• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * @file cpu_buffer.c
3  *
4  * @remark Copyright 2002-2009 OProfile authors
5  * @remark Read the file COPYING
6  *
7  * @author John Levon <levon@movementarian.org>
8  * @author Barry Kasindorf <barry.kasindorf@amd.com>
9  * @author Robert Richter <robert.richter@amd.com>
10  *
11  * Each CPU has a local buffer that stores PC value/event
12  * pairs. We also log context switches when we notice them.
13  * Eventually each CPU's buffer is processed into the global
14  * event buffer by sync_buffer().
15  *
16  * We use a local buffer for two reasons: an NMI or similar
17  * interrupt cannot synchronise, and high sampling rates
18  * would lead to catastrophic global synchronisation if
19  * a global buffer was used.
20  */
21 
22 #include <linux/sched.h>
23 #include <linux/oprofile.h>
24 #include <linux/vmalloc.h>
25 #include <linux/errno.h>
26 
27 #include "event_buffer.h"
28 #include "cpu_buffer.h"
29 #include "buffer_sync.h"
30 #include "oprof.h"
31 
32 #define OP_BUFFER_FLAGS	0
33 
34 /*
35  * Read and write access is using spin locking. Thus, writing to the
36  * buffer by NMI handler (x86) could occur also during critical
37  * sections when reading the buffer. To avoid this, there are 2
38  * buffers for independent read and write access. Read access is in
39  * process context only, write access only in the NMI handler. If the
40  * read buffer runs empty, both buffers are swapped atomically. There
41  * is potentially a small window during swapping where the buffers are
42  * disabled and samples could be lost.
43  *
44  * Using 2 buffers is a little bit overhead, but the solution is clear
45  * and does not require changes in the ring buffer implementation. It
46  * can be changed to a single buffer solution when the ring buffer
47  * access is implemented as non-locking atomic code.
48  */
49 static struct ring_buffer *op_ring_buffer_read;
50 static struct ring_buffer *op_ring_buffer_write;
51 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
52 
53 static void wq_sync_buffer(struct work_struct *work);
54 
55 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
56 static int work_enabled;
57 
oprofile_get_cpu_buffer_size(void)58 unsigned long oprofile_get_cpu_buffer_size(void)
59 {
60 	return oprofile_cpu_buffer_size;
61 }
62 
oprofile_cpu_buffer_inc_smpl_lost(void)63 void oprofile_cpu_buffer_inc_smpl_lost(void)
64 {
65 	struct oprofile_cpu_buffer *cpu_buf
66 		= &__get_cpu_var(cpu_buffer);
67 
68 	cpu_buf->sample_lost_overflow++;
69 }
70 
free_cpu_buffers(void)71 void free_cpu_buffers(void)
72 {
73 	if (op_ring_buffer_read)
74 		ring_buffer_free(op_ring_buffer_read);
75 	op_ring_buffer_read = NULL;
76 	if (op_ring_buffer_write)
77 		ring_buffer_free(op_ring_buffer_write);
78 	op_ring_buffer_write = NULL;
79 }
80 
alloc_cpu_buffers(void)81 int alloc_cpu_buffers(void)
82 {
83 	int i;
84 
85 	unsigned long buffer_size = oprofile_cpu_buffer_size;
86 
87 	op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
88 	if (!op_ring_buffer_read)
89 		goto fail;
90 	op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
91 	if (!op_ring_buffer_write)
92 		goto fail;
93 
94 	for_each_possible_cpu(i) {
95 		struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
96 
97 		b->last_task = NULL;
98 		b->last_is_kernel = -1;
99 		b->tracing = 0;
100 		b->buffer_size = buffer_size;
101 		b->sample_received = 0;
102 		b->sample_lost_overflow = 0;
103 		b->backtrace_aborted = 0;
104 		b->sample_invalid_eip = 0;
105 		b->cpu = i;
106 		INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
107 	}
108 	return 0;
109 
110 fail:
111 	free_cpu_buffers();
112 	return -ENOMEM;
113 }
114 
start_cpu_work(void)115 void start_cpu_work(void)
116 {
117 	int i;
118 
119 	work_enabled = 1;
120 
121 	for_each_online_cpu(i) {
122 		struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
123 
124 		/*
125 		 * Spread the work by 1 jiffy per cpu so they dont all
126 		 * fire at once.
127 		 */
128 		schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
129 	}
130 }
131 
end_cpu_work(void)132 void end_cpu_work(void)
133 {
134 	int i;
135 
136 	work_enabled = 0;
137 
138 	for_each_online_cpu(i) {
139 		struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
140 
141 		cancel_delayed_work(&b->work);
142 	}
143 
144 	flush_scheduled_work();
145 }
146 
147 /*
148  * This function prepares the cpu buffer to write a sample.
149  *
150  * Struct op_entry is used during operations on the ring buffer while
151  * struct op_sample contains the data that is stored in the ring
152  * buffer. Struct entry can be uninitialized. The function reserves a
153  * data array that is specified by size. Use
154  * op_cpu_buffer_write_commit() after preparing the sample. In case of
155  * errors a null pointer is returned, otherwise the pointer to the
156  * sample.
157  *
158  */
159 struct op_sample
op_cpu_buffer_write_reserve(struct op_entry * entry,unsigned long size)160 *op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size)
161 {
162 	entry->event = ring_buffer_lock_reserve
163 		(op_ring_buffer_write, sizeof(struct op_sample) +
164 		 size * sizeof(entry->sample->data[0]), &entry->irq_flags);
165 	if (entry->event)
166 		entry->sample = ring_buffer_event_data(entry->event);
167 	else
168 		entry->sample = NULL;
169 
170 	if (!entry->sample)
171 		return NULL;
172 
173 	entry->size = size;
174 	entry->data = entry->sample->data;
175 
176 	return entry->sample;
177 }
178 
op_cpu_buffer_write_commit(struct op_entry * entry)179 int op_cpu_buffer_write_commit(struct op_entry *entry)
180 {
181 	return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event,
182 					 entry->irq_flags);
183 }
184 
op_cpu_buffer_read_entry(struct op_entry * entry,int cpu)185 struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu)
186 {
187 	struct ring_buffer_event *e;
188 	e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
189 	if (e)
190 		goto event;
191 	if (ring_buffer_swap_cpu(op_ring_buffer_read,
192 				 op_ring_buffer_write,
193 				 cpu))
194 		return NULL;
195 	e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
196 	if (e)
197 		goto event;
198 	return NULL;
199 
200 event:
201 	entry->event = e;
202 	entry->sample = ring_buffer_event_data(e);
203 	entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample))
204 		/ sizeof(entry->sample->data[0]);
205 	entry->data = entry->sample->data;
206 	return entry->sample;
207 }
208 
op_cpu_buffer_entries(int cpu)209 unsigned long op_cpu_buffer_entries(int cpu)
210 {
211 	return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
212 		+ ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
213 }
214 
215 static int
op_add_code(struct oprofile_cpu_buffer * cpu_buf,unsigned long backtrace,int is_kernel,struct task_struct * task)216 op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace,
217 	    int is_kernel, struct task_struct *task)
218 {
219 	struct op_entry entry;
220 	struct op_sample *sample;
221 	unsigned long flags;
222 	int size;
223 
224 	flags = 0;
225 
226 	if (backtrace)
227 		flags |= TRACE_BEGIN;
228 
229 	/* notice a switch from user->kernel or vice versa */
230 	is_kernel = !!is_kernel;
231 	if (cpu_buf->last_is_kernel != is_kernel) {
232 		cpu_buf->last_is_kernel = is_kernel;
233 		flags |= KERNEL_CTX_SWITCH;
234 		if (is_kernel)
235 			flags |= IS_KERNEL;
236 	}
237 
238 	/* notice a task switch */
239 	if (cpu_buf->last_task != task) {
240 		cpu_buf->last_task = task;
241 		flags |= USER_CTX_SWITCH;
242 	}
243 
244 	if (!flags)
245 		/* nothing to do */
246 		return 0;
247 
248 	if (flags & USER_CTX_SWITCH)
249 		size = 1;
250 	else
251 		size = 0;
252 
253 	sample = op_cpu_buffer_write_reserve(&entry, size);
254 	if (!sample)
255 		return -ENOMEM;
256 
257 	sample->eip = ESCAPE_CODE;
258 	sample->event = flags;
259 
260 	if (size)
261 		op_cpu_buffer_add_data(&entry, (unsigned long)task);
262 
263 	op_cpu_buffer_write_commit(&entry);
264 
265 	return 0;
266 }
267 
268 static inline int
op_add_sample(struct oprofile_cpu_buffer * cpu_buf,unsigned long pc,unsigned long event)269 op_add_sample(struct oprofile_cpu_buffer *cpu_buf,
270 	      unsigned long pc, unsigned long event)
271 {
272 	struct op_entry entry;
273 	struct op_sample *sample;
274 
275 	sample = op_cpu_buffer_write_reserve(&entry, 0);
276 	if (!sample)
277 		return -ENOMEM;
278 
279 	sample->eip = pc;
280 	sample->event = event;
281 
282 	return op_cpu_buffer_write_commit(&entry);
283 }
284 
285 /*
286  * This must be safe from any context.
287  *
288  * is_kernel is needed because on some architectures you cannot
289  * tell if you are in kernel or user space simply by looking at
290  * pc. We tag this in the buffer by generating kernel enter/exit
291  * events whenever is_kernel changes
292  */
293 static int
log_sample(struct oprofile_cpu_buffer * cpu_buf,unsigned long pc,unsigned long backtrace,int is_kernel,unsigned long event)294 log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
295 	   unsigned long backtrace, int is_kernel, unsigned long event)
296 {
297 	cpu_buf->sample_received++;
298 
299 	if (pc == ESCAPE_CODE) {
300 		cpu_buf->sample_invalid_eip++;
301 		return 0;
302 	}
303 
304 	if (op_add_code(cpu_buf, backtrace, is_kernel, current))
305 		goto fail;
306 
307 	if (op_add_sample(cpu_buf, pc, event))
308 		goto fail;
309 
310 	return 1;
311 
312 fail:
313 	cpu_buf->sample_lost_overflow++;
314 	return 0;
315 }
316 
oprofile_begin_trace(struct oprofile_cpu_buffer * cpu_buf)317 static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
318 {
319 	cpu_buf->tracing = 1;
320 }
321 
oprofile_end_trace(struct oprofile_cpu_buffer * cpu_buf)322 static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
323 {
324 	cpu_buf->tracing = 0;
325 }
326 
327 static inline void
__oprofile_add_ext_sample(unsigned long pc,struct pt_regs * const regs,unsigned long event,int is_kernel)328 __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
329 			  unsigned long event, int is_kernel)
330 {
331 	struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
332 	unsigned long backtrace = oprofile_backtrace_depth;
333 
334 	/*
335 	 * if log_sample() fail we can't backtrace since we lost the
336 	 * source of this event
337 	 */
338 	if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event))
339 		/* failed */
340 		return;
341 
342 	if (!backtrace)
343 		return;
344 
345 	oprofile_begin_trace(cpu_buf);
346 	oprofile_ops.backtrace(regs, backtrace);
347 	oprofile_end_trace(cpu_buf);
348 }
349 
oprofile_add_ext_sample(unsigned long pc,struct pt_regs * const regs,unsigned long event,int is_kernel)350 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
351 			     unsigned long event, int is_kernel)
352 {
353 	__oprofile_add_ext_sample(pc, regs, event, is_kernel);
354 }
355 
oprofile_add_sample(struct pt_regs * const regs,unsigned long event)356 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
357 {
358 	int is_kernel = !user_mode(regs);
359 	unsigned long pc = profile_pc(regs);
360 
361 	__oprofile_add_ext_sample(pc, regs, event, is_kernel);
362 }
363 
364 /*
365  * Add samples with data to the ring buffer.
366  *
367  * Use oprofile_add_data(&entry, val) to add data and
368  * oprofile_write_commit(&entry) to commit the sample.
369  */
370 void
oprofile_write_reserve(struct op_entry * entry,struct pt_regs * const regs,unsigned long pc,int code,int size)371 oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
372 		       unsigned long pc, int code, int size)
373 {
374 	struct op_sample *sample;
375 	int is_kernel = !user_mode(regs);
376 	struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
377 
378 	cpu_buf->sample_received++;
379 
380 	/* no backtraces for samples with data */
381 	if (op_add_code(cpu_buf, 0, is_kernel, current))
382 		goto fail;
383 
384 	sample = op_cpu_buffer_write_reserve(entry, size + 2);
385 	if (!sample)
386 		goto fail;
387 	sample->eip = ESCAPE_CODE;
388 	sample->event = 0;		/* no flags */
389 
390 	op_cpu_buffer_add_data(entry, code);
391 	op_cpu_buffer_add_data(entry, pc);
392 
393 	return;
394 
395 fail:
396 	entry->event = NULL;
397 	cpu_buf->sample_lost_overflow++;
398 }
399 
oprofile_add_data(struct op_entry * entry,unsigned long val)400 int oprofile_add_data(struct op_entry *entry, unsigned long val)
401 {
402 	if (!entry->event)
403 		return 0;
404 	return op_cpu_buffer_add_data(entry, val);
405 }
406 
oprofile_write_commit(struct op_entry * entry)407 int oprofile_write_commit(struct op_entry *entry)
408 {
409 	if (!entry->event)
410 		return -EINVAL;
411 	return op_cpu_buffer_write_commit(entry);
412 }
413 
oprofile_add_pc(unsigned long pc,int is_kernel,unsigned long event)414 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
415 {
416 	struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
417 	log_sample(cpu_buf, pc, 0, is_kernel, event);
418 }
419 
oprofile_add_trace(unsigned long pc)420 void oprofile_add_trace(unsigned long pc)
421 {
422 	struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
423 
424 	if (!cpu_buf->tracing)
425 		return;
426 
427 	/*
428 	 * broken frame can give an eip with the same value as an
429 	 * escape code, abort the trace if we get it
430 	 */
431 	if (pc == ESCAPE_CODE)
432 		goto fail;
433 
434 	if (op_add_sample(cpu_buf, pc, 0))
435 		goto fail;
436 
437 	return;
438 fail:
439 	cpu_buf->tracing = 0;
440 	cpu_buf->backtrace_aborted++;
441 	return;
442 }
443 
444 /*
445  * This serves to avoid cpu buffer overflow, and makes sure
446  * the task mortuary progresses
447  *
448  * By using schedule_delayed_work_on and then schedule_delayed_work
449  * we guarantee this will stay on the correct cpu
450  */
wq_sync_buffer(struct work_struct * work)451 static void wq_sync_buffer(struct work_struct *work)
452 {
453 	struct oprofile_cpu_buffer *b =
454 		container_of(work, struct oprofile_cpu_buffer, work.work);
455 	if (b->cpu != smp_processor_id()) {
456 		printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
457 		       smp_processor_id(), b->cpu);
458 
459 		if (!cpu_online(b->cpu)) {
460 			cancel_delayed_work(&b->work);
461 			return;
462 		}
463 	}
464 	sync_buffer(b->cpu);
465 
466 	/* don't re-add the work if we're shutting down */
467 	if (work_enabled)
468 		schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
469 }
470