1 /**
2 * @file cpu_buffer.c
3 *
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf <barry.kasindorf@amd.com>
9 * @author Robert Richter <robert.richter@amd.com>
10 *
11 * Each CPU has a local buffer that stores PC value/event
12 * pairs. We also log context switches when we notice them.
13 * Eventually each CPU's buffer is processed into the global
14 * event buffer by sync_buffer().
15 *
16 * We use a local buffer for two reasons: an NMI or similar
17 * interrupt cannot synchronise, and high sampling rates
18 * would lead to catastrophic global synchronisation if
19 * a global buffer was used.
20 */
21
22 #include <linux/sched.h>
23 #include <linux/oprofile.h>
24 #include <linux/vmalloc.h>
25 #include <linux/errno.h>
26
27 #include "event_buffer.h"
28 #include "cpu_buffer.h"
29 #include "buffer_sync.h"
30 #include "oprof.h"
31
32 #define OP_BUFFER_FLAGS 0
33
34 /*
35 * Read and write access is using spin locking. Thus, writing to the
36 * buffer by NMI handler (x86) could occur also during critical
37 * sections when reading the buffer. To avoid this, there are 2
38 * buffers for independent read and write access. Read access is in
39 * process context only, write access only in the NMI handler. If the
40 * read buffer runs empty, both buffers are swapped atomically. There
41 * is potentially a small window during swapping where the buffers are
42 * disabled and samples could be lost.
43 *
44 * Using 2 buffers is a little bit overhead, but the solution is clear
45 * and does not require changes in the ring buffer implementation. It
46 * can be changed to a single buffer solution when the ring buffer
47 * access is implemented as non-locking atomic code.
48 */
49 static struct ring_buffer *op_ring_buffer_read;
50 static struct ring_buffer *op_ring_buffer_write;
51 DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
52
53 static void wq_sync_buffer(struct work_struct *work);
54
55 #define DEFAULT_TIMER_EXPIRE (HZ / 10)
56 static int work_enabled;
57
oprofile_get_cpu_buffer_size(void)58 unsigned long oprofile_get_cpu_buffer_size(void)
59 {
60 return oprofile_cpu_buffer_size;
61 }
62
oprofile_cpu_buffer_inc_smpl_lost(void)63 void oprofile_cpu_buffer_inc_smpl_lost(void)
64 {
65 struct oprofile_cpu_buffer *cpu_buf
66 = &__get_cpu_var(cpu_buffer);
67
68 cpu_buf->sample_lost_overflow++;
69 }
70
free_cpu_buffers(void)71 void free_cpu_buffers(void)
72 {
73 if (op_ring_buffer_read)
74 ring_buffer_free(op_ring_buffer_read);
75 op_ring_buffer_read = NULL;
76 if (op_ring_buffer_write)
77 ring_buffer_free(op_ring_buffer_write);
78 op_ring_buffer_write = NULL;
79 }
80
alloc_cpu_buffers(void)81 int alloc_cpu_buffers(void)
82 {
83 int i;
84
85 unsigned long buffer_size = oprofile_cpu_buffer_size;
86
87 op_ring_buffer_read = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
88 if (!op_ring_buffer_read)
89 goto fail;
90 op_ring_buffer_write = ring_buffer_alloc(buffer_size, OP_BUFFER_FLAGS);
91 if (!op_ring_buffer_write)
92 goto fail;
93
94 for_each_possible_cpu(i) {
95 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
96
97 b->last_task = NULL;
98 b->last_is_kernel = -1;
99 b->tracing = 0;
100 b->buffer_size = buffer_size;
101 b->sample_received = 0;
102 b->sample_lost_overflow = 0;
103 b->backtrace_aborted = 0;
104 b->sample_invalid_eip = 0;
105 b->cpu = i;
106 INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
107 }
108 return 0;
109
110 fail:
111 free_cpu_buffers();
112 return -ENOMEM;
113 }
114
start_cpu_work(void)115 void start_cpu_work(void)
116 {
117 int i;
118
119 work_enabled = 1;
120
121 for_each_online_cpu(i) {
122 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
123
124 /*
125 * Spread the work by 1 jiffy per cpu so they dont all
126 * fire at once.
127 */
128 schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
129 }
130 }
131
end_cpu_work(void)132 void end_cpu_work(void)
133 {
134 int i;
135
136 work_enabled = 0;
137
138 for_each_online_cpu(i) {
139 struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
140
141 cancel_delayed_work(&b->work);
142 }
143
144 flush_scheduled_work();
145 }
146
147 /*
148 * This function prepares the cpu buffer to write a sample.
149 *
150 * Struct op_entry is used during operations on the ring buffer while
151 * struct op_sample contains the data that is stored in the ring
152 * buffer. Struct entry can be uninitialized. The function reserves a
153 * data array that is specified by size. Use
154 * op_cpu_buffer_write_commit() after preparing the sample. In case of
155 * errors a null pointer is returned, otherwise the pointer to the
156 * sample.
157 *
158 */
159 struct op_sample
op_cpu_buffer_write_reserve(struct op_entry * entry,unsigned long size)160 *op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size)
161 {
162 entry->event = ring_buffer_lock_reserve
163 (op_ring_buffer_write, sizeof(struct op_sample) +
164 size * sizeof(entry->sample->data[0]), &entry->irq_flags);
165 if (entry->event)
166 entry->sample = ring_buffer_event_data(entry->event);
167 else
168 entry->sample = NULL;
169
170 if (!entry->sample)
171 return NULL;
172
173 entry->size = size;
174 entry->data = entry->sample->data;
175
176 return entry->sample;
177 }
178
op_cpu_buffer_write_commit(struct op_entry * entry)179 int op_cpu_buffer_write_commit(struct op_entry *entry)
180 {
181 return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event,
182 entry->irq_flags);
183 }
184
op_cpu_buffer_read_entry(struct op_entry * entry,int cpu)185 struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu)
186 {
187 struct ring_buffer_event *e;
188 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
189 if (e)
190 goto event;
191 if (ring_buffer_swap_cpu(op_ring_buffer_read,
192 op_ring_buffer_write,
193 cpu))
194 return NULL;
195 e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
196 if (e)
197 goto event;
198 return NULL;
199
200 event:
201 entry->event = e;
202 entry->sample = ring_buffer_event_data(e);
203 entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample))
204 / sizeof(entry->sample->data[0]);
205 entry->data = entry->sample->data;
206 return entry->sample;
207 }
208
op_cpu_buffer_entries(int cpu)209 unsigned long op_cpu_buffer_entries(int cpu)
210 {
211 return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
212 + ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
213 }
214
215 static int
op_add_code(struct oprofile_cpu_buffer * cpu_buf,unsigned long backtrace,int is_kernel,struct task_struct * task)216 op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace,
217 int is_kernel, struct task_struct *task)
218 {
219 struct op_entry entry;
220 struct op_sample *sample;
221 unsigned long flags;
222 int size;
223
224 flags = 0;
225
226 if (backtrace)
227 flags |= TRACE_BEGIN;
228
229 /* notice a switch from user->kernel or vice versa */
230 is_kernel = !!is_kernel;
231 if (cpu_buf->last_is_kernel != is_kernel) {
232 cpu_buf->last_is_kernel = is_kernel;
233 flags |= KERNEL_CTX_SWITCH;
234 if (is_kernel)
235 flags |= IS_KERNEL;
236 }
237
238 /* notice a task switch */
239 if (cpu_buf->last_task != task) {
240 cpu_buf->last_task = task;
241 flags |= USER_CTX_SWITCH;
242 }
243
244 if (!flags)
245 /* nothing to do */
246 return 0;
247
248 if (flags & USER_CTX_SWITCH)
249 size = 1;
250 else
251 size = 0;
252
253 sample = op_cpu_buffer_write_reserve(&entry, size);
254 if (!sample)
255 return -ENOMEM;
256
257 sample->eip = ESCAPE_CODE;
258 sample->event = flags;
259
260 if (size)
261 op_cpu_buffer_add_data(&entry, (unsigned long)task);
262
263 op_cpu_buffer_write_commit(&entry);
264
265 return 0;
266 }
267
268 static inline int
op_add_sample(struct oprofile_cpu_buffer * cpu_buf,unsigned long pc,unsigned long event)269 op_add_sample(struct oprofile_cpu_buffer *cpu_buf,
270 unsigned long pc, unsigned long event)
271 {
272 struct op_entry entry;
273 struct op_sample *sample;
274
275 sample = op_cpu_buffer_write_reserve(&entry, 0);
276 if (!sample)
277 return -ENOMEM;
278
279 sample->eip = pc;
280 sample->event = event;
281
282 return op_cpu_buffer_write_commit(&entry);
283 }
284
285 /*
286 * This must be safe from any context.
287 *
288 * is_kernel is needed because on some architectures you cannot
289 * tell if you are in kernel or user space simply by looking at
290 * pc. We tag this in the buffer by generating kernel enter/exit
291 * events whenever is_kernel changes
292 */
293 static int
log_sample(struct oprofile_cpu_buffer * cpu_buf,unsigned long pc,unsigned long backtrace,int is_kernel,unsigned long event)294 log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
295 unsigned long backtrace, int is_kernel, unsigned long event)
296 {
297 cpu_buf->sample_received++;
298
299 if (pc == ESCAPE_CODE) {
300 cpu_buf->sample_invalid_eip++;
301 return 0;
302 }
303
304 if (op_add_code(cpu_buf, backtrace, is_kernel, current))
305 goto fail;
306
307 if (op_add_sample(cpu_buf, pc, event))
308 goto fail;
309
310 return 1;
311
312 fail:
313 cpu_buf->sample_lost_overflow++;
314 return 0;
315 }
316
oprofile_begin_trace(struct oprofile_cpu_buffer * cpu_buf)317 static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
318 {
319 cpu_buf->tracing = 1;
320 }
321
oprofile_end_trace(struct oprofile_cpu_buffer * cpu_buf)322 static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
323 {
324 cpu_buf->tracing = 0;
325 }
326
327 static inline void
__oprofile_add_ext_sample(unsigned long pc,struct pt_regs * const regs,unsigned long event,int is_kernel)328 __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
329 unsigned long event, int is_kernel)
330 {
331 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
332 unsigned long backtrace = oprofile_backtrace_depth;
333
334 /*
335 * if log_sample() fail we can't backtrace since we lost the
336 * source of this event
337 */
338 if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event))
339 /* failed */
340 return;
341
342 if (!backtrace)
343 return;
344
345 oprofile_begin_trace(cpu_buf);
346 oprofile_ops.backtrace(regs, backtrace);
347 oprofile_end_trace(cpu_buf);
348 }
349
oprofile_add_ext_sample(unsigned long pc,struct pt_regs * const regs,unsigned long event,int is_kernel)350 void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
351 unsigned long event, int is_kernel)
352 {
353 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
354 }
355
oprofile_add_sample(struct pt_regs * const regs,unsigned long event)356 void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
357 {
358 int is_kernel = !user_mode(regs);
359 unsigned long pc = profile_pc(regs);
360
361 __oprofile_add_ext_sample(pc, regs, event, is_kernel);
362 }
363
364 /*
365 * Add samples with data to the ring buffer.
366 *
367 * Use oprofile_add_data(&entry, val) to add data and
368 * oprofile_write_commit(&entry) to commit the sample.
369 */
370 void
oprofile_write_reserve(struct op_entry * entry,struct pt_regs * const regs,unsigned long pc,int code,int size)371 oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
372 unsigned long pc, int code, int size)
373 {
374 struct op_sample *sample;
375 int is_kernel = !user_mode(regs);
376 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
377
378 cpu_buf->sample_received++;
379
380 /* no backtraces for samples with data */
381 if (op_add_code(cpu_buf, 0, is_kernel, current))
382 goto fail;
383
384 sample = op_cpu_buffer_write_reserve(entry, size + 2);
385 if (!sample)
386 goto fail;
387 sample->eip = ESCAPE_CODE;
388 sample->event = 0; /* no flags */
389
390 op_cpu_buffer_add_data(entry, code);
391 op_cpu_buffer_add_data(entry, pc);
392
393 return;
394
395 fail:
396 entry->event = NULL;
397 cpu_buf->sample_lost_overflow++;
398 }
399
oprofile_add_data(struct op_entry * entry,unsigned long val)400 int oprofile_add_data(struct op_entry *entry, unsigned long val)
401 {
402 if (!entry->event)
403 return 0;
404 return op_cpu_buffer_add_data(entry, val);
405 }
406
oprofile_write_commit(struct op_entry * entry)407 int oprofile_write_commit(struct op_entry *entry)
408 {
409 if (!entry->event)
410 return -EINVAL;
411 return op_cpu_buffer_write_commit(entry);
412 }
413
oprofile_add_pc(unsigned long pc,int is_kernel,unsigned long event)414 void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
415 {
416 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
417 log_sample(cpu_buf, pc, 0, is_kernel, event);
418 }
419
oprofile_add_trace(unsigned long pc)420 void oprofile_add_trace(unsigned long pc)
421 {
422 struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
423
424 if (!cpu_buf->tracing)
425 return;
426
427 /*
428 * broken frame can give an eip with the same value as an
429 * escape code, abort the trace if we get it
430 */
431 if (pc == ESCAPE_CODE)
432 goto fail;
433
434 if (op_add_sample(cpu_buf, pc, 0))
435 goto fail;
436
437 return;
438 fail:
439 cpu_buf->tracing = 0;
440 cpu_buf->backtrace_aborted++;
441 return;
442 }
443
444 /*
445 * This serves to avoid cpu buffer overflow, and makes sure
446 * the task mortuary progresses
447 *
448 * By using schedule_delayed_work_on and then schedule_delayed_work
449 * we guarantee this will stay on the correct cpu
450 */
wq_sync_buffer(struct work_struct * work)451 static void wq_sync_buffer(struct work_struct *work)
452 {
453 struct oprofile_cpu_buffer *b =
454 container_of(work, struct oprofile_cpu_buffer, work.work);
455 if (b->cpu != smp_processor_id()) {
456 printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
457 smp_processor_id(), b->cpu);
458
459 if (!cpu_online(b->cpu)) {
460 cancel_delayed_work(&b->work);
461 return;
462 }
463 }
464 sync_buffer(b->cpu);
465
466 /* don't re-add the work if we're shutting down */
467 if (work_enabled)
468 schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
469 }
470