_firmware(rt2x00dev);
1152 
1153 	/*
1154 	 * Free queue structures.
1155 	 */
1156 	rt2x00queue_free(rt2x00dev);
1157 }
1158 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1159 
1160 /*
1161  * Device state handlers
1162  */
1163 #ifdef CONFIG_PM
rt2x00lib_suspend(struct rt2x00_dev * rt2x00dev,pm_message_t state)1164 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1165 {
1166 	int retval;
1167 
1168 	NOTICE(rt2x00dev, "Going to sleep.\n");
1169 
1170 	/*
1171 	 * Only continue if mac80211 has open interfaces.
1172 	 */
1173 	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
1174 	    !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1175 		goto exit;
1176 
1177 	set_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags);
1178 
1179 	/*
1180 	 * Disable radio.
1181 	 */
1182 	rt2x00lib_stop(rt2x00dev);
1183 	rt2x00lib_uninitialize(rt2x00dev);
1184 
1185 	/*
1186 	 * Suspend/disable extra components.
1187 	 */
1188 	rt2x00leds_suspend(rt2x00dev);
1189 	rt2x00debug_deregister(rt2x00dev);
1190 
1191 exit:
1192 	/*
1193 	 * Set device mode to sleep for power management,
1194 	 * on some hardware this call seems to consistently fail.
1195 	 * From the specifications it is hard to tell why it fails,
1196 	 * and if this is a "bad thing".
1197 	 * Overall it is safe to just ignore the failure and
1198 	 * continue suspending. The only downside is that the
1199 	 * device will not be in optimal power save mode, but with
1200 	 * the radio and the other components already disabled the
1201 	 * device is as good as disabled.
1202 	 */
1203 	retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
1204 	if (retval)
1205 		WARNING(rt2x00dev, "Device failed to enter sleep state, "
1206 			"continue suspending.\n");
1207 
1208 	return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1211 
rt2x00lib_resume_intf(void * data,u8 * mac,struct ieee80211_vif * vif)1212 static void rt2x00lib_resume_intf(void *data, u8 *mac,
1213 				  struct ieee80211_vif *vif)
1214 {
1215 	struct rt2x00_dev *rt2x00dev = data;
1216 	struct rt2x00_intf *intf = vif_to_intf(vif);
1217 
1218 	spin_lock(&intf->lock);
1219 
1220 	rt2x00lib_config_intf(rt2x00dev, intf,
1221 			      vif->type, intf->mac, intf->bssid);
1222 
1223 
1224 	/*
1225 	 * Master or Ad-hoc mode require a new beacon update.
1226 	 */
1227 	if (vif->type == NL80211_IFTYPE_AP ||
1228 	    vif->type == NL80211_IFTYPE_ADHOC)
1229 		intf->delayed_flags |= DELAYED_UPDATE_BEACON;
1230 
1231 	spin_unlock(&intf->lock);
1232 }
1233 
rt2x00lib_resume(struct rt2x00_dev * rt2x00dev)1234 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1235 {
1236 	int retval;
1237 
1238 	NOTICE(rt2x00dev, "Waking up.\n");
1239 
1240 	/*
1241 	 * Restore/enable extra components.
1242 	 */
1243 	rt2x00debug_register(rt2x00dev);
1244 	rt2x00leds_resume(rt2x00dev);
1245 
1246 	/*
1247 	 * Only continue if mac80211 had open interfaces.
1248 	 */
1249 	if (!test_and_clear_bit(DEVICE_STATE_STARTED_SUSPEND, &rt2x00dev->flags))
1250 		return 0;
1251 
1252 	/*
1253 	 * Reinitialize device and all active interfaces.
1254 	 */
1255 	retval = rt2x00lib_start(rt2x00dev);
1256 	if (retval)
1257 		goto exit;
1258 
1259 	/*
1260 	 * Reconfigure device.
1261 	 */
1262 	retval = rt2x00mac_config(rt2x00dev->hw, ~0);
1263 	if (retval)
1264 		goto exit;
1265 
1266 	/*
1267 	 * Iterator over each active interface to
1268 	 * reconfigure the hardware.
1269 	 */
1270 	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
1271 					    rt2x00lib_resume_intf, rt2x00dev);
1272 
1273 	/*
1274 	 * We are ready again to receive requests from mac80211.
1275 	 */
1276 	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1277 
1278 	/*
1279 	 * It is possible that during that mac80211 has attempted
1280 	 * to send frames while we were suspending or resuming.
1281 	 * In that case we have disabled the TX queue and should
1282 	 * now enable it again
1283 	 */
1284 	ieee80211_wake_queues(rt2x00dev->hw);
1285 
1286 	/*
1287 	 * During interface iteration we might have changed the
1288 	 * delayed_flags, time to handles the event by calling
1289 	 * the work handler directly.
1290 	 */
1291 	rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
1292 
1293 	return 0;
1294 
1295 exit:
1296 	rt2x00lib_stop(rt2x00dev);
1297 	rt2x00lib_uninitialize(rt2x00dev);
1298 	rt2x00debug_deregister(rt2x00dev);
1299 
1300 	return retval;
1301 }
1302 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1303 #endif /* CONFIG_PM */
1304 
1305 /*
1306  * rt2x00lib module information.
1307  */
1308 MODULE_AUTHOR(DRV_PROJECT);
1309 MODULE_VERSION(DRV_VERSION);
1310 MODULE_DESCRIPTION("rt2x00 library");
1311 MODULE_LICENSE("GPL");
1312