1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
23
24 */
25
26 #define DRV_NAME "yellowfin"
27 #define DRV_VERSION "2.1"
28 #define DRV_RELDATE "Sep 11, 2006"
29
30 #define PFX DRV_NAME ": "
31
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
34
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
51
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
55
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
59 */
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
63
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
79
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85 #define yellowfin_debug debug
86
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
107 #include <asm/io.h>
108
109 /* These identify the driver base version and may not be removed. */
110 static char version[] __devinitdata =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 KERN_INFO " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
113
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
117
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
132
133 /*
134 Theory of Operation
135
136 I. Board Compatibility
137
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
141
142 II. Board-specific settings
143
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board. The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
148 interrupt lines.
149
150 III. Driver operation
151
152 IIIa. Ring buffers
153
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip. This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
159
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
166
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames. For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information). For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
173
174 IIIC. Synchronization
175
176 The driver runs as two independent, single-threaded flows of control. One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag. The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
180
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
185
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
190
191 IV. Notes
192
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
196
197 IVb. References
198
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
201 Data Manual v3.0
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
204
205 IVc. Errata
206
207 See Packet Engines confidential appendix (prototype chips only).
208 */
209
210
211
212 enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
216 };
217
218 /* The PCI I/O space extent. */
219 enum {
220 YELLOWFIN_SIZE = 0x100,
221 };
222
223 struct pci_id_info {
224 const char *name;
225 struct match_info {
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
228 } id;
229 int drv_flags; /* Driver use, intended as capability flags. */
230 };
231
232 static const struct pci_id_info pci_id_tbl[] = {
233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236 HasMII | DontUseEeprom },
237 { }
238 };
239
240 static const struct pci_device_id yellowfin_pci_tbl[] = {
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
243 { }
244 };
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
246
247
248 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249 enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258 MII_Status=0xAE,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
262 EEFeature=0xF5,
263 };
264
265 /* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
268 __le32 dbdma_cmd;
269 __le32 addr;
270 __le32 branch_addr;
271 __le32 result_status;
272 };
273
274 struct tx_status_words {
275 #ifdef __BIG_ENDIAN
276 u16 tx_errs;
277 u16 tx_cnt;
278 u16 paused;
279 u16 total_tx_cnt;
280 #else /* Little endian chips. */
281 u16 tx_cnt;
282 u16 tx_errs;
283 u16 total_tx_cnt;
284 u16 paused;
285 #endif /* __BIG_ENDIAN */
286 };
287
288 /* Bits in yellowfin_desc.cmd */
289 enum desc_cmd_bits {
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
294 };
295
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
298
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
304
305 #define PRIV_ALIGN 31 /* Required alignment mask */
306 #define MII_CNT 4
307 struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
316
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
319
320 struct timer_list timer; /* Media selection timer. */
321 /* Frequently used and paired value: keep adjacent for cache effect. */
322 int chip_id, drv_flags;
323 struct pci_dev *pci_dev;
324 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
325 unsigned int rx_buf_sz; /* Based on MTU+slack. */
326 struct tx_status_words *tx_tail_desc;
327 unsigned int cur_tx, dirty_tx;
328 int tx_threshold;
329 unsigned int tx_full:1; /* The Tx queue is full. */
330 unsigned int full_duplex:1; /* Full-duplex operation requested. */
331 unsigned int duplex_lock:1;
332 unsigned int medialock:1; /* Do not sense media. */
333 unsigned int default_port:4; /* Last dev->if_port value. */
334 /* MII transceiver section. */
335 int mii_cnt; /* MII device addresses. */
336 u16 advertising; /* NWay media advertisement */
337 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
338 spinlock_t lock;
339 void __iomem *base;
340 };
341
342 static int read_eeprom(void __iomem *ioaddr, int location);
343 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346 static int yellowfin_open(struct net_device *dev);
347 static void yellowfin_timer(unsigned long data);
348 static void yellowfin_tx_timeout(struct net_device *dev);
349 static void yellowfin_init_ring(struct net_device *dev);
350 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
357
358 static const struct net_device_ops netdev_ops = {
359 .ndo_open = yellowfin_open,
360 .ndo_stop = yellowfin_close,
361 .ndo_start_xmit = yellowfin_start_xmit,
362 .ndo_set_multicast_list = set_rx_mode,
363 .ndo_change_mtu = eth_change_mtu,
364 .ndo_validate_addr = eth_validate_addr,
365 .ndo_set_mac_address = eth_mac_addr,
366 .ndo_do_ioctl = netdev_ioctl,
367 .ndo_tx_timeout = yellowfin_tx_timeout,
368 };
369
yellowfin_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)370 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
371 const struct pci_device_id *ent)
372 {
373 struct net_device *dev;
374 struct yellowfin_private *np;
375 int irq;
376 int chip_idx = ent->driver_data;
377 static int find_cnt;
378 void __iomem *ioaddr;
379 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
380 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
381 void *ring_space;
382 dma_addr_t ring_dma;
383 #ifdef USE_IO_OPS
384 int bar = 0;
385 #else
386 int bar = 1;
387 #endif
388
389 /* when built into the kernel, we only print version if device is found */
390 #ifndef MODULE
391 static int printed_version;
392 if (!printed_version++)
393 printk(version);
394 #endif
395
396 i = pci_enable_device(pdev);
397 if (i) return i;
398
399 dev = alloc_etherdev(sizeof(*np));
400 if (!dev) {
401 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
402 return -ENOMEM;
403 }
404 SET_NETDEV_DEV(dev, &pdev->dev);
405
406 np = netdev_priv(dev);
407
408 if (pci_request_regions(pdev, DRV_NAME))
409 goto err_out_free_netdev;
410
411 pci_set_master (pdev);
412
413 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
414 if (!ioaddr)
415 goto err_out_free_res;
416
417 irq = pdev->irq;
418
419 if (drv_flags & DontUseEeprom)
420 for (i = 0; i < 6; i++)
421 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
422 else {
423 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
424 for (i = 0; i < 6; i++)
425 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
426 }
427
428 /* Reset the chip. */
429 iowrite32(0x80000000, ioaddr + DMACtrl);
430
431 dev->base_addr = (unsigned long)ioaddr;
432 dev->irq = irq;
433
434 pci_set_drvdata(pdev, dev);
435 spin_lock_init(&np->lock);
436
437 np->pci_dev = pdev;
438 np->chip_id = chip_idx;
439 np->drv_flags = drv_flags;
440 np->base = ioaddr;
441
442 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
443 if (!ring_space)
444 goto err_out_cleardev;
445 np->tx_ring = (struct yellowfin_desc *)ring_space;
446 np->tx_ring_dma = ring_dma;
447
448 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
449 if (!ring_space)
450 goto err_out_unmap_tx;
451 np->rx_ring = (struct yellowfin_desc *)ring_space;
452 np->rx_ring_dma = ring_dma;
453
454 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
455 if (!ring_space)
456 goto err_out_unmap_rx;
457 np->tx_status = (struct tx_status_words *)ring_space;
458 np->tx_status_dma = ring_dma;
459
460 if (dev->mem_start)
461 option = dev->mem_start;
462
463 /* The lower four bits are the media type. */
464 if (option > 0) {
465 if (option & 0x200)
466 np->full_duplex = 1;
467 np->default_port = option & 15;
468 if (np->default_port)
469 np->medialock = 1;
470 }
471 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
472 np->full_duplex = 1;
473
474 if (np->full_duplex)
475 np->duplex_lock = 1;
476
477 /* The Yellowfin-specific entries in the device structure. */
478 dev->netdev_ops = &netdev_ops;
479 SET_ETHTOOL_OPS(dev, ðtool_ops);
480 dev->watchdog_timeo = TX_TIMEOUT;
481
482 if (mtu)
483 dev->mtu = mtu;
484
485 i = register_netdev(dev);
486 if (i)
487 goto err_out_unmap_status;
488
489 printk(KERN_INFO "%s: %s type %8x at %p, %pM, IRQ %d.\n",
490 dev->name, pci_id_tbl[chip_idx].name,
491 ioread32(ioaddr + ChipRev), ioaddr,
492 dev->dev_addr, irq);
493
494 if (np->drv_flags & HasMII) {
495 int phy, phy_idx = 0;
496 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
497 int mii_status = mdio_read(ioaddr, phy, 1);
498 if (mii_status != 0xffff && mii_status != 0x0000) {
499 np->phys[phy_idx++] = phy;
500 np->advertising = mdio_read(ioaddr, phy, 4);
501 printk(KERN_INFO "%s: MII PHY found at address %d, status "
502 "0x%4.4x advertising %4.4x.\n",
503 dev->name, phy, mii_status, np->advertising);
504 }
505 }
506 np->mii_cnt = phy_idx;
507 }
508
509 find_cnt++;
510
511 return 0;
512
513 err_out_unmap_status:
514 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
515 np->tx_status_dma);
516 err_out_unmap_rx:
517 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
518 err_out_unmap_tx:
519 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
520 err_out_cleardev:
521 pci_set_drvdata(pdev, NULL);
522 pci_iounmap(pdev, ioaddr);
523 err_out_free_res:
524 pci_release_regions(pdev);
525 err_out_free_netdev:
526 free_netdev (dev);
527 return -ENODEV;
528 }
529
read_eeprom(void __iomem * ioaddr,int location)530 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
531 {
532 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
533
534 iowrite8(location, ioaddr + EEAddr);
535 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
536 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
537 ;
538 return ioread8(ioaddr + EERead);
539 }
540
541 /* MII Managemen Data I/O accesses.
542 These routines assume the MDIO controller is idle, and do not exit until
543 the command is finished. */
544
mdio_read(void __iomem * ioaddr,int phy_id,int location)545 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
546 {
547 int i;
548
549 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
550 iowrite16(1, ioaddr + MII_Cmd);
551 for (i = 10000; i >= 0; i--)
552 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
553 break;
554 return ioread16(ioaddr + MII_Rd_Data);
555 }
556
mdio_write(void __iomem * ioaddr,int phy_id,int location,int value)557 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
558 {
559 int i;
560
561 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
562 iowrite16(value, ioaddr + MII_Wr_Data);
563
564 /* Wait for the command to finish. */
565 for (i = 10000; i >= 0; i--)
566 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
567 break;
568 return;
569 }
570
571
yellowfin_open(struct net_device * dev)572 static int yellowfin_open(struct net_device *dev)
573 {
574 struct yellowfin_private *yp = netdev_priv(dev);
575 void __iomem *ioaddr = yp->base;
576 int i;
577
578 /* Reset the chip. */
579 iowrite32(0x80000000, ioaddr + DMACtrl);
580
581 i = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
582 if (i) return i;
583
584 if (yellowfin_debug > 1)
585 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
586 dev->name, dev->irq);
587
588 yellowfin_init_ring(dev);
589
590 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
591 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
592
593 for (i = 0; i < 6; i++)
594 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
595
596 /* Set up various condition 'select' registers.
597 There are no options here. */
598 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
599 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
600 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
601 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
602 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
603 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
604
605 /* Initialize other registers: with so many this eventually this will
606 converted to an offset/value list. */
607 iowrite32(dma_ctrl, ioaddr + DMACtrl);
608 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
609 /* Enable automatic generation of flow control frames, period 0xffff. */
610 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
611
612 yp->tx_threshold = 32;
613 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
614
615 if (dev->if_port == 0)
616 dev->if_port = yp->default_port;
617
618 netif_start_queue(dev);
619
620 /* Setting the Rx mode will start the Rx process. */
621 if (yp->drv_flags & IsGigabit) {
622 /* We are always in full-duplex mode with gigabit! */
623 yp->full_duplex = 1;
624 iowrite16(0x01CF, ioaddr + Cnfg);
625 } else {
626 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
627 iowrite16(0x1018, ioaddr + FrameGap1);
628 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
629 }
630 set_rx_mode(dev);
631
632 /* Enable interrupts by setting the interrupt mask. */
633 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
634 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
635 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
636 iowrite32(0x80008000, ioaddr + TxCtrl);
637
638 if (yellowfin_debug > 2) {
639 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
640 dev->name);
641 }
642
643 /* Set the timer to check for link beat. */
644 init_timer(&yp->timer);
645 yp->timer.expires = jiffies + 3*HZ;
646 yp->timer.data = (unsigned long)dev;
647 yp->timer.function = &yellowfin_timer; /* timer handler */
648 add_timer(&yp->timer);
649
650 return 0;
651 }
652
yellowfin_timer(unsigned long data)653 static void yellowfin_timer(unsigned long data)
654 {
655 struct net_device *dev = (struct net_device *)data;
656 struct yellowfin_private *yp = netdev_priv(dev);
657 void __iomem *ioaddr = yp->base;
658 int next_tick = 60*HZ;
659
660 if (yellowfin_debug > 3) {
661 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
662 dev->name, ioread16(ioaddr + IntrStatus));
663 }
664
665 if (yp->mii_cnt) {
666 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
667 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
668 int negotiated = lpa & yp->advertising;
669 if (yellowfin_debug > 1)
670 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
671 "link partner capability %4.4x.\n",
672 dev->name, yp->phys[0], bmsr, lpa);
673
674 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
675
676 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
677
678 if (bmsr & BMSR_LSTATUS)
679 next_tick = 60*HZ;
680 else
681 next_tick = 3*HZ;
682 }
683
684 yp->timer.expires = jiffies + next_tick;
685 add_timer(&yp->timer);
686 }
687
yellowfin_tx_timeout(struct net_device * dev)688 static void yellowfin_tx_timeout(struct net_device *dev)
689 {
690 struct yellowfin_private *yp = netdev_priv(dev);
691 void __iomem *ioaddr = yp->base;
692
693 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
694 "status %4.4x, Rx status %4.4x, resetting...\n",
695 dev->name, yp->cur_tx, yp->dirty_tx,
696 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
697
698 /* Note: these should be KERN_DEBUG. */
699 if (yellowfin_debug) {
700 int i;
701 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
702 for (i = 0; i < RX_RING_SIZE; i++)
703 printk(" %8.8x", yp->rx_ring[i].result_status);
704 printk("\n"KERN_WARNING" Tx ring %p: ", yp->tx_ring);
705 for (i = 0; i < TX_RING_SIZE; i++)
706 printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs,
707 yp->tx_ring[i].result_status);
708 printk("\n");
709 }
710
711 /* If the hardware is found to hang regularly, we will update the code
712 to reinitialize the chip here. */
713 dev->if_port = 0;
714
715 /* Wake the potentially-idle transmit channel. */
716 iowrite32(0x10001000, yp->base + TxCtrl);
717 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
718 netif_wake_queue (dev); /* Typical path */
719
720 dev->trans_start = jiffies;
721 dev->stats.tx_errors++;
722 }
723
724 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
yellowfin_init_ring(struct net_device * dev)725 static void yellowfin_init_ring(struct net_device *dev)
726 {
727 struct yellowfin_private *yp = netdev_priv(dev);
728 int i;
729
730 yp->tx_full = 0;
731 yp->cur_rx = yp->cur_tx = 0;
732 yp->dirty_tx = 0;
733
734 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
735
736 for (i = 0; i < RX_RING_SIZE; i++) {
737 yp->rx_ring[i].dbdma_cmd =
738 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
739 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
740 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
741 }
742
743 for (i = 0; i < RX_RING_SIZE; i++) {
744 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
745 yp->rx_skbuff[i] = skb;
746 if (skb == NULL)
747 break;
748 skb->dev = dev; /* Mark as being used by this device. */
749 skb_reserve(skb, 2); /* 16 byte align the IP header. */
750 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
751 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752 }
753 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
754 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
755
756 #define NO_TXSTATS
757 #ifdef NO_TXSTATS
758 /* In this mode the Tx ring needs only a single descriptor. */
759 for (i = 0; i < TX_RING_SIZE; i++) {
760 yp->tx_skbuff[i] = NULL;
761 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
762 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
763 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
764 }
765 /* Wrap ring */
766 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
767 #else
768 {
769 int j;
770
771 /* Tx ring needs a pair of descriptors, the second for the status. */
772 for (i = 0; i < TX_RING_SIZE; i++) {
773 j = 2*i;
774 yp->tx_skbuff[i] = 0;
775 /* Branch on Tx error. */
776 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
777 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
778 (j+1)*sizeof(struct yellowfin_desc));
779 j++;
780 if (yp->flags & FullTxStatus) {
781 yp->tx_ring[j].dbdma_cmd =
782 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
783 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
784 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
785 i*sizeof(struct tx_status_words));
786 } else {
787 /* Symbios chips write only tx_errs word. */
788 yp->tx_ring[j].dbdma_cmd =
789 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
790 yp->tx_ring[j].request_cnt = 2;
791 /* Om pade ummmmm... */
792 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
793 i*sizeof(struct tx_status_words) +
794 &(yp->tx_status[0].tx_errs) -
795 &(yp->tx_status[0]));
796 }
797 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
798 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
799 }
800 /* Wrap ring */
801 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
802 }
803 #endif
804 yp->tx_tail_desc = &yp->tx_status[0];
805 return;
806 }
807
yellowfin_start_xmit(struct sk_buff * skb,struct net_device * dev)808 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
809 {
810 struct yellowfin_private *yp = netdev_priv(dev);
811 unsigned entry;
812 int len = skb->len;
813
814 netif_stop_queue (dev);
815
816 /* Note: Ordering is important here, set the field with the
817 "ownership" bit last, and only then increment cur_tx. */
818
819 /* Calculate the next Tx descriptor entry. */
820 entry = yp->cur_tx % TX_RING_SIZE;
821
822 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
823 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
824 /* Fix GX chipset errata. */
825 if (cacheline_end > 24 || cacheline_end == 0) {
826 len = skb->len + 32 - cacheline_end + 1;
827 if (skb_padto(skb, len)) {
828 yp->tx_skbuff[entry] = NULL;
829 netif_wake_queue(dev);
830 return 0;
831 }
832 }
833 }
834 yp->tx_skbuff[entry] = skb;
835
836 #ifdef NO_TXSTATS
837 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
838 skb->data, len, PCI_DMA_TODEVICE));
839 yp->tx_ring[entry].result_status = 0;
840 if (entry >= TX_RING_SIZE-1) {
841 /* New stop command. */
842 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
843 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
844 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
845 } else {
846 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
847 yp->tx_ring[entry].dbdma_cmd =
848 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
849 }
850 yp->cur_tx++;
851 #else
852 yp->tx_ring[entry<<1].request_cnt = len;
853 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
854 skb->data, len, PCI_DMA_TODEVICE));
855 /* The input_last (status-write) command is constant, but we must
856 rewrite the subsequent 'stop' command. */
857
858 yp->cur_tx++;
859 {
860 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
861 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
862 }
863 /* Final step -- overwrite the old 'stop' command. */
864
865 yp->tx_ring[entry<<1].dbdma_cmd =
866 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
867 CMD_TX_PKT | BRANCH_IFTRUE) | len);
868 #endif
869
870 /* Non-x86 Todo: explicitly flush cache lines here. */
871
872 /* Wake the potentially-idle transmit channel. */
873 iowrite32(0x10001000, yp->base + TxCtrl);
874
875 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
876 netif_start_queue (dev); /* Typical path */
877 else
878 yp->tx_full = 1;
879 dev->trans_start = jiffies;
880
881 if (yellowfin_debug > 4) {
882 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
883 dev->name, yp->cur_tx, entry);
884 }
885 return 0;
886 }
887
888 /* The interrupt handler does all of the Rx thread work and cleans up
889 after the Tx thread. */
yellowfin_interrupt(int irq,void * dev_instance)890 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
891 {
892 struct net_device *dev = dev_instance;
893 struct yellowfin_private *yp;
894 void __iomem *ioaddr;
895 int boguscnt = max_interrupt_work;
896 unsigned int handled = 0;
897
898 yp = netdev_priv(dev);
899 ioaddr = yp->base;
900
901 spin_lock (&yp->lock);
902
903 do {
904 u16 intr_status = ioread16(ioaddr + IntrClear);
905
906 if (yellowfin_debug > 4)
907 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
908 dev->name, intr_status);
909
910 if (intr_status == 0)
911 break;
912 handled = 1;
913
914 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
915 yellowfin_rx(dev);
916 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
917 }
918
919 #ifdef NO_TXSTATS
920 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
921 int entry = yp->dirty_tx % TX_RING_SIZE;
922 struct sk_buff *skb;
923
924 if (yp->tx_ring[entry].result_status == 0)
925 break;
926 skb = yp->tx_skbuff[entry];
927 dev->stats.tx_packets++;
928 dev->stats.tx_bytes += skb->len;
929 /* Free the original skb. */
930 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
931 skb->len, PCI_DMA_TODEVICE);
932 dev_kfree_skb_irq(skb);
933 yp->tx_skbuff[entry] = NULL;
934 }
935 if (yp->tx_full
936 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
937 /* The ring is no longer full, clear tbusy. */
938 yp->tx_full = 0;
939 netif_wake_queue(dev);
940 }
941 #else
942 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
943 unsigned dirty_tx = yp->dirty_tx;
944
945 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
946 dirty_tx++) {
947 /* Todo: optimize this. */
948 int entry = dirty_tx % TX_RING_SIZE;
949 u16 tx_errs = yp->tx_status[entry].tx_errs;
950 struct sk_buff *skb;
951
952 #ifndef final_version
953 if (yellowfin_debug > 5)
954 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
955 "%4.4x %4.4x %4.4x %4.4x.\n",
956 dev->name, entry,
957 yp->tx_status[entry].tx_cnt,
958 yp->tx_status[entry].tx_errs,
959 yp->tx_status[entry].total_tx_cnt,
960 yp->tx_status[entry].paused);
961 #endif
962 if (tx_errs == 0)
963 break; /* It still hasn't been Txed */
964 skb = yp->tx_skbuff[entry];
965 if (tx_errs & 0xF810) {
966 /* There was an major error, log it. */
967 #ifndef final_version
968 if (yellowfin_debug > 1)
969 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
970 dev->name, tx_errs);
971 #endif
972 dev->stats.tx_errors++;
973 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
974 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
975 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
976 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
977 } else {
978 #ifndef final_version
979 if (yellowfin_debug > 4)
980 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
981 dev->name, tx_errs);
982 #endif
983 dev->stats.tx_bytes += skb->len;
984 dev->stats.collisions += tx_errs & 15;
985 dev->stats.tx_packets++;
986 }
987 /* Free the original skb. */
988 pci_unmap_single(yp->pci_dev,
989 yp->tx_ring[entry<<1].addr, skb->len,
990 PCI_DMA_TODEVICE);
991 dev_kfree_skb_irq(skb);
992 yp->tx_skbuff[entry] = 0;
993 /* Mark status as empty. */
994 yp->tx_status[entry].tx_errs = 0;
995 }
996
997 #ifndef final_version
998 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
999 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1000 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
1001 dirty_tx += TX_RING_SIZE;
1002 }
1003 #endif
1004
1005 if (yp->tx_full
1006 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1007 /* The ring is no longer full, clear tbusy. */
1008 yp->tx_full = 0;
1009 netif_wake_queue(dev);
1010 }
1011
1012 yp->dirty_tx = dirty_tx;
1013 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1014 }
1015 #endif
1016
1017 /* Log errors and other uncommon events. */
1018 if (intr_status & 0x2ee) /* Abnormal error summary. */
1019 yellowfin_error(dev, intr_status);
1020
1021 if (--boguscnt < 0) {
1022 printk(KERN_WARNING "%s: Too much work at interrupt, "
1023 "status=0x%4.4x.\n",
1024 dev->name, intr_status);
1025 break;
1026 }
1027 } while (1);
1028
1029 if (yellowfin_debug > 3)
1030 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1031 dev->name, ioread16(ioaddr + IntrStatus));
1032
1033 spin_unlock (&yp->lock);
1034 return IRQ_RETVAL(handled);
1035 }
1036
1037 /* This routine is logically part of the interrupt handler, but separated
1038 for clarity and better register allocation. */
yellowfin_rx(struct net_device * dev)1039 static int yellowfin_rx(struct net_device *dev)
1040 {
1041 struct yellowfin_private *yp = netdev_priv(dev);
1042 int entry = yp->cur_rx % RX_RING_SIZE;
1043 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1044
1045 if (yellowfin_debug > 4) {
1046 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1047 entry, yp->rx_ring[entry].result_status);
1048 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1049 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1050 yp->rx_ring[entry].result_status);
1051 }
1052
1053 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1054 while (1) {
1055 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1056 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1057 s16 frame_status;
1058 u16 desc_status;
1059 int data_size;
1060 u8 *buf_addr;
1061
1062 if(!desc->result_status)
1063 break;
1064 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1065 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1066 desc_status = le32_to_cpu(desc->result_status) >> 16;
1067 buf_addr = rx_skb->data;
1068 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1069 le32_to_cpu(desc->result_status)) & 0xffff;
1070 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1071 if (yellowfin_debug > 4)
1072 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1073 frame_status);
1074 if (--boguscnt < 0)
1075 break;
1076 if ( ! (desc_status & RX_EOP)) {
1077 if (data_size != 0)
1078 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1079 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1080 dev->stats.rx_length_errors++;
1081 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1082 /* There was a error. */
1083 if (yellowfin_debug > 3)
1084 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1085 frame_status);
1086 dev->stats.rx_errors++;
1087 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1088 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1089 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1090 if (frame_status < 0) dev->stats.rx_dropped++;
1091 } else if ( !(yp->drv_flags & IsGigabit) &&
1092 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1093 u8 status1 = buf_addr[data_size-2];
1094 u8 status2 = buf_addr[data_size-1];
1095 dev->stats.rx_errors++;
1096 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1097 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1098 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1099 if (status2 & 0x80) dev->stats.rx_dropped++;
1100 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1101 } else if ((yp->flags & HasMACAddrBug) &&
1102 memcmp(le32_to_cpu(yp->rx_ring_dma +
1103 entry*sizeof(struct yellowfin_desc)),
1104 dev->dev_addr, 6) != 0 &&
1105 memcmp(le32_to_cpu(yp->rx_ring_dma +
1106 entry*sizeof(struct yellowfin_desc)),
1107 "\377\377\377\377\377\377", 6) != 0) {
1108 if (bogus_rx++ == 0)
1109 printk(KERN_WARNING "%s: Bad frame to %pM\n",
1110 dev->name, buf_addr);
1111 #endif
1112 } else {
1113 struct sk_buff *skb;
1114 int pkt_len = data_size -
1115 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1116 /* To verify: Yellowfin Length should omit the CRC! */
1117
1118 #ifndef final_version
1119 if (yellowfin_debug > 4)
1120 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1121 " of %d, bogus_cnt %d.\n",
1122 pkt_len, data_size, boguscnt);
1123 #endif
1124 /* Check if the packet is long enough to just pass up the skbuff
1125 without copying to a properly sized skbuff. */
1126 if (pkt_len > rx_copybreak) {
1127 skb_put(skb = rx_skb, pkt_len);
1128 pci_unmap_single(yp->pci_dev,
1129 le32_to_cpu(yp->rx_ring[entry].addr),
1130 yp->rx_buf_sz,
1131 PCI_DMA_FROMDEVICE);
1132 yp->rx_skbuff[entry] = NULL;
1133 } else {
1134 skb = dev_alloc_skb(pkt_len + 2);
1135 if (skb == NULL)
1136 break;
1137 skb_reserve(skb, 2); /* 16 byte align the IP header */
1138 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1139 skb_put(skb, pkt_len);
1140 pci_dma_sync_single_for_device(yp->pci_dev,
1141 le32_to_cpu(desc->addr),
1142 yp->rx_buf_sz,
1143 PCI_DMA_FROMDEVICE);
1144 }
1145 skb->protocol = eth_type_trans(skb, dev);
1146 netif_rx(skb);
1147 dev->stats.rx_packets++;
1148 dev->stats.rx_bytes += pkt_len;
1149 }
1150 entry = (++yp->cur_rx) % RX_RING_SIZE;
1151 }
1152
1153 /* Refill the Rx ring buffers. */
1154 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1155 entry = yp->dirty_rx % RX_RING_SIZE;
1156 if (yp->rx_skbuff[entry] == NULL) {
1157 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1158 if (skb == NULL)
1159 break; /* Better luck next round. */
1160 yp->rx_skbuff[entry] = skb;
1161 skb->dev = dev; /* Mark as being used by this device. */
1162 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1163 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1164 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1165 }
1166 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1167 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1168 if (entry != 0)
1169 yp->rx_ring[entry - 1].dbdma_cmd =
1170 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1171 else
1172 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1173 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1174 | yp->rx_buf_sz);
1175 }
1176
1177 return 0;
1178 }
1179
yellowfin_error(struct net_device * dev,int intr_status)1180 static void yellowfin_error(struct net_device *dev, int intr_status)
1181 {
1182 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1183 dev->name, intr_status);
1184 /* Hmmmmm, it's not clear what to do here. */
1185 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1186 dev->stats.tx_errors++;
1187 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1188 dev->stats.rx_errors++;
1189 }
1190
yellowfin_close(struct net_device * dev)1191 static int yellowfin_close(struct net_device *dev)
1192 {
1193 struct yellowfin_private *yp = netdev_priv(dev);
1194 void __iomem *ioaddr = yp->base;
1195 int i;
1196
1197 netif_stop_queue (dev);
1198
1199 if (yellowfin_debug > 1) {
1200 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1201 "Rx %4.4x Int %2.2x.\n",
1202 dev->name, ioread16(ioaddr + TxStatus),
1203 ioread16(ioaddr + RxStatus),
1204 ioread16(ioaddr + IntrStatus));
1205 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1206 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1207 }
1208
1209 /* Disable interrupts by clearing the interrupt mask. */
1210 iowrite16(0x0000, ioaddr + IntrEnb);
1211
1212 /* Stop the chip's Tx and Rx processes. */
1213 iowrite32(0x80000000, ioaddr + RxCtrl);
1214 iowrite32(0x80000000, ioaddr + TxCtrl);
1215
1216 del_timer(&yp->timer);
1217
1218 #if defined(__i386__)
1219 if (yellowfin_debug > 2) {
1220 printk("\n"KERN_DEBUG" Tx ring at %8.8llx:\n",
1221 (unsigned long long)yp->tx_ring_dma);
1222 for (i = 0; i < TX_RING_SIZE*2; i++)
1223 printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1224 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1225 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1226 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1227 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1228 for (i = 0; i < TX_RING_SIZE; i++)
1229 printk(" #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1230 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1231 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1232
1233 printk("\n"KERN_DEBUG " Rx ring %8.8llx:\n",
1234 (unsigned long long)yp->rx_ring_dma);
1235 for (i = 0; i < RX_RING_SIZE; i++) {
1236 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1237 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1238 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1239 yp->rx_ring[i].result_status);
1240 if (yellowfin_debug > 6) {
1241 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1242 int j;
1243 for (j = 0; j < 0x50; j++)
1244 printk(" %4.4x",
1245 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1246 printk("\n");
1247 }
1248 }
1249 }
1250 }
1251 #endif /* __i386__ debugging only */
1252
1253 free_irq(dev->irq, dev);
1254
1255 /* Free all the skbuffs in the Rx queue. */
1256 for (i = 0; i < RX_RING_SIZE; i++) {
1257 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1258 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1259 if (yp->rx_skbuff[i]) {
1260 dev_kfree_skb(yp->rx_skbuff[i]);
1261 }
1262 yp->rx_skbuff[i] = NULL;
1263 }
1264 for (i = 0; i < TX_RING_SIZE; i++) {
1265 if (yp->tx_skbuff[i])
1266 dev_kfree_skb(yp->tx_skbuff[i]);
1267 yp->tx_skbuff[i] = NULL;
1268 }
1269
1270 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1271 if (yellowfin_debug > 0) {
1272 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1273 dev->name, bogus_rx);
1274 }
1275 #endif
1276
1277 return 0;
1278 }
1279
1280 /* Set or clear the multicast filter for this adaptor. */
1281
set_rx_mode(struct net_device * dev)1282 static void set_rx_mode(struct net_device *dev)
1283 {
1284 struct yellowfin_private *yp = netdev_priv(dev);
1285 void __iomem *ioaddr = yp->base;
1286 u16 cfg_value = ioread16(ioaddr + Cnfg);
1287
1288 /* Stop the Rx process to change any value. */
1289 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1290 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1291 iowrite16(0x000F, ioaddr + AddrMode);
1292 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1293 /* Too many to filter well, or accept all multicasts. */
1294 iowrite16(0x000B, ioaddr + AddrMode);
1295 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1296 struct dev_mc_list *mclist;
1297 u16 hash_table[4];
1298 int i;
1299 memset(hash_table, 0, sizeof(hash_table));
1300 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1301 i++, mclist = mclist->next) {
1302 unsigned int bit;
1303
1304 /* Due to a bug in the early chip versions, multiple filter
1305 slots must be set for each address. */
1306 if (yp->drv_flags & HasMulticastBug) {
1307 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1308 hash_table[bit >> 4] |= (1 << bit);
1309 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1310 hash_table[bit >> 4] |= (1 << bit);
1311 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1312 hash_table[bit >> 4] |= (1 << bit);
1313 }
1314 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1315 hash_table[bit >> 4] |= (1 << bit);
1316 }
1317 /* Copy the hash table to the chip. */
1318 for (i = 0; i < 4; i++)
1319 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1320 iowrite16(0x0003, ioaddr + AddrMode);
1321 } else { /* Normal, unicast/broadcast-only mode. */
1322 iowrite16(0x0001, ioaddr + AddrMode);
1323 }
1324 /* Restart the Rx process. */
1325 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1326 }
1327
yellowfin_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1328 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1329 {
1330 struct yellowfin_private *np = netdev_priv(dev);
1331 strcpy(info->driver, DRV_NAME);
1332 strcpy(info->version, DRV_VERSION);
1333 strcpy(info->bus_info, pci_name(np->pci_dev));
1334 }
1335
1336 static const struct ethtool_ops ethtool_ops = {
1337 .get_drvinfo = yellowfin_get_drvinfo
1338 };
1339
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1340 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1341 {
1342 struct yellowfin_private *np = netdev_priv(dev);
1343 void __iomem *ioaddr = np->base;
1344 struct mii_ioctl_data *data = if_mii(rq);
1345
1346 switch(cmd) {
1347 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1348 data->phy_id = np->phys[0] & 0x1f;
1349 /* Fall Through */
1350
1351 case SIOCGMIIREG: /* Read MII PHY register. */
1352 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1353 return 0;
1354
1355 case SIOCSMIIREG: /* Write MII PHY register. */
1356 if (!capable(CAP_NET_ADMIN))
1357 return -EPERM;
1358 if (data->phy_id == np->phys[0]) {
1359 u16 value = data->val_in;
1360 switch (data->reg_num) {
1361 case 0:
1362 /* Check for autonegotiation on or reset. */
1363 np->medialock = (value & 0x9000) ? 0 : 1;
1364 if (np->medialock)
1365 np->full_duplex = (value & 0x0100) ? 1 : 0;
1366 break;
1367 case 4: np->advertising = value; break;
1368 }
1369 /* Perhaps check_duplex(dev), depending on chip semantics. */
1370 }
1371 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1372 return 0;
1373 default:
1374 return -EOPNOTSUPP;
1375 }
1376 }
1377
1378
yellowfin_remove_one(struct pci_dev * pdev)1379 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1380 {
1381 struct net_device *dev = pci_get_drvdata(pdev);
1382 struct yellowfin_private *np;
1383
1384 BUG_ON(!dev);
1385 np = netdev_priv(dev);
1386
1387 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1388 np->tx_status_dma);
1389 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1390 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1391 unregister_netdev (dev);
1392
1393 pci_iounmap(pdev, np->base);
1394
1395 pci_release_regions (pdev);
1396
1397 free_netdev (dev);
1398 pci_set_drvdata(pdev, NULL);
1399 }
1400
1401
1402 static struct pci_driver yellowfin_driver = {
1403 .name = DRV_NAME,
1404 .id_table = yellowfin_pci_tbl,
1405 .probe = yellowfin_init_one,
1406 .remove = __devexit_p(yellowfin_remove_one),
1407 };
1408
1409
yellowfin_init(void)1410 static int __init yellowfin_init (void)
1411 {
1412 /* when a module, this is printed whether or not devices are found in probe */
1413 #ifdef MODULE
1414 printk(version);
1415 #endif
1416 return pci_register_driver(&yellowfin_driver);
1417 }
1418
1419
yellowfin_cleanup(void)1420 static void __exit yellowfin_cleanup (void)
1421 {
1422 pci_unregister_driver (&yellowfin_driver);
1423 }
1424
1425
1426 module_init(yellowfin_init);
1427 module_exit(yellowfin_cleanup);
1428