• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *    in2000.c -  Linux device driver for the
3  *                Always IN2000 ISA SCSI card.
4  *
5  * Copyright (c) 1996 John Shifflett, GeoLog Consulting
6  *    john@geolog.com
7  *    jshiffle@netcom.com
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  *
25  * Drew Eckhardt's excellent 'Generic NCR5380' sources provided
26  * much of the inspiration and some of the code for this driver.
27  * The Linux IN2000 driver distributed in the Linux kernels through
28  * version 1.2.13 was an extremely valuable reference on the arcane
29  * (and still mysterious) workings of the IN2000's fifo. It also
30  * is where I lifted in2000_biosparam(), the gist of the card
31  * detection scheme, and other bits of code. Many thanks to the
32  * talented and courageous people who wrote, contributed to, and
33  * maintained that driver (including Brad McLean, Shaun Savage,
34  * Bill Earnest, Larry Doolittle, Roger Sunshine, John Luckey,
35  * Matt Postiff, Peter Lu, zerucha@shell.portal.com, and Eric
36  * Youngdale). I should also mention the driver written by
37  * Hamish Macdonald for the (GASP!) Amiga A2091 card, included
38  * in the Linux-m68k distribution; it gave me a good initial
39  * understanding of the proper way to run a WD33c93 chip, and I
40  * ended up stealing lots of code from it.
41  *
42  * _This_ driver is (I feel) an improvement over the old one in
43  * several respects:
44  *    -  All problems relating to the data size of a SCSI request are
45  *          gone (as far as I know). The old driver couldn't handle
46  *          swapping to partitions because that involved 4k blocks, nor
47  *          could it deal with the st.c tape driver unmodified, because
48  *          that usually involved 4k - 32k blocks. The old driver never
49  *          quite got away from a morbid dependence on 2k block sizes -
50  *          which of course is the size of the card's fifo.
51  *
52  *    -  Target Disconnection/Reconnection is now supported. Any
53  *          system with more than one device active on the SCSI bus
54  *          will benefit from this. The driver defaults to what I'm
55  *          calling 'adaptive disconnect' - meaning that each command
56  *          is evaluated individually as to whether or not it should
57  *          be run with the option to disconnect/reselect (if the
58  *          device chooses), or as a "SCSI-bus-hog".
59  *
60  *    -  Synchronous data transfers are now supported. Because there
61  *          are a few devices (and many improperly terminated systems)
62  *          that choke when doing sync, the default is sync DISABLED
63  *          for all devices. This faster protocol can (and should!)
64  *          be enabled on selected devices via the command-line.
65  *
66  *    -  Runtime operating parameters can now be specified through
67  *       either the LILO or the 'insmod' command line. For LILO do:
68  *          "in2000=blah,blah,blah"
69  *       and with insmod go like:
70  *          "insmod /usr/src/linux/modules/in2000.o setup_strings=blah,blah"
71  *       The defaults should be good for most people. See the comment
72  *       for 'setup_strings' below for more details.
73  *
74  *    -  The old driver relied exclusively on what the Western Digital
75  *          docs call "Combination Level 2 Commands", which are a great
76  *          idea in that the CPU is relieved of a lot of interrupt
77  *          overhead. However, by accepting a certain (user-settable)
78  *          amount of additional interrupts, this driver achieves
79  *          better control over the SCSI bus, and data transfers are
80  *          almost as fast while being much easier to define, track,
81  *          and debug.
82  *
83  *    -  You can force detection of a card whose BIOS has been disabled.
84  *
85  *    -  Multiple IN2000 cards might almost be supported. I've tried to
86  *       keep it in mind, but have no way to test...
87  *
88  *
89  * TODO:
90  *       tagged queuing. multiple cards.
91  *
92  *
93  * NOTE:
94  *       When using this or any other SCSI driver as a module, you'll
95  *       find that with the stock kernel, at most _two_ SCSI hard
96  *       drives will be linked into the device list (ie, usable).
97  *       If your IN2000 card has more than 2 disks on its bus, you
98  *       might want to change the define of 'SD_EXTRA_DEVS' in the
99  *       'hosts.h' file from 2 to whatever is appropriate. It took
100  *       me a while to track down this surprisingly obscure and
101  *       undocumented little "feature".
102  *
103  *
104  * People with bug reports, wish-lists, complaints, comments,
105  * or improvements are asked to pah-leeez email me (John Shifflett)
106  * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
107  * this thing into as good a shape as possible, and I'm positive
108  * there are lots of lurking bugs and "Stupid Places".
109  *
110  * Updated for Linux 2.5 by Alan Cox <alan@lxorguk.ukuu.org.uk>
111  *	- Using new_eh handler
112  *	- Hopefully got all the locking right again
113  *	See "FIXME" notes for items that could do with more work
114  */
115 
116 #include <linux/module.h>
117 #include <linux/blkdev.h>
118 #include <linux/interrupt.h>
119 #include <linux/string.h>
120 #include <linux/delay.h>
121 #include <linux/proc_fs.h>
122 #include <linux/ioport.h>
123 #include <linux/stat.h>
124 
125 #include <asm/io.h>
126 #include <asm/system.h>
127 
128 #include "scsi.h"
129 #include <scsi/scsi_host.h>
130 
131 #define IN2000_VERSION    "1.33-2.5"
132 #define IN2000_DATE       "2002/11/03"
133 
134 #include "in2000.h"
135 
136 
137 /*
138  * 'setup_strings' is a single string used to pass operating parameters and
139  * settings from the kernel/module command-line to the driver. 'setup_args[]'
140  * is an array of strings that define the compile-time default values for
141  * these settings. If Linux boots with a LILO or insmod command-line, those
142  * settings are combined with 'setup_args[]'. Note that LILO command-lines
143  * are prefixed with "in2000=" while insmod uses a "setup_strings=" prefix.
144  * The driver recognizes the following keywords (lower case required) and
145  * arguments:
146  *
147  * -  ioport:addr    -Where addr is IO address of a (usually ROM-less) card.
148  * -  noreset        -No optional args. Prevents SCSI bus reset at boot time.
149  * -  nosync:x       -x is a bitmask where the 1st 7 bits correspond with
150  *                    the 7 possible SCSI devices (bit 0 for device #0, etc).
151  *                    Set a bit to PREVENT sync negotiation on that device.
152  *                    The driver default is sync DISABLED on all devices.
153  * -  period:ns      -ns is the minimum # of nanoseconds in a SCSI data transfer
154  *                    period. Default is 500; acceptable values are 250 - 1000.
155  * -  disconnect:x   -x = 0 to never allow disconnects, 2 to always allow them.
156  *                    x = 1 does 'adaptive' disconnects, which is the default
157  *                    and generally the best choice.
158  * -  debug:x        -If 'DEBUGGING_ON' is defined, x is a bitmask that causes
159  *                    various types of debug output to printed - see the DB_xxx
160  *                    defines in in2000.h
161  * -  proc:x         -If 'PROC_INTERFACE' is defined, x is a bitmask that
162  *                    determines how the /proc interface works and what it
163  *                    does - see the PR_xxx defines in in2000.h
164  *
165  * Syntax Notes:
166  * -  Numeric arguments can be decimal or the '0x' form of hex notation. There
167  *    _must_ be a colon between a keyword and its numeric argument, with no
168  *    spaces.
169  * -  Keywords are separated by commas, no spaces, in the standard kernel
170  *    command-line manner.
171  * -  A keyword in the 'nth' comma-separated command-line member will overwrite
172  *    the 'nth' element of setup_args[]. A blank command-line member (in
173  *    other words, a comma with no preceding keyword) will _not_ overwrite
174  *    the corresponding setup_args[] element.
175  *
176  * A few LILO examples (for insmod, use 'setup_strings' instead of 'in2000'):
177  * -  in2000=ioport:0x220,noreset
178  * -  in2000=period:250,disconnect:2,nosync:0x03
179  * -  in2000=debug:0x1e
180  * -  in2000=proc:3
181  */
182 
183 /* Normally, no defaults are specified... */
184 static char *setup_args[] = { "", "", "", "", "", "", "", "", "" };
185 
186 /* filled in by 'insmod' */
187 static char *setup_strings;
188 
189 module_param(setup_strings, charp, 0);
190 
read_3393(struct IN2000_hostdata * hostdata,uchar reg_num)191 static inline uchar read_3393(struct IN2000_hostdata *hostdata, uchar reg_num)
192 {
193 	write1_io(reg_num, IO_WD_ADDR);
194 	return read1_io(IO_WD_DATA);
195 }
196 
197 
198 #define READ_AUX_STAT() read1_io(IO_WD_ASR)
199 
200 
write_3393(struct IN2000_hostdata * hostdata,uchar reg_num,uchar value)201 static inline void write_3393(struct IN2000_hostdata *hostdata, uchar reg_num, uchar value)
202 {
203 	write1_io(reg_num, IO_WD_ADDR);
204 	write1_io(value, IO_WD_DATA);
205 }
206 
207 
write_3393_cmd(struct IN2000_hostdata * hostdata,uchar cmd)208 static inline void write_3393_cmd(struct IN2000_hostdata *hostdata, uchar cmd)
209 {
210 /*   while (READ_AUX_STAT() & ASR_CIP)
211       printk("|");*/
212 	write1_io(WD_COMMAND, IO_WD_ADDR);
213 	write1_io(cmd, IO_WD_DATA);
214 }
215 
216 
read_1_byte(struct IN2000_hostdata * hostdata)217 static uchar read_1_byte(struct IN2000_hostdata *hostdata)
218 {
219 	uchar asr, x = 0;
220 
221 	write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
222 	write_3393_cmd(hostdata, WD_CMD_TRANS_INFO | 0x80);
223 	do {
224 		asr = READ_AUX_STAT();
225 		if (asr & ASR_DBR)
226 			x = read_3393(hostdata, WD_DATA);
227 	} while (!(asr & ASR_INT));
228 	return x;
229 }
230 
231 
write_3393_count(struct IN2000_hostdata * hostdata,unsigned long value)232 static void write_3393_count(struct IN2000_hostdata *hostdata, unsigned long value)
233 {
234 	write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
235 	write1_io((value >> 16), IO_WD_DATA);
236 	write1_io((value >> 8), IO_WD_DATA);
237 	write1_io(value, IO_WD_DATA);
238 }
239 
240 
read_3393_count(struct IN2000_hostdata * hostdata)241 static unsigned long read_3393_count(struct IN2000_hostdata *hostdata)
242 {
243 	unsigned long value;
244 
245 	write1_io(WD_TRANSFER_COUNT_MSB, IO_WD_ADDR);
246 	value = read1_io(IO_WD_DATA) << 16;
247 	value |= read1_io(IO_WD_DATA) << 8;
248 	value |= read1_io(IO_WD_DATA);
249 	return value;
250 }
251 
252 
253 /* The 33c93 needs to be told which direction a command transfers its
254  * data; we use this function to figure it out. Returns true if there
255  * will be a DATA_OUT phase with this command, false otherwise.
256  * (Thanks to Joerg Dorchain for the research and suggestion.)
257  */
is_dir_out(Scsi_Cmnd * cmd)258 static int is_dir_out(Scsi_Cmnd * cmd)
259 {
260 	switch (cmd->cmnd[0]) {
261 	case WRITE_6:
262 	case WRITE_10:
263 	case WRITE_12:
264 	case WRITE_LONG:
265 	case WRITE_SAME:
266 	case WRITE_BUFFER:
267 	case WRITE_VERIFY:
268 	case WRITE_VERIFY_12:
269 	case COMPARE:
270 	case COPY:
271 	case COPY_VERIFY:
272 	case SEARCH_EQUAL:
273 	case SEARCH_HIGH:
274 	case SEARCH_LOW:
275 	case SEARCH_EQUAL_12:
276 	case SEARCH_HIGH_12:
277 	case SEARCH_LOW_12:
278 	case FORMAT_UNIT:
279 	case REASSIGN_BLOCKS:
280 	case RESERVE:
281 	case MODE_SELECT:
282 	case MODE_SELECT_10:
283 	case LOG_SELECT:
284 	case SEND_DIAGNOSTIC:
285 	case CHANGE_DEFINITION:
286 	case UPDATE_BLOCK:
287 	case SET_WINDOW:
288 	case MEDIUM_SCAN:
289 	case SEND_VOLUME_TAG:
290 	case 0xea:
291 		return 1;
292 	default:
293 		return 0;
294 	}
295 }
296 
297 
298 
299 static struct sx_period sx_table[] = {
300 	{1, 0x20},
301 	{252, 0x20},
302 	{376, 0x30},
303 	{500, 0x40},
304 	{624, 0x50},
305 	{752, 0x60},
306 	{876, 0x70},
307 	{1000, 0x00},
308 	{0, 0}
309 };
310 
round_period(unsigned int period)311 static int round_period(unsigned int period)
312 {
313 	int x;
314 
315 	for (x = 1; sx_table[x].period_ns; x++) {
316 		if ((period <= sx_table[x - 0].period_ns) && (period > sx_table[x - 1].period_ns)) {
317 			return x;
318 		}
319 	}
320 	return 7;
321 }
322 
calc_sync_xfer(unsigned int period,unsigned int offset)323 static uchar calc_sync_xfer(unsigned int period, unsigned int offset)
324 {
325 	uchar result;
326 
327 	period *= 4;		/* convert SDTR code to ns */
328 	result = sx_table[round_period(period)].reg_value;
329 	result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
330 	return result;
331 }
332 
333 
334 
335 static void in2000_execute(struct Scsi_Host *instance);
336 
in2000_queuecommand(Scsi_Cmnd * cmd,void (* done)(Scsi_Cmnd *))337 static int in2000_queuecommand(Scsi_Cmnd * cmd, void (*done) (Scsi_Cmnd *))
338 {
339 	struct Scsi_Host *instance;
340 	struct IN2000_hostdata *hostdata;
341 	Scsi_Cmnd *tmp;
342 
343 	instance = cmd->device->host;
344 	hostdata = (struct IN2000_hostdata *) instance->hostdata;
345 
346 	DB(DB_QUEUE_COMMAND, scmd_printk(KERN_DEBUG, cmd, "Q-%02x-%ld(", cmd->cmnd[0], cmd->serial_number))
347 
348 /* Set up a few fields in the Scsi_Cmnd structure for our own use:
349  *  - host_scribble is the pointer to the next cmd in the input queue
350  *  - scsi_done points to the routine we call when a cmd is finished
351  *  - result is what you'd expect
352  */
353 	    cmd->host_scribble = NULL;
354 	cmd->scsi_done = done;
355 	cmd->result = 0;
356 
357 /* We use the Scsi_Pointer structure that's included with each command
358  * as a scratchpad (as it's intended to be used!). The handy thing about
359  * the SCp.xxx fields is that they're always associated with a given
360  * cmd, and are preserved across disconnect-reselect. This means we
361  * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
362  * if we keep all the critical pointers and counters in SCp:
363  *  - SCp.ptr is the pointer into the RAM buffer
364  *  - SCp.this_residual is the size of that buffer
365  *  - SCp.buffer points to the current scatter-gather buffer
366  *  - SCp.buffers_residual tells us how many S.G. buffers there are
367  *  - SCp.have_data_in helps keep track of >2048 byte transfers
368  *  - SCp.sent_command is not used
369  *  - SCp.phase records this command's SRCID_ER bit setting
370  */
371 
372 	if (scsi_bufflen(cmd)) {
373 		cmd->SCp.buffer = scsi_sglist(cmd);
374 		cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
375 		cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
376 		cmd->SCp.this_residual = cmd->SCp.buffer->length;
377 	} else {
378 		cmd->SCp.buffer = NULL;
379 		cmd->SCp.buffers_residual = 0;
380 		cmd->SCp.ptr = NULL;
381 		cmd->SCp.this_residual = 0;
382 	}
383 	cmd->SCp.have_data_in = 0;
384 
385 /* We don't set SCp.phase here - that's done in in2000_execute() */
386 
387 /* WD docs state that at the conclusion of a "LEVEL2" command, the
388  * status byte can be retrieved from the LUN register. Apparently,
389  * this is the case only for *uninterrupted* LEVEL2 commands! If
390  * there are any unexpected phases entered, even if they are 100%
391  * legal (different devices may choose to do things differently),
392  * the LEVEL2 command sequence is exited. This often occurs prior
393  * to receiving the status byte, in which case the driver does a
394  * status phase interrupt and gets the status byte on its own.
395  * While such a command can then be "resumed" (ie restarted to
396  * finish up as a LEVEL2 command), the LUN register will NOT be
397  * a valid status byte at the command's conclusion, and we must
398  * use the byte obtained during the earlier interrupt. Here, we
399  * preset SCp.Status to an illegal value (0xff) so that when
400  * this command finally completes, we can tell where the actual
401  * status byte is stored.
402  */
403 
404 	cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
405 
406 /* We need to disable interrupts before messing with the input
407  * queue and calling in2000_execute().
408  */
409 
410 	/*
411 	 * Add the cmd to the end of 'input_Q'. Note that REQUEST_SENSE
412 	 * commands are added to the head of the queue so that the desired
413 	 * sense data is not lost before REQUEST_SENSE executes.
414 	 */
415 
416 	if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
417 		cmd->host_scribble = (uchar *) hostdata->input_Q;
418 		hostdata->input_Q = cmd;
419 	} else {		/* find the end of the queue */
420 		for (tmp = (Scsi_Cmnd *) hostdata->input_Q; tmp->host_scribble; tmp = (Scsi_Cmnd *) tmp->host_scribble);
421 		tmp->host_scribble = (uchar *) cmd;
422 	}
423 
424 /* We know that there's at least one command in 'input_Q' now.
425  * Go see if any of them are runnable!
426  */
427 
428 	in2000_execute(cmd->device->host);
429 
430 	DB(DB_QUEUE_COMMAND, printk(")Q-%ld ", cmd->serial_number))
431 	    return 0;
432 }
433 
434 
435 
436 /*
437  * This routine attempts to start a scsi command. If the host_card is
438  * already connected, we give up immediately. Otherwise, look through
439  * the input_Q, using the first command we find that's intended
440  * for a currently non-busy target/lun.
441  * Note that this function is always called with interrupts already
442  * disabled (either from in2000_queuecommand() or in2000_intr()).
443  */
in2000_execute(struct Scsi_Host * instance)444 static void in2000_execute(struct Scsi_Host *instance)
445 {
446 	struct IN2000_hostdata *hostdata;
447 	Scsi_Cmnd *cmd, *prev;
448 	int i;
449 	unsigned short *sp;
450 	unsigned short f;
451 	unsigned short flushbuf[16];
452 
453 
454 	hostdata = (struct IN2000_hostdata *) instance->hostdata;
455 
456 	DB(DB_EXECUTE, printk("EX("))
457 
458 	    if (hostdata->selecting || hostdata->connected) {
459 
460 		DB(DB_EXECUTE, printk(")EX-0 "))
461 
462 		    return;
463 	}
464 
465 	/*
466 	 * Search through the input_Q for a command destined
467 	 * for an idle target/lun.
468 	 */
469 
470 	cmd = (Scsi_Cmnd *) hostdata->input_Q;
471 	prev = NULL;
472 	while (cmd) {
473 		if (!(hostdata->busy[cmd->device->id] & (1 << cmd->device->lun)))
474 			break;
475 		prev = cmd;
476 		cmd = (Scsi_Cmnd *) cmd->host_scribble;
477 	}
478 
479 	/* quit if queue empty or all possible targets are busy */
480 
481 	if (!cmd) {
482 
483 		DB(DB_EXECUTE, printk(")EX-1 "))
484 
485 		    return;
486 	}
487 
488 	/*  remove command from queue */
489 
490 	if (prev)
491 		prev->host_scribble = cmd->host_scribble;
492 	else
493 		hostdata->input_Q = (Scsi_Cmnd *) cmd->host_scribble;
494 
495 #ifdef PROC_STATISTICS
496 	hostdata->cmd_cnt[cmd->device->id]++;
497 #endif
498 
499 /*
500  * Start the selection process
501  */
502 
503 	if (is_dir_out(cmd))
504 		write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
505 	else
506 		write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
507 
508 /* Now we need to figure out whether or not this command is a good
509  * candidate for disconnect/reselect. We guess to the best of our
510  * ability, based on a set of hierarchical rules. When several
511  * devices are operating simultaneously, disconnects are usually
512  * an advantage. In a single device system, or if only 1 device
513  * is being accessed, transfers usually go faster if disconnects
514  * are not allowed:
515  *
516  * + Commands should NEVER disconnect if hostdata->disconnect =
517  *   DIS_NEVER (this holds for tape drives also), and ALWAYS
518  *   disconnect if hostdata->disconnect = DIS_ALWAYS.
519  * + Tape drive commands should always be allowed to disconnect.
520  * + Disconnect should be allowed if disconnected_Q isn't empty.
521  * + Commands should NOT disconnect if input_Q is empty.
522  * + Disconnect should be allowed if there are commands in input_Q
523  *   for a different target/lun. In this case, the other commands
524  *   should be made disconnect-able, if not already.
525  *
526  * I know, I know - this code would flunk me out of any
527  * "C Programming 101" class ever offered. But it's easy
528  * to change around and experiment with for now.
529  */
530 
531 	cmd->SCp.phase = 0;	/* assume no disconnect */
532 	if (hostdata->disconnect == DIS_NEVER)
533 		goto no;
534 	if (hostdata->disconnect == DIS_ALWAYS)
535 		goto yes;
536 	if (cmd->device->type == 1)	/* tape drive? */
537 		goto yes;
538 	if (hostdata->disconnected_Q)	/* other commands disconnected? */
539 		goto yes;
540 	if (!(hostdata->input_Q))	/* input_Q empty? */
541 		goto no;
542 	for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble) {
543 		if ((prev->device->id != cmd->device->id) || (prev->device->lun != cmd->device->lun)) {
544 			for (prev = (Scsi_Cmnd *) hostdata->input_Q; prev; prev = (Scsi_Cmnd *) prev->host_scribble)
545 				prev->SCp.phase = 1;
546 			goto yes;
547 		}
548 	}
549 	goto no;
550 
551       yes:
552 	cmd->SCp.phase = 1;
553 
554 #ifdef PROC_STATISTICS
555 	hostdata->disc_allowed_cnt[cmd->device->id]++;
556 #endif
557 
558       no:
559 	write_3393(hostdata, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
560 
561 	write_3393(hostdata, WD_TARGET_LUN, cmd->device->lun);
562 	write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
563 	hostdata->busy[cmd->device->id] |= (1 << cmd->device->lun);
564 
565 	if ((hostdata->level2 <= L2_NONE) || (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
566 
567 		/*
568 		 * Do a 'Select-With-ATN' command. This will end with
569 		 * one of the following interrupts:
570 		 *    CSR_RESEL_AM:  failure - can try again later.
571 		 *    CSR_TIMEOUT:   failure - give up.
572 		 *    CSR_SELECT:    success - proceed.
573 		 */
574 
575 		hostdata->selecting = cmd;
576 
577 /* Every target has its own synchronous transfer setting, kept in
578  * the sync_xfer array, and a corresponding status byte in sync_stat[].
579  * Each target's sync_stat[] entry is initialized to SS_UNSET, and its
580  * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
581  * means that the parameters are undetermined as yet, and that we
582  * need to send an SDTR message to this device after selection is
583  * complete. We set SS_FIRST to tell the interrupt routine to do so,
584  * unless we don't want to even _try_ synchronous transfers: In this
585  * case we set SS_SET to make the defaults final.
586  */
587 		if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) {
588 			if (hostdata->sync_off & (1 << cmd->device->id))
589 				hostdata->sync_stat[cmd->device->id] = SS_SET;
590 			else
591 				hostdata->sync_stat[cmd->device->id] = SS_FIRST;
592 		}
593 		hostdata->state = S_SELECTING;
594 		write_3393_count(hostdata, 0);	/* this guarantees a DATA_PHASE interrupt */
595 		write_3393_cmd(hostdata, WD_CMD_SEL_ATN);
596 	}
597 
598 	else {
599 
600 		/*
601 		 * Do a 'Select-With-ATN-Xfer' command. This will end with
602 		 * one of the following interrupts:
603 		 *    CSR_RESEL_AM:  failure - can try again later.
604 		 *    CSR_TIMEOUT:   failure - give up.
605 		 *    anything else: success - proceed.
606 		 */
607 
608 		hostdata->connected = cmd;
609 		write_3393(hostdata, WD_COMMAND_PHASE, 0);
610 
611 		/* copy command_descriptor_block into WD chip
612 		 * (take advantage of auto-incrementing)
613 		 */
614 
615 		write1_io(WD_CDB_1, IO_WD_ADDR);
616 		for (i = 0; i < cmd->cmd_len; i++)
617 			write1_io(cmd->cmnd[i], IO_WD_DATA);
618 
619 		/* The wd33c93 only knows about Group 0, 1, and 5 commands when
620 		 * it's doing a 'select-and-transfer'. To be safe, we write the
621 		 * size of the CDB into the OWN_ID register for every case. This
622 		 * way there won't be problems with vendor-unique, audio, etc.
623 		 */
624 
625 		write_3393(hostdata, WD_OWN_ID, cmd->cmd_len);
626 
627 		/* When doing a non-disconnect command, we can save ourselves a DATA
628 		 * phase interrupt later by setting everything up now. With writes we
629 		 * need to pre-fill the fifo; if there's room for the 32 flush bytes,
630 		 * put them in there too - that'll avoid a fifo interrupt. Reads are
631 		 * somewhat simpler.
632 		 * KLUDGE NOTE: It seems that you can't completely fill the fifo here:
633 		 * This results in the IO_FIFO_COUNT register rolling over to zero,
634 		 * and apparently the gate array logic sees this as empty, not full,
635 		 * so the 3393 chip is never signalled to start reading from the
636 		 * fifo. Or maybe it's seen as a permanent fifo interrupt condition.
637 		 * Regardless, we fix this by temporarily pretending that the fifo
638 		 * is 16 bytes smaller. (I see now that the old driver has a comment
639 		 * about "don't fill completely" in an analogous place - must be the
640 		 * same deal.) This results in CDROM, swap partitions, and tape drives
641 		 * needing an extra interrupt per write command - I think we can live
642 		 * with that!
643 		 */
644 
645 		if (!(cmd->SCp.phase)) {
646 			write_3393_count(hostdata, cmd->SCp.this_residual);
647 			write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
648 			write1_io(0, IO_FIFO_WRITE);	/* clear fifo counter, write mode */
649 
650 			if (is_dir_out(cmd)) {
651 				hostdata->fifo = FI_FIFO_WRITING;
652 				if ((i = cmd->SCp.this_residual) > (IN2000_FIFO_SIZE - 16))
653 					i = IN2000_FIFO_SIZE - 16;
654 				cmd->SCp.have_data_in = i;	/* this much data in fifo */
655 				i >>= 1;	/* Gulp. Assuming modulo 2. */
656 				sp = (unsigned short *) cmd->SCp.ptr;
657 				f = hostdata->io_base + IO_FIFO;
658 
659 #ifdef FAST_WRITE_IO
660 
661 				FAST_WRITE2_IO();
662 #else
663 				while (i--)
664 					write2_io(*sp++, IO_FIFO);
665 
666 #endif
667 
668 				/* Is there room for the flush bytes? */
669 
670 				if (cmd->SCp.have_data_in <= ((IN2000_FIFO_SIZE - 16) - 32)) {
671 					sp = flushbuf;
672 					i = 16;
673 
674 #ifdef FAST_WRITE_IO
675 
676 					FAST_WRITE2_IO();
677 #else
678 					while (i--)
679 						write2_io(0, IO_FIFO);
680 
681 #endif
682 
683 				}
684 			}
685 
686 			else {
687 				write1_io(0, IO_FIFO_READ);	/* put fifo in read mode */
688 				hostdata->fifo = FI_FIFO_READING;
689 				cmd->SCp.have_data_in = 0;	/* nothing transferred yet */
690 			}
691 
692 		} else {
693 			write_3393_count(hostdata, 0);	/* this guarantees a DATA_PHASE interrupt */
694 		}
695 		hostdata->state = S_RUNNING_LEVEL2;
696 		write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
697 	}
698 
699 	/*
700 	 * Since the SCSI bus can handle only 1 connection at a time,
701 	 * we get out of here now. If the selection fails, or when
702 	 * the command disconnects, we'll come back to this routine
703 	 * to search the input_Q again...
704 	 */
705 
706 	DB(DB_EXECUTE, printk("%s%ld)EX-2 ", (cmd->SCp.phase) ? "d:" : "", cmd->serial_number))
707 
708 }
709 
710 
711 
transfer_pio(uchar * buf,int cnt,int data_in_dir,struct IN2000_hostdata * hostdata)712 static void transfer_pio(uchar * buf, int cnt, int data_in_dir, struct IN2000_hostdata *hostdata)
713 {
714 	uchar asr;
715 
716 	DB(DB_TRANSFER, printk("(%p,%d,%s)", buf, cnt, data_in_dir ? "in" : "out"))
717 
718 	    write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
719 	write_3393_count(hostdata, cnt);
720 	write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
721 	if (data_in_dir) {
722 		do {
723 			asr = READ_AUX_STAT();
724 			if (asr & ASR_DBR)
725 				*buf++ = read_3393(hostdata, WD_DATA);
726 		} while (!(asr & ASR_INT));
727 	} else {
728 		do {
729 			asr = READ_AUX_STAT();
730 			if (asr & ASR_DBR)
731 				write_3393(hostdata, WD_DATA, *buf++);
732 		} while (!(asr & ASR_INT));
733 	}
734 
735 	/* Note: we are returning with the interrupt UN-cleared.
736 	 * Since (presumably) an entire I/O operation has
737 	 * completed, the bus phase is probably different, and
738 	 * the interrupt routine will discover this when it
739 	 * responds to the uncleared int.
740 	 */
741 
742 }
743 
744 
745 
transfer_bytes(Scsi_Cmnd * cmd,int data_in_dir)746 static void transfer_bytes(Scsi_Cmnd * cmd, int data_in_dir)
747 {
748 	struct IN2000_hostdata *hostdata;
749 	unsigned short *sp;
750 	unsigned short f;
751 	int i;
752 
753 	hostdata = (struct IN2000_hostdata *) cmd->device->host->hostdata;
754 
755 /* Normally, you'd expect 'this_residual' to be non-zero here.
756  * In a series of scatter-gather transfers, however, this
757  * routine will usually be called with 'this_residual' equal
758  * to 0 and 'buffers_residual' non-zero. This means that a
759  * previous transfer completed, clearing 'this_residual', and
760  * now we need to setup the next scatter-gather buffer as the
761  * source or destination for THIS transfer.
762  */
763 	if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
764 		++cmd->SCp.buffer;
765 		--cmd->SCp.buffers_residual;
766 		cmd->SCp.this_residual = cmd->SCp.buffer->length;
767 		cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
768 	}
769 
770 /* Set up hardware registers */
771 
772 	write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, hostdata->sync_xfer[cmd->device->id]);
773 	write_3393_count(hostdata, cmd->SCp.this_residual);
774 	write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_BUS);
775 	write1_io(0, IO_FIFO_WRITE);	/* zero counter, assume write */
776 
777 /* Reading is easy. Just issue the command and return - we'll
778  * get an interrupt later when we have actual data to worry about.
779  */
780 
781 	if (data_in_dir) {
782 		write1_io(0, IO_FIFO_READ);
783 		if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
784 			write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
785 			write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
786 			hostdata->state = S_RUNNING_LEVEL2;
787 		} else
788 			write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
789 		hostdata->fifo = FI_FIFO_READING;
790 		cmd->SCp.have_data_in = 0;
791 		return;
792 	}
793 
794 /* Writing is more involved - we'll start the WD chip and write as
795  * much data to the fifo as we can right now. Later interrupts will
796  * write any bytes that don't make it at this stage.
797  */
798 
799 	if ((hostdata->level2 >= L2_DATA) || (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
800 		write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
801 		write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
802 		hostdata->state = S_RUNNING_LEVEL2;
803 	} else
804 		write_3393_cmd(hostdata, WD_CMD_TRANS_INFO);
805 	hostdata->fifo = FI_FIFO_WRITING;
806 	sp = (unsigned short *) cmd->SCp.ptr;
807 
808 	if ((i = cmd->SCp.this_residual) > IN2000_FIFO_SIZE)
809 		i = IN2000_FIFO_SIZE;
810 	cmd->SCp.have_data_in = i;
811 	i >>= 1;		/* Gulp. We assume this_residual is modulo 2 */
812 	f = hostdata->io_base + IO_FIFO;
813 
814 #ifdef FAST_WRITE_IO
815 
816 	FAST_WRITE2_IO();
817 #else
818 	while (i--)
819 		write2_io(*sp++, IO_FIFO);
820 
821 #endif
822 
823 }
824 
825 
826 /* We need to use spin_lock_irqsave() & spin_unlock_irqrestore() in this
827  * function in order to work in an SMP environment. (I'd be surprised
828  * if the driver is ever used by anyone on a real multi-CPU motherboard,
829  * but it _does_ need to be able to compile and run in an SMP kernel.)
830  */
831 
in2000_intr(int irqnum,void * dev_id)832 static irqreturn_t in2000_intr(int irqnum, void *dev_id)
833 {
834 	struct Scsi_Host *instance = dev_id;
835 	struct IN2000_hostdata *hostdata;
836 	Scsi_Cmnd *patch, *cmd;
837 	uchar asr, sr, phs, id, lun, *ucp, msg;
838 	int i, j;
839 	unsigned long length;
840 	unsigned short *sp;
841 	unsigned short f;
842 	unsigned long flags;
843 
844 	hostdata = (struct IN2000_hostdata *) instance->hostdata;
845 
846 /* Get the spin_lock and disable further ints, for SMP */
847 
848 	spin_lock_irqsave(instance->host_lock, flags);
849 
850 #ifdef PROC_STATISTICS
851 	hostdata->int_cnt++;
852 #endif
853 
854 /* The IN2000 card has 2 interrupt sources OR'ed onto its IRQ line - the
855  * WD3393 chip and the 2k fifo (which is actually a dual-port RAM combined
856  * with a big logic array, so it's a little different than what you might
857  * expect). As far as I know, there's no reason that BOTH can't be active
858  * at the same time, but there's a problem: while we can read the 3393
859  * to tell if _it_ wants an interrupt, I don't know of a way to ask the
860  * fifo the same question. The best we can do is check the 3393 and if
861  * it _isn't_ the source of the interrupt, then we can be pretty sure
862  * that the fifo is the culprit.
863  *  UPDATE: I have it on good authority (Bill Earnest) that bit 0 of the
864  *          IO_FIFO_COUNT register mirrors the fifo interrupt state. I
865  *          assume that bit clear means interrupt active. As it turns
866  *          out, the driver really doesn't need to check for this after
867  *          all, so my remarks above about a 'problem' can safely be
868  *          ignored. The way the logic is set up, there's no advantage
869  *          (that I can see) to worrying about it.
870  *
871  * It seems that the fifo interrupt signal is negated when we extract
872  * bytes during read or write bytes during write.
873  *  - fifo will interrupt when data is moving from it to the 3393, and
874  *    there are 31 (or less?) bytes left to go. This is sort of short-
875  *    sighted: what if you don't WANT to do more? In any case, our
876  *    response is to push more into the fifo - either actual data or
877  *    dummy bytes if need be. Note that we apparently have to write at
878  *    least 32 additional bytes to the fifo after an interrupt in order
879  *    to get it to release the ones it was holding on to - writing fewer
880  *    than 32 will result in another fifo int.
881  *  UPDATE: Again, info from Bill Earnest makes this more understandable:
882  *          32 bytes = two counts of the fifo counter register. He tells
883  *          me that the fifo interrupt is a non-latching signal derived
884  *          from a straightforward boolean interpretation of the 7
885  *          highest bits of the fifo counter and the fifo-read/fifo-write
886  *          state. Who'd a thought?
887  */
888 
889 	write1_io(0, IO_LED_ON);
890 	asr = READ_AUX_STAT();
891 	if (!(asr & ASR_INT)) {	/* no WD33c93 interrupt? */
892 
893 /* Ok. This is definitely a FIFO-only interrupt.
894  *
895  * If FI_FIFO_READING is set, there are up to 2048 bytes waiting to be read,
896  * maybe more to come from the SCSI bus. Read as many as we can out of the
897  * fifo and into memory at the location of SCp.ptr[SCp.have_data_in], and
898  * update have_data_in afterwards.
899  *
900  * If we have FI_FIFO_WRITING, the FIFO has almost run out of bytes to move
901  * into the WD3393 chip (I think the interrupt happens when there are 31
902  * bytes left, but it may be fewer...). The 3393 is still waiting, so we
903  * shove some more into the fifo, which gets things moving again. If the
904  * original SCSI command specified more than 2048 bytes, there may still
905  * be some of that data left: fine - use it (from SCp.ptr[SCp.have_data_in]).
906  * Don't forget to update have_data_in. If we've already written out the
907  * entire buffer, feed 32 dummy bytes to the fifo - they're needed to
908  * push out the remaining real data.
909  *    (Big thanks to Bill Earnest for getting me out of the mud in here.)
910  */
911 
912 		cmd = (Scsi_Cmnd *) hostdata->connected;	/* assume we're connected */
913 		CHECK_NULL(cmd, "fifo_int")
914 
915 		    if (hostdata->fifo == FI_FIFO_READING) {
916 
917 			DB(DB_FIFO, printk("{R:%02x} ", read1_io(IO_FIFO_COUNT)))
918 
919 			    sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
920 			i = read1_io(IO_FIFO_COUNT) & 0xfe;
921 			i <<= 2;	/* # of words waiting in the fifo */
922 			f = hostdata->io_base + IO_FIFO;
923 
924 #ifdef FAST_READ_IO
925 
926 			FAST_READ2_IO();
927 #else
928 			while (i--)
929 				*sp++ = read2_io(IO_FIFO);
930 
931 #endif
932 
933 			i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
934 			i <<= 1;
935 			cmd->SCp.have_data_in += i;
936 		}
937 
938 		else if (hostdata->fifo == FI_FIFO_WRITING) {
939 
940 			DB(DB_FIFO, printk("{W:%02x} ", read1_io(IO_FIFO_COUNT)))
941 
942 /* If all bytes have been written to the fifo, flush out the stragglers.
943  * Note that while writing 16 dummy words seems arbitrary, we don't
944  * have another choice that I can see. What we really want is to read
945  * the 3393 transfer count register (that would tell us how many bytes
946  * needed flushing), but the TRANSFER_INFO command hasn't completed
947  * yet (not enough bytes!) and that register won't be accessible. So,
948  * we use 16 words - a number obtained through trial and error.
949  *  UPDATE: Bill says this is exactly what Always does, so there.
950  *          More thanks due him for help in this section.
951  */
952 			    if (cmd->SCp.this_residual == cmd->SCp.have_data_in) {
953 				i = 16;
954 				while (i--)	/* write 32 dummy bytes */
955 					write2_io(0, IO_FIFO);
956 			}
957 
958 /* If there are still bytes left in the SCSI buffer, write as many as we
959  * can out to the fifo.
960  */
961 
962 			else {
963 				sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
964 				i = cmd->SCp.this_residual - cmd->SCp.have_data_in;	/* bytes yet to go */
965 				j = read1_io(IO_FIFO_COUNT) & 0xfe;
966 				j <<= 2;	/* how many words the fifo has room for */
967 				if ((j << 1) > i)
968 					j = (i >> 1);
969 				while (j--)
970 					write2_io(*sp++, IO_FIFO);
971 
972 				i = sp - (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
973 				i <<= 1;
974 				cmd->SCp.have_data_in += i;
975 			}
976 		}
977 
978 		else {
979 			printk("*** Spurious FIFO interrupt ***");
980 		}
981 
982 		write1_io(0, IO_LED_OFF);
983 
984 /* release the SMP spin_lock and restore irq state */
985 		spin_unlock_irqrestore(instance->host_lock, flags);
986 		return IRQ_HANDLED;
987 	}
988 
989 /* This interrupt was triggered by the WD33c93 chip. The fifo interrupt
990  * may also be asserted, but we don't bother to check it: we get more
991  * detailed info from FIFO_READING and FIFO_WRITING (see below).
992  */
993 
994 	cmd = (Scsi_Cmnd *) hostdata->connected;	/* assume we're connected */
995 	sr = read_3393(hostdata, WD_SCSI_STATUS);	/* clear the interrupt */
996 	phs = read_3393(hostdata, WD_COMMAND_PHASE);
997 
998 	if (!cmd && (sr != CSR_RESEL_AM && sr != CSR_TIMEOUT && sr != CSR_SELECT)) {
999 		printk("\nNR:wd-intr-1\n");
1000 		write1_io(0, IO_LED_OFF);
1001 
1002 /* release the SMP spin_lock and restore irq state */
1003 		spin_unlock_irqrestore(instance->host_lock, flags);
1004 		return IRQ_HANDLED;
1005 	}
1006 
1007 	DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
1008 
1009 /* After starting a FIFO-based transfer, the next _WD3393_ interrupt is
1010  * guaranteed to be in response to the completion of the transfer.
1011  * If we were reading, there's probably data in the fifo that needs
1012  * to be copied into RAM - do that here. Also, we have to update
1013  * 'this_residual' and 'ptr' based on the contents of the
1014  * TRANSFER_COUNT register, in case the device decided to do an
1015  * intermediate disconnect (a device may do this if it has to
1016  * do a seek,  or just to be nice and let other devices have
1017  * some bus time during long transfers).
1018  * After doing whatever is necessary with the fifo, we go on and
1019  * service the WD3393 interrupt normally.
1020  */
1021 	    if (hostdata->fifo == FI_FIFO_READING) {
1022 
1023 /* buffer index = start-of-buffer + #-of-bytes-already-read */
1024 
1025 		sp = (unsigned short *) (cmd->SCp.ptr + cmd->SCp.have_data_in);
1026 
1027 /* bytes remaining in fifo = (total-wanted - #-not-got) - #-already-read */
1028 
1029 		i = (cmd->SCp.this_residual - read_3393_count(hostdata)) - cmd->SCp.have_data_in;
1030 		i >>= 1;	/* Gulp. We assume this will always be modulo 2 */
1031 		f = hostdata->io_base + IO_FIFO;
1032 
1033 #ifdef FAST_READ_IO
1034 
1035 		FAST_READ2_IO();
1036 #else
1037 		while (i--)
1038 			*sp++ = read2_io(IO_FIFO);
1039 
1040 #endif
1041 
1042 		hostdata->fifo = FI_FIFO_UNUSED;
1043 		length = cmd->SCp.this_residual;
1044 		cmd->SCp.this_residual = read_3393_count(hostdata);
1045 		cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1046 
1047 		DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1048 
1049 	}
1050 
1051 	else if (hostdata->fifo == FI_FIFO_WRITING) {
1052 		hostdata->fifo = FI_FIFO_UNUSED;
1053 		length = cmd->SCp.this_residual;
1054 		cmd->SCp.this_residual = read_3393_count(hostdata);
1055 		cmd->SCp.ptr += (length - cmd->SCp.this_residual);
1056 
1057 		DB(DB_TRANSFER, printk("(%p,%d)", cmd->SCp.ptr, cmd->SCp.this_residual))
1058 
1059 	}
1060 
1061 /* Respond to the specific WD3393 interrupt - there are quite a few! */
1062 
1063 	switch (sr) {
1064 
1065 	case CSR_TIMEOUT:
1066 		DB(DB_INTR, printk("TIMEOUT"))
1067 
1068 		    if (hostdata->state == S_RUNNING_LEVEL2)
1069 			hostdata->connected = NULL;
1070 		else {
1071 			cmd = (Scsi_Cmnd *) hostdata->selecting;	/* get a valid cmd */
1072 			CHECK_NULL(cmd, "csr_timeout")
1073 			    hostdata->selecting = NULL;
1074 		}
1075 
1076 		cmd->result = DID_NO_CONNECT << 16;
1077 		hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1078 		hostdata->state = S_UNCONNECTED;
1079 		cmd->scsi_done(cmd);
1080 
1081 /* We are not connected to a target - check to see if there
1082  * are commands waiting to be executed.
1083  */
1084 
1085 		in2000_execute(instance);
1086 		break;
1087 
1088 
1089 /* Note: this interrupt should not occur in a LEVEL2 command */
1090 
1091 	case CSR_SELECT:
1092 		DB(DB_INTR, printk("SELECT"))
1093 		    hostdata->connected = cmd = (Scsi_Cmnd *) hostdata->selecting;
1094 		CHECK_NULL(cmd, "csr_select")
1095 		    hostdata->selecting = NULL;
1096 
1097 		/* construct an IDENTIFY message with correct disconnect bit */
1098 
1099 		hostdata->outgoing_msg[0] = (0x80 | 0x00 | cmd->device->lun);
1100 		if (cmd->SCp.phase)
1101 			hostdata->outgoing_msg[0] |= 0x40;
1102 
1103 		if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
1104 #ifdef SYNC_DEBUG
1105 			printk(" sending SDTR ");
1106 #endif
1107 
1108 			hostdata->sync_stat[cmd->device->id] = SS_WAITING;
1109 
1110 			/* tack on a 2nd message to ask about synchronous transfers */
1111 
1112 			hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
1113 			hostdata->outgoing_msg[2] = 3;
1114 			hostdata->outgoing_msg[3] = EXTENDED_SDTR;
1115 			hostdata->outgoing_msg[4] = OPTIMUM_SX_PER / 4;
1116 			hostdata->outgoing_msg[5] = OPTIMUM_SX_OFF;
1117 			hostdata->outgoing_len = 6;
1118 		} else
1119 			hostdata->outgoing_len = 1;
1120 
1121 		hostdata->state = S_CONNECTED;
1122 		break;
1123 
1124 
1125 	case CSR_XFER_DONE | PHS_DATA_IN:
1126 	case CSR_UNEXP | PHS_DATA_IN:
1127 	case CSR_SRV_REQ | PHS_DATA_IN:
1128 		DB(DB_INTR, printk("IN-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1129 		    transfer_bytes(cmd, DATA_IN_DIR);
1130 		if (hostdata->state != S_RUNNING_LEVEL2)
1131 			hostdata->state = S_CONNECTED;
1132 		break;
1133 
1134 
1135 	case CSR_XFER_DONE | PHS_DATA_OUT:
1136 	case CSR_UNEXP | PHS_DATA_OUT:
1137 	case CSR_SRV_REQ | PHS_DATA_OUT:
1138 		DB(DB_INTR, printk("OUT-%d.%d", cmd->SCp.this_residual, cmd->SCp.buffers_residual))
1139 		    transfer_bytes(cmd, DATA_OUT_DIR);
1140 		if (hostdata->state != S_RUNNING_LEVEL2)
1141 			hostdata->state = S_CONNECTED;
1142 		break;
1143 
1144 
1145 /* Note: this interrupt should not occur in a LEVEL2 command */
1146 
1147 	case CSR_XFER_DONE | PHS_COMMAND:
1148 	case CSR_UNEXP | PHS_COMMAND:
1149 	case CSR_SRV_REQ | PHS_COMMAND:
1150 		DB(DB_INTR, printk("CMND-%02x,%ld", cmd->cmnd[0], cmd->serial_number))
1151 		    transfer_pio(cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, hostdata);
1152 		hostdata->state = S_CONNECTED;
1153 		break;
1154 
1155 
1156 	case CSR_XFER_DONE | PHS_STATUS:
1157 	case CSR_UNEXP | PHS_STATUS:
1158 	case CSR_SRV_REQ | PHS_STATUS:
1159 		DB(DB_INTR, printk("STATUS="))
1160 
1161 		    cmd->SCp.Status = read_1_byte(hostdata);
1162 		DB(DB_INTR, printk("%02x", cmd->SCp.Status))
1163 		    if (hostdata->level2 >= L2_BASIC) {
1164 			sr = read_3393(hostdata, WD_SCSI_STATUS);	/* clear interrupt */
1165 			hostdata->state = S_RUNNING_LEVEL2;
1166 			write_3393(hostdata, WD_COMMAND_PHASE, 0x50);
1167 			write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1168 		} else {
1169 			hostdata->state = S_CONNECTED;
1170 		}
1171 		break;
1172 
1173 
1174 	case CSR_XFER_DONE | PHS_MESS_IN:
1175 	case CSR_UNEXP | PHS_MESS_IN:
1176 	case CSR_SRV_REQ | PHS_MESS_IN:
1177 		DB(DB_INTR, printk("MSG_IN="))
1178 
1179 		    msg = read_1_byte(hostdata);
1180 		sr = read_3393(hostdata, WD_SCSI_STATUS);	/* clear interrupt */
1181 
1182 		hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1183 		if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1184 			msg = EXTENDED_MESSAGE;
1185 		else
1186 			hostdata->incoming_ptr = 0;
1187 
1188 		cmd->SCp.Message = msg;
1189 		switch (msg) {
1190 
1191 		case COMMAND_COMPLETE:
1192 			DB(DB_INTR, printk("CCMP-%ld", cmd->serial_number))
1193 			    write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1194 			hostdata->state = S_PRE_CMP_DISC;
1195 			break;
1196 
1197 		case SAVE_POINTERS:
1198 			DB(DB_INTR, printk("SDP"))
1199 			    write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1200 			hostdata->state = S_CONNECTED;
1201 			break;
1202 
1203 		case RESTORE_POINTERS:
1204 			DB(DB_INTR, printk("RDP"))
1205 			    if (hostdata->level2 >= L2_BASIC) {
1206 				write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1207 				write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1208 				hostdata->state = S_RUNNING_LEVEL2;
1209 			} else {
1210 				write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1211 				hostdata->state = S_CONNECTED;
1212 			}
1213 			break;
1214 
1215 		case DISCONNECT:
1216 			DB(DB_INTR, printk("DIS"))
1217 			    cmd->device->disconnect = 1;
1218 			write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1219 			hostdata->state = S_PRE_TMP_DISC;
1220 			break;
1221 
1222 		case MESSAGE_REJECT:
1223 			DB(DB_INTR, printk("REJ"))
1224 #ifdef SYNC_DEBUG
1225 			    printk("-REJ-");
1226 #endif
1227 			if (hostdata->sync_stat[cmd->device->id] == SS_WAITING)
1228 				hostdata->sync_stat[cmd->device->id] = SS_SET;
1229 			write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1230 			hostdata->state = S_CONNECTED;
1231 			break;
1232 
1233 		case EXTENDED_MESSAGE:
1234 			DB(DB_INTR, printk("EXT"))
1235 
1236 			    ucp = hostdata->incoming_msg;
1237 
1238 #ifdef SYNC_DEBUG
1239 			printk("%02x", ucp[hostdata->incoming_ptr]);
1240 #endif
1241 			/* Is this the last byte of the extended message? */
1242 
1243 			if ((hostdata->incoming_ptr >= 2) && (hostdata->incoming_ptr == (ucp[1] + 1))) {
1244 
1245 				switch (ucp[2]) {	/* what's the EXTENDED code? */
1246 				case EXTENDED_SDTR:
1247 					id = calc_sync_xfer(ucp[3], ucp[4]);
1248 					if (hostdata->sync_stat[cmd->device->id] != SS_WAITING) {
1249 
1250 /* A device has sent an unsolicited SDTR message; rather than go
1251  * through the effort of decoding it and then figuring out what
1252  * our reply should be, we're just gonna say that we have a
1253  * synchronous fifo depth of 0. This will result in asynchronous
1254  * transfers - not ideal but so much easier.
1255  * Actually, this is OK because it assures us that if we don't
1256  * specifically ask for sync transfers, we won't do any.
1257  */
1258 
1259 						write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
1260 						hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1261 						hostdata->outgoing_msg[1] = 3;
1262 						hostdata->outgoing_msg[2] = EXTENDED_SDTR;
1263 						hostdata->outgoing_msg[3] = hostdata->default_sx_per / 4;
1264 						hostdata->outgoing_msg[4] = 0;
1265 						hostdata->outgoing_len = 5;
1266 						hostdata->sync_xfer[cmd->device->id] = calc_sync_xfer(hostdata->default_sx_per / 4, 0);
1267 					} else {
1268 						hostdata->sync_xfer[cmd->device->id] = id;
1269 					}
1270 #ifdef SYNC_DEBUG
1271 					printk("sync_xfer=%02x", hostdata->sync_xfer[cmd->device->id]);
1272 #endif
1273 					hostdata->sync_stat[cmd->device->id] = SS_SET;
1274 					write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1275 					hostdata->state = S_CONNECTED;
1276 					break;
1277 				case EXTENDED_WDTR:
1278 					write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
1279 					printk("sending WDTR ");
1280 					hostdata->outgoing_msg[0] = EXTENDED_MESSAGE;
1281 					hostdata->outgoing_msg[1] = 2;
1282 					hostdata->outgoing_msg[2] = EXTENDED_WDTR;
1283 					hostdata->outgoing_msg[3] = 0;	/* 8 bit transfer width */
1284 					hostdata->outgoing_len = 4;
1285 					write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1286 					hostdata->state = S_CONNECTED;
1287 					break;
1288 				default:
1289 					write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
1290 					printk("Rejecting Unknown Extended Message(%02x). ", ucp[2]);
1291 					hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1292 					hostdata->outgoing_len = 1;
1293 					write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1294 					hostdata->state = S_CONNECTED;
1295 					break;
1296 				}
1297 				hostdata->incoming_ptr = 0;
1298 			}
1299 
1300 			/* We need to read more MESS_IN bytes for the extended message */
1301 
1302 			else {
1303 				hostdata->incoming_ptr++;
1304 				write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1305 				hostdata->state = S_CONNECTED;
1306 			}
1307 			break;
1308 
1309 		default:
1310 			printk("Rejecting Unknown Message(%02x) ", msg);
1311 			write_3393_cmd(hostdata, WD_CMD_ASSERT_ATN);	/* want MESS_OUT */
1312 			hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1313 			hostdata->outgoing_len = 1;
1314 			write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1315 			hostdata->state = S_CONNECTED;
1316 		}
1317 		break;
1318 
1319 
1320 /* Note: this interrupt will occur only after a LEVEL2 command */
1321 
1322 	case CSR_SEL_XFER_DONE:
1323 
1324 /* Make sure that reselection is enabled at this point - it may
1325  * have been turned off for the command that just completed.
1326  */
1327 
1328 		write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1329 		if (phs == 0x60) {
1330 			DB(DB_INTR, printk("SX-DONE-%ld", cmd->serial_number))
1331 			    cmd->SCp.Message = COMMAND_COMPLETE;
1332 			lun = read_3393(hostdata, WD_TARGET_LUN);
1333 			DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1334 			    hostdata->connected = NULL;
1335 			hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1336 			hostdata->state = S_UNCONNECTED;
1337 			if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1338 				cmd->SCp.Status = lun;
1339 			if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1340 				cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1341 			else
1342 				cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1343 			cmd->scsi_done(cmd);
1344 
1345 /* We are no longer connected to a target - check to see if
1346  * there are commands waiting to be executed.
1347  */
1348 
1349 			in2000_execute(instance);
1350 		} else {
1351 			printk("%02x:%02x:%02x-%ld: Unknown SEL_XFER_DONE phase!!---", asr, sr, phs, cmd->serial_number);
1352 		}
1353 		break;
1354 
1355 
1356 /* Note: this interrupt will occur only after a LEVEL2 command */
1357 
1358 	case CSR_SDP:
1359 		DB(DB_INTR, printk("SDP"))
1360 		    hostdata->state = S_RUNNING_LEVEL2;
1361 		write_3393(hostdata, WD_COMMAND_PHASE, 0x41);
1362 		write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1363 		break;
1364 
1365 
1366 	case CSR_XFER_DONE | PHS_MESS_OUT:
1367 	case CSR_UNEXP | PHS_MESS_OUT:
1368 	case CSR_SRV_REQ | PHS_MESS_OUT:
1369 		DB(DB_INTR, printk("MSG_OUT="))
1370 
1371 /* To get here, we've probably requested MESSAGE_OUT and have
1372  * already put the correct bytes in outgoing_msg[] and filled
1373  * in outgoing_len. We simply send them out to the SCSI bus.
1374  * Sometimes we get MESSAGE_OUT phase when we're not expecting
1375  * it - like when our SDTR message is rejected by a target. Some
1376  * targets send the REJECT before receiving all of the extended
1377  * message, and then seem to go back to MESSAGE_OUT for a byte
1378  * or two. Not sure why, or if I'm doing something wrong to
1379  * cause this to happen. Regardless, it seems that sending
1380  * NOP messages in these situations results in no harm and
1381  * makes everyone happy.
1382  */
1383 		    if (hostdata->outgoing_len == 0) {
1384 			hostdata->outgoing_len = 1;
1385 			hostdata->outgoing_msg[0] = NOP;
1386 		}
1387 		transfer_pio(hostdata->outgoing_msg, hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1388 		DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1389 		    hostdata->outgoing_len = 0;
1390 		hostdata->state = S_CONNECTED;
1391 		break;
1392 
1393 
1394 	case CSR_UNEXP_DISC:
1395 
1396 /* I think I've seen this after a request-sense that was in response
1397  * to an error condition, but not sure. We certainly need to do
1398  * something when we get this interrupt - the question is 'what?'.
1399  * Let's think positively, and assume some command has finished
1400  * in a legal manner (like a command that provokes a request-sense),
1401  * so we treat it as a normal command-complete-disconnect.
1402  */
1403 
1404 
1405 /* Make sure that reselection is enabled at this point - it may
1406  * have been turned off for the command that just completed.
1407  */
1408 
1409 		write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1410 		if (cmd == NULL) {
1411 			printk(" - Already disconnected! ");
1412 			hostdata->state = S_UNCONNECTED;
1413 
1414 /* release the SMP spin_lock and restore irq state */
1415 			spin_unlock_irqrestore(instance->host_lock, flags);
1416 			return IRQ_HANDLED;
1417 		}
1418 		DB(DB_INTR, printk("UNEXP_DISC-%ld", cmd->serial_number))
1419 		    hostdata->connected = NULL;
1420 		hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1421 		hostdata->state = S_UNCONNECTED;
1422 		if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1423 			cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1424 		else
1425 			cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1426 		cmd->scsi_done(cmd);
1427 
1428 /* We are no longer connected to a target - check to see if
1429  * there are commands waiting to be executed.
1430  */
1431 
1432 		in2000_execute(instance);
1433 		break;
1434 
1435 
1436 	case CSR_DISC:
1437 
1438 /* Make sure that reselection is enabled at this point - it may
1439  * have been turned off for the command that just completed.
1440  */
1441 
1442 		write_3393(hostdata, WD_SOURCE_ID, SRCID_ER);
1443 		DB(DB_INTR, printk("DISC-%ld", cmd->serial_number))
1444 		    if (cmd == NULL) {
1445 			printk(" - Already disconnected! ");
1446 			hostdata->state = S_UNCONNECTED;
1447 		}
1448 		switch (hostdata->state) {
1449 		case S_PRE_CMP_DISC:
1450 			hostdata->connected = NULL;
1451 			hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1452 			hostdata->state = S_UNCONNECTED;
1453 			DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1454 			    if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1455 				cmd->result = (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1456 			else
1457 				cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1458 			cmd->scsi_done(cmd);
1459 			break;
1460 		case S_PRE_TMP_DISC:
1461 		case S_RUNNING_LEVEL2:
1462 			cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1463 			hostdata->disconnected_Q = cmd;
1464 			hostdata->connected = NULL;
1465 			hostdata->state = S_UNCONNECTED;
1466 
1467 #ifdef PROC_STATISTICS
1468 			hostdata->disc_done_cnt[cmd->device->id]++;
1469 #endif
1470 
1471 			break;
1472 		default:
1473 			printk("*** Unexpected DISCONNECT interrupt! ***");
1474 			hostdata->state = S_UNCONNECTED;
1475 		}
1476 
1477 /* We are no longer connected to a target - check to see if
1478  * there are commands waiting to be executed.
1479  */
1480 
1481 		in2000_execute(instance);
1482 		break;
1483 
1484 
1485 	case CSR_RESEL_AM:
1486 		DB(DB_INTR, printk("RESEL"))
1487 
1488 		    /* First we have to make sure this reselection didn't */
1489 		    /* happen during Arbitration/Selection of some other device. */
1490 		    /* If yes, put losing command back on top of input_Q. */
1491 		    if (hostdata->level2 <= L2_NONE) {
1492 
1493 			if (hostdata->selecting) {
1494 				cmd = (Scsi_Cmnd *) hostdata->selecting;
1495 				hostdata->selecting = NULL;
1496 				hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1497 				cmd->host_scribble = (uchar *) hostdata->input_Q;
1498 				hostdata->input_Q = cmd;
1499 			}
1500 		}
1501 
1502 		else {
1503 
1504 			if (cmd) {
1505 				if (phs == 0x00) {
1506 					hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1507 					cmd->host_scribble = (uchar *) hostdata->input_Q;
1508 					hostdata->input_Q = cmd;
1509 				} else {
1510 					printk("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", asr, sr, phs);
1511 					while (1)
1512 						printk("\r");
1513 				}
1514 			}
1515 
1516 		}
1517 
1518 		/* OK - find out which device reselected us. */
1519 
1520 		id = read_3393(hostdata, WD_SOURCE_ID);
1521 		id &= SRCID_MASK;
1522 
1523 		/* and extract the lun from the ID message. (Note that we don't
1524 		 * bother to check for a valid message here - I guess this is
1525 		 * not the right way to go, but....)
1526 		 */
1527 
1528 		lun = read_3393(hostdata, WD_DATA);
1529 		if (hostdata->level2 < L2_RESELECT)
1530 			write_3393_cmd(hostdata, WD_CMD_NEGATE_ACK);
1531 		lun &= 7;
1532 
1533 		/* Now we look for the command that's reconnecting. */
1534 
1535 		cmd = (Scsi_Cmnd *) hostdata->disconnected_Q;
1536 		patch = NULL;
1537 		while (cmd) {
1538 			if (id == cmd->device->id && lun == cmd->device->lun)
1539 				break;
1540 			patch = cmd;
1541 			cmd = (Scsi_Cmnd *) cmd->host_scribble;
1542 		}
1543 
1544 		/* Hmm. Couldn't find a valid command.... What to do? */
1545 
1546 		if (!cmd) {
1547 			printk("---TROUBLE: target %d.%d not in disconnect queue---", id, lun);
1548 			break;
1549 		}
1550 
1551 		/* Ok, found the command - now start it up again. */
1552 
1553 		if (patch)
1554 			patch->host_scribble = cmd->host_scribble;
1555 		else
1556 			hostdata->disconnected_Q = (Scsi_Cmnd *) cmd->host_scribble;
1557 		hostdata->connected = cmd;
1558 
1559 		/* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1560 		 * because these things are preserved over a disconnect.
1561 		 * But we DO need to fix the DPD bit so it's correct for this command.
1562 		 */
1563 
1564 		if (is_dir_out(cmd))
1565 			write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id);
1566 		else
1567 			write_3393(hostdata, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
1568 		if (hostdata->level2 >= L2_RESELECT) {
1569 			write_3393_count(hostdata, 0);	/* we want a DATA_PHASE interrupt */
1570 			write_3393(hostdata, WD_COMMAND_PHASE, 0x45);
1571 			write_3393_cmd(hostdata, WD_CMD_SEL_ATN_XFER);
1572 			hostdata->state = S_RUNNING_LEVEL2;
1573 		} else
1574 			hostdata->state = S_CONNECTED;
1575 
1576 		DB(DB_INTR, printk("-%ld", cmd->serial_number))
1577 		    break;
1578 
1579 	default:
1580 		printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1581 	}
1582 
1583 	write1_io(0, IO_LED_OFF);
1584 
1585 	DB(DB_INTR, printk("} "))
1586 
1587 /* release the SMP spin_lock and restore irq state */
1588 	    spin_unlock_irqrestore(instance->host_lock, flags);
1589 	return IRQ_HANDLED;
1590 }
1591 
1592 
1593 
1594 #define RESET_CARD         0
1595 #define RESET_CARD_AND_BUS 1
1596 #define B_FLAG 0x80
1597 
1598 /*
1599  *	Caller must hold instance lock!
1600  */
1601 
reset_hardware(struct Scsi_Host * instance,int type)1602 static int reset_hardware(struct Scsi_Host *instance, int type)
1603 {
1604 	struct IN2000_hostdata *hostdata;
1605 	int qt, x;
1606 
1607 	hostdata = (struct IN2000_hostdata *) instance->hostdata;
1608 
1609 	write1_io(0, IO_LED_ON);
1610 	if (type == RESET_CARD_AND_BUS) {
1611 		write1_io(0, IO_CARD_RESET);
1612 		x = read1_io(IO_HARDWARE);
1613 	}
1614 	x = read_3393(hostdata, WD_SCSI_STATUS);	/* clear any WD intrpt */
1615 	write_3393(hostdata, WD_OWN_ID, instance->this_id | OWNID_EAF | OWNID_RAF | OWNID_FS_8);
1616 	write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1617 	write_3393(hostdata, WD_SYNCHRONOUS_TRANSFER, calc_sync_xfer(hostdata->default_sx_per / 4, DEFAULT_SX_OFF));
1618 
1619 	write1_io(0, IO_FIFO_WRITE);	/* clear fifo counter */
1620 	write1_io(0, IO_FIFO_READ);	/* start fifo out in read mode */
1621 	write_3393(hostdata, WD_COMMAND, WD_CMD_RESET);
1622 	/* FIXME: timeout ?? */
1623 	while (!(READ_AUX_STAT() & ASR_INT))
1624 		cpu_relax();	/* wait for RESET to complete */
1625 
1626 	x = read_3393(hostdata, WD_SCSI_STATUS);	/* clear interrupt */
1627 
1628 	write_3393(hostdata, WD_QUEUE_TAG, 0xa5);	/* any random number */
1629 	qt = read_3393(hostdata, WD_QUEUE_TAG);
1630 	if (qt == 0xa5) {
1631 		x |= B_FLAG;
1632 		write_3393(hostdata, WD_QUEUE_TAG, 0);
1633 	}
1634 	write_3393(hostdata, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1635 	write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1636 	write1_io(0, IO_LED_OFF);
1637 	return x;
1638 }
1639 
1640 
1641 
in2000_bus_reset(Scsi_Cmnd * cmd)1642 static int in2000_bus_reset(Scsi_Cmnd * cmd)
1643 {
1644 	struct Scsi_Host *instance;
1645 	struct IN2000_hostdata *hostdata;
1646 	int x;
1647 	unsigned long flags;
1648 
1649 	instance = cmd->device->host;
1650 	hostdata = (struct IN2000_hostdata *) instance->hostdata;
1651 
1652 	printk(KERN_WARNING "scsi%d: Reset. ", instance->host_no);
1653 
1654 	spin_lock_irqsave(instance->host_lock, flags);
1655 
1656 	/* do scsi-reset here */
1657 	reset_hardware(instance, RESET_CARD_AND_BUS);
1658 	for (x = 0; x < 8; x++) {
1659 		hostdata->busy[x] = 0;
1660 		hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
1661 		hostdata->sync_stat[x] = SS_UNSET;	/* using default sync values */
1662 	}
1663 	hostdata->input_Q = NULL;
1664 	hostdata->selecting = NULL;
1665 	hostdata->connected = NULL;
1666 	hostdata->disconnected_Q = NULL;
1667 	hostdata->state = S_UNCONNECTED;
1668 	hostdata->fifo = FI_FIFO_UNUSED;
1669 	hostdata->incoming_ptr = 0;
1670 	hostdata->outgoing_len = 0;
1671 
1672 	cmd->result = DID_RESET << 16;
1673 
1674 	spin_unlock_irqrestore(instance->host_lock, flags);
1675 	return SUCCESS;
1676 }
1677 
__in2000_abort(Scsi_Cmnd * cmd)1678 static int __in2000_abort(Scsi_Cmnd * cmd)
1679 {
1680 	struct Scsi_Host *instance;
1681 	struct IN2000_hostdata *hostdata;
1682 	Scsi_Cmnd *tmp, *prev;
1683 	uchar sr, asr;
1684 	unsigned long timeout;
1685 
1686 	instance = cmd->device->host;
1687 	hostdata = (struct IN2000_hostdata *) instance->hostdata;
1688 
1689 	printk(KERN_DEBUG "scsi%d: Abort-", instance->host_no);
1690 	printk("(asr=%02x,count=%ld,resid=%d,buf_resid=%d,have_data=%d,FC=%02x)- ", READ_AUX_STAT(), read_3393_count(hostdata), cmd->SCp.this_residual, cmd->SCp.buffers_residual, cmd->SCp.have_data_in, read1_io(IO_FIFO_COUNT));
1691 
1692 /*
1693  * Case 1 : If the command hasn't been issued yet, we simply remove it
1694  *     from the inout_Q.
1695  */
1696 
1697 	tmp = (Scsi_Cmnd *) hostdata->input_Q;
1698 	prev = NULL;
1699 	while (tmp) {
1700 		if (tmp == cmd) {
1701 			if (prev)
1702 				prev->host_scribble = cmd->host_scribble;
1703 			cmd->host_scribble = NULL;
1704 			cmd->result = DID_ABORT << 16;
1705 			printk(KERN_WARNING "scsi%d: Abort - removing command %ld from input_Q. ", instance->host_no, cmd->serial_number);
1706 			cmd->scsi_done(cmd);
1707 			return SUCCESS;
1708 		}
1709 		prev = tmp;
1710 		tmp = (Scsi_Cmnd *) tmp->host_scribble;
1711 	}
1712 
1713 /*
1714  * Case 2 : If the command is connected, we're going to fail the abort
1715  *     and let the high level SCSI driver retry at a later time or
1716  *     issue a reset.
1717  *
1718  *     Timeouts, and therefore aborted commands, will be highly unlikely
1719  *     and handling them cleanly in this situation would make the common
1720  *     case of noresets less efficient, and would pollute our code.  So,
1721  *     we fail.
1722  */
1723 
1724 	if (hostdata->connected == cmd) {
1725 
1726 		printk(KERN_WARNING "scsi%d: Aborting connected command %ld - ", instance->host_no, cmd->serial_number);
1727 
1728 		printk("sending wd33c93 ABORT command - ");
1729 		write_3393(hostdata, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1730 		write_3393_cmd(hostdata, WD_CMD_ABORT);
1731 
1732 /* Now we have to attempt to flush out the FIFO... */
1733 
1734 		printk("flushing fifo - ");
1735 		timeout = 1000000;
1736 		do {
1737 			asr = READ_AUX_STAT();
1738 			if (asr & ASR_DBR)
1739 				read_3393(hostdata, WD_DATA);
1740 		} while (!(asr & ASR_INT) && timeout-- > 0);
1741 		sr = read_3393(hostdata, WD_SCSI_STATUS);
1742 		printk("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", asr, sr, read_3393_count(hostdata), timeout);
1743 
1744 		/*
1745 		 * Abort command processed.
1746 		 * Still connected.
1747 		 * We must disconnect.
1748 		 */
1749 
1750 		printk("sending wd33c93 DISCONNECT command - ");
1751 		write_3393_cmd(hostdata, WD_CMD_DISCONNECT);
1752 
1753 		timeout = 1000000;
1754 		asr = READ_AUX_STAT();
1755 		while ((asr & ASR_CIP) && timeout-- > 0)
1756 			asr = READ_AUX_STAT();
1757 		sr = read_3393(hostdata, WD_SCSI_STATUS);
1758 		printk("asr=%02x, sr=%02x.", asr, sr);
1759 
1760 		hostdata->busy[cmd->device->id] &= ~(1 << cmd->device->lun);
1761 		hostdata->connected = NULL;
1762 		hostdata->state = S_UNCONNECTED;
1763 		cmd->result = DID_ABORT << 16;
1764 		cmd->scsi_done(cmd);
1765 
1766 		in2000_execute(instance);
1767 
1768 		return SUCCESS;
1769 	}
1770 
1771 /*
1772  * Case 3: If the command is currently disconnected from the bus,
1773  * we're not going to expend much effort here: Let's just return
1774  * an ABORT_SNOOZE and hope for the best...
1775  */
1776 
1777 	for (tmp = (Scsi_Cmnd *) hostdata->disconnected_Q; tmp; tmp = (Scsi_Cmnd *) tmp->host_scribble)
1778 		if (cmd == tmp) {
1779 			printk(KERN_DEBUG "scsi%d: unable to abort disconnected command.\n", instance->host_no);
1780 			return FAILED;
1781 		}
1782 
1783 /*
1784  * Case 4 : If we reached this point, the command was not found in any of
1785  *     the queues.
1786  *
1787  * We probably reached this point because of an unlikely race condition
1788  * between the command completing successfully and the abortion code,
1789  * so we won't panic, but we will notify the user in case something really
1790  * broke.
1791  */
1792 
1793 	in2000_execute(instance);
1794 
1795 	printk("scsi%d: warning : SCSI command probably completed successfully" "         before abortion. ", instance->host_no);
1796 	return SUCCESS;
1797 }
1798 
in2000_abort(Scsi_Cmnd * cmd)1799 static int in2000_abort(Scsi_Cmnd * cmd)
1800 {
1801 	int rc;
1802 
1803 	spin_lock_irq(cmd->device->host->host_lock);
1804 	rc = __in2000_abort(cmd);
1805 	spin_unlock_irq(cmd->device->host->host_lock);
1806 
1807 	return rc;
1808 }
1809 
1810 
1811 #define MAX_IN2000_HOSTS 3
1812 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1813 #define SETUP_BUFFER_SIZE 200
1814 static char setup_buffer[SETUP_BUFFER_SIZE];
1815 static char setup_used[MAX_SETUP_ARGS];
1816 static int done_setup = 0;
1817 
in2000_setup(char * str,int * ints)1818 static void __init in2000_setup(char *str, int *ints)
1819 {
1820 	int i;
1821 	char *p1, *p2;
1822 
1823 	strlcpy(setup_buffer, str, SETUP_BUFFER_SIZE);
1824 	p1 = setup_buffer;
1825 	i = 0;
1826 	while (*p1 && (i < MAX_SETUP_ARGS)) {
1827 		p2 = strchr(p1, ',');
1828 		if (p2) {
1829 			*p2 = '\0';
1830 			if (p1 != p2)
1831 				setup_args[i] = p1;
1832 			p1 = p2 + 1;
1833 			i++;
1834 		} else {
1835 			setup_args[i] = p1;
1836 			break;
1837 		}
1838 	}
1839 	for (i = 0; i < MAX_SETUP_ARGS; i++)
1840 		setup_used[i] = 0;
1841 	done_setup = 1;
1842 }
1843 
1844 
1845 /* check_setup_args() returns index if key found, 0 if not
1846  */
1847 
check_setup_args(char * key,int * val,char * buf)1848 static int __init check_setup_args(char *key, int *val, char *buf)
1849 {
1850 	int x;
1851 	char *cp;
1852 
1853 	for (x = 0; x < MAX_SETUP_ARGS; x++) {
1854 		if (setup_used[x])
1855 			continue;
1856 		if (!strncmp(setup_args[x], key, strlen(key)))
1857 			break;
1858 	}
1859 	if (x == MAX_SETUP_ARGS)
1860 		return 0;
1861 	setup_used[x] = 1;
1862 	cp = setup_args[x] + strlen(key);
1863 	*val = -1;
1864 	if (*cp != ':')
1865 		return ++x;
1866 	cp++;
1867 	if ((*cp >= '0') && (*cp <= '9')) {
1868 		*val = simple_strtoul(cp, NULL, 0);
1869 	}
1870 	return ++x;
1871 }
1872 
1873 
1874 
1875 /* The "correct" (ie portable) way to access memory-mapped hardware
1876  * such as the IN2000 EPROM and dip switch is through the use of
1877  * special macros declared in 'asm/io.h'. We use readb() and readl()
1878  * when reading from the card's BIOS area in in2000_detect().
1879  */
1880 static u32 bios_tab[] in2000__INITDATA = {
1881 	0xc8000,
1882 	0xd0000,
1883 	0xd8000,
1884 	0
1885 };
1886 
1887 static unsigned short base_tab[] in2000__INITDATA = {
1888 	0x220,
1889 	0x200,
1890 	0x110,
1891 	0x100,
1892 };
1893 
1894 static int int_tab[] in2000__INITDATA = {
1895 	15,
1896 	14,
1897 	11,
1898 	10
1899 };
1900 
probe_bios(u32 addr,u32 * s1,uchar * switches)1901 static int probe_bios(u32 addr, u32 *s1, uchar *switches)
1902 {
1903 	void __iomem *p = ioremap(addr, 0x34);
1904 	if (!p)
1905 		return 0;
1906 	*s1 = readl(p + 0x10);
1907 	if (*s1 == 0x41564f4e || readl(p + 0x30) == 0x61776c41) {
1908 		/* Read the switch image that's mapped into EPROM space */
1909 		*switches = ~readb(p + 0x20);
1910 		iounmap(p);
1911 		return 1;
1912 	}
1913 	iounmap(p);
1914 	return 0;
1915 }
1916 
in2000_detect(struct scsi_host_template * tpnt)1917 static int __init in2000_detect(struct scsi_host_template * tpnt)
1918 {
1919 	struct Scsi_Host *instance;
1920 	struct IN2000_hostdata *hostdata;
1921 	int detect_count;
1922 	int bios;
1923 	int x;
1924 	unsigned short base;
1925 	uchar switches;
1926 	uchar hrev;
1927 	unsigned long flags;
1928 	int val;
1929 	char buf[32];
1930 
1931 /* Thanks to help from Bill Earnest, probing for IN2000 cards is a
1932  * pretty straightforward and fool-proof operation. There are 3
1933  * possible locations for the IN2000 EPROM in memory space - if we
1934  * find a BIOS signature, we can read the dip switch settings from
1935  * the byte at BIOS+32 (shadowed in by logic on the card). From 2
1936  * of the switch bits we get the card's address in IO space. There's
1937  * an image of the dip switch there, also, so we have a way to back-
1938  * check that this really is an IN2000 card. Very nifty. Use the
1939  * 'ioport:xx' command-line parameter if your BIOS EPROM is absent
1940  * or disabled.
1941  */
1942 
1943 	if (!done_setup && setup_strings)
1944 		in2000_setup(setup_strings, NULL);
1945 
1946 	detect_count = 0;
1947 	for (bios = 0; bios_tab[bios]; bios++) {
1948 		u32 s1 = 0;
1949 		if (check_setup_args("ioport", &val, buf)) {
1950 			base = val;
1951 			switches = ~inb(base + IO_SWITCHES) & 0xff;
1952 			printk("Forcing IN2000 detection at IOport 0x%x ", base);
1953 			bios = 2;
1954 		}
1955 /*
1956  * There have been a couple of BIOS versions with different layouts
1957  * for the obvious ID strings. We look for the 2 most common ones and
1958  * hope that they cover all the cases...
1959  */
1960 		else if (probe_bios(bios_tab[bios], &s1, &switches)) {
1961 			printk("Found IN2000 BIOS at 0x%x ", (unsigned int) bios_tab[bios]);
1962 
1963 /* Find out where the IO space is */
1964 
1965 			x = switches & (SW_ADDR0 | SW_ADDR1);
1966 			base = base_tab[x];
1967 
1968 /* Check for the IN2000 signature in IO space. */
1969 
1970 			x = ~inb(base + IO_SWITCHES) & 0xff;
1971 			if (x != switches) {
1972 				printk("Bad IO signature: %02x vs %02x.\n", x, switches);
1973 				continue;
1974 			}
1975 		} else
1976 			continue;
1977 
1978 /* OK. We have a base address for the IO ports - run a few safety checks */
1979 
1980 		if (!(switches & SW_BIT7)) {	/* I _think_ all cards do this */
1981 			printk("There is no IN-2000 SCSI card at IOport 0x%03x!\n", base);
1982 			continue;
1983 		}
1984 
1985 /* Let's assume any hardware version will work, although the driver
1986  * has only been tested on 0x21, 0x22, 0x25, 0x26, and 0x27. We'll
1987  * print out the rev number for reference later, but accept them all.
1988  */
1989 
1990 		hrev = inb(base + IO_HARDWARE);
1991 
1992 		/* Bit 2 tells us if interrupts are disabled */
1993 		if (switches & SW_DISINT) {
1994 			printk("The IN-2000 SCSI card at IOport 0x%03x ", base);
1995 			printk("is not configured for interrupt operation!\n");
1996 			printk("This driver requires an interrupt: cancelling detection.\n");
1997 			continue;
1998 		}
1999 
2000 /* Ok. We accept that there's an IN2000 at ioaddr 'base'. Now
2001  * initialize it.
2002  */
2003 
2004 		tpnt->proc_name = "in2000";
2005 		instance = scsi_register(tpnt, sizeof(struct IN2000_hostdata));
2006 		if (instance == NULL)
2007 			continue;
2008 		detect_count++;
2009 		hostdata = (struct IN2000_hostdata *) instance->hostdata;
2010 		instance->io_port = hostdata->io_base = base;
2011 		hostdata->dip_switch = switches;
2012 		hostdata->hrev = hrev;
2013 
2014 		write1_io(0, IO_FIFO_WRITE);	/* clear fifo counter */
2015 		write1_io(0, IO_FIFO_READ);	/* start fifo out in read mode */
2016 		write1_io(0, IO_INTR_MASK);	/* allow all ints */
2017 		x = int_tab[(switches & (SW_INT0 | SW_INT1)) >> SW_INT_SHIFT];
2018 		if (request_irq(x, in2000_intr, IRQF_DISABLED, "in2000", instance)) {
2019 			printk("in2000_detect: Unable to allocate IRQ.\n");
2020 			detect_count--;
2021 			continue;
2022 		}
2023 		instance->irq = x;
2024 		instance->n_io_port = 13;
2025 		request_region(base, 13, "in2000");	/* lock in this IO space for our use */
2026 
2027 		for (x = 0; x < 8; x++) {
2028 			hostdata->busy[x] = 0;
2029 			hostdata->sync_xfer[x] = calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF);
2030 			hostdata->sync_stat[x] = SS_UNSET;	/* using default sync values */
2031 #ifdef PROC_STATISTICS
2032 			hostdata->cmd_cnt[x] = 0;
2033 			hostdata->disc_allowed_cnt[x] = 0;
2034 			hostdata->disc_done_cnt[x] = 0;
2035 #endif
2036 		}
2037 		hostdata->input_Q = NULL;
2038 		hostdata->selecting = NULL;
2039 		hostdata->connected = NULL;
2040 		hostdata->disconnected_Q = NULL;
2041 		hostdata->state = S_UNCONNECTED;
2042 		hostdata->fifo = FI_FIFO_UNUSED;
2043 		hostdata->level2 = L2_BASIC;
2044 		hostdata->disconnect = DIS_ADAPTIVE;
2045 		hostdata->args = DEBUG_DEFAULTS;
2046 		hostdata->incoming_ptr = 0;
2047 		hostdata->outgoing_len = 0;
2048 		hostdata->default_sx_per = DEFAULT_SX_PER;
2049 
2050 /* Older BIOS's had a 'sync on/off' switch - use its setting */
2051 
2052 		if (s1 == 0x41564f4e && (switches & SW_SYNC_DOS5))
2053 			hostdata->sync_off = 0x00;	/* sync defaults to on */
2054 		else
2055 			hostdata->sync_off = 0xff;	/* sync defaults to off */
2056 
2057 #ifdef PROC_INTERFACE
2058 		hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
2059 #ifdef PROC_STATISTICS
2060 		hostdata->int_cnt = 0;
2061 #endif
2062 #endif
2063 
2064 		if (check_setup_args("nosync", &val, buf))
2065 			hostdata->sync_off = val;
2066 
2067 		if (check_setup_args("period", &val, buf))
2068 			hostdata->default_sx_per = sx_table[round_period((unsigned int) val)].period_ns;
2069 
2070 		if (check_setup_args("disconnect", &val, buf)) {
2071 			if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2072 				hostdata->disconnect = val;
2073 			else
2074 				hostdata->disconnect = DIS_ADAPTIVE;
2075 		}
2076 
2077 		if (check_setup_args("noreset", &val, buf))
2078 			hostdata->args ^= A_NO_SCSI_RESET;
2079 
2080 		if (check_setup_args("level2", &val, buf))
2081 			hostdata->level2 = val;
2082 
2083 		if (check_setup_args("debug", &val, buf))
2084 			hostdata->args = (val & DB_MASK);
2085 
2086 #ifdef PROC_INTERFACE
2087 		if (check_setup_args("proc", &val, buf))
2088 			hostdata->proc = val;
2089 #endif
2090 
2091 
2092 		/* FIXME: not strictly needed I think but the called code expects
2093 		   to be locked */
2094 		spin_lock_irqsave(instance->host_lock, flags);
2095 		x = reset_hardware(instance, (hostdata->args & A_NO_SCSI_RESET) ? RESET_CARD : RESET_CARD_AND_BUS);
2096 		spin_unlock_irqrestore(instance->host_lock, flags);
2097 
2098 		hostdata->microcode = read_3393(hostdata, WD_CDB_1);
2099 		if (x & 0x01) {
2100 			if (x & B_FLAG)
2101 				hostdata->chip = C_WD33C93B;
2102 			else
2103 				hostdata->chip = C_WD33C93A;
2104 		} else
2105 			hostdata->chip = C_WD33C93;
2106 
2107 		printk("dip_switch=%02x irq=%d ioport=%02x floppy=%s sync/DOS5=%s ", (switches & 0x7f), instance->irq, hostdata->io_base, (switches & SW_FLOPPY) ? "Yes" : "No", (switches & SW_SYNC_DOS5) ? "Yes" : "No");
2108 		printk("hardware_ver=%02x chip=%s microcode=%02x\n", hrev, (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == C_WD33C93A) ? "WD33c93A" : (hostdata->chip == C_WD33C93B) ? "WD33c93B" : "unknown", hostdata->microcode);
2109 #ifdef DEBUGGING_ON
2110 		printk("setup_args = ");
2111 		for (x = 0; x < MAX_SETUP_ARGS; x++)
2112 			printk("%s,", setup_args[x]);
2113 		printk("\n");
2114 #endif
2115 		if (hostdata->sync_off == 0xff)
2116 			printk("Sync-transfer DISABLED on all devices: ENABLE from command-line\n");
2117 		printk("IN2000 driver version %s - %s\n", IN2000_VERSION, IN2000_DATE);
2118 	}
2119 
2120 	return detect_count;
2121 }
2122 
in2000_release(struct Scsi_Host * shost)2123 static int in2000_release(struct Scsi_Host *shost)
2124 {
2125 	if (shost->irq)
2126 		free_irq(shost->irq, shost);
2127 	if (shost->io_port && shost->n_io_port)
2128 		release_region(shost->io_port, shost->n_io_port);
2129 	return 0;
2130 }
2131 
2132 /* NOTE: I lifted this function straight out of the old driver,
2133  *       and have not tested it. Presumably it does what it's
2134  *       supposed to do...
2135  */
2136 
in2000_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int * iinfo)2137 static int in2000_biosparam(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *iinfo)
2138 {
2139 	int size;
2140 
2141 	size = capacity;
2142 	iinfo[0] = 64;
2143 	iinfo[1] = 32;
2144 	iinfo[2] = size >> 11;
2145 
2146 /* This should approximate the large drive handling that the DOS ASPI manager
2147    uses.  Drives very near the boundaries may not be handled correctly (i.e.
2148    near 2.0 Gb and 4.0 Gb) */
2149 
2150 	if (iinfo[2] > 1024) {
2151 		iinfo[0] = 64;
2152 		iinfo[1] = 63;
2153 		iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2154 	}
2155 	if (iinfo[2] > 1024) {
2156 		iinfo[0] = 128;
2157 		iinfo[1] = 63;
2158 		iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2159 	}
2160 	if (iinfo[2] > 1024) {
2161 		iinfo[0] = 255;
2162 		iinfo[1] = 63;
2163 		iinfo[2] = (unsigned long) capacity / (iinfo[0] * iinfo[1]);
2164 	}
2165 	return 0;
2166 }
2167 
2168 
in2000_proc_info(struct Scsi_Host * instance,char * buf,char ** start,off_t off,int len,int in)2169 static int in2000_proc_info(struct Scsi_Host *instance, char *buf, char **start, off_t off, int len, int in)
2170 {
2171 
2172 #ifdef PROC_INTERFACE
2173 
2174 	char *bp;
2175 	char tbuf[128];
2176 	unsigned long flags;
2177 	struct IN2000_hostdata *hd;
2178 	Scsi_Cmnd *cmd;
2179 	int x, i;
2180 	static int stop = 0;
2181 
2182 	hd = (struct IN2000_hostdata *) instance->hostdata;
2183 
2184 /* If 'in' is TRUE we need to _read_ the proc file. We accept the following
2185  * keywords (same format as command-line, but only ONE per read):
2186  *    debug
2187  *    disconnect
2188  *    period
2189  *    resync
2190  *    proc
2191  */
2192 
2193 	if (in) {
2194 		buf[len] = '\0';
2195 		bp = buf;
2196 		if (!strncmp(bp, "debug:", 6)) {
2197 			bp += 6;
2198 			hd->args = simple_strtoul(bp, NULL, 0) & DB_MASK;
2199 		} else if (!strncmp(bp, "disconnect:", 11)) {
2200 			bp += 11;
2201 			x = simple_strtoul(bp, NULL, 0);
2202 			if (x < DIS_NEVER || x > DIS_ALWAYS)
2203 				x = DIS_ADAPTIVE;
2204 			hd->disconnect = x;
2205 		} else if (!strncmp(bp, "period:", 7)) {
2206 			bp += 7;
2207 			x = simple_strtoul(bp, NULL, 0);
2208 			hd->default_sx_per = sx_table[round_period((unsigned int) x)].period_ns;
2209 		} else if (!strncmp(bp, "resync:", 7)) {
2210 			bp += 7;
2211 			x = simple_strtoul(bp, NULL, 0);
2212 			for (i = 0; i < 7; i++)
2213 				if (x & (1 << i))
2214 					hd->sync_stat[i] = SS_UNSET;
2215 		} else if (!strncmp(bp, "proc:", 5)) {
2216 			bp += 5;
2217 			hd->proc = simple_strtoul(bp, NULL, 0);
2218 		} else if (!strncmp(bp, "level2:", 7)) {
2219 			bp += 7;
2220 			hd->level2 = simple_strtoul(bp, NULL, 0);
2221 		}
2222 		return len;
2223 	}
2224 
2225 	spin_lock_irqsave(instance->host_lock, flags);
2226 	bp = buf;
2227 	*bp = '\0';
2228 	if (hd->proc & PR_VERSION) {
2229 		sprintf(tbuf, "\nVersion %s - %s. Compiled %s %s", IN2000_VERSION, IN2000_DATE, __DATE__, __TIME__);
2230 		strcat(bp, tbuf);
2231 	}
2232 	if (hd->proc & PR_INFO) {
2233 		sprintf(tbuf, "\ndip_switch=%02x: irq=%d io=%02x floppy=%s sync/DOS5=%s", (hd->dip_switch & 0x7f), instance->irq, hd->io_base, (hd->dip_switch & 0x40) ? "Yes" : "No", (hd->dip_switch & 0x20) ? "Yes" : "No");
2234 		strcat(bp, tbuf);
2235 		strcat(bp, "\nsync_xfer[] =       ");
2236 		for (x = 0; x < 7; x++) {
2237 			sprintf(tbuf, "\t%02x", hd->sync_xfer[x]);
2238 			strcat(bp, tbuf);
2239 		}
2240 		strcat(bp, "\nsync_stat[] =       ");
2241 		for (x = 0; x < 7; x++) {
2242 			sprintf(tbuf, "\t%02x", hd->sync_stat[x]);
2243 			strcat(bp, tbuf);
2244 		}
2245 	}
2246 #ifdef PROC_STATISTICS
2247 	if (hd->proc & PR_STATISTICS) {
2248 		strcat(bp, "\ncommands issued:    ");
2249 		for (x = 0; x < 7; x++) {
2250 			sprintf(tbuf, "\t%ld", hd->cmd_cnt[x]);
2251 			strcat(bp, tbuf);
2252 		}
2253 		strcat(bp, "\ndisconnects allowed:");
2254 		for (x = 0; x < 7; x++) {
2255 			sprintf(tbuf, "\t%ld", hd->disc_allowed_cnt[x]);
2256 			strcat(bp, tbuf);
2257 		}
2258 		strcat(bp, "\ndisconnects done:   ");
2259 		for (x = 0; x < 7; x++) {
2260 			sprintf(tbuf, "\t%ld", hd->disc_done_cnt[x]);
2261 			strcat(bp, tbuf);
2262 		}
2263 		sprintf(tbuf, "\ninterrupts:      \t%ld", hd->int_cnt);
2264 		strcat(bp, tbuf);
2265 	}
2266 #endif
2267 	if (hd->proc & PR_CONNECTED) {
2268 		strcat(bp, "\nconnected:     ");
2269 		if (hd->connected) {
2270 			cmd = (Scsi_Cmnd *) hd->connected;
2271 			sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2272 			strcat(bp, tbuf);
2273 		}
2274 	}
2275 	if (hd->proc & PR_INPUTQ) {
2276 		strcat(bp, "\ninput_Q:       ");
2277 		cmd = (Scsi_Cmnd *) hd->input_Q;
2278 		while (cmd) {
2279 			sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2280 			strcat(bp, tbuf);
2281 			cmd = (Scsi_Cmnd *) cmd->host_scribble;
2282 		}
2283 	}
2284 	if (hd->proc & PR_DISCQ) {
2285 		strcat(bp, "\ndisconnected_Q:");
2286 		cmd = (Scsi_Cmnd *) hd->disconnected_Q;
2287 		while (cmd) {
2288 			sprintf(tbuf, " %ld-%d:%d(%02x)", cmd->serial_number, cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2289 			strcat(bp, tbuf);
2290 			cmd = (Scsi_Cmnd *) cmd->host_scribble;
2291 		}
2292 	}
2293 	if (hd->proc & PR_TEST) {
2294 		;		/* insert your own custom function here */
2295 	}
2296 	strcat(bp, "\n");
2297 	spin_unlock_irqrestore(instance->host_lock, flags);
2298 	*start = buf;
2299 	if (stop) {
2300 		stop = 0;
2301 		return 0;	/* return 0 to signal end-of-file */
2302 	}
2303 	if (off > 0x40000)	/* ALWAYS stop after 256k bytes have been read */
2304 		stop = 1;
2305 	if (hd->proc & PR_STOP)	/* stop every other time */
2306 		stop = 1;
2307 	return strlen(bp);
2308 
2309 #else				/* PROC_INTERFACE */
2310 
2311 	return 0;
2312 
2313 #endif				/* PROC_INTERFACE */
2314 
2315 }
2316 
2317 MODULE_LICENSE("GPL");
2318 
2319 
2320 static struct scsi_host_template driver_template = {
2321 	.proc_name       		= "in2000",
2322 	.proc_info       		= in2000_proc_info,
2323 	.name            		= "Always IN2000",
2324 	.detect          		= in2000_detect,
2325 	.release			= in2000_release,
2326 	.queuecommand    		= in2000_queuecommand,
2327 	.eh_abort_handler		= in2000_abort,
2328 	.eh_bus_reset_handler		= in2000_bus_reset,
2329 	.bios_param      		= in2000_biosparam,
2330 	.can_queue       		= IN2000_CAN_Q,
2331 	.this_id         		= IN2000_HOST_ID,
2332 	.sg_tablesize    		= IN2000_SG,
2333 	.cmd_per_lun     		= IN2000_CPL,
2334 	.use_clustering  		= DISABLE_CLUSTERING,
2335 };
2336 #include "scsi_module.c"
2337