• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h>	/* isa_dma_bridge_buggy */
23 #include "pci.h"
24 
25 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
26 
27 #ifdef CONFIG_PCI_DOMAINS
28 int pci_domains_supported = 1;
29 #endif
30 
31 #define DEFAULT_CARDBUS_IO_SIZE		(256)
32 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
33 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
34 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
35 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
36 
37 /**
38  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
39  * @bus: pointer to PCI bus structure to search
40  *
41  * Given a PCI bus, returns the highest PCI bus number present in the set
42  * including the given PCI bus and its list of child PCI buses.
43  */
pci_bus_max_busnr(struct pci_bus * bus)44 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
45 {
46 	struct list_head *tmp;
47 	unsigned char max, n;
48 
49 	max = bus->subordinate;
50 	list_for_each(tmp, &bus->children) {
51 		n = pci_bus_max_busnr(pci_bus_b(tmp));
52 		if(n > max)
53 			max = n;
54 	}
55 	return max;
56 }
57 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
58 
59 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)60 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
61 {
62 	/*
63 	 * Make sure the BAR is actually a memory resource, not an IO resource
64 	 */
65 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
66 		WARN_ON(1);
67 		return NULL;
68 	}
69 	return ioremap_nocache(pci_resource_start(pdev, bar),
70 				     pci_resource_len(pdev, bar));
71 }
72 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
73 #endif
74 
75 #if 0
76 /**
77  * pci_max_busnr - returns maximum PCI bus number
78  *
79  * Returns the highest PCI bus number present in the system global list of
80  * PCI buses.
81  */
82 unsigned char __devinit
83 pci_max_busnr(void)
84 {
85 	struct pci_bus *bus = NULL;
86 	unsigned char max, n;
87 
88 	max = 0;
89 	while ((bus = pci_find_next_bus(bus)) != NULL) {
90 		n = pci_bus_max_busnr(bus);
91 		if(n > max)
92 			max = n;
93 	}
94 	return max;
95 }
96 
97 #endif  /*  0  */
98 
99 #define PCI_FIND_CAP_TTL	48
100 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)101 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
102 				   u8 pos, int cap, int *ttl)
103 {
104 	u8 id;
105 
106 	while ((*ttl)--) {
107 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
108 		if (pos < 0x40)
109 			break;
110 		pos &= ~3;
111 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
112 					 &id);
113 		if (id == 0xff)
114 			break;
115 		if (id == cap)
116 			return pos;
117 		pos += PCI_CAP_LIST_NEXT;
118 	}
119 	return 0;
120 }
121 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)122 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
123 			       u8 pos, int cap)
124 {
125 	int ttl = PCI_FIND_CAP_TTL;
126 
127 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
128 }
129 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)130 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
131 {
132 	return __pci_find_next_cap(dev->bus, dev->devfn,
133 				   pos + PCI_CAP_LIST_NEXT, cap);
134 }
135 EXPORT_SYMBOL_GPL(pci_find_next_capability);
136 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)137 static int __pci_bus_find_cap_start(struct pci_bus *bus,
138 				    unsigned int devfn, u8 hdr_type)
139 {
140 	u16 status;
141 
142 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
143 	if (!(status & PCI_STATUS_CAP_LIST))
144 		return 0;
145 
146 	switch (hdr_type) {
147 	case PCI_HEADER_TYPE_NORMAL:
148 	case PCI_HEADER_TYPE_BRIDGE:
149 		return PCI_CAPABILITY_LIST;
150 	case PCI_HEADER_TYPE_CARDBUS:
151 		return PCI_CB_CAPABILITY_LIST;
152 	default:
153 		return 0;
154 	}
155 
156 	return 0;
157 }
158 
159 /**
160  * pci_find_capability - query for devices' capabilities
161  * @dev: PCI device to query
162  * @cap: capability code
163  *
164  * Tell if a device supports a given PCI capability.
165  * Returns the address of the requested capability structure within the
166  * device's PCI configuration space or 0 in case the device does not
167  * support it.  Possible values for @cap:
168  *
169  *  %PCI_CAP_ID_PM           Power Management
170  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
171  *  %PCI_CAP_ID_VPD          Vital Product Data
172  *  %PCI_CAP_ID_SLOTID       Slot Identification
173  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
174  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
175  *  %PCI_CAP_ID_PCIX         PCI-X
176  *  %PCI_CAP_ID_EXP          PCI Express
177  */
pci_find_capability(struct pci_dev * dev,int cap)178 int pci_find_capability(struct pci_dev *dev, int cap)
179 {
180 	int pos;
181 
182 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
183 	if (pos)
184 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
185 
186 	return pos;
187 }
188 
189 /**
190  * pci_bus_find_capability - query for devices' capabilities
191  * @bus:   the PCI bus to query
192  * @devfn: PCI device to query
193  * @cap:   capability code
194  *
195  * Like pci_find_capability() but works for pci devices that do not have a
196  * pci_dev structure set up yet.
197  *
198  * Returns the address of the requested capability structure within the
199  * device's PCI configuration space or 0 in case the device does not
200  * support it.
201  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)202 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
203 {
204 	int pos;
205 	u8 hdr_type;
206 
207 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
208 
209 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
210 	if (pos)
211 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
212 
213 	return pos;
214 }
215 
216 /**
217  * pci_find_ext_capability - Find an extended capability
218  * @dev: PCI device to query
219  * @cap: capability code
220  *
221  * Returns the address of the requested extended capability structure
222  * within the device's PCI configuration space or 0 if the device does
223  * not support it.  Possible values for @cap:
224  *
225  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
226  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
227  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
228  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
229  */
pci_find_ext_capability(struct pci_dev * dev,int cap)230 int pci_find_ext_capability(struct pci_dev *dev, int cap)
231 {
232 	u32 header;
233 	int ttl;
234 	int pos = PCI_CFG_SPACE_SIZE;
235 
236 	/* minimum 8 bytes per capability */
237 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
238 
239 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
240 		return 0;
241 
242 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
243 		return 0;
244 
245 	/*
246 	 * If we have no capabilities, this is indicated by cap ID,
247 	 * cap version and next pointer all being 0.
248 	 */
249 	if (header == 0)
250 		return 0;
251 
252 	while (ttl-- > 0) {
253 		if (PCI_EXT_CAP_ID(header) == cap)
254 			return pos;
255 
256 		pos = PCI_EXT_CAP_NEXT(header);
257 		if (pos < PCI_CFG_SPACE_SIZE)
258 			break;
259 
260 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
261 			break;
262 	}
263 
264 	return 0;
265 }
266 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
267 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)268 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
269 {
270 	int rc, ttl = PCI_FIND_CAP_TTL;
271 	u8 cap, mask;
272 
273 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
274 		mask = HT_3BIT_CAP_MASK;
275 	else
276 		mask = HT_5BIT_CAP_MASK;
277 
278 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
279 				      PCI_CAP_ID_HT, &ttl);
280 	while (pos) {
281 		rc = pci_read_config_byte(dev, pos + 3, &cap);
282 		if (rc != PCIBIOS_SUCCESSFUL)
283 			return 0;
284 
285 		if ((cap & mask) == ht_cap)
286 			return pos;
287 
288 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
289 					      pos + PCI_CAP_LIST_NEXT,
290 					      PCI_CAP_ID_HT, &ttl);
291 	}
292 
293 	return 0;
294 }
295 /**
296  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
297  * @dev: PCI device to query
298  * @pos: Position from which to continue searching
299  * @ht_cap: Hypertransport capability code
300  *
301  * To be used in conjunction with pci_find_ht_capability() to search for
302  * all capabilities matching @ht_cap. @pos should always be a value returned
303  * from pci_find_ht_capability().
304  *
305  * NB. To be 100% safe against broken PCI devices, the caller should take
306  * steps to avoid an infinite loop.
307  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)308 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
309 {
310 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
311 }
312 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
313 
314 /**
315  * pci_find_ht_capability - query a device's Hypertransport capabilities
316  * @dev: PCI device to query
317  * @ht_cap: Hypertransport capability code
318  *
319  * Tell if a device supports a given Hypertransport capability.
320  * Returns an address within the device's PCI configuration space
321  * or 0 in case the device does not support the request capability.
322  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
323  * which has a Hypertransport capability matching @ht_cap.
324  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)325 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
326 {
327 	int pos;
328 
329 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
330 	if (pos)
331 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
332 
333 	return pos;
334 }
335 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
336 
337 /**
338  * pci_find_parent_resource - return resource region of parent bus of given region
339  * @dev: PCI device structure contains resources to be searched
340  * @res: child resource record for which parent is sought
341  *
342  *  For given resource region of given device, return the resource
343  *  region of parent bus the given region is contained in or where
344  *  it should be allocated from.
345  */
346 struct resource *
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)347 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
348 {
349 	const struct pci_bus *bus = dev->bus;
350 	int i;
351 	struct resource *best = NULL;
352 
353 	for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
354 		struct resource *r = bus->resource[i];
355 		if (!r)
356 			continue;
357 		if (res->start && !(res->start >= r->start && res->end <= r->end))
358 			continue;	/* Not contained */
359 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
360 			continue;	/* Wrong type */
361 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
362 			return r;	/* Exact match */
363 		if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
364 			best = r;	/* Approximating prefetchable by non-prefetchable */
365 	}
366 	return best;
367 }
368 
369 /**
370  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
371  * @dev: PCI device to have its BARs restored
372  *
373  * Restore the BAR values for a given device, so as to make it
374  * accessible by its driver.
375  */
376 static void
pci_restore_bars(struct pci_dev * dev)377 pci_restore_bars(struct pci_dev *dev)
378 {
379 	int i;
380 
381 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
382 		pci_update_resource(dev, i);
383 }
384 
385 static struct pci_platform_pm_ops *pci_platform_pm;
386 
pci_set_platform_pm(struct pci_platform_pm_ops * ops)387 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
388 {
389 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
390 	    || !ops->sleep_wake || !ops->can_wakeup)
391 		return -EINVAL;
392 	pci_platform_pm = ops;
393 	return 0;
394 }
395 
platform_pci_power_manageable(struct pci_dev * dev)396 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
397 {
398 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
399 }
400 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)401 static inline int platform_pci_set_power_state(struct pci_dev *dev,
402                                                 pci_power_t t)
403 {
404 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
405 }
406 
platform_pci_choose_state(struct pci_dev * dev)407 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
408 {
409 	return pci_platform_pm ?
410 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
411 }
412 
platform_pci_can_wakeup(struct pci_dev * dev)413 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
414 {
415 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
416 }
417 
platform_pci_sleep_wake(struct pci_dev * dev,bool enable)418 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
419 {
420 	return pci_platform_pm ?
421 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
422 }
423 
424 /**
425  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
426  *                           given PCI device
427  * @dev: PCI device to handle.
428  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
429  * @wait: If 'true', wait for the device to change its power state
430  *
431  * RETURN VALUE:
432  * -EINVAL if the requested state is invalid.
433  * -EIO if device does not support PCI PM or its PM capabilities register has a
434  * wrong version, or device doesn't support the requested state.
435  * 0 if device already is in the requested state.
436  * 0 if device's power state has been successfully changed.
437  */
438 static int
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state,bool wait)439 pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state, bool wait)
440 {
441 	u16 pmcsr;
442 	bool need_restore = false;
443 
444 	if (!dev->pm_cap)
445 		return -EIO;
446 
447 	if (state < PCI_D0 || state > PCI_D3hot)
448 		return -EINVAL;
449 
450 	/* Validate current state:
451 	 * Can enter D0 from any state, but if we can only go deeper
452 	 * to sleep if we're already in a low power state
453 	 */
454 	if (dev->current_state == state) {
455 		/* we're already there */
456 		return 0;
457 	} else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
458 	    && dev->current_state > state) {
459 		dev_err(&dev->dev, "invalid power transition "
460 			"(from state %d to %d)\n", dev->current_state, state);
461 		return -EINVAL;
462 	}
463 
464 	/* check if this device supports the desired state */
465 	if ((state == PCI_D1 && !dev->d1_support)
466 	   || (state == PCI_D2 && !dev->d2_support))
467 		return -EIO;
468 
469 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
470 
471 	/* If we're (effectively) in D3, force entire word to 0.
472 	 * This doesn't affect PME_Status, disables PME_En, and
473 	 * sets PowerState to 0.
474 	 */
475 	switch (dev->current_state) {
476 	case PCI_D0:
477 	case PCI_D1:
478 	case PCI_D2:
479 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
480 		pmcsr |= state;
481 		break;
482 	case PCI_UNKNOWN: /* Boot-up */
483 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
484 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) {
485 			need_restore = true;
486 			wait = true;
487 		}
488 		/* Fall-through: force to D0 */
489 	default:
490 		pmcsr = 0;
491 		break;
492 	}
493 
494 	/* enter specified state */
495 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
496 
497 	if (!wait)
498 		return 0;
499 
500 	/* Mandatory power management transition delays */
501 	/* see PCI PM 1.1 5.6.1 table 18 */
502 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
503 		msleep(pci_pm_d3_delay);
504 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
505 		udelay(PCI_PM_D2_DELAY);
506 
507 	dev->current_state = state;
508 
509 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
510 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
511 	 * from D3hot to D0 _may_ perform an internal reset, thereby
512 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
513 	 * For example, at least some versions of the 3c905B and the
514 	 * 3c556B exhibit this behaviour.
515 	 *
516 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
517 	 * devices in a D3hot state at boot.  Consequently, we need to
518 	 * restore at least the BARs so that the device will be
519 	 * accessible to its driver.
520 	 */
521 	if (need_restore)
522 		pci_restore_bars(dev);
523 
524 	if (wait && dev->bus->self)
525 		pcie_aspm_pm_state_change(dev->bus->self);
526 
527 	return 0;
528 }
529 
530 /**
531  * pci_update_current_state - Read PCI power state of given device from its
532  *                            PCI PM registers and cache it
533  * @dev: PCI device to handle.
534  * @state: State to cache in case the device doesn't have the PM capability
535  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)536 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
537 {
538 	if (dev->pm_cap) {
539 		u16 pmcsr;
540 
541 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
542 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
543 	} else {
544 		dev->current_state = state;
545 	}
546 }
547 
548 /**
549  * pci_set_power_state - Set the power state of a PCI device
550  * @dev: PCI device to handle.
551  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
552  *
553  * Transition a device to a new power state, using the platform formware and/or
554  * the device's PCI PM registers.
555  *
556  * RETURN VALUE:
557  * -EINVAL if the requested state is invalid.
558  * -EIO if device does not support PCI PM or its PM capabilities register has a
559  * wrong version, or device doesn't support the requested state.
560  * 0 if device already is in the requested state.
561  * 0 if device's power state has been successfully changed.
562  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)563 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
564 {
565 	int error;
566 
567 	/* bound the state we're entering */
568 	if (state > PCI_D3hot)
569 		state = PCI_D3hot;
570 	else if (state < PCI_D0)
571 		state = PCI_D0;
572 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
573 		/*
574 		 * If the device or the parent bridge do not support PCI PM,
575 		 * ignore the request if we're doing anything other than putting
576 		 * it into D0 (which would only happen on boot).
577 		 */
578 		return 0;
579 
580 	if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
581 		/*
582 		 * Allow the platform to change the state, for example via ACPI
583 		 * _PR0, _PS0 and some such, but do not trust it.
584 		 */
585 		int ret = platform_pci_set_power_state(dev, PCI_D0);
586 		if (!ret)
587 			pci_update_current_state(dev, PCI_D0);
588 	}
589 	/* This device is quirked not to be put into D3, so
590 	   don't put it in D3 */
591 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
592 		return 0;
593 
594 	error = pci_raw_set_power_state(dev, state, true);
595 
596 	if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
597 		/* Allow the platform to finalize the transition */
598 		int ret = platform_pci_set_power_state(dev, state);
599 		if (!ret) {
600 			pci_update_current_state(dev, state);
601 			error = 0;
602 		}
603 	}
604 
605 	return error;
606 }
607 
608 /**
609  * pci_choose_state - Choose the power state of a PCI device
610  * @dev: PCI device to be suspended
611  * @state: target sleep state for the whole system. This is the value
612  *	that is passed to suspend() function.
613  *
614  * Returns PCI power state suitable for given device and given system
615  * message.
616  */
617 
pci_choose_state(struct pci_dev * dev,pm_message_t state)618 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
619 {
620 	pci_power_t ret;
621 
622 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
623 		return PCI_D0;
624 
625 	ret = platform_pci_choose_state(dev);
626 	if (ret != PCI_POWER_ERROR)
627 		return ret;
628 
629 	switch (state.event) {
630 	case PM_EVENT_ON:
631 		return PCI_D0;
632 	case PM_EVENT_FREEZE:
633 	case PM_EVENT_PRETHAW:
634 		/* REVISIT both freeze and pre-thaw "should" use D0 */
635 	case PM_EVENT_SUSPEND:
636 	case PM_EVENT_HIBERNATE:
637 		return PCI_D3hot;
638 	default:
639 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
640 			 state.event);
641 		BUG();
642 	}
643 	return PCI_D0;
644 }
645 
646 EXPORT_SYMBOL(pci_choose_state);
647 
pci_save_pcie_state(struct pci_dev * dev)648 static int pci_save_pcie_state(struct pci_dev *dev)
649 {
650 	int pos, i = 0;
651 	struct pci_cap_saved_state *save_state;
652 	u16 *cap;
653 
654 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
655 	if (pos <= 0)
656 		return 0;
657 
658 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
659 	if (!save_state) {
660 		dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
661 		return -ENOMEM;
662 	}
663 	cap = (u16 *)&save_state->data[0];
664 
665 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
666 	pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
667 	pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
668 	pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
669 
670 	return 0;
671 }
672 
pci_restore_pcie_state(struct pci_dev * dev)673 static void pci_restore_pcie_state(struct pci_dev *dev)
674 {
675 	int i = 0, pos;
676 	struct pci_cap_saved_state *save_state;
677 	u16 *cap;
678 
679 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
680 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
681 	if (!save_state || pos <= 0)
682 		return;
683 	cap = (u16 *)&save_state->data[0];
684 
685 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
686 	pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
687 	pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
688 	pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
689 }
690 
691 
pci_save_pcix_state(struct pci_dev * dev)692 static int pci_save_pcix_state(struct pci_dev *dev)
693 {
694 	int pos;
695 	struct pci_cap_saved_state *save_state;
696 
697 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
698 	if (pos <= 0)
699 		return 0;
700 
701 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
702 	if (!save_state) {
703 		dev_err(&dev->dev, "buffer not found in %s\n", __FUNCTION__);
704 		return -ENOMEM;
705 	}
706 
707 	pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
708 
709 	return 0;
710 }
711 
pci_restore_pcix_state(struct pci_dev * dev)712 static void pci_restore_pcix_state(struct pci_dev *dev)
713 {
714 	int i = 0, pos;
715 	struct pci_cap_saved_state *save_state;
716 	u16 *cap;
717 
718 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
719 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
720 	if (!save_state || pos <= 0)
721 		return;
722 	cap = (u16 *)&save_state->data[0];
723 
724 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
725 }
726 
727 
728 /**
729  * pci_save_state - save the PCI configuration space of a device before suspending
730  * @dev: - PCI device that we're dealing with
731  */
732 int
pci_save_state(struct pci_dev * dev)733 pci_save_state(struct pci_dev *dev)
734 {
735 	int i;
736 	/* XXX: 100% dword access ok here? */
737 	for (i = 0; i < 16; i++)
738 		pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
739 	dev->state_saved = true;
740 	if ((i = pci_save_pcie_state(dev)) != 0)
741 		return i;
742 	if ((i = pci_save_pcix_state(dev)) != 0)
743 		return i;
744 	return 0;
745 }
746 
747 /**
748  * pci_restore_state - Restore the saved state of a PCI device
749  * @dev: - PCI device that we're dealing with
750  */
751 int
pci_restore_state(struct pci_dev * dev)752 pci_restore_state(struct pci_dev *dev)
753 {
754 	int i;
755 	u32 val;
756 
757 	/* PCI Express register must be restored first */
758 	pci_restore_pcie_state(dev);
759 
760 	/*
761 	 * The Base Address register should be programmed before the command
762 	 * register(s)
763 	 */
764 	for (i = 15; i >= 0; i--) {
765 		pci_read_config_dword(dev, i * 4, &val);
766 		if (val != dev->saved_config_space[i]) {
767 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
768 				"space at offset %#x (was %#x, writing %#x)\n",
769 				i, val, (int)dev->saved_config_space[i]);
770 			pci_write_config_dword(dev,i * 4,
771 				dev->saved_config_space[i]);
772 		}
773 	}
774 	pci_restore_pcix_state(dev);
775 	pci_restore_msi_state(dev);
776 
777 	return 0;
778 }
779 
do_pci_enable_device(struct pci_dev * dev,int bars)780 static int do_pci_enable_device(struct pci_dev *dev, int bars)
781 {
782 	int err;
783 
784 	err = pci_set_power_state(dev, PCI_D0);
785 	if (err < 0 && err != -EIO)
786 		return err;
787 	err = pcibios_enable_device(dev, bars);
788 	if (err < 0)
789 		return err;
790 	pci_fixup_device(pci_fixup_enable, dev);
791 
792 	return 0;
793 }
794 
795 /**
796  * pci_reenable_device - Resume abandoned device
797  * @dev: PCI device to be resumed
798  *
799  *  Note this function is a backend of pci_default_resume and is not supposed
800  *  to be called by normal code, write proper resume handler and use it instead.
801  */
pci_reenable_device(struct pci_dev * dev)802 int pci_reenable_device(struct pci_dev *dev)
803 {
804 	if (atomic_read(&dev->enable_cnt))
805 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
806 	return 0;
807 }
808 
__pci_enable_device_flags(struct pci_dev * dev,resource_size_t flags)809 static int __pci_enable_device_flags(struct pci_dev *dev,
810 				     resource_size_t flags)
811 {
812 	int err;
813 	int i, bars = 0;
814 
815 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
816 		return 0;		/* already enabled */
817 
818 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
819 		if (dev->resource[i].flags & flags)
820 			bars |= (1 << i);
821 
822 	err = do_pci_enable_device(dev, bars);
823 	if (err < 0)
824 		atomic_dec(&dev->enable_cnt);
825 	return err;
826 }
827 
828 /**
829  * pci_enable_device_io - Initialize a device for use with IO space
830  * @dev: PCI device to be initialized
831  *
832  *  Initialize device before it's used by a driver. Ask low-level code
833  *  to enable I/O resources. Wake up the device if it was suspended.
834  *  Beware, this function can fail.
835  */
pci_enable_device_io(struct pci_dev * dev)836 int pci_enable_device_io(struct pci_dev *dev)
837 {
838 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
839 }
840 
841 /**
842  * pci_enable_device_mem - Initialize a device for use with Memory space
843  * @dev: PCI device to be initialized
844  *
845  *  Initialize device before it's used by a driver. Ask low-level code
846  *  to enable Memory resources. Wake up the device if it was suspended.
847  *  Beware, this function can fail.
848  */
pci_enable_device_mem(struct pci_dev * dev)849 int pci_enable_device_mem(struct pci_dev *dev)
850 {
851 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
852 }
853 
854 /**
855  * pci_enable_device - Initialize device before it's used by a driver.
856  * @dev: PCI device to be initialized
857  *
858  *  Initialize device before it's used by a driver. Ask low-level code
859  *  to enable I/O and memory. Wake up the device if it was suspended.
860  *  Beware, this function can fail.
861  *
862  *  Note we don't actually enable the device many times if we call
863  *  this function repeatedly (we just increment the count).
864  */
pci_enable_device(struct pci_dev * dev)865 int pci_enable_device(struct pci_dev *dev)
866 {
867 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
868 }
869 
870 /*
871  * Managed PCI resources.  This manages device on/off, intx/msi/msix
872  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
873  * there's no need to track it separately.  pci_devres is initialized
874  * when a device is enabled using managed PCI device enable interface.
875  */
876 struct pci_devres {
877 	unsigned int enabled:1;
878 	unsigned int pinned:1;
879 	unsigned int orig_intx:1;
880 	unsigned int restore_intx:1;
881 	u32 region_mask;
882 };
883 
pcim_release(struct device * gendev,void * res)884 static void pcim_release(struct device *gendev, void *res)
885 {
886 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
887 	struct pci_devres *this = res;
888 	int i;
889 
890 	if (dev->msi_enabled)
891 		pci_disable_msi(dev);
892 	if (dev->msix_enabled)
893 		pci_disable_msix(dev);
894 
895 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
896 		if (this->region_mask & (1 << i))
897 			pci_release_region(dev, i);
898 
899 	if (this->restore_intx)
900 		pci_intx(dev, this->orig_intx);
901 
902 	if (this->enabled && !this->pinned)
903 		pci_disable_device(dev);
904 }
905 
get_pci_dr(struct pci_dev * pdev)906 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
907 {
908 	struct pci_devres *dr, *new_dr;
909 
910 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
911 	if (dr)
912 		return dr;
913 
914 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
915 	if (!new_dr)
916 		return NULL;
917 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
918 }
919 
find_pci_dr(struct pci_dev * pdev)920 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
921 {
922 	if (pci_is_managed(pdev))
923 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
924 	return NULL;
925 }
926 
927 /**
928  * pcim_enable_device - Managed pci_enable_device()
929  * @pdev: PCI device to be initialized
930  *
931  * Managed pci_enable_device().
932  */
pcim_enable_device(struct pci_dev * pdev)933 int pcim_enable_device(struct pci_dev *pdev)
934 {
935 	struct pci_devres *dr;
936 	int rc;
937 
938 	dr = get_pci_dr(pdev);
939 	if (unlikely(!dr))
940 		return -ENOMEM;
941 	if (dr->enabled)
942 		return 0;
943 
944 	rc = pci_enable_device(pdev);
945 	if (!rc) {
946 		pdev->is_managed = 1;
947 		dr->enabled = 1;
948 	}
949 	return rc;
950 }
951 
952 /**
953  * pcim_pin_device - Pin managed PCI device
954  * @pdev: PCI device to pin
955  *
956  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
957  * driver detach.  @pdev must have been enabled with
958  * pcim_enable_device().
959  */
pcim_pin_device(struct pci_dev * pdev)960 void pcim_pin_device(struct pci_dev *pdev)
961 {
962 	struct pci_devres *dr;
963 
964 	dr = find_pci_dr(pdev);
965 	WARN_ON(!dr || !dr->enabled);
966 	if (dr)
967 		dr->pinned = 1;
968 }
969 
970 /**
971  * pcibios_disable_device - disable arch specific PCI resources for device dev
972  * @dev: the PCI device to disable
973  *
974  * Disables architecture specific PCI resources for the device. This
975  * is the default implementation. Architecture implementations can
976  * override this.
977  */
pcibios_disable_device(struct pci_dev * dev)978 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
979 
do_pci_disable_device(struct pci_dev * dev)980 static void do_pci_disable_device(struct pci_dev *dev)
981 {
982 	u16 pci_command;
983 
984 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
985 	if (pci_command & PCI_COMMAND_MASTER) {
986 		pci_command &= ~PCI_COMMAND_MASTER;
987 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
988 	}
989 
990 	pcibios_disable_device(dev);
991 }
992 
993 /**
994  * pci_disable_enabled_device - Disable device without updating enable_cnt
995  * @dev: PCI device to disable
996  *
997  * NOTE: This function is a backend of PCI power management routines and is
998  * not supposed to be called drivers.
999  */
pci_disable_enabled_device(struct pci_dev * dev)1000 void pci_disable_enabled_device(struct pci_dev *dev)
1001 {
1002 	if (atomic_read(&dev->enable_cnt))
1003 		do_pci_disable_device(dev);
1004 }
1005 
1006 /**
1007  * pci_disable_device - Disable PCI device after use
1008  * @dev: PCI device to be disabled
1009  *
1010  * Signal to the system that the PCI device is not in use by the system
1011  * anymore.  This only involves disabling PCI bus-mastering, if active.
1012  *
1013  * Note we don't actually disable the device until all callers of
1014  * pci_device_enable() have called pci_device_disable().
1015  */
1016 void
pci_disable_device(struct pci_dev * dev)1017 pci_disable_device(struct pci_dev *dev)
1018 {
1019 	struct pci_devres *dr;
1020 
1021 	dr = find_pci_dr(dev);
1022 	if (dr)
1023 		dr->enabled = 0;
1024 
1025 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1026 		return;
1027 
1028 	do_pci_disable_device(dev);
1029 
1030 	dev->is_busmaster = 0;
1031 }
1032 
1033 /**
1034  * pcibios_set_pcie_reset_state - set reset state for device dev
1035  * @dev: the PCI-E device reset
1036  * @state: Reset state to enter into
1037  *
1038  *
1039  * Sets the PCI-E reset state for the device. This is the default
1040  * implementation. Architecture implementations can override this.
1041  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1042 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1043 							enum pcie_reset_state state)
1044 {
1045 	return -EINVAL;
1046 }
1047 
1048 /**
1049  * pci_set_pcie_reset_state - set reset state for device dev
1050  * @dev: the PCI-E device reset
1051  * @state: Reset state to enter into
1052  *
1053  *
1054  * Sets the PCI reset state for the device.
1055  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1056 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1057 {
1058 	return pcibios_set_pcie_reset_state(dev, state);
1059 }
1060 
1061 /**
1062  * pci_pme_capable - check the capability of PCI device to generate PME#
1063  * @dev: PCI device to handle.
1064  * @state: PCI state from which device will issue PME#.
1065  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1066 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1067 {
1068 	if (!dev->pm_cap)
1069 		return false;
1070 
1071 	return !!(dev->pme_support & (1 << state));
1072 }
1073 
1074 /**
1075  * pci_pme_active - enable or disable PCI device's PME# function
1076  * @dev: PCI device to handle.
1077  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1078  *
1079  * The caller must verify that the device is capable of generating PME# before
1080  * calling this function with @enable equal to 'true'.
1081  */
pci_pme_active(struct pci_dev * dev,bool enable)1082 void pci_pme_active(struct pci_dev *dev, bool enable)
1083 {
1084 	u16 pmcsr;
1085 
1086 	if (!dev->pm_cap)
1087 		return;
1088 
1089 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1090 	/* Clear PME_Status by writing 1 to it and enable PME# */
1091 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1092 	if (!enable)
1093 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1094 
1095 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1096 
1097 	dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1098 			enable ? "enabled" : "disabled");
1099 }
1100 
1101 /**
1102  * pci_enable_wake - enable PCI device as wakeup event source
1103  * @dev: PCI device affected
1104  * @state: PCI state from which device will issue wakeup events
1105  * @enable: True to enable event generation; false to disable
1106  *
1107  * This enables the device as a wakeup event source, or disables it.
1108  * When such events involves platform-specific hooks, those hooks are
1109  * called automatically by this routine.
1110  *
1111  * Devices with legacy power management (no standard PCI PM capabilities)
1112  * always require such platform hooks.
1113  *
1114  * RETURN VALUE:
1115  * 0 is returned on success
1116  * -EINVAL is returned if device is not supposed to wake up the system
1117  * Error code depending on the platform is returned if both the platform and
1118  * the native mechanism fail to enable the generation of wake-up events
1119  */
pci_enable_wake(struct pci_dev * dev,pci_power_t state,int enable)1120 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1121 {
1122 	int error = 0;
1123 	bool pme_done = false;
1124 
1125 	if (enable && !device_may_wakeup(&dev->dev))
1126 		return -EINVAL;
1127 
1128 	/*
1129 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1130 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1131 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1132 	 */
1133 
1134 	if (!enable && platform_pci_can_wakeup(dev))
1135 		error = platform_pci_sleep_wake(dev, false);
1136 
1137 	if (!enable || pci_pme_capable(dev, state)) {
1138 		pci_pme_active(dev, enable);
1139 		pme_done = true;
1140 	}
1141 
1142 	if (enable && platform_pci_can_wakeup(dev))
1143 		error = platform_pci_sleep_wake(dev, true);
1144 
1145 	return pme_done ? 0 : error;
1146 }
1147 
1148 /**
1149  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1150  * @dev: PCI device to prepare
1151  * @enable: True to enable wake-up event generation; false to disable
1152  *
1153  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1154  * and this function allows them to set that up cleanly - pci_enable_wake()
1155  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1156  * ordering constraints.
1157  *
1158  * This function only returns error code if the device is not capable of
1159  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1160  * enable wake-up power for it.
1161  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)1162 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1163 {
1164 	return pci_pme_capable(dev, PCI_D3cold) ?
1165 			pci_enable_wake(dev, PCI_D3cold, enable) :
1166 			pci_enable_wake(dev, PCI_D3hot, enable);
1167 }
1168 
1169 /**
1170  * pci_target_state - find an appropriate low power state for a given PCI dev
1171  * @dev: PCI device
1172  *
1173  * Use underlying platform code to find a supported low power state for @dev.
1174  * If the platform can't manage @dev, return the deepest state from which it
1175  * can generate wake events, based on any available PME info.
1176  */
pci_target_state(struct pci_dev * dev)1177 pci_power_t pci_target_state(struct pci_dev *dev)
1178 {
1179 	pci_power_t target_state = PCI_D3hot;
1180 
1181 	if (platform_pci_power_manageable(dev)) {
1182 		/*
1183 		 * Call the platform to choose the target state of the device
1184 		 * and enable wake-up from this state if supported.
1185 		 */
1186 		pci_power_t state = platform_pci_choose_state(dev);
1187 
1188 		switch (state) {
1189 		case PCI_POWER_ERROR:
1190 		case PCI_UNKNOWN:
1191 			break;
1192 		case PCI_D1:
1193 		case PCI_D2:
1194 			if (pci_no_d1d2(dev))
1195 				break;
1196 		default:
1197 			target_state = state;
1198 		}
1199 	} else if (device_may_wakeup(&dev->dev)) {
1200 		/*
1201 		 * Find the deepest state from which the device can generate
1202 		 * wake-up events, make it the target state and enable device
1203 		 * to generate PME#.
1204 		 */
1205 		if (!dev->pm_cap)
1206 			return PCI_POWER_ERROR;
1207 
1208 		if (dev->pme_support) {
1209 			while (target_state
1210 			      && !(dev->pme_support & (1 << target_state)))
1211 				target_state--;
1212 		}
1213 	}
1214 
1215 	return target_state;
1216 }
1217 
1218 /**
1219  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1220  * @dev: Device to handle.
1221  *
1222  * Choose the power state appropriate for the device depending on whether
1223  * it can wake up the system and/or is power manageable by the platform
1224  * (PCI_D3hot is the default) and put the device into that state.
1225  */
pci_prepare_to_sleep(struct pci_dev * dev)1226 int pci_prepare_to_sleep(struct pci_dev *dev)
1227 {
1228 	pci_power_t target_state = pci_target_state(dev);
1229 	int error;
1230 
1231 	if (target_state == PCI_POWER_ERROR)
1232 		return -EIO;
1233 
1234 	pci_enable_wake(dev, target_state, true);
1235 
1236 	error = pci_set_power_state(dev, target_state);
1237 
1238 	if (error)
1239 		pci_enable_wake(dev, target_state, false);
1240 
1241 	return error;
1242 }
1243 
1244 /**
1245  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1246  * @dev: Device to handle.
1247  *
1248  * Disable device's sytem wake-up capability and put it into D0.
1249  */
pci_back_from_sleep(struct pci_dev * dev)1250 int pci_back_from_sleep(struct pci_dev *dev)
1251 {
1252 	pci_enable_wake(dev, PCI_D0, false);
1253 	return pci_set_power_state(dev, PCI_D0);
1254 }
1255 
1256 /**
1257  * pci_pm_init - Initialize PM functions of given PCI device
1258  * @dev: PCI device to handle.
1259  */
pci_pm_init(struct pci_dev * dev)1260 void pci_pm_init(struct pci_dev *dev)
1261 {
1262 	int pm;
1263 	u16 pmc;
1264 
1265 	dev->pm_cap = 0;
1266 
1267 	/* find PCI PM capability in list */
1268 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1269 	if (!pm)
1270 		return;
1271 	/* Check device's ability to generate PME# */
1272 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1273 
1274 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1275 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1276 			pmc & PCI_PM_CAP_VER_MASK);
1277 		return;
1278 	}
1279 
1280 	dev->pm_cap = pm;
1281 
1282 	dev->d1_support = false;
1283 	dev->d2_support = false;
1284 	if (!pci_no_d1d2(dev)) {
1285 		if (pmc & PCI_PM_CAP_D1)
1286 			dev->d1_support = true;
1287 		if (pmc & PCI_PM_CAP_D2)
1288 			dev->d2_support = true;
1289 
1290 		if (dev->d1_support || dev->d2_support)
1291 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1292 				   dev->d1_support ? " D1" : "",
1293 				   dev->d2_support ? " D2" : "");
1294 	}
1295 
1296 	pmc &= PCI_PM_CAP_PME_MASK;
1297 	if (pmc) {
1298 		dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1299 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1300 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1301 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1302 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1303 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1304 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1305 		/*
1306 		 * Make device's PM flags reflect the wake-up capability, but
1307 		 * let the user space enable it to wake up the system as needed.
1308 		 */
1309 		device_set_wakeup_capable(&dev->dev, true);
1310 		device_set_wakeup_enable(&dev->dev, false);
1311 		/* Disable the PME# generation functionality */
1312 		pci_pme_active(dev, false);
1313 	} else {
1314 		dev->pme_support = 0;
1315 	}
1316 }
1317 
1318 /**
1319  * platform_pci_wakeup_init - init platform wakeup if present
1320  * @dev: PCI device
1321  *
1322  * Some devices don't have PCI PM caps but can still generate wakeup
1323  * events through platform methods (like ACPI events).  If @dev supports
1324  * platform wakeup events, set the device flag to indicate as much.  This
1325  * may be redundant if the device also supports PCI PM caps, but double
1326  * initialization should be safe in that case.
1327  */
platform_pci_wakeup_init(struct pci_dev * dev)1328 void platform_pci_wakeup_init(struct pci_dev *dev)
1329 {
1330 	if (!platform_pci_can_wakeup(dev))
1331 		return;
1332 
1333 	device_set_wakeup_capable(&dev->dev, true);
1334 	device_set_wakeup_enable(&dev->dev, false);
1335 	platform_pci_sleep_wake(dev, false);
1336 }
1337 
1338 /**
1339  * pci_add_save_buffer - allocate buffer for saving given capability registers
1340  * @dev: the PCI device
1341  * @cap: the capability to allocate the buffer for
1342  * @size: requested size of the buffer
1343  */
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)1344 static int pci_add_cap_save_buffer(
1345 	struct pci_dev *dev, char cap, unsigned int size)
1346 {
1347 	int pos;
1348 	struct pci_cap_saved_state *save_state;
1349 
1350 	pos = pci_find_capability(dev, cap);
1351 	if (pos <= 0)
1352 		return 0;
1353 
1354 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1355 	if (!save_state)
1356 		return -ENOMEM;
1357 
1358 	save_state->cap_nr = cap;
1359 	pci_add_saved_cap(dev, save_state);
1360 
1361 	return 0;
1362 }
1363 
1364 /**
1365  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1366  * @dev: the PCI device
1367  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)1368 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1369 {
1370 	int error;
1371 
1372 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 4 * sizeof(u16));
1373 	if (error)
1374 		dev_err(&dev->dev,
1375 			"unable to preallocate PCI Express save buffer\n");
1376 
1377 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1378 	if (error)
1379 		dev_err(&dev->dev,
1380 			"unable to preallocate PCI-X save buffer\n");
1381 }
1382 
1383 /**
1384  * pci_restore_standard_config - restore standard config registers of PCI device
1385  * @dev: PCI device to handle
1386  *
1387  * This function assumes that the device's configuration space is accessible.
1388  * If the device needs to be powered up, the function will wait for it to
1389  * change the state.
1390  */
pci_restore_standard_config(struct pci_dev * dev)1391 int pci_restore_standard_config(struct pci_dev *dev)
1392 {
1393 	pci_power_t prev_state;
1394 	int error;
1395 
1396 	pci_update_current_state(dev, PCI_D0);
1397 
1398 	prev_state = dev->current_state;
1399 	if (prev_state == PCI_D0)
1400 		goto Restore;
1401 
1402 	error = pci_raw_set_power_state(dev, PCI_D0, false);
1403 	if (error)
1404 		return error;
1405 
1406 	/*
1407 	 * This assumes that we won't get a bus in B2 or B3 from the BIOS, but
1408 	 * we've made this assumption forever and it appears to be universally
1409 	 * satisfied.
1410 	 */
1411 	switch(prev_state) {
1412 	case PCI_D3cold:
1413 	case PCI_D3hot:
1414 		mdelay(pci_pm_d3_delay);
1415 		break;
1416 	case PCI_D2:
1417 		udelay(PCI_PM_D2_DELAY);
1418 		break;
1419 	}
1420 
1421 	pci_update_current_state(dev, PCI_D0);
1422 
1423  Restore:
1424 	return dev->state_saved ? pci_restore_state(dev) : 0;
1425 }
1426 
1427 /**
1428  * pci_enable_ari - enable ARI forwarding if hardware support it
1429  * @dev: the PCI device
1430  */
pci_enable_ari(struct pci_dev * dev)1431 void pci_enable_ari(struct pci_dev *dev)
1432 {
1433 	int pos;
1434 	u32 cap;
1435 	u16 ctrl;
1436 	struct pci_dev *bridge;
1437 
1438 	if (!dev->is_pcie || dev->devfn)
1439 		return;
1440 
1441 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1442 	if (!pos)
1443 		return;
1444 
1445 	bridge = dev->bus->self;
1446 	if (!bridge || !bridge->is_pcie)
1447 		return;
1448 
1449 	pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1450 	if (!pos)
1451 		return;
1452 
1453 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1454 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1455 		return;
1456 
1457 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1458 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1459 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1460 
1461 	bridge->ari_enabled = 1;
1462 }
1463 
1464 /**
1465  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1466  * @dev: the PCI device
1467  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1468  *
1469  * Perform INTx swizzling for a device behind one level of bridge.  This is
1470  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1471  * behind bridges on add-in cards.
1472  */
pci_swizzle_interrupt_pin(struct pci_dev * dev,u8 pin)1473 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1474 {
1475 	return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1476 }
1477 
1478 int
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)1479 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1480 {
1481 	u8 pin;
1482 
1483 	pin = dev->pin;
1484 	if (!pin)
1485 		return -1;
1486 
1487 	while (dev->bus->self) {
1488 		pin = pci_swizzle_interrupt_pin(dev, pin);
1489 		dev = dev->bus->self;
1490 	}
1491 	*bridge = dev;
1492 	return pin;
1493 }
1494 
1495 /**
1496  * pci_common_swizzle - swizzle INTx all the way to root bridge
1497  * @dev: the PCI device
1498  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1499  *
1500  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
1501  * bridges all the way up to a PCI root bus.
1502  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)1503 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1504 {
1505 	u8 pin = *pinp;
1506 
1507 	while (dev->bus->self) {
1508 		pin = pci_swizzle_interrupt_pin(dev, pin);
1509 		dev = dev->bus->self;
1510 	}
1511 	*pinp = pin;
1512 	return PCI_SLOT(dev->devfn);
1513 }
1514 
1515 /**
1516  *	pci_release_region - Release a PCI bar
1517  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
1518  *	@bar: BAR to release
1519  *
1520  *	Releases the PCI I/O and memory resources previously reserved by a
1521  *	successful call to pci_request_region.  Call this function only
1522  *	after all use of the PCI regions has ceased.
1523  */
pci_release_region(struct pci_dev * pdev,int bar)1524 void pci_release_region(struct pci_dev *pdev, int bar)
1525 {
1526 	struct pci_devres *dr;
1527 
1528 	if (pci_resource_len(pdev, bar) == 0)
1529 		return;
1530 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1531 		release_region(pci_resource_start(pdev, bar),
1532 				pci_resource_len(pdev, bar));
1533 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1534 		release_mem_region(pci_resource_start(pdev, bar),
1535 				pci_resource_len(pdev, bar));
1536 
1537 	dr = find_pci_dr(pdev);
1538 	if (dr)
1539 		dr->region_mask &= ~(1 << bar);
1540 }
1541 
1542 /**
1543  *	__pci_request_region - Reserved PCI I/O and memory resource
1544  *	@pdev: PCI device whose resources are to be reserved
1545  *	@bar: BAR to be reserved
1546  *	@res_name: Name to be associated with resource.
1547  *	@exclusive: whether the region access is exclusive or not
1548  *
1549  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1550  *	being reserved by owner @res_name.  Do not access any
1551  *	address inside the PCI regions unless this call returns
1552  *	successfully.
1553  *
1554  *	If @exclusive is set, then the region is marked so that userspace
1555  *	is explicitly not allowed to map the resource via /dev/mem or
1556  * 	sysfs MMIO access.
1557  *
1558  *	Returns 0 on success, or %EBUSY on error.  A warning
1559  *	message is also printed on failure.
1560  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)1561 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1562 									int exclusive)
1563 {
1564 	struct pci_devres *dr;
1565 
1566 	if (pci_resource_len(pdev, bar) == 0)
1567 		return 0;
1568 
1569 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1570 		if (!request_region(pci_resource_start(pdev, bar),
1571 			    pci_resource_len(pdev, bar), res_name))
1572 			goto err_out;
1573 	}
1574 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1575 		if (!__request_mem_region(pci_resource_start(pdev, bar),
1576 					pci_resource_len(pdev, bar), res_name,
1577 					exclusive))
1578 			goto err_out;
1579 	}
1580 
1581 	dr = find_pci_dr(pdev);
1582 	if (dr)
1583 		dr->region_mask |= 1 << bar;
1584 
1585 	return 0;
1586 
1587 err_out:
1588 	dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1589 		 bar,
1590 		 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1591 		 &pdev->resource[bar]);
1592 	return -EBUSY;
1593 }
1594 
1595 /**
1596  *	pci_request_region - Reserve PCI I/O and memory resource
1597  *	@pdev: PCI device whose resources are to be reserved
1598  *	@bar: BAR to be reserved
1599  *	@res_name: Name to be associated with resource
1600  *
1601  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
1602  *	being reserved by owner @res_name.  Do not access any
1603  *	address inside the PCI regions unless this call returns
1604  *	successfully.
1605  *
1606  *	Returns 0 on success, or %EBUSY on error.  A warning
1607  *	message is also printed on failure.
1608  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)1609 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1610 {
1611 	return __pci_request_region(pdev, bar, res_name, 0);
1612 }
1613 
1614 /**
1615  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
1616  *	@pdev: PCI device whose resources are to be reserved
1617  *	@bar: BAR to be reserved
1618  *	@res_name: Name to be associated with resource.
1619  *
1620  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1621  *	being reserved by owner @res_name.  Do not access any
1622  *	address inside the PCI regions unless this call returns
1623  *	successfully.
1624  *
1625  *	Returns 0 on success, or %EBUSY on error.  A warning
1626  *	message is also printed on failure.
1627  *
1628  *	The key difference that _exclusive makes it that userspace is
1629  *	explicitly not allowed to map the resource via /dev/mem or
1630  * 	sysfs.
1631  */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)1632 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1633 {
1634 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1635 }
1636 /**
1637  * pci_release_selected_regions - Release selected PCI I/O and memory resources
1638  * @pdev: PCI device whose resources were previously reserved
1639  * @bars: Bitmask of BARs to be released
1640  *
1641  * Release selected PCI I/O and memory resources previously reserved.
1642  * Call this function only after all use of the PCI regions has ceased.
1643  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)1644 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1645 {
1646 	int i;
1647 
1648 	for (i = 0; i < 6; i++)
1649 		if (bars & (1 << i))
1650 			pci_release_region(pdev, i);
1651 }
1652 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)1653 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1654 				 const char *res_name, int excl)
1655 {
1656 	int i;
1657 
1658 	for (i = 0; i < 6; i++)
1659 		if (bars & (1 << i))
1660 			if (__pci_request_region(pdev, i, res_name, excl))
1661 				goto err_out;
1662 	return 0;
1663 
1664 err_out:
1665 	while(--i >= 0)
1666 		if (bars & (1 << i))
1667 			pci_release_region(pdev, i);
1668 
1669 	return -EBUSY;
1670 }
1671 
1672 
1673 /**
1674  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1675  * @pdev: PCI device whose resources are to be reserved
1676  * @bars: Bitmask of BARs to be requested
1677  * @res_name: Name to be associated with resource
1678  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)1679 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1680 				 const char *res_name)
1681 {
1682 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
1683 }
1684 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)1685 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1686 				 int bars, const char *res_name)
1687 {
1688 	return __pci_request_selected_regions(pdev, bars, res_name,
1689 			IORESOURCE_EXCLUSIVE);
1690 }
1691 
1692 /**
1693  *	pci_release_regions - Release reserved PCI I/O and memory resources
1694  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
1695  *
1696  *	Releases all PCI I/O and memory resources previously reserved by a
1697  *	successful call to pci_request_regions.  Call this function only
1698  *	after all use of the PCI regions has ceased.
1699  */
1700 
pci_release_regions(struct pci_dev * pdev)1701 void pci_release_regions(struct pci_dev *pdev)
1702 {
1703 	pci_release_selected_regions(pdev, (1 << 6) - 1);
1704 }
1705 
1706 /**
1707  *	pci_request_regions - Reserved PCI I/O and memory resources
1708  *	@pdev: PCI device whose resources are to be reserved
1709  *	@res_name: Name to be associated with resource.
1710  *
1711  *	Mark all PCI regions associated with PCI device @pdev as
1712  *	being reserved by owner @res_name.  Do not access any
1713  *	address inside the PCI regions unless this call returns
1714  *	successfully.
1715  *
1716  *	Returns 0 on success, or %EBUSY on error.  A warning
1717  *	message is also printed on failure.
1718  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)1719 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1720 {
1721 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1722 }
1723 
1724 /**
1725  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1726  *	@pdev: PCI device whose resources are to be reserved
1727  *	@res_name: Name to be associated with resource.
1728  *
1729  *	Mark all PCI regions associated with PCI device @pdev as
1730  *	being reserved by owner @res_name.  Do not access any
1731  *	address inside the PCI regions unless this call returns
1732  *	successfully.
1733  *
1734  *	pci_request_regions_exclusive() will mark the region so that
1735  * 	/dev/mem and the sysfs MMIO access will not be allowed.
1736  *
1737  *	Returns 0 on success, or %EBUSY on error.  A warning
1738  *	message is also printed on failure.
1739  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)1740 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1741 {
1742 	return pci_request_selected_regions_exclusive(pdev,
1743 					((1 << 6) - 1), res_name);
1744 }
1745 
__pci_set_master(struct pci_dev * dev,bool enable)1746 static void __pci_set_master(struct pci_dev *dev, bool enable)
1747 {
1748 	u16 old_cmd, cmd;
1749 
1750 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1751 	if (enable)
1752 		cmd = old_cmd | PCI_COMMAND_MASTER;
1753 	else
1754 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
1755 	if (cmd != old_cmd) {
1756 		dev_dbg(&dev->dev, "%s bus mastering\n",
1757 			enable ? "enabling" : "disabling");
1758 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1759 	}
1760 	dev->is_busmaster = enable;
1761 }
1762 
1763 /**
1764  * pci_set_master - enables bus-mastering for device dev
1765  * @dev: the PCI device to enable
1766  *
1767  * Enables bus-mastering on the device and calls pcibios_set_master()
1768  * to do the needed arch specific settings.
1769  */
pci_set_master(struct pci_dev * dev)1770 void pci_set_master(struct pci_dev *dev)
1771 {
1772 	__pci_set_master(dev, true);
1773 	pcibios_set_master(dev);
1774 }
1775 
1776 /**
1777  * pci_clear_master - disables bus-mastering for device dev
1778  * @dev: the PCI device to disable
1779  */
pci_clear_master(struct pci_dev * dev)1780 void pci_clear_master(struct pci_dev *dev)
1781 {
1782 	__pci_set_master(dev, false);
1783 }
1784 
1785 #ifdef PCI_DISABLE_MWI
pci_set_mwi(struct pci_dev * dev)1786 int pci_set_mwi(struct pci_dev *dev)
1787 {
1788 	return 0;
1789 }
1790 
pci_try_set_mwi(struct pci_dev * dev)1791 int pci_try_set_mwi(struct pci_dev *dev)
1792 {
1793 	return 0;
1794 }
1795 
pci_clear_mwi(struct pci_dev * dev)1796 void pci_clear_mwi(struct pci_dev *dev)
1797 {
1798 }
1799 
1800 #else
1801 
1802 #ifndef PCI_CACHE_LINE_BYTES
1803 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1804 #endif
1805 
1806 /* This can be overridden by arch code. */
1807 /* Don't forget this is measured in 32-bit words, not bytes */
1808 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1809 
1810 /**
1811  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1812  * @dev: the PCI device for which MWI is to be enabled
1813  *
1814  * Helper function for pci_set_mwi.
1815  * Originally copied from drivers/net/acenic.c.
1816  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1817  *
1818  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1819  */
1820 static int
pci_set_cacheline_size(struct pci_dev * dev)1821 pci_set_cacheline_size(struct pci_dev *dev)
1822 {
1823 	u8 cacheline_size;
1824 
1825 	if (!pci_cache_line_size)
1826 		return -EINVAL;		/* The system doesn't support MWI. */
1827 
1828 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1829 	   equal to or multiple of the right value. */
1830 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1831 	if (cacheline_size >= pci_cache_line_size &&
1832 	    (cacheline_size % pci_cache_line_size) == 0)
1833 		return 0;
1834 
1835 	/* Write the correct value. */
1836 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1837 	/* Read it back. */
1838 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1839 	if (cacheline_size == pci_cache_line_size)
1840 		return 0;
1841 
1842 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1843 		   "supported\n", pci_cache_line_size << 2);
1844 
1845 	return -EINVAL;
1846 }
1847 
1848 /**
1849  * pci_set_mwi - enables memory-write-invalidate PCI transaction
1850  * @dev: the PCI device for which MWI is enabled
1851  *
1852  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1853  *
1854  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1855  */
1856 int
pci_set_mwi(struct pci_dev * dev)1857 pci_set_mwi(struct pci_dev *dev)
1858 {
1859 	int rc;
1860 	u16 cmd;
1861 
1862 	rc = pci_set_cacheline_size(dev);
1863 	if (rc)
1864 		return rc;
1865 
1866 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1867 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1868 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1869 		cmd |= PCI_COMMAND_INVALIDATE;
1870 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 /**
1877  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1878  * @dev: the PCI device for which MWI is enabled
1879  *
1880  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1881  * Callers are not required to check the return value.
1882  *
1883  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1884  */
pci_try_set_mwi(struct pci_dev * dev)1885 int pci_try_set_mwi(struct pci_dev *dev)
1886 {
1887 	int rc = pci_set_mwi(dev);
1888 	return rc;
1889 }
1890 
1891 /**
1892  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1893  * @dev: the PCI device to disable
1894  *
1895  * Disables PCI Memory-Write-Invalidate transaction on the device
1896  */
1897 void
pci_clear_mwi(struct pci_dev * dev)1898 pci_clear_mwi(struct pci_dev *dev)
1899 {
1900 	u16 cmd;
1901 
1902 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1903 	if (cmd & PCI_COMMAND_INVALIDATE) {
1904 		cmd &= ~PCI_COMMAND_INVALIDATE;
1905 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1906 	}
1907 }
1908 #endif /* ! PCI_DISABLE_MWI */
1909 
1910 /**
1911  * pci_intx - enables/disables PCI INTx for device dev
1912  * @pdev: the PCI device to operate on
1913  * @enable: boolean: whether to enable or disable PCI INTx
1914  *
1915  * Enables/disables PCI INTx for device dev
1916  */
1917 void
pci_intx(struct pci_dev * pdev,int enable)1918 pci_intx(struct pci_dev *pdev, int enable)
1919 {
1920 	u16 pci_command, new;
1921 
1922 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1923 
1924 	if (enable) {
1925 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1926 	} else {
1927 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
1928 	}
1929 
1930 	if (new != pci_command) {
1931 		struct pci_devres *dr;
1932 
1933 		pci_write_config_word(pdev, PCI_COMMAND, new);
1934 
1935 		dr = find_pci_dr(pdev);
1936 		if (dr && !dr->restore_intx) {
1937 			dr->restore_intx = 1;
1938 			dr->orig_intx = !enable;
1939 		}
1940 	}
1941 }
1942 
1943 /**
1944  * pci_msi_off - disables any msi or msix capabilities
1945  * @dev: the PCI device to operate on
1946  *
1947  * If you want to use msi see pci_enable_msi and friends.
1948  * This is a lower level primitive that allows us to disable
1949  * msi operation at the device level.
1950  */
pci_msi_off(struct pci_dev * dev)1951 void pci_msi_off(struct pci_dev *dev)
1952 {
1953 	int pos;
1954 	u16 control;
1955 
1956 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1957 	if (pos) {
1958 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1959 		control &= ~PCI_MSI_FLAGS_ENABLE;
1960 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1961 	}
1962 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1963 	if (pos) {
1964 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1965 		control &= ~PCI_MSIX_FLAGS_ENABLE;
1966 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1967 	}
1968 }
1969 
1970 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1971 /*
1972  * These can be overridden by arch-specific implementations
1973  */
1974 int
pci_set_dma_mask(struct pci_dev * dev,u64 mask)1975 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1976 {
1977 	if (!pci_dma_supported(dev, mask))
1978 		return -EIO;
1979 
1980 	dev->dma_mask = mask;
1981 
1982 	return 0;
1983 }
1984 
1985 int
pci_set_consistent_dma_mask(struct pci_dev * dev,u64 mask)1986 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1987 {
1988 	if (!pci_dma_supported(dev, mask))
1989 		return -EIO;
1990 
1991 	dev->dev.coherent_dma_mask = mask;
1992 
1993 	return 0;
1994 }
1995 #endif
1996 
1997 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
pci_set_dma_max_seg_size(struct pci_dev * dev,unsigned int size)1998 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1999 {
2000 	return dma_set_max_seg_size(&dev->dev, size);
2001 }
2002 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2003 #endif
2004 
2005 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
pci_set_dma_seg_boundary(struct pci_dev * dev,unsigned long mask)2006 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2007 {
2008 	return dma_set_seg_boundary(&dev->dev, mask);
2009 }
2010 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2011 #endif
2012 
__pcie_flr(struct pci_dev * dev,int probe)2013 static int __pcie_flr(struct pci_dev *dev, int probe)
2014 {
2015 	u16 status;
2016 	u32 cap;
2017 	int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2018 
2019 	if (!exppos)
2020 		return -ENOTTY;
2021 	pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
2022 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2023 		return -ENOTTY;
2024 
2025 	if (probe)
2026 		return 0;
2027 
2028 	pci_block_user_cfg_access(dev);
2029 
2030 	/* Wait for Transaction Pending bit clean */
2031 	msleep(100);
2032 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2033 	if (status & PCI_EXP_DEVSTA_TRPND) {
2034 		dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
2035 			"sleeping for 1 second\n");
2036 		ssleep(1);
2037 		pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2038 		if (status & PCI_EXP_DEVSTA_TRPND)
2039 			dev_info(&dev->dev, "Still busy after 1s; "
2040 				"proceeding with reset anyway\n");
2041 	}
2042 
2043 	pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
2044 				PCI_EXP_DEVCTL_BCR_FLR);
2045 	mdelay(100);
2046 
2047 	pci_unblock_user_cfg_access(dev);
2048 	return 0;
2049 }
2050 
__pci_af_flr(struct pci_dev * dev,int probe)2051 static int __pci_af_flr(struct pci_dev *dev, int probe)
2052 {
2053 	int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2054 	u8 status;
2055 	u8 cap;
2056 
2057 	if (!cappos)
2058 		return -ENOTTY;
2059 	pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2060 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2061 		return -ENOTTY;
2062 
2063 	if (probe)
2064 		return 0;
2065 
2066 	pci_block_user_cfg_access(dev);
2067 
2068 	/* Wait for Transaction Pending bit clean */
2069 	msleep(100);
2070 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2071 	if (status & PCI_AF_STATUS_TP) {
2072 		dev_info(&dev->dev, "Busy after 100ms while trying to"
2073 				" reset; sleeping for 1 second\n");
2074 		ssleep(1);
2075 		pci_read_config_byte(dev,
2076 				cappos + PCI_AF_STATUS, &status);
2077 		if (status & PCI_AF_STATUS_TP)
2078 			dev_info(&dev->dev, "Still busy after 1s; "
2079 					"proceeding with reset anyway\n");
2080 	}
2081 	pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2082 	mdelay(100);
2083 
2084 	pci_unblock_user_cfg_access(dev);
2085 	return 0;
2086 }
2087 
__pci_reset_function(struct pci_dev * pdev,int probe)2088 static int __pci_reset_function(struct pci_dev *pdev, int probe)
2089 {
2090 	int res;
2091 
2092 	res = __pcie_flr(pdev, probe);
2093 	if (res != -ENOTTY)
2094 		return res;
2095 
2096 	res = __pci_af_flr(pdev, probe);
2097 	if (res != -ENOTTY)
2098 		return res;
2099 
2100 	return res;
2101 }
2102 
2103 /**
2104  * pci_execute_reset_function() - Reset a PCI device function
2105  * @dev: Device function to reset
2106  *
2107  * Some devices allow an individual function to be reset without affecting
2108  * other functions in the same device.  The PCI device must be responsive
2109  * to PCI config space in order to use this function.
2110  *
2111  * The device function is presumed to be unused when this function is called.
2112  * Resetting the device will make the contents of PCI configuration space
2113  * random, so any caller of this must be prepared to reinitialise the
2114  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2115  * etc.
2116  *
2117  * Returns 0 if the device function was successfully reset or -ENOTTY if the
2118  * device doesn't support resetting a single function.
2119  */
pci_execute_reset_function(struct pci_dev * dev)2120 int pci_execute_reset_function(struct pci_dev *dev)
2121 {
2122 	return __pci_reset_function(dev, 0);
2123 }
2124 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2125 
2126 /**
2127  * pci_reset_function() - quiesce and reset a PCI device function
2128  * @dev: Device function to reset
2129  *
2130  * Some devices allow an individual function to be reset without affecting
2131  * other functions in the same device.  The PCI device must be responsive
2132  * to PCI config space in order to use this function.
2133  *
2134  * This function does not just reset the PCI portion of a device, but
2135  * clears all the state associated with the device.  This function differs
2136  * from pci_execute_reset_function in that it saves and restores device state
2137  * over the reset.
2138  *
2139  * Returns 0 if the device function was successfully reset or -ENOTTY if the
2140  * device doesn't support resetting a single function.
2141  */
pci_reset_function(struct pci_dev * dev)2142 int pci_reset_function(struct pci_dev *dev)
2143 {
2144 	int r = __pci_reset_function(dev, 1);
2145 
2146 	if (r < 0)
2147 		return r;
2148 
2149 	if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2150 		disable_irq(dev->irq);
2151 	pci_save_state(dev);
2152 
2153 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2154 
2155 	r = pci_execute_reset_function(dev);
2156 
2157 	pci_restore_state(dev);
2158 	if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2159 		enable_irq(dev->irq);
2160 
2161 	return r;
2162 }
2163 EXPORT_SYMBOL_GPL(pci_reset_function);
2164 
2165 /**
2166  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2167  * @dev: PCI device to query
2168  *
2169  * Returns mmrbc: maximum designed memory read count in bytes
2170  *    or appropriate error value.
2171  */
pcix_get_max_mmrbc(struct pci_dev * dev)2172 int pcix_get_max_mmrbc(struct pci_dev *dev)
2173 {
2174 	int err, cap;
2175 	u32 stat;
2176 
2177 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2178 	if (!cap)
2179 		return -EINVAL;
2180 
2181 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2182 	if (err)
2183 		return -EINVAL;
2184 
2185 	return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2186 }
2187 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2188 
2189 /**
2190  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2191  * @dev: PCI device to query
2192  *
2193  * Returns mmrbc: maximum memory read count in bytes
2194  *    or appropriate error value.
2195  */
pcix_get_mmrbc(struct pci_dev * dev)2196 int pcix_get_mmrbc(struct pci_dev *dev)
2197 {
2198 	int ret, cap;
2199 	u32 cmd;
2200 
2201 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2202 	if (!cap)
2203 		return -EINVAL;
2204 
2205 	ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2206 	if (!ret)
2207 		ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2208 
2209 	return ret;
2210 }
2211 EXPORT_SYMBOL(pcix_get_mmrbc);
2212 
2213 /**
2214  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2215  * @dev: PCI device to query
2216  * @mmrbc: maximum memory read count in bytes
2217  *    valid values are 512, 1024, 2048, 4096
2218  *
2219  * If possible sets maximum memory read byte count, some bridges have erratas
2220  * that prevent this.
2221  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)2222 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2223 {
2224 	int cap, err = -EINVAL;
2225 	u32 stat, cmd, v, o;
2226 
2227 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2228 		goto out;
2229 
2230 	v = ffs(mmrbc) - 10;
2231 
2232 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2233 	if (!cap)
2234 		goto out;
2235 
2236 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2237 	if (err)
2238 		goto out;
2239 
2240 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2241 		return -E2BIG;
2242 
2243 	err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2244 	if (err)
2245 		goto out;
2246 
2247 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2248 	if (o != v) {
2249 		if (v > o && dev->bus &&
2250 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2251 			return -EIO;
2252 
2253 		cmd &= ~PCI_X_CMD_MAX_READ;
2254 		cmd |= v << 2;
2255 		err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2256 	}
2257 out:
2258 	return err;
2259 }
2260 EXPORT_SYMBOL(pcix_set_mmrbc);
2261 
2262 /**
2263  * pcie_get_readrq - get PCI Express read request size
2264  * @dev: PCI device to query
2265  *
2266  * Returns maximum memory read request in bytes
2267  *    or appropriate error value.
2268  */
pcie_get_readrq(struct pci_dev * dev)2269 int pcie_get_readrq(struct pci_dev *dev)
2270 {
2271 	int ret, cap;
2272 	u16 ctl;
2273 
2274 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2275 	if (!cap)
2276 		return -EINVAL;
2277 
2278 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2279 	if (!ret)
2280 	ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2281 
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL(pcie_get_readrq);
2285 
2286 /**
2287  * pcie_set_readrq - set PCI Express maximum memory read request
2288  * @dev: PCI device to query
2289  * @rq: maximum memory read count in bytes
2290  *    valid values are 128, 256, 512, 1024, 2048, 4096
2291  *
2292  * If possible sets maximum read byte count
2293  */
pcie_set_readrq(struct pci_dev * dev,int rq)2294 int pcie_set_readrq(struct pci_dev *dev, int rq)
2295 {
2296 	int cap, err = -EINVAL;
2297 	u16 ctl, v;
2298 
2299 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2300 		goto out;
2301 
2302 	v = (ffs(rq) - 8) << 12;
2303 
2304 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2305 	if (!cap)
2306 		goto out;
2307 
2308 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2309 	if (err)
2310 		goto out;
2311 
2312 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2313 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
2314 		ctl |= v;
2315 		err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2316 	}
2317 
2318 out:
2319 	return err;
2320 }
2321 EXPORT_SYMBOL(pcie_set_readrq);
2322 
2323 /**
2324  * pci_select_bars - Make BAR mask from the type of resource
2325  * @dev: the PCI device for which BAR mask is made
2326  * @flags: resource type mask to be selected
2327  *
2328  * This helper routine makes bar mask from the type of resource.
2329  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)2330 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2331 {
2332 	int i, bars = 0;
2333 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
2334 		if (pci_resource_flags(dev, i) & flags)
2335 			bars |= (1 << i);
2336 	return bars;
2337 }
2338 
2339 /**
2340  * pci_resource_bar - get position of the BAR associated with a resource
2341  * @dev: the PCI device
2342  * @resno: the resource number
2343  * @type: the BAR type to be filled in
2344  *
2345  * Returns BAR position in config space, or 0 if the BAR is invalid.
2346  */
pci_resource_bar(struct pci_dev * dev,int resno,enum pci_bar_type * type)2347 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2348 {
2349 	if (resno < PCI_ROM_RESOURCE) {
2350 		*type = pci_bar_unknown;
2351 		return PCI_BASE_ADDRESS_0 + 4 * resno;
2352 	} else if (resno == PCI_ROM_RESOURCE) {
2353 		*type = pci_bar_mem32;
2354 		return dev->rom_base_reg;
2355 	}
2356 
2357 	dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2358 	return 0;
2359 }
2360 
pci_no_domains(void)2361 static void __devinit pci_no_domains(void)
2362 {
2363 #ifdef CONFIG_PCI_DOMAINS
2364 	pci_domains_supported = 0;
2365 #endif
2366 }
2367 
2368 /**
2369  * pci_ext_cfg_enabled - can we access extended PCI config space?
2370  * @dev: The PCI device of the root bridge.
2371  *
2372  * Returns 1 if we can access PCI extended config space (offsets
2373  * greater than 0xff). This is the default implementation. Architecture
2374  * implementations can override this.
2375  */
pci_ext_cfg_avail(struct pci_dev * dev)2376 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2377 {
2378 	return 1;
2379 }
2380 
pci_init(void)2381 static int __devinit pci_init(void)
2382 {
2383 	struct pci_dev *dev = NULL;
2384 
2385 	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2386 		pci_fixup_device(pci_fixup_final, dev);
2387 	}
2388 
2389 	return 0;
2390 }
2391 
pci_setup(char * str)2392 static int __init pci_setup(char *str)
2393 {
2394 	while (str) {
2395 		char *k = strchr(str, ',');
2396 		if (k)
2397 			*k++ = 0;
2398 		if (*str && (str = pcibios_setup(str)) && *str) {
2399 			if (!strcmp(str, "nomsi")) {
2400 				pci_no_msi();
2401 			} else if (!strcmp(str, "noaer")) {
2402 				pci_no_aer();
2403 			} else if (!strcmp(str, "nodomains")) {
2404 				pci_no_domains();
2405 			} else if (!strncmp(str, "cbiosize=", 9)) {
2406 				pci_cardbus_io_size = memparse(str + 9, &str);
2407 			} else if (!strncmp(str, "cbmemsize=", 10)) {
2408 				pci_cardbus_mem_size = memparse(str + 10, &str);
2409 			} else {
2410 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
2411 						str);
2412 			}
2413 		}
2414 		str = k;
2415 	}
2416 	return 0;
2417 }
2418 early_param("pci", pci_setup);
2419 
2420 device_initcall(pci_init);
2421 
2422 EXPORT_SYMBOL(pci_reenable_device);
2423 EXPORT_SYMBOL(pci_enable_device_io);
2424 EXPORT_SYMBOL(pci_enable_device_mem);
2425 EXPORT_SYMBOL(pci_enable_device);
2426 EXPORT_SYMBOL(pcim_enable_device);
2427 EXPORT_SYMBOL(pcim_pin_device);
2428 EXPORT_SYMBOL(pci_disable_device);
2429 EXPORT_SYMBOL(pci_find_capability);
2430 EXPORT_SYMBOL(pci_bus_find_capability);
2431 EXPORT_SYMBOL(pci_release_regions);
2432 EXPORT_SYMBOL(pci_request_regions);
2433 EXPORT_SYMBOL(pci_request_regions_exclusive);
2434 EXPORT_SYMBOL(pci_release_region);
2435 EXPORT_SYMBOL(pci_request_region);
2436 EXPORT_SYMBOL(pci_request_region_exclusive);
2437 EXPORT_SYMBOL(pci_release_selected_regions);
2438 EXPORT_SYMBOL(pci_request_selected_regions);
2439 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2440 EXPORT_SYMBOL(pci_set_master);
2441 EXPORT_SYMBOL(pci_clear_master);
2442 EXPORT_SYMBOL(pci_set_mwi);
2443 EXPORT_SYMBOL(pci_try_set_mwi);
2444 EXPORT_SYMBOL(pci_clear_mwi);
2445 EXPORT_SYMBOL_GPL(pci_intx);
2446 EXPORT_SYMBOL(pci_set_dma_mask);
2447 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2448 EXPORT_SYMBOL(pci_assign_resource);
2449 EXPORT_SYMBOL(pci_find_parent_resource);
2450 EXPORT_SYMBOL(pci_select_bars);
2451 
2452 EXPORT_SYMBOL(pci_set_power_state);
2453 EXPORT_SYMBOL(pci_save_state);
2454 EXPORT_SYMBOL(pci_restore_state);
2455 EXPORT_SYMBOL(pci_pme_capable);
2456 EXPORT_SYMBOL(pci_pme_active);
2457 EXPORT_SYMBOL(pci_enable_wake);
2458 EXPORT_SYMBOL(pci_wake_from_d3);
2459 EXPORT_SYMBOL(pci_target_state);
2460 EXPORT_SYMBOL(pci_prepare_to_sleep);
2461 EXPORT_SYMBOL(pci_back_from_sleep);
2462 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2463 
2464