• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 	Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, write to the
17 	Free Software Foundation, Inc.,
18 	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22 	Module: rt73usb
23 	Abstract: rt73usb device specific routines.
24 	Supported chipsets: rt2571W & rt2671.
25  */
26 
27 #include <linux/crc-itu-t.h>
28 #include <linux/delay.h>
29 #include <linux/etherdevice.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/usb.h>
34 
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt73usb.h"
38 
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45 
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2x00usb_register_read and rt2x00usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * The _lock versions must be used if you already hold the csr_mutex
59  */
60 #define WAIT_FOR_BBP(__dev, __reg) \
61 	rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
62 #define WAIT_FOR_RF(__dev, __reg) \
63 	rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
64 
rt73usb_bbp_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u8 value)65 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
66 			      const unsigned int word, const u8 value)
67 {
68 	u32 reg;
69 
70 	mutex_lock(&rt2x00dev->csr_mutex);
71 
72 	/*
73 	 * Wait until the BBP becomes available, afterwards we
74 	 * can safely write the new data into the register.
75 	 */
76 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77 		reg = 0;
78 		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
82 
83 		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
84 	}
85 
86 	mutex_unlock(&rt2x00dev->csr_mutex);
87 }
88 
rt73usb_bbp_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u8 * value)89 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
90 			     const unsigned int word, u8 *value)
91 {
92 	u32 reg;
93 
94 	mutex_lock(&rt2x00dev->csr_mutex);
95 
96 	/*
97 	 * Wait until the BBP becomes available, afterwards we
98 	 * can safely write the read request into the register.
99 	 * After the data has been written, we wait until hardware
100 	 * returns the correct value, if at any time the register
101 	 * doesn't become available in time, reg will be 0xffffffff
102 	 * which means we return 0xff to the caller.
103 	 */
104 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
105 		reg = 0;
106 		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
107 		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
108 		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
109 
110 		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
111 
112 		WAIT_FOR_BBP(rt2x00dev, &reg);
113 	}
114 
115 	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
116 
117 	mutex_unlock(&rt2x00dev->csr_mutex);
118 }
119 
rt73usb_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u32 value)120 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
121 			     const unsigned int word, const u32 value)
122 {
123 	u32 reg;
124 
125 	if (!word)
126 		return;
127 
128 	mutex_lock(&rt2x00dev->csr_mutex);
129 
130 	/*
131 	 * Wait until the RF becomes available, afterwards we
132 	 * can safely write the new data into the register.
133 	 */
134 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
135 		reg = 0;
136 		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
137 		/*
138 		 * RF5225 and RF2527 contain 21 bits per RF register value,
139 		 * all others contain 20 bits.
140 		 */
141 		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
142 				   20 + (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
143 					 rt2x00_rf(&rt2x00dev->chip, RF2527)));
144 		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
145 		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
146 
147 		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
148 		rt2x00_rf_write(rt2x00dev, word, value);
149 	}
150 
151 	mutex_unlock(&rt2x00dev->csr_mutex);
152 }
153 
154 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
155 static const struct rt2x00debug rt73usb_rt2x00debug = {
156 	.owner	= THIS_MODULE,
157 	.csr	= {
158 		.read		= rt2x00usb_register_read,
159 		.write		= rt2x00usb_register_write,
160 		.flags		= RT2X00DEBUGFS_OFFSET,
161 		.word_base	= CSR_REG_BASE,
162 		.word_size	= sizeof(u32),
163 		.word_count	= CSR_REG_SIZE / sizeof(u32),
164 	},
165 	.eeprom	= {
166 		.read		= rt2x00_eeprom_read,
167 		.write		= rt2x00_eeprom_write,
168 		.word_base	= EEPROM_BASE,
169 		.word_size	= sizeof(u16),
170 		.word_count	= EEPROM_SIZE / sizeof(u16),
171 	},
172 	.bbp	= {
173 		.read		= rt73usb_bbp_read,
174 		.write		= rt73usb_bbp_write,
175 		.word_base	= BBP_BASE,
176 		.word_size	= sizeof(u8),
177 		.word_count	= BBP_SIZE / sizeof(u8),
178 	},
179 	.rf	= {
180 		.read		= rt2x00_rf_read,
181 		.write		= rt73usb_rf_write,
182 		.word_base	= RF_BASE,
183 		.word_size	= sizeof(u32),
184 		.word_count	= RF_SIZE / sizeof(u32),
185 	},
186 };
187 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
188 
189 #ifdef CONFIG_RT2X00_LIB_LEDS
rt73usb_brightness_set(struct led_classdev * led_cdev,enum led_brightness brightness)190 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
191 				   enum led_brightness brightness)
192 {
193 	struct rt2x00_led *led =
194 	   container_of(led_cdev, struct rt2x00_led, led_dev);
195 	unsigned int enabled = brightness != LED_OFF;
196 	unsigned int a_mode =
197 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
198 	unsigned int bg_mode =
199 	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
200 
201 	if (led->type == LED_TYPE_RADIO) {
202 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
203 				   MCU_LEDCS_RADIO_STATUS, enabled);
204 
205 		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
206 					    0, led->rt2x00dev->led_mcu_reg,
207 					    REGISTER_TIMEOUT);
208 	} else if (led->type == LED_TYPE_ASSOC) {
209 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
210 				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
211 		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
212 				   MCU_LEDCS_LINK_A_STATUS, a_mode);
213 
214 		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
215 					    0, led->rt2x00dev->led_mcu_reg,
216 					    REGISTER_TIMEOUT);
217 	} else if (led->type == LED_TYPE_QUALITY) {
218 		/*
219 		 * The brightness is divided into 6 levels (0 - 5),
220 		 * this means we need to convert the brightness
221 		 * argument into the matching level within that range.
222 		 */
223 		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
224 					    brightness / (LED_FULL / 6),
225 					    led->rt2x00dev->led_mcu_reg,
226 					    REGISTER_TIMEOUT);
227 	}
228 }
229 
rt73usb_blink_set(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)230 static int rt73usb_blink_set(struct led_classdev *led_cdev,
231 			     unsigned long *delay_on,
232 			     unsigned long *delay_off)
233 {
234 	struct rt2x00_led *led =
235 	    container_of(led_cdev, struct rt2x00_led, led_dev);
236 	u32 reg;
237 
238 	rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
239 	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
240 	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
241 	rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
242 
243 	return 0;
244 }
245 
rt73usb_init_led(struct rt2x00_dev * rt2x00dev,struct rt2x00_led * led,enum led_type type)246 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
247 			     struct rt2x00_led *led,
248 			     enum led_type type)
249 {
250 	led->rt2x00dev = rt2x00dev;
251 	led->type = type;
252 	led->led_dev.brightness_set = rt73usb_brightness_set;
253 	led->led_dev.blink_set = rt73usb_blink_set;
254 	led->flags = LED_INITIALIZED;
255 }
256 #endif /* CONFIG_RT2X00_LIB_LEDS */
257 
258 /*
259  * Configuration handlers.
260  */
rt73usb_config_shared_key(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_crypto * crypto,struct ieee80211_key_conf * key)261 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
262 				     struct rt2x00lib_crypto *crypto,
263 				     struct ieee80211_key_conf *key)
264 {
265 	struct hw_key_entry key_entry;
266 	struct rt2x00_field32 field;
267 	int timeout;
268 	u32 mask;
269 	u32 reg;
270 
271 	if (crypto->cmd == SET_KEY) {
272 		/*
273 		 * rt2x00lib can't determine the correct free
274 		 * key_idx for shared keys. We have 1 register
275 		 * with key valid bits. The goal is simple, read
276 		 * the register, if that is full we have no slots
277 		 * left.
278 		 * Note that each BSS is allowed to have up to 4
279 		 * shared keys, so put a mask over the allowed
280 		 * entries.
281 		 */
282 		mask = (0xf << crypto->bssidx);
283 
284 		rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
285 		reg &= mask;
286 
287 		if (reg && reg == mask)
288 			return -ENOSPC;
289 
290 		key->hw_key_idx += reg ? ffz(reg) : 0;
291 
292 		/*
293 		 * Upload key to hardware
294 		 */
295 		memcpy(key_entry.key, crypto->key,
296 		       sizeof(key_entry.key));
297 		memcpy(key_entry.tx_mic, crypto->tx_mic,
298 		       sizeof(key_entry.tx_mic));
299 		memcpy(key_entry.rx_mic, crypto->rx_mic,
300 		       sizeof(key_entry.rx_mic));
301 
302 		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
303 		timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
304 		rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
305 						    USB_VENDOR_REQUEST_OUT, reg,
306 						    &key_entry,
307 						    sizeof(key_entry),
308 						    timeout);
309 
310 		/*
311 		 * The cipher types are stored over 2 registers.
312 		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
313 		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
314 		 * Using the correct defines correctly will cause overhead,
315 		 * so just calculate the correct offset.
316 		 */
317 		if (key->hw_key_idx < 8) {
318 			field.bit_offset = (3 * key->hw_key_idx);
319 			field.bit_mask = 0x7 << field.bit_offset;
320 
321 			rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
322 			rt2x00_set_field32(&reg, field, crypto->cipher);
323 			rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
324 		} else {
325 			field.bit_offset = (3 * (key->hw_key_idx - 8));
326 			field.bit_mask = 0x7 << field.bit_offset;
327 
328 			rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
329 			rt2x00_set_field32(&reg, field, crypto->cipher);
330 			rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
331 		}
332 
333 		/*
334 		 * The driver does not support the IV/EIV generation
335 		 * in hardware. However it doesn't support the IV/EIV
336 		 * inside the ieee80211 frame either, but requires it
337 		 * to be provided seperately for the descriptor.
338 		 * rt2x00lib will cut the IV/EIV data out of all frames
339 		 * given to us by mac80211, but we must tell mac80211
340 		 * to generate the IV/EIV data.
341 		 */
342 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
343 	}
344 
345 	/*
346 	 * SEC_CSR0 contains only single-bit fields to indicate
347 	 * a particular key is valid. Because using the FIELD32()
348 	 * defines directly will cause a lot of overhead we use
349 	 * a calculation to determine the correct bit directly.
350 	 */
351 	mask = 1 << key->hw_key_idx;
352 
353 	rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
354 	if (crypto->cmd == SET_KEY)
355 		reg |= mask;
356 	else if (crypto->cmd == DISABLE_KEY)
357 		reg &= ~mask;
358 	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
359 
360 	return 0;
361 }
362 
rt73usb_config_pairwise_key(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_crypto * crypto,struct ieee80211_key_conf * key)363 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
364 				       struct rt2x00lib_crypto *crypto,
365 				       struct ieee80211_key_conf *key)
366 {
367 	struct hw_pairwise_ta_entry addr_entry;
368 	struct hw_key_entry key_entry;
369 	int timeout;
370 	u32 mask;
371 	u32 reg;
372 
373 	if (crypto->cmd == SET_KEY) {
374 		/*
375 		 * rt2x00lib can't determine the correct free
376 		 * key_idx for pairwise keys. We have 2 registers
377 		 * with key valid bits. The goal is simple, read
378 		 * the first register, if that is full move to
379 		 * the next register.
380 		 * When both registers are full, we drop the key,
381 		 * otherwise we use the first invalid entry.
382 		 */
383 		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
384 		if (reg && reg == ~0) {
385 			key->hw_key_idx = 32;
386 			rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
387 			if (reg && reg == ~0)
388 				return -ENOSPC;
389 		}
390 
391 		key->hw_key_idx += reg ? ffz(reg) : 0;
392 
393 		/*
394 		 * Upload key to hardware
395 		 */
396 		memcpy(key_entry.key, crypto->key,
397 		       sizeof(key_entry.key));
398 		memcpy(key_entry.tx_mic, crypto->tx_mic,
399 		       sizeof(key_entry.tx_mic));
400 		memcpy(key_entry.rx_mic, crypto->rx_mic,
401 		       sizeof(key_entry.rx_mic));
402 
403 		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
404 		timeout = REGISTER_TIMEOUT32(sizeof(key_entry));
405 		rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
406 						    USB_VENDOR_REQUEST_OUT, reg,
407 						    &key_entry,
408 						    sizeof(key_entry),
409 						    timeout);
410 
411 		/*
412 		 * Send the address and cipher type to the hardware register.
413 		 * This data fits within the CSR cache size, so we can use
414 		 * rt2x00usb_register_multiwrite() directly.
415 		 */
416 		memset(&addr_entry, 0, sizeof(addr_entry));
417 		memcpy(&addr_entry, crypto->address, ETH_ALEN);
418 		addr_entry.cipher = crypto->cipher;
419 
420 		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
421 		rt2x00usb_register_multiwrite(rt2x00dev, reg,
422 					    &addr_entry, sizeof(addr_entry));
423 
424 		/*
425 		 * Enable pairwise lookup table for given BSS idx,
426 		 * without this received frames will not be decrypted
427 		 * by the hardware.
428 		 */
429 		rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
430 		reg |= (1 << crypto->bssidx);
431 		rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
432 
433 		/*
434 		 * The driver does not support the IV/EIV generation
435 		 * in hardware. However it doesn't support the IV/EIV
436 		 * inside the ieee80211 frame either, but requires it
437 		 * to be provided seperately for the descriptor.
438 		 * rt2x00lib will cut the IV/EIV data out of all frames
439 		 * given to us by mac80211, but we must tell mac80211
440 		 * to generate the IV/EIV data.
441 		 */
442 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
443 	}
444 
445 	/*
446 	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
447 	 * a particular key is valid. Because using the FIELD32()
448 	 * defines directly will cause a lot of overhead we use
449 	 * a calculation to determine the correct bit directly.
450 	 */
451 	if (key->hw_key_idx < 32) {
452 		mask = 1 << key->hw_key_idx;
453 
454 		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
455 		if (crypto->cmd == SET_KEY)
456 			reg |= mask;
457 		else if (crypto->cmd == DISABLE_KEY)
458 			reg &= ~mask;
459 		rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
460 	} else {
461 		mask = 1 << (key->hw_key_idx - 32);
462 
463 		rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
464 		if (crypto->cmd == SET_KEY)
465 			reg |= mask;
466 		else if (crypto->cmd == DISABLE_KEY)
467 			reg &= ~mask;
468 		rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
469 	}
470 
471 	return 0;
472 }
473 
rt73usb_config_filter(struct rt2x00_dev * rt2x00dev,const unsigned int filter_flags)474 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
475 				  const unsigned int filter_flags)
476 {
477 	u32 reg;
478 
479 	/*
480 	 * Start configuration steps.
481 	 * Note that the version error will always be dropped
482 	 * and broadcast frames will always be accepted since
483 	 * there is no filter for it at this time.
484 	 */
485 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
486 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
487 			   !(filter_flags & FIF_FCSFAIL));
488 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
489 			   !(filter_flags & FIF_PLCPFAIL));
490 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
491 			   !(filter_flags & FIF_CONTROL));
492 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
493 			   !(filter_flags & FIF_PROMISC_IN_BSS));
494 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
495 			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
496 			   !rt2x00dev->intf_ap_count);
497 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
498 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
499 			   !(filter_flags & FIF_ALLMULTI));
500 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
501 	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
502 			   !(filter_flags & FIF_CONTROL));
503 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
504 }
505 
rt73usb_config_intf(struct rt2x00_dev * rt2x00dev,struct rt2x00_intf * intf,struct rt2x00intf_conf * conf,const unsigned int flags)506 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
507 				struct rt2x00_intf *intf,
508 				struct rt2x00intf_conf *conf,
509 				const unsigned int flags)
510 {
511 	unsigned int beacon_base;
512 	u32 reg;
513 
514 	if (flags & CONFIG_UPDATE_TYPE) {
515 		/*
516 		 * Clear current synchronisation setup.
517 		 * For the Beacon base registers we only need to clear
518 		 * the first byte since that byte contains the VALID and OWNER
519 		 * bits which (when set to 0) will invalidate the entire beacon.
520 		 */
521 		beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx);
522 		rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
523 
524 		/*
525 		 * Enable synchronisation.
526 		 */
527 		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
528 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
529 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
530 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
531 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
532 	}
533 
534 	if (flags & CONFIG_UPDATE_MAC) {
535 		reg = le32_to_cpu(conf->mac[1]);
536 		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
537 		conf->mac[1] = cpu_to_le32(reg);
538 
539 		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
540 					    conf->mac, sizeof(conf->mac));
541 	}
542 
543 	if (flags & CONFIG_UPDATE_BSSID) {
544 		reg = le32_to_cpu(conf->bssid[1]);
545 		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
546 		conf->bssid[1] = cpu_to_le32(reg);
547 
548 		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
549 					    conf->bssid, sizeof(conf->bssid));
550 	}
551 }
552 
rt73usb_config_erp(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_erp * erp)553 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
554 			       struct rt2x00lib_erp *erp)
555 {
556 	u32 reg;
557 
558 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
559 	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, erp->ack_timeout);
560 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
561 
562 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
563 	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
564 			   !!erp->short_preamble);
565 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
566 
567 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, erp->basic_rates);
568 
569 	rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
570 	rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
571 	rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
572 
573 	rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
574 	rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
575 	rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
576 	rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
577 	rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
578 }
579 
rt73usb_config_antenna_5x(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)580 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
581 				      struct antenna_setup *ant)
582 {
583 	u8 r3;
584 	u8 r4;
585 	u8 r77;
586 	u8 temp;
587 
588 	rt73usb_bbp_read(rt2x00dev, 3, &r3);
589 	rt73usb_bbp_read(rt2x00dev, 4, &r4);
590 	rt73usb_bbp_read(rt2x00dev, 77, &r77);
591 
592 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
593 
594 	/*
595 	 * Configure the RX antenna.
596 	 */
597 	switch (ant->rx) {
598 	case ANTENNA_HW_DIVERSITY:
599 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
600 		temp = !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags)
601 		       && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
602 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
603 		break;
604 	case ANTENNA_A:
605 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
606 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
607 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
608 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
609 		else
610 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
611 		break;
612 	case ANTENNA_B:
613 	default:
614 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
615 		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
616 		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
617 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
618 		else
619 			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
620 		break;
621 	}
622 
623 	rt73usb_bbp_write(rt2x00dev, 77, r77);
624 	rt73usb_bbp_write(rt2x00dev, 3, r3);
625 	rt73usb_bbp_write(rt2x00dev, 4, r4);
626 }
627 
rt73usb_config_antenna_2x(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)628 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
629 				      struct antenna_setup *ant)
630 {
631 	u8 r3;
632 	u8 r4;
633 	u8 r77;
634 
635 	rt73usb_bbp_read(rt2x00dev, 3, &r3);
636 	rt73usb_bbp_read(rt2x00dev, 4, &r4);
637 	rt73usb_bbp_read(rt2x00dev, 77, &r77);
638 
639 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
640 	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
641 			  !test_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags));
642 
643 	/*
644 	 * Configure the RX antenna.
645 	 */
646 	switch (ant->rx) {
647 	case ANTENNA_HW_DIVERSITY:
648 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
649 		break;
650 	case ANTENNA_A:
651 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
652 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653 		break;
654 	case ANTENNA_B:
655 	default:
656 		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
657 		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
658 		break;
659 	}
660 
661 	rt73usb_bbp_write(rt2x00dev, 77, r77);
662 	rt73usb_bbp_write(rt2x00dev, 3, r3);
663 	rt73usb_bbp_write(rt2x00dev, 4, r4);
664 }
665 
666 struct antenna_sel {
667 	u8 word;
668 	/*
669 	 * value[0] -> non-LNA
670 	 * value[1] -> LNA
671 	 */
672 	u8 value[2];
673 };
674 
675 static const struct antenna_sel antenna_sel_a[] = {
676 	{ 96,  { 0x58, 0x78 } },
677 	{ 104, { 0x38, 0x48 } },
678 	{ 75,  { 0xfe, 0x80 } },
679 	{ 86,  { 0xfe, 0x80 } },
680 	{ 88,  { 0xfe, 0x80 } },
681 	{ 35,  { 0x60, 0x60 } },
682 	{ 97,  { 0x58, 0x58 } },
683 	{ 98,  { 0x58, 0x58 } },
684 };
685 
686 static const struct antenna_sel antenna_sel_bg[] = {
687 	{ 96,  { 0x48, 0x68 } },
688 	{ 104, { 0x2c, 0x3c } },
689 	{ 75,  { 0xfe, 0x80 } },
690 	{ 86,  { 0xfe, 0x80 } },
691 	{ 88,  { 0xfe, 0x80 } },
692 	{ 35,  { 0x50, 0x50 } },
693 	{ 97,  { 0x48, 0x48 } },
694 	{ 98,  { 0x48, 0x48 } },
695 };
696 
rt73usb_config_ant(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)697 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
698 			       struct antenna_setup *ant)
699 {
700 	const struct antenna_sel *sel;
701 	unsigned int lna;
702 	unsigned int i;
703 	u32 reg;
704 
705 	/*
706 	 * We should never come here because rt2x00lib is supposed
707 	 * to catch this and send us the correct antenna explicitely.
708 	 */
709 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
710 	       ant->tx == ANTENNA_SW_DIVERSITY);
711 
712 	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
713 		sel = antenna_sel_a;
714 		lna = test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
715 	} else {
716 		sel = antenna_sel_bg;
717 		lna = test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
718 	}
719 
720 	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
721 		rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
722 
723 	rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
724 
725 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
726 			   (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
727 	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
728 			   (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
729 
730 	rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
731 
732 	if (rt2x00_rf(&rt2x00dev->chip, RF5226) ||
733 	    rt2x00_rf(&rt2x00dev->chip, RF5225))
734 		rt73usb_config_antenna_5x(rt2x00dev, ant);
735 	else if (rt2x00_rf(&rt2x00dev->chip, RF2528) ||
736 		 rt2x00_rf(&rt2x00dev->chip, RF2527))
737 		rt73usb_config_antenna_2x(rt2x00dev, ant);
738 }
739 
rt73usb_config_lna_gain(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)740 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
741 				    struct rt2x00lib_conf *libconf)
742 {
743 	u16 eeprom;
744 	short lna_gain = 0;
745 
746 	if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) {
747 		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags))
748 			lna_gain += 14;
749 
750 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
751 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
752 	} else {
753 		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
754 		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
755 	}
756 
757 	rt2x00dev->lna_gain = lna_gain;
758 }
759 
rt73usb_config_channel(struct rt2x00_dev * rt2x00dev,struct rf_channel * rf,const int txpower)760 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
761 				   struct rf_channel *rf, const int txpower)
762 {
763 	u8 r3;
764 	u8 r94;
765 	u8 smart;
766 
767 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
768 	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
769 
770 	smart = !(rt2x00_rf(&rt2x00dev->chip, RF5225) ||
771 		  rt2x00_rf(&rt2x00dev->chip, RF2527));
772 
773 	rt73usb_bbp_read(rt2x00dev, 3, &r3);
774 	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
775 	rt73usb_bbp_write(rt2x00dev, 3, r3);
776 
777 	r94 = 6;
778 	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
779 		r94 += txpower - MAX_TXPOWER;
780 	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
781 		r94 += txpower;
782 	rt73usb_bbp_write(rt2x00dev, 94, r94);
783 
784 	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
785 	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
786 	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
787 	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
788 
789 	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
790 	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
791 	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
792 	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
793 
794 	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
795 	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
796 	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
797 	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
798 
799 	udelay(10);
800 }
801 
rt73usb_config_txpower(struct rt2x00_dev * rt2x00dev,const int txpower)802 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
803 				   const int txpower)
804 {
805 	struct rf_channel rf;
806 
807 	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
808 	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
809 	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
810 	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
811 
812 	rt73usb_config_channel(rt2x00dev, &rf, txpower);
813 }
814 
rt73usb_config_retry_limit(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)815 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
816 				       struct rt2x00lib_conf *libconf)
817 {
818 	u32 reg;
819 
820 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
821 	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
822 			   libconf->conf->long_frame_max_tx_count);
823 	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
824 			   libconf->conf->short_frame_max_tx_count);
825 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
826 }
827 
rt73usb_config_duration(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)828 static void rt73usb_config_duration(struct rt2x00_dev *rt2x00dev,
829 				    struct rt2x00lib_conf *libconf)
830 {
831 	u32 reg;
832 
833 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
834 	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
835 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
836 
837 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
838 	rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
839 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
840 
841 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
842 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
843 			   libconf->conf->beacon_int * 16);
844 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
845 }
846 
rt73usb_config(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf,const unsigned int flags)847 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
848 			   struct rt2x00lib_conf *libconf,
849 			   const unsigned int flags)
850 {
851 	/* Always recalculate LNA gain before changing configuration */
852 	rt73usb_config_lna_gain(rt2x00dev, libconf);
853 
854 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
855 		rt73usb_config_channel(rt2x00dev, &libconf->rf,
856 				       libconf->conf->power_level);
857 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
858 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
859 		rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
860 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
861 		rt73usb_config_retry_limit(rt2x00dev, libconf);
862 	if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
863 		rt73usb_config_duration(rt2x00dev, libconf);
864 }
865 
866 /*
867  * Link tuning
868  */
rt73usb_link_stats(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)869 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
870 			       struct link_qual *qual)
871 {
872 	u32 reg;
873 
874 	/*
875 	 * Update FCS error count from register.
876 	 */
877 	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
878 	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
879 
880 	/*
881 	 * Update False CCA count from register.
882 	 */
883 	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
884 	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
885 }
886 
rt73usb_reset_tuner(struct rt2x00_dev * rt2x00dev)887 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
888 {
889 	rt73usb_bbp_write(rt2x00dev, 17, 0x20);
890 	rt2x00dev->link.vgc_level = 0x20;
891 }
892 
rt73usb_link_tuner(struct rt2x00_dev * rt2x00dev)893 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev)
894 {
895 	int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
896 	u8 r17;
897 	u8 up_bound;
898 	u8 low_bound;
899 
900 	rt73usb_bbp_read(rt2x00dev, 17, &r17);
901 
902 	/*
903 	 * Determine r17 bounds.
904 	 */
905 	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
906 		low_bound = 0x28;
907 		up_bound = 0x48;
908 
909 		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
910 			low_bound += 0x10;
911 			up_bound += 0x10;
912 		}
913 	} else {
914 		if (rssi > -82) {
915 			low_bound = 0x1c;
916 			up_bound = 0x40;
917 		} else if (rssi > -84) {
918 			low_bound = 0x1c;
919 			up_bound = 0x20;
920 		} else {
921 			low_bound = 0x1c;
922 			up_bound = 0x1c;
923 		}
924 
925 		if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) {
926 			low_bound += 0x14;
927 			up_bound += 0x10;
928 		}
929 	}
930 
931 	/*
932 	 * If we are not associated, we should go straight to the
933 	 * dynamic CCA tuning.
934 	 */
935 	if (!rt2x00dev->intf_associated)
936 		goto dynamic_cca_tune;
937 
938 	/*
939 	 * Special big-R17 for very short distance
940 	 */
941 	if (rssi > -35) {
942 		if (r17 != 0x60)
943 			rt73usb_bbp_write(rt2x00dev, 17, 0x60);
944 		return;
945 	}
946 
947 	/*
948 	 * Special big-R17 for short distance
949 	 */
950 	if (rssi >= -58) {
951 		if (r17 != up_bound)
952 			rt73usb_bbp_write(rt2x00dev, 17, up_bound);
953 		return;
954 	}
955 
956 	/*
957 	 * Special big-R17 for middle-short distance
958 	 */
959 	if (rssi >= -66) {
960 		low_bound += 0x10;
961 		if (r17 != low_bound)
962 			rt73usb_bbp_write(rt2x00dev, 17, low_bound);
963 		return;
964 	}
965 
966 	/*
967 	 * Special mid-R17 for middle distance
968 	 */
969 	if (rssi >= -74) {
970 		if (r17 != (low_bound + 0x10))
971 			rt73usb_bbp_write(rt2x00dev, 17, low_bound + 0x08);
972 		return;
973 	}
974 
975 	/*
976 	 * Special case: Change up_bound based on the rssi.
977 	 * Lower up_bound when rssi is weaker then -74 dBm.
978 	 */
979 	up_bound -= 2 * (-74 - rssi);
980 	if (low_bound > up_bound)
981 		up_bound = low_bound;
982 
983 	if (r17 > up_bound) {
984 		rt73usb_bbp_write(rt2x00dev, 17, up_bound);
985 		return;
986 	}
987 
988 dynamic_cca_tune:
989 
990 	/*
991 	 * r17 does not yet exceed upper limit, continue and base
992 	 * the r17 tuning on the false CCA count.
993 	 */
994 	if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
995 		r17 += 4;
996 		if (r17 > up_bound)
997 			r17 = up_bound;
998 		rt73usb_bbp_write(rt2x00dev, 17, r17);
999 	} else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
1000 		r17 -= 4;
1001 		if (r17 < low_bound)
1002 			r17 = low_bound;
1003 		rt73usb_bbp_write(rt2x00dev, 17, r17);
1004 	}
1005 }
1006 
1007 /*
1008  * Firmware functions
1009  */
rt73usb_get_firmware_name(struct rt2x00_dev * rt2x00dev)1010 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1011 {
1012 	return FIRMWARE_RT2571;
1013 }
1014 
rt73usb_get_firmware_crc(const void * data,const size_t len)1015 static u16 rt73usb_get_firmware_crc(const void *data, const size_t len)
1016 {
1017 	u16 crc;
1018 
1019 	/*
1020 	 * Use the crc itu-t algorithm.
1021 	 * The last 2 bytes in the firmware array are the crc checksum itself,
1022 	 * this means that we should never pass those 2 bytes to the crc
1023 	 * algorithm.
1024 	 */
1025 	crc = crc_itu_t(0, data, len - 2);
1026 	crc = crc_itu_t_byte(crc, 0);
1027 	crc = crc_itu_t_byte(crc, 0);
1028 
1029 	return crc;
1030 }
1031 
rt73usb_load_firmware(struct rt2x00_dev * rt2x00dev,const void * data,const size_t len)1032 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, const void *data,
1033 				 const size_t len)
1034 {
1035 	unsigned int i;
1036 	int status;
1037 	u32 reg;
1038 
1039 	/*
1040 	 * Wait for stable hardware.
1041 	 */
1042 	for (i = 0; i < 100; i++) {
1043 		rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1044 		if (reg)
1045 			break;
1046 		msleep(1);
1047 	}
1048 
1049 	if (!reg) {
1050 		ERROR(rt2x00dev, "Unstable hardware.\n");
1051 		return -EBUSY;
1052 	}
1053 
1054 	/*
1055 	 * Write firmware to device.
1056 	 */
1057 	rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1058 					    USB_VENDOR_REQUEST_OUT,
1059 					    FIRMWARE_IMAGE_BASE,
1060 					    data, len,
1061 					    REGISTER_TIMEOUT32(len));
1062 
1063 	/*
1064 	 * Send firmware request to device to load firmware,
1065 	 * we need to specify a long timeout time.
1066 	 */
1067 	status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1068 					     0, USB_MODE_FIRMWARE,
1069 					     REGISTER_TIMEOUT_FIRMWARE);
1070 	if (status < 0) {
1071 		ERROR(rt2x00dev, "Failed to write Firmware to device.\n");
1072 		return status;
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Initialization functions.
1080  */
rt73usb_init_registers(struct rt2x00_dev * rt2x00dev)1081 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1082 {
1083 	u32 reg;
1084 
1085 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1086 	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1087 	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1088 	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1089 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1090 
1091 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1092 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1093 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1094 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1095 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1096 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1097 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1098 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1099 	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1100 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1101 
1102 	/*
1103 	 * CCK TXD BBP registers
1104 	 */
1105 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1106 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1107 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1108 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1109 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1110 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1111 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1112 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1113 	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1114 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1115 
1116 	/*
1117 	 * OFDM TXD BBP registers
1118 	 */
1119 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1120 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1121 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1122 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1123 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1124 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1125 	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1126 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1127 
1128 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1129 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1130 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1131 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1132 	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1133 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1134 
1135 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1136 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1137 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1138 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1139 	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1140 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1141 
1142 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1143 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1144 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1145 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1146 	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1147 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1148 	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1149 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1150 
1151 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1152 
1153 	rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1154 	rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1155 	rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1156 
1157 	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1158 
1159 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1160 		return -EBUSY;
1161 
1162 	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1163 
1164 	/*
1165 	 * Invalidate all Shared Keys (SEC_CSR0),
1166 	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1167 	 */
1168 	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1169 	rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1170 	rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1171 
1172 	reg = 0x000023b0;
1173 	if (rt2x00_rf(&rt2x00dev->chip, RF5225) ||
1174 	    rt2x00_rf(&rt2x00dev->chip, RF2527))
1175 		rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1176 	rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1177 
1178 	rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1179 	rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1180 	rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1181 
1182 	rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1183 	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1184 	rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1185 
1186 	/*
1187 	 * Clear all beacons
1188 	 * For the Beacon base registers we only need to clear
1189 	 * the first byte since that byte contains the VALID and OWNER
1190 	 * bits which (when set to 0) will invalidate the entire beacon.
1191 	 */
1192 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1193 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1194 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1195 	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1196 
1197 	/*
1198 	 * We must clear the error counters.
1199 	 * These registers are cleared on read,
1200 	 * so we may pass a useless variable to store the value.
1201 	 */
1202 	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1203 	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1204 	rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1205 
1206 	/*
1207 	 * Reset MAC and BBP registers.
1208 	 */
1209 	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1210 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1211 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1212 	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1213 
1214 	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1215 	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1216 	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1217 	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1218 
1219 	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1220 	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1221 	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1222 
1223 	return 0;
1224 }
1225 
rt73usb_wait_bbp_ready(struct rt2x00_dev * rt2x00dev)1226 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1227 {
1228 	unsigned int i;
1229 	u8 value;
1230 
1231 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1232 		rt73usb_bbp_read(rt2x00dev, 0, &value);
1233 		if ((value != 0xff) && (value != 0x00))
1234 			return 0;
1235 		udelay(REGISTER_BUSY_DELAY);
1236 	}
1237 
1238 	ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1239 	return -EACCES;
1240 }
1241 
rt73usb_init_bbp(struct rt2x00_dev * rt2x00dev)1242 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1243 {
1244 	unsigned int i;
1245 	u16 eeprom;
1246 	u8 reg_id;
1247 	u8 value;
1248 
1249 	if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1250 		return -EACCES;
1251 
1252 	rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1253 	rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1254 	rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1255 	rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1256 	rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1257 	rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1258 	rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1259 	rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1260 	rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1261 	rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1262 	rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1263 	rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1264 	rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1265 	rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1266 	rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1267 	rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1268 	rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1269 	rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1270 	rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1271 	rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1272 	rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1273 	rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1274 	rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1275 	rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1276 	rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1277 
1278 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1279 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1280 
1281 		if (eeprom != 0xffff && eeprom != 0x0000) {
1282 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1283 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1284 			rt73usb_bbp_write(rt2x00dev, reg_id, value);
1285 		}
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Device state switch handlers.
1293  */
rt73usb_toggle_rx(struct rt2x00_dev * rt2x00dev,enum dev_state state)1294 static void rt73usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1295 			      enum dev_state state)
1296 {
1297 	u32 reg;
1298 
1299 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1300 	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX,
1301 			   (state == STATE_RADIO_RX_OFF) ||
1302 			   (state == STATE_RADIO_RX_OFF_LINK));
1303 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1304 }
1305 
rt73usb_enable_radio(struct rt2x00_dev * rt2x00dev)1306 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1307 {
1308 	/*
1309 	 * Initialize all registers.
1310 	 */
1311 	if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1312 		     rt73usb_init_bbp(rt2x00dev)))
1313 		return -EIO;
1314 
1315 	return 0;
1316 }
1317 
rt73usb_disable_radio(struct rt2x00_dev * rt2x00dev)1318 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1319 {
1320 	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1321 
1322 	/*
1323 	 * Disable synchronisation.
1324 	 */
1325 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1326 
1327 	rt2x00usb_disable_radio(rt2x00dev);
1328 }
1329 
rt73usb_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1330 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1331 {
1332 	u32 reg;
1333 	unsigned int i;
1334 	char put_to_sleep;
1335 
1336 	put_to_sleep = (state != STATE_AWAKE);
1337 
1338 	rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1339 	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1340 	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1341 	rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1342 
1343 	/*
1344 	 * Device is not guaranteed to be in the requested state yet.
1345 	 * We must wait until the register indicates that the
1346 	 * device has entered the correct state.
1347 	 */
1348 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1349 		rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1350 		state = rt2x00_get_field32(reg, MAC_CSR12_BBP_CURRENT_STATE);
1351 		if (state == !put_to_sleep)
1352 			return 0;
1353 		msleep(10);
1354 	}
1355 
1356 	return -EBUSY;
1357 }
1358 
rt73usb_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1359 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1360 				    enum dev_state state)
1361 {
1362 	int retval = 0;
1363 
1364 	switch (state) {
1365 	case STATE_RADIO_ON:
1366 		retval = rt73usb_enable_radio(rt2x00dev);
1367 		break;
1368 	case STATE_RADIO_OFF:
1369 		rt73usb_disable_radio(rt2x00dev);
1370 		break;
1371 	case STATE_RADIO_RX_ON:
1372 	case STATE_RADIO_RX_ON_LINK:
1373 	case STATE_RADIO_RX_OFF:
1374 	case STATE_RADIO_RX_OFF_LINK:
1375 		rt73usb_toggle_rx(rt2x00dev, state);
1376 		break;
1377 	case STATE_RADIO_IRQ_ON:
1378 	case STATE_RADIO_IRQ_OFF:
1379 		/* No support, but no error either */
1380 		break;
1381 	case STATE_DEEP_SLEEP:
1382 	case STATE_SLEEP:
1383 	case STATE_STANDBY:
1384 	case STATE_AWAKE:
1385 		retval = rt73usb_set_state(rt2x00dev, state);
1386 		break;
1387 	default:
1388 		retval = -ENOTSUPP;
1389 		break;
1390 	}
1391 
1392 	if (unlikely(retval))
1393 		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1394 		      state, retval);
1395 
1396 	return retval;
1397 }
1398 
1399 /*
1400  * TX descriptor initialization
1401  */
rt73usb_write_tx_desc(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)1402 static void rt73usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1403 				  struct sk_buff *skb,
1404 				  struct txentry_desc *txdesc)
1405 {
1406 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1407 	__le32 *txd = skbdesc->desc;
1408 	u32 word;
1409 
1410 	/*
1411 	 * Start writing the descriptor words.
1412 	 */
1413 	rt2x00_desc_read(txd, 1, &word);
1414 	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, txdesc->queue);
1415 	rt2x00_set_field32(&word, TXD_W1_AIFSN, txdesc->aifs);
1416 	rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1417 	rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1418 	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1419 	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1420 			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1421 	rt2x00_desc_write(txd, 1, word);
1422 
1423 	rt2x00_desc_read(txd, 2, &word);
1424 	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1425 	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1426 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1427 	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1428 	rt2x00_desc_write(txd, 2, word);
1429 
1430 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1431 		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1432 		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1433 	}
1434 
1435 	rt2x00_desc_read(txd, 5, &word);
1436 	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1437 			   TXPOWER_TO_DEV(rt2x00dev->tx_power));
1438 	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1439 	rt2x00_desc_write(txd, 5, word);
1440 
1441 	rt2x00_desc_read(txd, 0, &word);
1442 	rt2x00_set_field32(&word, TXD_W0_BURST,
1443 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1444 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1445 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1446 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1447 	rt2x00_set_field32(&word, TXD_W0_ACK,
1448 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1449 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1450 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1451 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1452 			   test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
1453 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1454 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1455 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1456 	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1457 			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1458 	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1459 			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1460 	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1461 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1462 	rt2x00_set_field32(&word, TXD_W0_BURST2,
1463 			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1464 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1465 	rt2x00_desc_write(txd, 0, word);
1466 }
1467 
1468 /*
1469  * TX data initialization
1470  */
rt73usb_write_beacon(struct queue_entry * entry)1471 static void rt73usb_write_beacon(struct queue_entry *entry)
1472 {
1473 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1474 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1475 	unsigned int beacon_base;
1476 	u32 reg;
1477 
1478 	/*
1479 	 * Add the descriptor in front of the skb.
1480 	 */
1481 	skb_push(entry->skb, entry->queue->desc_size);
1482 	memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1483 	skbdesc->desc = entry->skb->data;
1484 
1485 	/*
1486 	 * Disable beaconing while we are reloading the beacon data,
1487 	 * otherwise we might be sending out invalid data.
1488 	 */
1489 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1490 	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1491 	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1492 	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1493 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1494 
1495 	/*
1496 	 * Write entire beacon with descriptor to register.
1497 	 */
1498 	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1499 	rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
1500 					    USB_VENDOR_REQUEST_OUT, beacon_base,
1501 					    entry->skb->data, entry->skb->len,
1502 					    REGISTER_TIMEOUT32(entry->skb->len));
1503 
1504 	/*
1505 	 * Clean up the beacon skb.
1506 	 */
1507 	dev_kfree_skb(entry->skb);
1508 	entry->skb = NULL;
1509 }
1510 
rt73usb_get_tx_data_len(struct queue_entry * entry)1511 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1512 {
1513 	int length;
1514 
1515 	/*
1516 	 * The length _must_ be a multiple of 4,
1517 	 * but it must _not_ be a multiple of the USB packet size.
1518 	 */
1519 	length = roundup(entry->skb->len, 4);
1520 	length += (4 * !(length % entry->queue->usb_maxpacket));
1521 
1522 	return length;
1523 }
1524 
rt73usb_kick_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1525 static void rt73usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1526 				  const enum data_queue_qid queue)
1527 {
1528 	u32 reg;
1529 
1530 	if (queue != QID_BEACON) {
1531 		rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1532 		return;
1533 	}
1534 
1535 	/*
1536 	 * For Wi-Fi faily generated beacons between participating stations.
1537 	 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1538 	 */
1539 	rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1540 
1541 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1542 	if (!rt2x00_get_field32(reg, TXRX_CSR9_BEACON_GEN)) {
1543 		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1544 		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1545 		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1546 		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1547 	}
1548 }
1549 
1550 /*
1551  * RX control handlers
1552  */
rt73usb_agc_to_rssi(struct rt2x00_dev * rt2x00dev,int rxd_w1)1553 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1554 {
1555 	u8 offset = rt2x00dev->lna_gain;
1556 	u8 lna;
1557 
1558 	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1559 	switch (lna) {
1560 	case 3:
1561 		offset += 90;
1562 		break;
1563 	case 2:
1564 		offset += 74;
1565 		break;
1566 	case 1:
1567 		offset += 64;
1568 		break;
1569 	default:
1570 		return 0;
1571 	}
1572 
1573 	if (rt2x00dev->rx_status.band == IEEE80211_BAND_5GHZ) {
1574 		if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) {
1575 			if (lna == 3 || lna == 2)
1576 				offset += 10;
1577 		} else {
1578 			if (lna == 3)
1579 				offset += 6;
1580 			else if (lna == 2)
1581 				offset += 8;
1582 		}
1583 	}
1584 
1585 	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1586 }
1587 
rt73usb_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)1588 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1589 				struct rxdone_entry_desc *rxdesc)
1590 {
1591 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1592 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1593 	__le32 *rxd = (__le32 *)entry->skb->data;
1594 	u32 word0;
1595 	u32 word1;
1596 
1597 	/*
1598 	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1599 	 * frame data in rt2x00usb.
1600 	 */
1601 	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1602 	rxd = (__le32 *)skbdesc->desc;
1603 
1604 	/*
1605 	 * It is now safe to read the descriptor on all architectures.
1606 	 */
1607 	rt2x00_desc_read(rxd, 0, &word0);
1608 	rt2x00_desc_read(rxd, 1, &word1);
1609 
1610 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1611 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1612 
1613 	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1614 		rxdesc->cipher =
1615 		    rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1616 		rxdesc->cipher_status =
1617 		    rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1618 	}
1619 
1620 	if (rxdesc->cipher != CIPHER_NONE) {
1621 		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1622 		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1623 		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1624 
1625 		_rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1626 		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1627 
1628 		/*
1629 		 * Hardware has stripped IV/EIV data from 802.11 frame during
1630 		 * decryption. It has provided the data seperately but rt2x00lib
1631 		 * should decide if it should be reinserted.
1632 		 */
1633 		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1634 
1635 		/*
1636 		 * FIXME: Legacy driver indicates that the frame does
1637 		 * contain the Michael Mic. Unfortunately, in rt2x00
1638 		 * the MIC seems to be missing completely...
1639 		 */
1640 		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1641 
1642 		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1643 			rxdesc->flags |= RX_FLAG_DECRYPTED;
1644 		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1645 			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1646 	}
1647 
1648 	/*
1649 	 * Obtain the status about this packet.
1650 	 * When frame was received with an OFDM bitrate,
1651 	 * the signal is the PLCP value. If it was received with
1652 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1653 	 */
1654 	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1655 	rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1656 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1657 
1658 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1659 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1660 	else
1661 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1662 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1663 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1664 
1665 	/*
1666 	 * Set skb pointers, and update frame information.
1667 	 */
1668 	skb_pull(entry->skb, entry->queue->desc_size);
1669 	skb_trim(entry->skb, rxdesc->size);
1670 }
1671 
1672 /*
1673  * Device probe functions.
1674  */
rt73usb_validate_eeprom(struct rt2x00_dev * rt2x00dev)1675 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1676 {
1677 	u16 word;
1678 	u8 *mac;
1679 	s8 value;
1680 
1681 	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1682 
1683 	/*
1684 	 * Start validation of the data that has been read.
1685 	 */
1686 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1687 	if (!is_valid_ether_addr(mac)) {
1688 		random_ether_addr(mac);
1689 		EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1690 	}
1691 
1692 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1693 	if (word == 0xffff) {
1694 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1695 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1696 				   ANTENNA_B);
1697 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1698 				   ANTENNA_B);
1699 		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1700 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1701 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1702 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1703 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1704 		EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1705 	}
1706 
1707 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1708 	if (word == 0xffff) {
1709 		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1710 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1711 		EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1712 	}
1713 
1714 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1715 	if (word == 0xffff) {
1716 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1717 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1718 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1719 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1720 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1721 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1722 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1723 		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1724 		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1725 				   LED_MODE_DEFAULT);
1726 		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1727 		EEPROM(rt2x00dev, "Led: 0x%04x\n", word);
1728 	}
1729 
1730 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1731 	if (word == 0xffff) {
1732 		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1733 		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1734 		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1735 		EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
1736 	}
1737 
1738 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1739 	if (word == 0xffff) {
1740 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1741 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1742 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1743 		EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1744 	} else {
1745 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1746 		if (value < -10 || value > 10)
1747 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1748 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1749 		if (value < -10 || value > 10)
1750 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1751 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1752 	}
1753 
1754 	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1755 	if (word == 0xffff) {
1756 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1757 		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1758 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1759 		EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1760 	} else {
1761 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1762 		if (value < -10 || value > 10)
1763 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1764 		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1765 		if (value < -10 || value > 10)
1766 			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1767 		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1768 	}
1769 
1770 	return 0;
1771 }
1772 
rt73usb_init_eeprom(struct rt2x00_dev * rt2x00dev)1773 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1774 {
1775 	u32 reg;
1776 	u16 value;
1777 	u16 eeprom;
1778 
1779 	/*
1780 	 * Read EEPROM word for configuration.
1781 	 */
1782 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1783 
1784 	/*
1785 	 * Identify RF chipset.
1786 	 */
1787 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1788 	rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1789 	rt2x00_set_chip(rt2x00dev, RT2571, value, reg);
1790 
1791 	if (!rt2x00_check_rev(&rt2x00dev->chip, 0x25730)) {
1792 		ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1793 		return -ENODEV;
1794 	}
1795 
1796 	if (!rt2x00_rf(&rt2x00dev->chip, RF5226) &&
1797 	    !rt2x00_rf(&rt2x00dev->chip, RF2528) &&
1798 	    !rt2x00_rf(&rt2x00dev->chip, RF5225) &&
1799 	    !rt2x00_rf(&rt2x00dev->chip, RF2527)) {
1800 		ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1801 		return -ENODEV;
1802 	}
1803 
1804 	/*
1805 	 * Identify default antenna configuration.
1806 	 */
1807 	rt2x00dev->default_ant.tx =
1808 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1809 	rt2x00dev->default_ant.rx =
1810 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1811 
1812 	/*
1813 	 * Read the Frame type.
1814 	 */
1815 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1816 		__set_bit(CONFIG_FRAME_TYPE, &rt2x00dev->flags);
1817 
1818 	/*
1819 	 * Read frequency offset.
1820 	 */
1821 	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1822 	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1823 
1824 	/*
1825 	 * Read external LNA informations.
1826 	 */
1827 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1828 
1829 	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1830 		__set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags);
1831 		__set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags);
1832 	}
1833 
1834 	/*
1835 	 * Store led settings, for correct led behaviour.
1836 	 */
1837 #ifdef CONFIG_RT2X00_LIB_LEDS
1838 	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1839 
1840 	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1841 	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1842 	if (value == LED_MODE_SIGNAL_STRENGTH)
1843 		rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1844 				 LED_TYPE_QUALITY);
1845 
1846 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1847 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1848 			   rt2x00_get_field16(eeprom,
1849 					      EEPROM_LED_POLARITY_GPIO_0));
1850 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1851 			   rt2x00_get_field16(eeprom,
1852 					      EEPROM_LED_POLARITY_GPIO_1));
1853 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1854 			   rt2x00_get_field16(eeprom,
1855 					      EEPROM_LED_POLARITY_GPIO_2));
1856 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1857 			   rt2x00_get_field16(eeprom,
1858 					      EEPROM_LED_POLARITY_GPIO_3));
1859 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1860 			   rt2x00_get_field16(eeprom,
1861 					      EEPROM_LED_POLARITY_GPIO_4));
1862 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1863 			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1864 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1865 			   rt2x00_get_field16(eeprom,
1866 					      EEPROM_LED_POLARITY_RDY_G));
1867 	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1868 			   rt2x00_get_field16(eeprom,
1869 					      EEPROM_LED_POLARITY_RDY_A));
1870 #endif /* CONFIG_RT2X00_LIB_LEDS */
1871 
1872 	return 0;
1873 }
1874 
1875 /*
1876  * RF value list for RF2528
1877  * Supports: 2.4 GHz
1878  */
1879 static const struct rf_channel rf_vals_bg_2528[] = {
1880 	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1881 	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1882 	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1883 	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1884 	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1885 	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1886 	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1887 	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1888 	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1889 	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1890 	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1891 	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1892 	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1893 	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1894 };
1895 
1896 /*
1897  * RF value list for RF5226
1898  * Supports: 2.4 GHz & 5.2 GHz
1899  */
1900 static const struct rf_channel rf_vals_5226[] = {
1901 	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1902 	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1903 	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1904 	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1905 	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1906 	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1907 	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1908 	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1909 	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1910 	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1911 	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1912 	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1913 	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1914 	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1915 
1916 	/* 802.11 UNI / HyperLan 2 */
1917 	{ 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
1918 	{ 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
1919 	{ 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
1920 	{ 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
1921 	{ 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
1922 	{ 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
1923 	{ 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
1924 	{ 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
1925 
1926 	/* 802.11 HyperLan 2 */
1927 	{ 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
1928 	{ 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
1929 	{ 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
1930 	{ 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
1931 	{ 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
1932 	{ 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
1933 	{ 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
1934 	{ 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
1935 	{ 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
1936 	{ 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
1937 
1938 	/* 802.11 UNII */
1939 	{ 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
1940 	{ 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
1941 	{ 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
1942 	{ 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
1943 	{ 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
1944 	{ 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
1945 
1946 	/* MMAC(Japan)J52 ch 34,38,42,46 */
1947 	{ 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
1948 	{ 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
1949 	{ 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
1950 	{ 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
1951 };
1952 
1953 /*
1954  * RF value list for RF5225 & RF2527
1955  * Supports: 2.4 GHz & 5.2 GHz
1956  */
1957 static const struct rf_channel rf_vals_5225_2527[] = {
1958 	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
1959 	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
1960 	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
1961 	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
1962 	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
1963 	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
1964 	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
1965 	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
1966 	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
1967 	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
1968 	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
1969 	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
1970 	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
1971 	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
1972 
1973 	/* 802.11 UNI / HyperLan 2 */
1974 	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
1975 	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
1976 	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
1977 	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
1978 	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
1979 	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
1980 	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
1981 	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
1982 
1983 	/* 802.11 HyperLan 2 */
1984 	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
1985 	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
1986 	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
1987 	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
1988 	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
1989 	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
1990 	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
1991 	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
1992 	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
1993 	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
1994 
1995 	/* 802.11 UNII */
1996 	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
1997 	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
1998 	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
1999 	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2000 	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2001 	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2002 
2003 	/* MMAC(Japan)J52 ch 34,38,42,46 */
2004 	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2005 	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2006 	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2007 	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2008 };
2009 
2010 
rt73usb_probe_hw_mode(struct rt2x00_dev * rt2x00dev)2011 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2012 {
2013 	struct hw_mode_spec *spec = &rt2x00dev->spec;
2014 	struct channel_info *info;
2015 	char *tx_power;
2016 	unsigned int i;
2017 
2018 	/*
2019 	 * Initialize all hw fields.
2020 	 */
2021 	rt2x00dev->hw->flags =
2022 	    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2023 	    IEEE80211_HW_SIGNAL_DBM;
2024 	rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
2025 
2026 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2027 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2028 				rt2x00_eeprom_addr(rt2x00dev,
2029 						   EEPROM_MAC_ADDR_0));
2030 
2031 	/*
2032 	 * Initialize hw_mode information.
2033 	 */
2034 	spec->supported_bands = SUPPORT_BAND_2GHZ;
2035 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2036 
2037 	if (rt2x00_rf(&rt2x00dev->chip, RF2528)) {
2038 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2039 		spec->channels = rf_vals_bg_2528;
2040 	} else if (rt2x00_rf(&rt2x00dev->chip, RF5226)) {
2041 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2042 		spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2043 		spec->channels = rf_vals_5226;
2044 	} else if (rt2x00_rf(&rt2x00dev->chip, RF2527)) {
2045 		spec->num_channels = 14;
2046 		spec->channels = rf_vals_5225_2527;
2047 	} else if (rt2x00_rf(&rt2x00dev->chip, RF5225)) {
2048 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2049 		spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2050 		spec->channels = rf_vals_5225_2527;
2051 	}
2052 
2053 	/*
2054 	 * Create channel information array
2055 	 */
2056 	info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
2057 	if (!info)
2058 		return -ENOMEM;
2059 
2060 	spec->channels_info = info;
2061 
2062 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2063 	for (i = 0; i < 14; i++)
2064 		info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2065 
2066 	if (spec->num_channels > 14) {
2067 		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2068 		for (i = 14; i < spec->num_channels; i++)
2069 			info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2070 	}
2071 
2072 	return 0;
2073 }
2074 
rt73usb_probe_hw(struct rt2x00_dev * rt2x00dev)2075 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2076 {
2077 	int retval;
2078 
2079 	/*
2080 	 * Allocate eeprom data.
2081 	 */
2082 	retval = rt73usb_validate_eeprom(rt2x00dev);
2083 	if (retval)
2084 		return retval;
2085 
2086 	retval = rt73usb_init_eeprom(rt2x00dev);
2087 	if (retval)
2088 		return retval;
2089 
2090 	/*
2091 	 * Initialize hw specifications.
2092 	 */
2093 	retval = rt73usb_probe_hw_mode(rt2x00dev);
2094 	if (retval)
2095 		return retval;
2096 
2097 	/*
2098 	 * This device requires firmware.
2099 	 */
2100 	__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
2101 	__set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
2102 	if (!modparam_nohwcrypt)
2103 		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
2104 
2105 	/*
2106 	 * Set the rssi offset.
2107 	 */
2108 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2109 
2110 	return 0;
2111 }
2112 
2113 /*
2114  * IEEE80211 stack callback functions.
2115  */
rt73usb_conf_tx(struct ieee80211_hw * hw,u16 queue_idx,const struct ieee80211_tx_queue_params * params)2116 static int rt73usb_conf_tx(struct ieee80211_hw *hw, u16 queue_idx,
2117 			   const struct ieee80211_tx_queue_params *params)
2118 {
2119 	struct rt2x00_dev *rt2x00dev = hw->priv;
2120 	struct data_queue *queue;
2121 	struct rt2x00_field32 field;
2122 	int retval;
2123 	u32 reg;
2124 
2125 	/*
2126 	 * First pass the configuration through rt2x00lib, that will
2127 	 * update the queue settings and validate the input. After that
2128 	 * we are free to update the registers based on the value
2129 	 * in the queue parameter.
2130 	 */
2131 	retval = rt2x00mac_conf_tx(hw, queue_idx, params);
2132 	if (retval)
2133 		return retval;
2134 
2135 	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
2136 
2137 	/* Update WMM TXOP register */
2138 	if (queue_idx < 2) {
2139 		field.bit_offset = queue_idx * 16;
2140 		field.bit_mask = 0xffff << field.bit_offset;
2141 
2142 		rt2x00usb_register_read(rt2x00dev, AC_TXOP_CSR0, &reg);
2143 		rt2x00_set_field32(&reg, field, queue->txop);
2144 		rt2x00usb_register_write(rt2x00dev, AC_TXOP_CSR0, reg);
2145 	} else if (queue_idx < 4) {
2146 		field.bit_offset = (queue_idx - 2) * 16;
2147 		field.bit_mask = 0xffff << field.bit_offset;
2148 
2149 		rt2x00usb_register_read(rt2x00dev, AC_TXOP_CSR1, &reg);
2150 		rt2x00_set_field32(&reg, field, queue->txop);
2151 		rt2x00usb_register_write(rt2x00dev, AC_TXOP_CSR1, reg);
2152 	}
2153 
2154 	/* Update WMM registers */
2155 	field.bit_offset = queue_idx * 4;
2156 	field.bit_mask = 0xf << field.bit_offset;
2157 
2158 	rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2159 	rt2x00_set_field32(&reg, field, queue->aifs);
2160 	rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2161 
2162 	rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2163 	rt2x00_set_field32(&reg, field, queue->cw_min);
2164 	rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2165 
2166 	rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2167 	rt2x00_set_field32(&reg, field, queue->cw_max);
2168 	rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2169 
2170 	return 0;
2171 }
2172 
2173 #if 0
2174 /*
2175  * Mac80211 demands get_tsf must be atomic.
2176  * This is not possible for rt73usb since all register access
2177  * functions require sleeping. Untill mac80211 no longer needs
2178  * get_tsf to be atomic, this function should be disabled.
2179  */
2180 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw)
2181 {
2182 	struct rt2x00_dev *rt2x00dev = hw->priv;
2183 	u64 tsf;
2184 	u32 reg;
2185 
2186 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2187 	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2188 	rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2189 	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2190 
2191 	return tsf;
2192 }
2193 #else
2194 #define rt73usb_get_tsf	NULL
2195 #endif
2196 
2197 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2198 	.tx			= rt2x00mac_tx,
2199 	.start			= rt2x00mac_start,
2200 	.stop			= rt2x00mac_stop,
2201 	.add_interface		= rt2x00mac_add_interface,
2202 	.remove_interface	= rt2x00mac_remove_interface,
2203 	.config			= rt2x00mac_config,
2204 	.config_interface	= rt2x00mac_config_interface,
2205 	.configure_filter	= rt2x00mac_configure_filter,
2206 	.set_key		= rt2x00mac_set_key,
2207 	.get_stats		= rt2x00mac_get_stats,
2208 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2209 	.conf_tx		= rt73usb_conf_tx,
2210 	.get_tx_stats		= rt2x00mac_get_tx_stats,
2211 	.get_tsf		= rt73usb_get_tsf,
2212 };
2213 
2214 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2215 	.probe_hw		= rt73usb_probe_hw,
2216 	.get_firmware_name	= rt73usb_get_firmware_name,
2217 	.get_firmware_crc	= rt73usb_get_firmware_crc,
2218 	.load_firmware		= rt73usb_load_firmware,
2219 	.initialize		= rt2x00usb_initialize,
2220 	.uninitialize		= rt2x00usb_uninitialize,
2221 	.clear_entry		= rt2x00usb_clear_entry,
2222 	.set_device_state	= rt73usb_set_device_state,
2223 	.link_stats		= rt73usb_link_stats,
2224 	.reset_tuner		= rt73usb_reset_tuner,
2225 	.link_tuner		= rt73usb_link_tuner,
2226 	.write_tx_desc		= rt73usb_write_tx_desc,
2227 	.write_tx_data		= rt2x00usb_write_tx_data,
2228 	.write_beacon		= rt73usb_write_beacon,
2229 	.get_tx_data_len	= rt73usb_get_tx_data_len,
2230 	.kick_tx_queue		= rt73usb_kick_tx_queue,
2231 	.fill_rxdone		= rt73usb_fill_rxdone,
2232 	.config_shared_key	= rt73usb_config_shared_key,
2233 	.config_pairwise_key	= rt73usb_config_pairwise_key,
2234 	.config_filter		= rt73usb_config_filter,
2235 	.config_intf		= rt73usb_config_intf,
2236 	.config_erp		= rt73usb_config_erp,
2237 	.config_ant		= rt73usb_config_ant,
2238 	.config			= rt73usb_config,
2239 };
2240 
2241 static const struct data_queue_desc rt73usb_queue_rx = {
2242 	.entry_num		= RX_ENTRIES,
2243 	.data_size		= DATA_FRAME_SIZE,
2244 	.desc_size		= RXD_DESC_SIZE,
2245 	.priv_size		= sizeof(struct queue_entry_priv_usb),
2246 };
2247 
2248 static const struct data_queue_desc rt73usb_queue_tx = {
2249 	.entry_num		= TX_ENTRIES,
2250 	.data_size		= DATA_FRAME_SIZE,
2251 	.desc_size		= TXD_DESC_SIZE,
2252 	.priv_size		= sizeof(struct queue_entry_priv_usb),
2253 };
2254 
2255 static const struct data_queue_desc rt73usb_queue_bcn = {
2256 	.entry_num		= 4 * BEACON_ENTRIES,
2257 	.data_size		= MGMT_FRAME_SIZE,
2258 	.desc_size		= TXINFO_SIZE,
2259 	.priv_size		= sizeof(struct queue_entry_priv_usb),
2260 };
2261 
2262 static const struct rt2x00_ops rt73usb_ops = {
2263 	.name		= KBUILD_MODNAME,
2264 	.max_sta_intf	= 1,
2265 	.max_ap_intf	= 4,
2266 	.eeprom_size	= EEPROM_SIZE,
2267 	.rf_size	= RF_SIZE,
2268 	.tx_queues	= NUM_TX_QUEUES,
2269 	.rx		= &rt73usb_queue_rx,
2270 	.tx		= &rt73usb_queue_tx,
2271 	.bcn		= &rt73usb_queue_bcn,
2272 	.lib		= &rt73usb_rt2x00_ops,
2273 	.hw		= &rt73usb_mac80211_ops,
2274 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2275 	.debugfs	= &rt73usb_rt2x00debug,
2276 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2277 };
2278 
2279 /*
2280  * rt73usb module information.
2281  */
2282 static struct usb_device_id rt73usb_device_table[] = {
2283 	/* AboCom */
2284 	{ USB_DEVICE(0x07b8, 0xb21b), USB_DEVICE_DATA(&rt73usb_ops) },
2285 	{ USB_DEVICE(0x07b8, 0xb21c), USB_DEVICE_DATA(&rt73usb_ops) },
2286 	{ USB_DEVICE(0x07b8, 0xb21d), USB_DEVICE_DATA(&rt73usb_ops) },
2287 	{ USB_DEVICE(0x07b8, 0xb21e), USB_DEVICE_DATA(&rt73usb_ops) },
2288 	{ USB_DEVICE(0x07b8, 0xb21f), USB_DEVICE_DATA(&rt73usb_ops) },
2289 	/* AL */
2290 	{ USB_DEVICE(0x14b2, 0x3c10), USB_DEVICE_DATA(&rt73usb_ops) },
2291 	/* Amigo */
2292 	{ USB_DEVICE(0x148f, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2293 	{ USB_DEVICE(0x0eb0, 0x9021), USB_DEVICE_DATA(&rt73usb_ops) },
2294 	/* AMIT  */
2295 	{ USB_DEVICE(0x18c5, 0x0002), USB_DEVICE_DATA(&rt73usb_ops) },
2296 	/* Askey */
2297 	{ USB_DEVICE(0x1690, 0x0722), USB_DEVICE_DATA(&rt73usb_ops) },
2298 	/* ASUS */
2299 	{ USB_DEVICE(0x0b05, 0x1723), USB_DEVICE_DATA(&rt73usb_ops) },
2300 	{ USB_DEVICE(0x0b05, 0x1724), USB_DEVICE_DATA(&rt73usb_ops) },
2301 	/* Belkin */
2302 	{ USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt73usb_ops) },
2303 	{ USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt73usb_ops) },
2304 	{ USB_DEVICE(0x050d, 0x905b), USB_DEVICE_DATA(&rt73usb_ops) },
2305 	{ USB_DEVICE(0x050d, 0x905c), USB_DEVICE_DATA(&rt73usb_ops) },
2306 	/* Billionton */
2307 	{ USB_DEVICE(0x1631, 0xc019), USB_DEVICE_DATA(&rt73usb_ops) },
2308 	{ USB_DEVICE(0x08dd, 0x0120), USB_DEVICE_DATA(&rt73usb_ops) },
2309 	/* Buffalo */
2310 	{ USB_DEVICE(0x0411, 0x00d8), USB_DEVICE_DATA(&rt73usb_ops) },
2311 	{ USB_DEVICE(0x0411, 0x00f4), USB_DEVICE_DATA(&rt73usb_ops) },
2312 	/* CNet */
2313 	{ USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt73usb_ops) },
2314 	{ USB_DEVICE(0x1371, 0x9032), USB_DEVICE_DATA(&rt73usb_ops) },
2315 	/* Conceptronic */
2316 	{ USB_DEVICE(0x14b2, 0x3c22), USB_DEVICE_DATA(&rt73usb_ops) },
2317 	/* Corega */
2318 	{ USB_DEVICE(0x07aa, 0x002e), USB_DEVICE_DATA(&rt73usb_ops) },
2319 	/* D-Link */
2320 	{ USB_DEVICE(0x07d1, 0x3c03), USB_DEVICE_DATA(&rt73usb_ops) },
2321 	{ USB_DEVICE(0x07d1, 0x3c04), USB_DEVICE_DATA(&rt73usb_ops) },
2322 	{ USB_DEVICE(0x07d1, 0x3c06), USB_DEVICE_DATA(&rt73usb_ops) },
2323 	{ USB_DEVICE(0x07d1, 0x3c07), USB_DEVICE_DATA(&rt73usb_ops) },
2324 	/* Edimax */
2325 	{ USB_DEVICE(0x7392, 0x7318), USB_DEVICE_DATA(&rt73usb_ops) },
2326 	{ USB_DEVICE(0x7392, 0x7618), USB_DEVICE_DATA(&rt73usb_ops) },
2327 	/* EnGenius */
2328 	{ USB_DEVICE(0x1740, 0x3701), USB_DEVICE_DATA(&rt73usb_ops) },
2329 	/* Gemtek */
2330 	{ USB_DEVICE(0x15a9, 0x0004), USB_DEVICE_DATA(&rt73usb_ops) },
2331 	/* Gigabyte */
2332 	{ USB_DEVICE(0x1044, 0x8008), USB_DEVICE_DATA(&rt73usb_ops) },
2333 	{ USB_DEVICE(0x1044, 0x800a), USB_DEVICE_DATA(&rt73usb_ops) },
2334 	/* Huawei-3Com */
2335 	{ USB_DEVICE(0x1472, 0x0009), USB_DEVICE_DATA(&rt73usb_ops) },
2336 	/* Hercules */
2337 	{ USB_DEVICE(0x06f8, 0xe010), USB_DEVICE_DATA(&rt73usb_ops) },
2338 	{ USB_DEVICE(0x06f8, 0xe020), USB_DEVICE_DATA(&rt73usb_ops) },
2339 	/* Linksys */
2340 	{ USB_DEVICE(0x13b1, 0x0020), USB_DEVICE_DATA(&rt73usb_ops) },
2341 	{ USB_DEVICE(0x13b1, 0x0023), USB_DEVICE_DATA(&rt73usb_ops) },
2342 	{ USB_DEVICE(0x13b1, 0x0028), USB_DEVICE_DATA(&rt73usb_ops) },
2343 	/* MSI */
2344 	{ USB_DEVICE(0x0db0, 0x6877), USB_DEVICE_DATA(&rt73usb_ops) },
2345 	{ USB_DEVICE(0x0db0, 0x6874), USB_DEVICE_DATA(&rt73usb_ops) },
2346 	{ USB_DEVICE(0x0db0, 0xa861), USB_DEVICE_DATA(&rt73usb_ops) },
2347 	{ USB_DEVICE(0x0db0, 0xa874), USB_DEVICE_DATA(&rt73usb_ops) },
2348 	/* Ralink */
2349 	{ USB_DEVICE(0x04bb, 0x093d), USB_DEVICE_DATA(&rt73usb_ops) },
2350 	{ USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt73usb_ops) },
2351 	{ USB_DEVICE(0x148f, 0x2671), USB_DEVICE_DATA(&rt73usb_ops) },
2352 	/* Qcom */
2353 	{ USB_DEVICE(0x18e8, 0x6196), USB_DEVICE_DATA(&rt73usb_ops) },
2354 	{ USB_DEVICE(0x18e8, 0x6229), USB_DEVICE_DATA(&rt73usb_ops) },
2355 	{ USB_DEVICE(0x18e8, 0x6238), USB_DEVICE_DATA(&rt73usb_ops) },
2356 	/* Samsung */
2357 	{ USB_DEVICE(0x04e8, 0x4471), USB_DEVICE_DATA(&rt73usb_ops) },
2358 	/* Senao */
2359 	{ USB_DEVICE(0x1740, 0x7100), USB_DEVICE_DATA(&rt73usb_ops) },
2360 	/* Sitecom */
2361 	{ USB_DEVICE(0x0df6, 0x0024), USB_DEVICE_DATA(&rt73usb_ops) },
2362 	{ USB_DEVICE(0x0df6, 0x0027), USB_DEVICE_DATA(&rt73usb_ops) },
2363 	{ USB_DEVICE(0x0df6, 0x002f), USB_DEVICE_DATA(&rt73usb_ops) },
2364 	{ USB_DEVICE(0x0df6, 0x90ac), USB_DEVICE_DATA(&rt73usb_ops) },
2365 	{ USB_DEVICE(0x0df6, 0x9712), USB_DEVICE_DATA(&rt73usb_ops) },
2366 	/* Surecom */
2367 	{ USB_DEVICE(0x0769, 0x31f3), USB_DEVICE_DATA(&rt73usb_ops) },
2368 	/* Philips */
2369 	{ USB_DEVICE(0x0471, 0x200a), USB_DEVICE_DATA(&rt73usb_ops) },
2370 	/* Planex */
2371 	{ USB_DEVICE(0x2019, 0xab01), USB_DEVICE_DATA(&rt73usb_ops) },
2372 	{ USB_DEVICE(0x2019, 0xab50), USB_DEVICE_DATA(&rt73usb_ops) },
2373 	/* Zcom */
2374 	{ USB_DEVICE(0x0cde, 0x001c), USB_DEVICE_DATA(&rt73usb_ops) },
2375 	/* ZyXEL */
2376 	{ USB_DEVICE(0x0586, 0x3415), USB_DEVICE_DATA(&rt73usb_ops) },
2377 	{ 0, }
2378 };
2379 
2380 MODULE_AUTHOR(DRV_PROJECT);
2381 MODULE_VERSION(DRV_VERSION);
2382 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2383 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2384 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2385 MODULE_FIRMWARE(FIRMWARE_RT2571);
2386 MODULE_LICENSE("GPL");
2387 
2388 static struct usb_driver rt73usb_driver = {
2389 	.name		= KBUILD_MODNAME,
2390 	.id_table	= rt73usb_device_table,
2391 	.probe		= rt2x00usb_probe,
2392 	.disconnect	= rt2x00usb_disconnect,
2393 	.suspend	= rt2x00usb_suspend,
2394 	.resume		= rt2x00usb_resume,
2395 };
2396 
rt73usb_init(void)2397 static int __init rt73usb_init(void)
2398 {
2399 	return usb_register(&rt73usb_driver);
2400 }
2401 
rt73usb_exit(void)2402 static void __exit rt73usb_exit(void)
2403 {
2404 	usb_deregister(&rt73usb_driver);
2405 }
2406 
2407 module_init(rt73usb_init);
2408 module_exit(rt73usb_exit);
2409