• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  *		Linux MegaRAID driver for SAS based RAID controllers
4  *
5  * Copyright (c) 2003-2005  LSI Corporation.
6  *
7  *	   This program is free software; you can redistribute it and/or
8  *	   modify it under the terms of the GNU General Public License
9  *	   as published by the Free Software Foundation; either version
10  *	   2 of the License, or (at your option) any later version.
11  *
12  * FILE		: megaraid_sas.c
13  * Version     : v00.00.04.01-rc1
14  *
15  * Authors:
16  *	(email-id : megaraidlinux@lsi.com)
17  * 	Sreenivas Bagalkote
18  * 	Sumant Patro
19  *	Bo Yang
20  *
21  * List of supported controllers
22  *
23  * OEM	Product Name			VID	DID	SSVID	SSID
24  * ---	------------			---	---	----	----
25  */
26 
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/smp_lock.h>
37 #include <linux/uio.h>
38 #include <asm/uaccess.h>
39 #include <linux/fs.h>
40 #include <linux/compat.h>
41 #include <linux/blkdev.h>
42 #include <linux/mutex.h>
43 
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_device.h>
47 #include <scsi/scsi_host.h>
48 #include "megaraid_sas.h"
49 
50 /*
51  * poll_mode_io:1- schedule complete completion from q cmd
52  */
53 static unsigned int poll_mode_io;
54 module_param_named(poll_mode_io, poll_mode_io, int, 0);
55 MODULE_PARM_DESC(poll_mode_io,
56 	"Complete cmds from IO path, (default=0)");
57 
58 MODULE_LICENSE("GPL");
59 MODULE_VERSION(MEGASAS_VERSION);
60 MODULE_AUTHOR("megaraidlinux@lsi.com");
61 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
62 
63 /*
64  * PCI ID table for all supported controllers
65  */
66 static struct pci_device_id megasas_pci_table[] = {
67 
68 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
69 	/* xscale IOP */
70 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
71 	/* ppc IOP */
72 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
73 	/* ppc IOP */
74 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
75 	/* gen2*/
76 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
77 	/* gen2*/
78 	{PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
79 	/* xscale IOP, vega */
80 	{PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
81 	/* xscale IOP */
82 	{}
83 };
84 
85 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
86 
87 static int megasas_mgmt_majorno;
88 static struct megasas_mgmt_info megasas_mgmt_info;
89 static struct fasync_struct *megasas_async_queue;
90 static DEFINE_MUTEX(megasas_async_queue_mutex);
91 
92 static u32 megasas_dbg_lvl;
93 
94 static void
95 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
96 		     u8 alt_status);
97 
98 /**
99  * megasas_get_cmd -	Get a command from the free pool
100  * @instance:		Adapter soft state
101  *
102  * Returns a free command from the pool
103  */
megasas_get_cmd(struct megasas_instance * instance)104 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
105 						  *instance)
106 {
107 	unsigned long flags;
108 	struct megasas_cmd *cmd = NULL;
109 
110 	spin_lock_irqsave(&instance->cmd_pool_lock, flags);
111 
112 	if (!list_empty(&instance->cmd_pool)) {
113 		cmd = list_entry((&instance->cmd_pool)->next,
114 				 struct megasas_cmd, list);
115 		list_del_init(&cmd->list);
116 	} else {
117 		printk(KERN_ERR "megasas: Command pool empty!\n");
118 	}
119 
120 	spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
121 	return cmd;
122 }
123 
124 /**
125  * megasas_return_cmd -	Return a cmd to free command pool
126  * @instance:		Adapter soft state
127  * @cmd:		Command packet to be returned to free command pool
128  */
129 static inline void
megasas_return_cmd(struct megasas_instance * instance,struct megasas_cmd * cmd)130 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
131 {
132 	unsigned long flags;
133 
134 	spin_lock_irqsave(&instance->cmd_pool_lock, flags);
135 
136 	cmd->scmd = NULL;
137 	list_add_tail(&cmd->list, &instance->cmd_pool);
138 
139 	spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
140 }
141 
142 
143 /**
144 *	The following functions are defined for xscale
145 *	(deviceid : 1064R, PERC5) controllers
146 */
147 
148 /**
149  * megasas_enable_intr_xscale -	Enables interrupts
150  * @regs:			MFI register set
151  */
152 static inline void
megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)153 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
154 {
155 	writel(1, &(regs)->outbound_intr_mask);
156 
157 	/* Dummy readl to force pci flush */
158 	readl(&regs->outbound_intr_mask);
159 }
160 
161 /**
162  * megasas_disable_intr_xscale -Disables interrupt
163  * @regs:			MFI register set
164  */
165 static inline void
megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)166 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
167 {
168 	u32 mask = 0x1f;
169 	writel(mask, &regs->outbound_intr_mask);
170 	/* Dummy readl to force pci flush */
171 	readl(&regs->outbound_intr_mask);
172 }
173 
174 /**
175  * megasas_read_fw_status_reg_xscale - returns the current FW status value
176  * @regs:			MFI register set
177  */
178 static u32
megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)179 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
180 {
181 	return readl(&(regs)->outbound_msg_0);
182 }
183 /**
184  * megasas_clear_interrupt_xscale -	Check & clear interrupt
185  * @regs:				MFI register set
186  */
187 static int
megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)188 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
189 {
190 	u32 status;
191 	/*
192 	 * Check if it is our interrupt
193 	 */
194 	status = readl(&regs->outbound_intr_status);
195 
196 	if (!(status & MFI_OB_INTR_STATUS_MASK)) {
197 		return 1;
198 	}
199 
200 	/*
201 	 * Clear the interrupt by writing back the same value
202 	 */
203 	writel(status, &regs->outbound_intr_status);
204 
205 	/* Dummy readl to force pci flush */
206 	readl(&regs->outbound_intr_status);
207 
208 	return 0;
209 }
210 
211 /**
212  * megasas_fire_cmd_xscale -	Sends command to the FW
213  * @frame_phys_addr :		Physical address of cmd
214  * @frame_count :		Number of frames for the command
215  * @regs :			MFI register set
216  */
217 static inline void
megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count,struct megasas_register_set __iomem * regs)218 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
219 {
220 	writel((frame_phys_addr >> 3)|(frame_count),
221 	       &(regs)->inbound_queue_port);
222 }
223 
224 static struct megasas_instance_template megasas_instance_template_xscale = {
225 
226 	.fire_cmd = megasas_fire_cmd_xscale,
227 	.enable_intr = megasas_enable_intr_xscale,
228 	.disable_intr = megasas_disable_intr_xscale,
229 	.clear_intr = megasas_clear_intr_xscale,
230 	.read_fw_status_reg = megasas_read_fw_status_reg_xscale,
231 };
232 
233 /**
234 *	This is the end of set of functions & definitions specific
235 *	to xscale (deviceid : 1064R, PERC5) controllers
236 */
237 
238 /**
239 *	The following functions are defined for ppc (deviceid : 0x60)
240 * 	controllers
241 */
242 
243 /**
244  * megasas_enable_intr_ppc -	Enables interrupts
245  * @regs:			MFI register set
246  */
247 static inline void
megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)248 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
249 {
250 	writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
251 
252 	writel(~0x80000004, &(regs)->outbound_intr_mask);
253 
254 	/* Dummy readl to force pci flush */
255 	readl(&regs->outbound_intr_mask);
256 }
257 
258 /**
259  * megasas_disable_intr_ppc -	Disable interrupt
260  * @regs:			MFI register set
261  */
262 static inline void
megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)263 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
264 {
265 	u32 mask = 0xFFFFFFFF;
266 	writel(mask, &regs->outbound_intr_mask);
267 	/* Dummy readl to force pci flush */
268 	readl(&regs->outbound_intr_mask);
269 }
270 
271 /**
272  * megasas_read_fw_status_reg_ppc - returns the current FW status value
273  * @regs:			MFI register set
274  */
275 static u32
megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)276 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
277 {
278 	return readl(&(regs)->outbound_scratch_pad);
279 }
280 
281 /**
282  * megasas_clear_interrupt_ppc -	Check & clear interrupt
283  * @regs:				MFI register set
284  */
285 static int
megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)286 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
287 {
288 	u32 status;
289 	/*
290 	 * Check if it is our interrupt
291 	 */
292 	status = readl(&regs->outbound_intr_status);
293 
294 	if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
295 		return 1;
296 	}
297 
298 	/*
299 	 * Clear the interrupt by writing back the same value
300 	 */
301 	writel(status, &regs->outbound_doorbell_clear);
302 
303 	/* Dummy readl to force pci flush */
304 	readl(&regs->outbound_doorbell_clear);
305 
306 	return 0;
307 }
308 /**
309  * megasas_fire_cmd_ppc -	Sends command to the FW
310  * @frame_phys_addr :		Physical address of cmd
311  * @frame_count :		Number of frames for the command
312  * @regs :			MFI register set
313  */
314 static inline void
megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr,u32 frame_count,struct megasas_register_set __iomem * regs)315 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
316 {
317 	writel((frame_phys_addr | (frame_count<<1))|1,
318 			&(regs)->inbound_queue_port);
319 }
320 
321 static struct megasas_instance_template megasas_instance_template_ppc = {
322 
323 	.fire_cmd = megasas_fire_cmd_ppc,
324 	.enable_intr = megasas_enable_intr_ppc,
325 	.disable_intr = megasas_disable_intr_ppc,
326 	.clear_intr = megasas_clear_intr_ppc,
327 	.read_fw_status_reg = megasas_read_fw_status_reg_ppc,
328 };
329 
330 /**
331 *	The following functions are defined for gen2 (deviceid : 0x78 0x79)
332 *	controllers
333 */
334 
335 /**
336  * megasas_enable_intr_gen2 -  Enables interrupts
337  * @regs:                      MFI register set
338  */
339 static inline void
megasas_enable_intr_gen2(struct megasas_register_set __iomem * regs)340 megasas_enable_intr_gen2(struct megasas_register_set __iomem *regs)
341 {
342 	writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
343 
344 	/* write ~0x00000005 (4 & 1) to the intr mask*/
345 	writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
346 
347 	/* Dummy readl to force pci flush */
348 	readl(&regs->outbound_intr_mask);
349 }
350 
351 /**
352  * megasas_disable_intr_gen2 - Disables interrupt
353  * @regs:                      MFI register set
354  */
355 static inline void
megasas_disable_intr_gen2(struct megasas_register_set __iomem * regs)356 megasas_disable_intr_gen2(struct megasas_register_set __iomem *regs)
357 {
358 	u32 mask = 0xFFFFFFFF;
359 	writel(mask, &regs->outbound_intr_mask);
360 	/* Dummy readl to force pci flush */
361 	readl(&regs->outbound_intr_mask);
362 }
363 
364 /**
365  * megasas_read_fw_status_reg_gen2 - returns the current FW status value
366  * @regs:                      MFI register set
367  */
368 static u32
megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem * regs)369 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs)
370 {
371 	return readl(&(regs)->outbound_scratch_pad);
372 }
373 
374 /**
375  * megasas_clear_interrupt_gen2 -      Check & clear interrupt
376  * @regs:                              MFI register set
377  */
378 static int
megasas_clear_intr_gen2(struct megasas_register_set __iomem * regs)379 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs)
380 {
381 	u32 status;
382 	/*
383 	 * Check if it is our interrupt
384 	 */
385 	status = readl(&regs->outbound_intr_status);
386 
387 	if (!(status & MFI_GEN2_ENABLE_INTERRUPT_MASK))
388 		return 1;
389 
390 	/*
391 	 * Clear the interrupt by writing back the same value
392 	 */
393 	writel(status, &regs->outbound_doorbell_clear);
394 
395 	/* Dummy readl to force pci flush */
396 	readl(&regs->outbound_intr_status);
397 
398 	return 0;
399 }
400 /**
401  * megasas_fire_cmd_gen2 -     Sends command to the FW
402  * @frame_phys_addr :          Physical address of cmd
403  * @frame_count :              Number of frames for the command
404  * @regs :                     MFI register set
405  */
406 static inline void
megasas_fire_cmd_gen2(dma_addr_t frame_phys_addr,u32 frame_count,struct megasas_register_set __iomem * regs)407 megasas_fire_cmd_gen2(dma_addr_t frame_phys_addr, u32 frame_count,
408 			struct megasas_register_set __iomem *regs)
409 {
410 	writel((frame_phys_addr | (frame_count<<1))|1,
411 			&(regs)->inbound_queue_port);
412 }
413 
414 static struct megasas_instance_template megasas_instance_template_gen2 = {
415 
416 	.fire_cmd = megasas_fire_cmd_gen2,
417 	.enable_intr = megasas_enable_intr_gen2,
418 	.disable_intr = megasas_disable_intr_gen2,
419 	.clear_intr = megasas_clear_intr_gen2,
420 	.read_fw_status_reg = megasas_read_fw_status_reg_gen2,
421 };
422 
423 /**
424 *	This is the end of set of functions & definitions
425 * 	specific to ppc (deviceid : 0x60) controllers
426 */
427 
428 /**
429  * megasas_issue_polled -	Issues a polling command
430  * @instance:			Adapter soft state
431  * @cmd:			Command packet to be issued
432  *
433  * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
434  */
435 static int
megasas_issue_polled(struct megasas_instance * instance,struct megasas_cmd * cmd)436 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
437 {
438 	int i;
439 	u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
440 
441 	struct megasas_header *frame_hdr = &cmd->frame->hdr;
442 
443 	frame_hdr->cmd_status = 0xFF;
444 	frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
445 
446 	/*
447 	 * Issue the frame using inbound queue port
448 	 */
449 	instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
450 
451 	/*
452 	 * Wait for cmd_status to change
453 	 */
454 	for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
455 		rmb();
456 		msleep(1);
457 	}
458 
459 	if (frame_hdr->cmd_status == 0xff)
460 		return -ETIME;
461 
462 	return 0;
463 }
464 
465 /**
466  * megasas_issue_blocked_cmd -	Synchronous wrapper around regular FW cmds
467  * @instance:			Adapter soft state
468  * @cmd:			Command to be issued
469  *
470  * This function waits on an event for the command to be returned from ISR.
471  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
472  * Used to issue ioctl commands.
473  */
474 static int
megasas_issue_blocked_cmd(struct megasas_instance * instance,struct megasas_cmd * cmd)475 megasas_issue_blocked_cmd(struct megasas_instance *instance,
476 			  struct megasas_cmd *cmd)
477 {
478 	cmd->cmd_status = ENODATA;
479 
480 	instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
481 
482 	wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
483 		MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
484 
485 	return 0;
486 }
487 
488 /**
489  * megasas_issue_blocked_abort_cmd -	Aborts previously issued cmd
490  * @instance:				Adapter soft state
491  * @cmd_to_abort:			Previously issued cmd to be aborted
492  *
493  * MFI firmware can abort previously issued AEN comamnd (automatic event
494  * notification). The megasas_issue_blocked_abort_cmd() issues such abort
495  * cmd and waits for return status.
496  * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
497  */
498 static int
megasas_issue_blocked_abort_cmd(struct megasas_instance * instance,struct megasas_cmd * cmd_to_abort)499 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
500 				struct megasas_cmd *cmd_to_abort)
501 {
502 	struct megasas_cmd *cmd;
503 	struct megasas_abort_frame *abort_fr;
504 
505 	cmd = megasas_get_cmd(instance);
506 
507 	if (!cmd)
508 		return -1;
509 
510 	abort_fr = &cmd->frame->abort;
511 
512 	/*
513 	 * Prepare and issue the abort frame
514 	 */
515 	abort_fr->cmd = MFI_CMD_ABORT;
516 	abort_fr->cmd_status = 0xFF;
517 	abort_fr->flags = 0;
518 	abort_fr->abort_context = cmd_to_abort->index;
519 	abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
520 	abort_fr->abort_mfi_phys_addr_hi = 0;
521 
522 	cmd->sync_cmd = 1;
523 	cmd->cmd_status = 0xFF;
524 
525 	instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
526 
527 	/*
528 	 * Wait for this cmd to complete
529 	 */
530 	wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
531 		MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
532 
533 	megasas_return_cmd(instance, cmd);
534 	return 0;
535 }
536 
537 /**
538  * megasas_make_sgl32 -	Prepares 32-bit SGL
539  * @instance:		Adapter soft state
540  * @scp:		SCSI command from the mid-layer
541  * @mfi_sgl:		SGL to be filled in
542  *
543  * If successful, this function returns the number of SG elements. Otherwise,
544  * it returnes -1.
545  */
546 static int
megasas_make_sgl32(struct megasas_instance * instance,struct scsi_cmnd * scp,union megasas_sgl * mfi_sgl)547 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
548 		   union megasas_sgl *mfi_sgl)
549 {
550 	int i;
551 	int sge_count;
552 	struct scatterlist *os_sgl;
553 
554 	sge_count = scsi_dma_map(scp);
555 	BUG_ON(sge_count < 0);
556 
557 	if (sge_count) {
558 		scsi_for_each_sg(scp, os_sgl, sge_count, i) {
559 			mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
560 			mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
561 		}
562 	}
563 	return sge_count;
564 }
565 
566 /**
567  * megasas_make_sgl64 -	Prepares 64-bit SGL
568  * @instance:		Adapter soft state
569  * @scp:		SCSI command from the mid-layer
570  * @mfi_sgl:		SGL to be filled in
571  *
572  * If successful, this function returns the number of SG elements. Otherwise,
573  * it returnes -1.
574  */
575 static int
megasas_make_sgl64(struct megasas_instance * instance,struct scsi_cmnd * scp,union megasas_sgl * mfi_sgl)576 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
577 		   union megasas_sgl *mfi_sgl)
578 {
579 	int i;
580 	int sge_count;
581 	struct scatterlist *os_sgl;
582 
583 	sge_count = scsi_dma_map(scp);
584 	BUG_ON(sge_count < 0);
585 
586 	if (sge_count) {
587 		scsi_for_each_sg(scp, os_sgl, sge_count, i) {
588 			mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
589 			mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
590 		}
591 	}
592 	return sge_count;
593 }
594 
595  /**
596  * megasas_get_frame_count - Computes the number of frames
597  * @frame_type		: type of frame- io or pthru frame
598  * @sge_count		: number of sg elements
599  *
600  * Returns the number of frames required for numnber of sge's (sge_count)
601  */
602 
megasas_get_frame_count(u8 sge_count,u8 frame_type)603 static u32 megasas_get_frame_count(u8 sge_count, u8 frame_type)
604 {
605 	int num_cnt;
606 	int sge_bytes;
607 	u32 sge_sz;
608 	u32 frame_count=0;
609 
610 	sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
611 	    sizeof(struct megasas_sge32);
612 
613 	/*
614 	 * Main frame can contain 2 SGEs for 64-bit SGLs and
615 	 * 3 SGEs for 32-bit SGLs for ldio &
616 	 * 1 SGEs for 64-bit SGLs and
617 	 * 2 SGEs for 32-bit SGLs for pthru frame
618 	 */
619 	if (unlikely(frame_type == PTHRU_FRAME)) {
620 		if (IS_DMA64)
621 			num_cnt = sge_count - 1;
622 		else
623 			num_cnt = sge_count - 2;
624 	} else {
625 		if (IS_DMA64)
626 			num_cnt = sge_count - 2;
627 		else
628 			num_cnt = sge_count - 3;
629 	}
630 
631 	if(num_cnt>0){
632 		sge_bytes = sge_sz * num_cnt;
633 
634 		frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
635 		    ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
636 	}
637 	/* Main frame */
638 	frame_count +=1;
639 
640 	if (frame_count > 7)
641 		frame_count = 8;
642 	return frame_count;
643 }
644 
645 /**
646  * megasas_build_dcdb -	Prepares a direct cdb (DCDB) command
647  * @instance:		Adapter soft state
648  * @scp:		SCSI command
649  * @cmd:		Command to be prepared in
650  *
651  * This function prepares CDB commands. These are typcially pass-through
652  * commands to the devices.
653  */
654 static int
megasas_build_dcdb(struct megasas_instance * instance,struct scsi_cmnd * scp,struct megasas_cmd * cmd)655 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
656 		   struct megasas_cmd *cmd)
657 {
658 	u32 is_logical;
659 	u32 device_id;
660 	u16 flags = 0;
661 	struct megasas_pthru_frame *pthru;
662 
663 	is_logical = MEGASAS_IS_LOGICAL(scp);
664 	device_id = MEGASAS_DEV_INDEX(instance, scp);
665 	pthru = (struct megasas_pthru_frame *)cmd->frame;
666 
667 	if (scp->sc_data_direction == PCI_DMA_TODEVICE)
668 		flags = MFI_FRAME_DIR_WRITE;
669 	else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
670 		flags = MFI_FRAME_DIR_READ;
671 	else if (scp->sc_data_direction == PCI_DMA_NONE)
672 		flags = MFI_FRAME_DIR_NONE;
673 
674 	/*
675 	 * Prepare the DCDB frame
676 	 */
677 	pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
678 	pthru->cmd_status = 0x0;
679 	pthru->scsi_status = 0x0;
680 	pthru->target_id = device_id;
681 	pthru->lun = scp->device->lun;
682 	pthru->cdb_len = scp->cmd_len;
683 	pthru->timeout = 0;
684 	pthru->flags = flags;
685 	pthru->data_xfer_len = scsi_bufflen(scp);
686 
687 	memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
688 
689 	/*
690 	 * Construct SGL
691 	 */
692 	if (IS_DMA64) {
693 		pthru->flags |= MFI_FRAME_SGL64;
694 		pthru->sge_count = megasas_make_sgl64(instance, scp,
695 						      &pthru->sgl);
696 	} else
697 		pthru->sge_count = megasas_make_sgl32(instance, scp,
698 						      &pthru->sgl);
699 
700 	/*
701 	 * Sense info specific
702 	 */
703 	pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
704 	pthru->sense_buf_phys_addr_hi = 0;
705 	pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
706 
707 	/*
708 	 * Compute the total number of frames this command consumes. FW uses
709 	 * this number to pull sufficient number of frames from host memory.
710 	 */
711 	cmd->frame_count = megasas_get_frame_count(pthru->sge_count,
712 							PTHRU_FRAME);
713 
714 	return cmd->frame_count;
715 }
716 
717 /**
718  * megasas_build_ldio -	Prepares IOs to logical devices
719  * @instance:		Adapter soft state
720  * @scp:		SCSI command
721  * @cmd:		Command to to be prepared
722  *
723  * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
724  */
725 static int
megasas_build_ldio(struct megasas_instance * instance,struct scsi_cmnd * scp,struct megasas_cmd * cmd)726 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
727 		   struct megasas_cmd *cmd)
728 {
729 	u32 device_id;
730 	u8 sc = scp->cmnd[0];
731 	u16 flags = 0;
732 	struct megasas_io_frame *ldio;
733 
734 	device_id = MEGASAS_DEV_INDEX(instance, scp);
735 	ldio = (struct megasas_io_frame *)cmd->frame;
736 
737 	if (scp->sc_data_direction == PCI_DMA_TODEVICE)
738 		flags = MFI_FRAME_DIR_WRITE;
739 	else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
740 		flags = MFI_FRAME_DIR_READ;
741 
742 	/*
743 	 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
744 	 */
745 	ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
746 	ldio->cmd_status = 0x0;
747 	ldio->scsi_status = 0x0;
748 	ldio->target_id = device_id;
749 	ldio->timeout = 0;
750 	ldio->reserved_0 = 0;
751 	ldio->pad_0 = 0;
752 	ldio->flags = flags;
753 	ldio->start_lba_hi = 0;
754 	ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
755 
756 	/*
757 	 * 6-byte READ(0x08) or WRITE(0x0A) cdb
758 	 */
759 	if (scp->cmd_len == 6) {
760 		ldio->lba_count = (u32) scp->cmnd[4];
761 		ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
762 		    ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
763 
764 		ldio->start_lba_lo &= 0x1FFFFF;
765 	}
766 
767 	/*
768 	 * 10-byte READ(0x28) or WRITE(0x2A) cdb
769 	 */
770 	else if (scp->cmd_len == 10) {
771 		ldio->lba_count = (u32) scp->cmnd[8] |
772 		    ((u32) scp->cmnd[7] << 8);
773 		ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
774 		    ((u32) scp->cmnd[3] << 16) |
775 		    ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
776 	}
777 
778 	/*
779 	 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
780 	 */
781 	else if (scp->cmd_len == 12) {
782 		ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
783 		    ((u32) scp->cmnd[7] << 16) |
784 		    ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
785 
786 		ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
787 		    ((u32) scp->cmnd[3] << 16) |
788 		    ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
789 	}
790 
791 	/*
792 	 * 16-byte READ(0x88) or WRITE(0x8A) cdb
793 	 */
794 	else if (scp->cmd_len == 16) {
795 		ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
796 		    ((u32) scp->cmnd[11] << 16) |
797 		    ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
798 
799 		ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
800 		    ((u32) scp->cmnd[7] << 16) |
801 		    ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
802 
803 		ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
804 		    ((u32) scp->cmnd[3] << 16) |
805 		    ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
806 
807 	}
808 
809 	/*
810 	 * Construct SGL
811 	 */
812 	if (IS_DMA64) {
813 		ldio->flags |= MFI_FRAME_SGL64;
814 		ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
815 	} else
816 		ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
817 
818 	/*
819 	 * Sense info specific
820 	 */
821 	ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
822 	ldio->sense_buf_phys_addr_hi = 0;
823 	ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
824 
825 	/*
826 	 * Compute the total number of frames this command consumes. FW uses
827 	 * this number to pull sufficient number of frames from host memory.
828 	 */
829 	cmd->frame_count = megasas_get_frame_count(ldio->sge_count, IO_FRAME);
830 
831 	return cmd->frame_count;
832 }
833 
834 /**
835  * megasas_is_ldio -		Checks if the cmd is for logical drive
836  * @scmd:			SCSI command
837  *
838  * Called by megasas_queue_command to find out if the command to be queued
839  * is a logical drive command
840  */
megasas_is_ldio(struct scsi_cmnd * cmd)841 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
842 {
843 	if (!MEGASAS_IS_LOGICAL(cmd))
844 		return 0;
845 	switch (cmd->cmnd[0]) {
846 	case READ_10:
847 	case WRITE_10:
848 	case READ_12:
849 	case WRITE_12:
850 	case READ_6:
851 	case WRITE_6:
852 	case READ_16:
853 	case WRITE_16:
854 		return 1;
855 	default:
856 		return 0;
857 	}
858 }
859 
860  /**
861  * megasas_dump_pending_frames -	Dumps the frame address of all pending cmds
862  *                              	in FW
863  * @instance:				Adapter soft state
864  */
865 static inline void
megasas_dump_pending_frames(struct megasas_instance * instance)866 megasas_dump_pending_frames(struct megasas_instance *instance)
867 {
868 	struct megasas_cmd *cmd;
869 	int i,n;
870 	union megasas_sgl *mfi_sgl;
871 	struct megasas_io_frame *ldio;
872 	struct megasas_pthru_frame *pthru;
873 	u32 sgcount;
874 	u32 max_cmd = instance->max_fw_cmds;
875 
876 	printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
877 	printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
878 	if (IS_DMA64)
879 		printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
880 	else
881 		printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
882 
883 	printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
884 	for (i = 0; i < max_cmd; i++) {
885 		cmd = instance->cmd_list[i];
886 		if(!cmd->scmd)
887 			continue;
888 		printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
889 		if (megasas_is_ldio(cmd->scmd)){
890 			ldio = (struct megasas_io_frame *)cmd->frame;
891 			mfi_sgl = &ldio->sgl;
892 			sgcount = ldio->sge_count;
893 			printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
894 		}
895 		else {
896 			pthru = (struct megasas_pthru_frame *) cmd->frame;
897 			mfi_sgl = &pthru->sgl;
898 			sgcount = pthru->sge_count;
899 			printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
900 		}
901 	if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
902 		for (n = 0; n < sgcount; n++){
903 			if (IS_DMA64)
904 				printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
905 			else
906 				printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
907 			}
908 		}
909 		printk(KERN_ERR "\n");
910 	} /*for max_cmd*/
911 	printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
912 	for (i = 0; i < max_cmd; i++) {
913 
914 		cmd = instance->cmd_list[i];
915 
916 		if(cmd->sync_cmd == 1){
917 			printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
918 		}
919 	}
920 	printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
921 }
922 
923 /**
924  * megasas_queue_command -	Queue entry point
925  * @scmd:			SCSI command to be queued
926  * @done:			Callback entry point
927  */
928 static int
megasas_queue_command(struct scsi_cmnd * scmd,void (* done)(struct scsi_cmnd *))929 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
930 {
931 	u32 frame_count;
932 	struct megasas_cmd *cmd;
933 	struct megasas_instance *instance;
934 
935 	instance = (struct megasas_instance *)
936 	    scmd->device->host->hostdata;
937 
938 	/* Don't process if we have already declared adapter dead */
939 	if (instance->hw_crit_error)
940 		return SCSI_MLQUEUE_HOST_BUSY;
941 
942 	scmd->scsi_done = done;
943 	scmd->result = 0;
944 
945 	if (MEGASAS_IS_LOGICAL(scmd) &&
946 	    (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
947 		scmd->result = DID_BAD_TARGET << 16;
948 		goto out_done;
949 	}
950 
951 	switch (scmd->cmnd[0]) {
952 	case SYNCHRONIZE_CACHE:
953 		/*
954 		 * FW takes care of flush cache on its own
955 		 * No need to send it down
956 		 */
957 		scmd->result = DID_OK << 16;
958 		goto out_done;
959 	default:
960 		break;
961 	}
962 
963 	cmd = megasas_get_cmd(instance);
964 	if (!cmd)
965 		return SCSI_MLQUEUE_HOST_BUSY;
966 
967 	/*
968 	 * Logical drive command
969 	 */
970 	if (megasas_is_ldio(scmd))
971 		frame_count = megasas_build_ldio(instance, scmd, cmd);
972 	else
973 		frame_count = megasas_build_dcdb(instance, scmd, cmd);
974 
975 	if (!frame_count)
976 		goto out_return_cmd;
977 
978 	cmd->scmd = scmd;
979 	scmd->SCp.ptr = (char *)cmd;
980 
981 	/*
982 	 * Issue the command to the FW
983 	 */
984 	atomic_inc(&instance->fw_outstanding);
985 
986 	instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
987 	/*
988 	 * Check if we have pend cmds to be completed
989 	 */
990 	if (poll_mode_io && atomic_read(&instance->fw_outstanding))
991 		tasklet_schedule(&instance->isr_tasklet);
992 
993 
994 	return 0;
995 
996  out_return_cmd:
997 	megasas_return_cmd(instance, cmd);
998  out_done:
999 	done(scmd);
1000 	return 0;
1001 }
1002 
megasas_slave_configure(struct scsi_device * sdev)1003 static int megasas_slave_configure(struct scsi_device *sdev)
1004 {
1005 	/*
1006 	 * Don't export physical disk devices to the disk driver.
1007 	 *
1008 	 * FIXME: Currently we don't export them to the midlayer at all.
1009 	 * 	  That will be fixed once LSI engineers have audited the
1010 	 * 	  firmware for possible issues.
1011 	 */
1012 	if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
1013 		return -ENXIO;
1014 
1015 	/*
1016 	 * The RAID firmware may require extended timeouts.
1017 	 */
1018 	if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
1019 		blk_queue_rq_timeout(sdev->request_queue,
1020 				     MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1021 	return 0;
1022 }
1023 
1024 /**
1025  * megasas_complete_cmd_dpc	 -	Returns FW's controller structure
1026  * @instance_addr:			Address of adapter soft state
1027  *
1028  * Tasklet to complete cmds
1029  */
megasas_complete_cmd_dpc(unsigned long instance_addr)1030 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1031 {
1032 	u32 producer;
1033 	u32 consumer;
1034 	u32 context;
1035 	struct megasas_cmd *cmd;
1036 	struct megasas_instance *instance =
1037 				(struct megasas_instance *)instance_addr;
1038 	unsigned long flags;
1039 
1040 	/* If we have already declared adapter dead, donot complete cmds */
1041 	if (instance->hw_crit_error)
1042 		return;
1043 
1044 	spin_lock_irqsave(&instance->completion_lock, flags);
1045 
1046 	producer = *instance->producer;
1047 	consumer = *instance->consumer;
1048 
1049 	while (consumer != producer) {
1050 		context = instance->reply_queue[consumer];
1051 
1052 		cmd = instance->cmd_list[context];
1053 
1054 		megasas_complete_cmd(instance, cmd, DID_OK);
1055 
1056 		consumer++;
1057 		if (consumer == (instance->max_fw_cmds + 1)) {
1058 			consumer = 0;
1059 		}
1060 	}
1061 
1062 	*instance->consumer = producer;
1063 
1064 	spin_unlock_irqrestore(&instance->completion_lock, flags);
1065 
1066 	/*
1067 	 * Check if we can restore can_queue
1068 	 */
1069 	if (instance->flag & MEGASAS_FW_BUSY
1070 		&& time_after(jiffies, instance->last_time + 5 * HZ)
1071 		&& atomic_read(&instance->fw_outstanding) < 17) {
1072 
1073 		spin_lock_irqsave(instance->host->host_lock, flags);
1074 		instance->flag &= ~MEGASAS_FW_BUSY;
1075 		instance->host->can_queue =
1076 				instance->max_fw_cmds - MEGASAS_INT_CMDS;
1077 
1078 		spin_unlock_irqrestore(instance->host->host_lock, flags);
1079 	}
1080 }
1081 
1082 /**
1083  * megasas_wait_for_outstanding -	Wait for all outstanding cmds
1084  * @instance:				Adapter soft state
1085  *
1086  * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
1087  * complete all its outstanding commands. Returns error if one or more IOs
1088  * are pending after this time period. It also marks the controller dead.
1089  */
megasas_wait_for_outstanding(struct megasas_instance * instance)1090 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
1091 {
1092 	int i;
1093 	u32 wait_time = MEGASAS_RESET_WAIT_TIME;
1094 
1095 	for (i = 0; i < wait_time; i++) {
1096 
1097 		int outstanding = atomic_read(&instance->fw_outstanding);
1098 
1099 		if (!outstanding)
1100 			break;
1101 
1102 		if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
1103 			printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
1104 			       "commands to complete\n",i,outstanding);
1105 			/*
1106 			 * Call cmd completion routine. Cmd to be
1107 			 * be completed directly without depending on isr.
1108 			 */
1109 			megasas_complete_cmd_dpc((unsigned long)instance);
1110 		}
1111 
1112 		msleep(1000);
1113 	}
1114 
1115 	if (atomic_read(&instance->fw_outstanding)) {
1116 		/*
1117 		* Send signal to FW to stop processing any pending cmds.
1118 		* The controller will be taken offline by the OS now.
1119 		*/
1120 		writel(MFI_STOP_ADP,
1121 				&instance->reg_set->inbound_doorbell);
1122 		megasas_dump_pending_frames(instance);
1123 		instance->hw_crit_error = 1;
1124 		return FAILED;
1125 	}
1126 
1127 	return SUCCESS;
1128 }
1129 
1130 /**
1131  * megasas_generic_reset -	Generic reset routine
1132  * @scmd:			Mid-layer SCSI command
1133  *
1134  * This routine implements a generic reset handler for device, bus and host
1135  * reset requests. Device, bus and host specific reset handlers can use this
1136  * function after they do their specific tasks.
1137  */
megasas_generic_reset(struct scsi_cmnd * scmd)1138 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1139 {
1140 	int ret_val;
1141 	struct megasas_instance *instance;
1142 
1143 	instance = (struct megasas_instance *)scmd->device->host->hostdata;
1144 
1145 	scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
1146 		 scmd->serial_number, scmd->cmnd[0], scmd->retries);
1147 
1148 	if (instance->hw_crit_error) {
1149 		printk(KERN_ERR "megasas: cannot recover from previous reset "
1150 		       "failures\n");
1151 		return FAILED;
1152 	}
1153 
1154 	ret_val = megasas_wait_for_outstanding(instance);
1155 	if (ret_val == SUCCESS)
1156 		printk(KERN_NOTICE "megasas: reset successful \n");
1157 	else
1158 		printk(KERN_ERR "megasas: failed to do reset\n");
1159 
1160 	return ret_val;
1161 }
1162 
1163 /**
1164  * megasas_reset_timer - quiesce the adapter if required
1165  * @scmd:		scsi cmnd
1166  *
1167  * Sets the FW busy flag and reduces the host->can_queue if the
1168  * cmd has not been completed within the timeout period.
1169  */
1170 static enum
megasas_reset_timer(struct scsi_cmnd * scmd)1171 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1172 {
1173 	struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
1174 	struct megasas_instance *instance;
1175 	unsigned long flags;
1176 
1177 	if (time_after(jiffies, scmd->jiffies_at_alloc +
1178 				(MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1179 		return BLK_EH_NOT_HANDLED;
1180 	}
1181 
1182 	instance = cmd->instance;
1183 	if (!(instance->flag & MEGASAS_FW_BUSY)) {
1184 		/* FW is busy, throttle IO */
1185 		spin_lock_irqsave(instance->host->host_lock, flags);
1186 
1187 		instance->host->can_queue = 16;
1188 		instance->last_time = jiffies;
1189 		instance->flag |= MEGASAS_FW_BUSY;
1190 
1191 		spin_unlock_irqrestore(instance->host->host_lock, flags);
1192 	}
1193 	return BLK_EH_RESET_TIMER;
1194 }
1195 
1196 /**
1197  * megasas_reset_device -	Device reset handler entry point
1198  */
megasas_reset_device(struct scsi_cmnd * scmd)1199 static int megasas_reset_device(struct scsi_cmnd *scmd)
1200 {
1201 	int ret;
1202 
1203 	/*
1204 	 * First wait for all commands to complete
1205 	 */
1206 	ret = megasas_generic_reset(scmd);
1207 
1208 	return ret;
1209 }
1210 
1211 /**
1212  * megasas_reset_bus_host -	Bus & host reset handler entry point
1213  */
megasas_reset_bus_host(struct scsi_cmnd * scmd)1214 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1215 {
1216 	int ret;
1217 
1218 	/*
1219 	 * First wait for all commands to complete
1220 	 */
1221 	ret = megasas_generic_reset(scmd);
1222 
1223 	return ret;
1224 }
1225 
1226 /**
1227  * megasas_bios_param - Returns disk geometry for a disk
1228  * @sdev: 		device handle
1229  * @bdev:		block device
1230  * @capacity:		drive capacity
1231  * @geom:		geometry parameters
1232  */
1233 static int
megasas_bios_param(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int geom[])1234 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1235 		 sector_t capacity, int geom[])
1236 {
1237 	int heads;
1238 	int sectors;
1239 	sector_t cylinders;
1240 	unsigned long tmp;
1241 	/* Default heads (64) & sectors (32) */
1242 	heads = 64;
1243 	sectors = 32;
1244 
1245 	tmp = heads * sectors;
1246 	cylinders = capacity;
1247 
1248 	sector_div(cylinders, tmp);
1249 
1250 	/*
1251 	 * Handle extended translation size for logical drives > 1Gb
1252 	 */
1253 
1254 	if (capacity >= 0x200000) {
1255 		heads = 255;
1256 		sectors = 63;
1257 		tmp = heads*sectors;
1258 		cylinders = capacity;
1259 		sector_div(cylinders, tmp);
1260 	}
1261 
1262 	geom[0] = heads;
1263 	geom[1] = sectors;
1264 	geom[2] = cylinders;
1265 
1266 	return 0;
1267 }
1268 
1269 /**
1270  * megasas_service_aen -	Processes an event notification
1271  * @instance:			Adapter soft state
1272  * @cmd:			AEN command completed by the ISR
1273  *
1274  * For AEN, driver sends a command down to FW that is held by the FW till an
1275  * event occurs. When an event of interest occurs, FW completes the command
1276  * that it was previously holding.
1277  *
1278  * This routines sends SIGIO signal to processes that have registered with the
1279  * driver for AEN.
1280  */
1281 static void
megasas_service_aen(struct megasas_instance * instance,struct megasas_cmd * cmd)1282 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1283 {
1284 	/*
1285 	 * Don't signal app if it is just an aborted previously registered aen
1286 	 */
1287 	if (!cmd->abort_aen)
1288 		kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1289 	else
1290 		cmd->abort_aen = 0;
1291 
1292 	instance->aen_cmd = NULL;
1293 	megasas_return_cmd(instance, cmd);
1294 }
1295 
1296 /*
1297  * Scsi host template for megaraid_sas driver
1298  */
1299 static struct scsi_host_template megasas_template = {
1300 
1301 	.module = THIS_MODULE,
1302 	.name = "LSI SAS based MegaRAID driver",
1303 	.proc_name = "megaraid_sas",
1304 	.slave_configure = megasas_slave_configure,
1305 	.queuecommand = megasas_queue_command,
1306 	.eh_device_reset_handler = megasas_reset_device,
1307 	.eh_bus_reset_handler = megasas_reset_bus_host,
1308 	.eh_host_reset_handler = megasas_reset_bus_host,
1309 	.eh_timed_out = megasas_reset_timer,
1310 	.bios_param = megasas_bios_param,
1311 	.use_clustering = ENABLE_CLUSTERING,
1312 };
1313 
1314 /**
1315  * megasas_complete_int_cmd -	Completes an internal command
1316  * @instance:			Adapter soft state
1317  * @cmd:			Command to be completed
1318  *
1319  * The megasas_issue_blocked_cmd() function waits for a command to complete
1320  * after it issues a command. This function wakes up that waiting routine by
1321  * calling wake_up() on the wait queue.
1322  */
1323 static void
megasas_complete_int_cmd(struct megasas_instance * instance,struct megasas_cmd * cmd)1324 megasas_complete_int_cmd(struct megasas_instance *instance,
1325 			 struct megasas_cmd *cmd)
1326 {
1327 	cmd->cmd_status = cmd->frame->io.cmd_status;
1328 
1329 	if (cmd->cmd_status == ENODATA) {
1330 		cmd->cmd_status = 0;
1331 	}
1332 	wake_up(&instance->int_cmd_wait_q);
1333 }
1334 
1335 /**
1336  * megasas_complete_abort -	Completes aborting a command
1337  * @instance:			Adapter soft state
1338  * @cmd:			Cmd that was issued to abort another cmd
1339  *
1340  * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1341  * after it issues an abort on a previously issued command. This function
1342  * wakes up all functions waiting on the same wait queue.
1343  */
1344 static void
megasas_complete_abort(struct megasas_instance * instance,struct megasas_cmd * cmd)1345 megasas_complete_abort(struct megasas_instance *instance,
1346 		       struct megasas_cmd *cmd)
1347 {
1348 	if (cmd->sync_cmd) {
1349 		cmd->sync_cmd = 0;
1350 		cmd->cmd_status = 0;
1351 		wake_up(&instance->abort_cmd_wait_q);
1352 	}
1353 
1354 	return;
1355 }
1356 
1357 /**
1358  * megasas_complete_cmd -	Completes a command
1359  * @instance:			Adapter soft state
1360  * @cmd:			Command to be completed
1361  * @alt_status:			If non-zero, use this value as status to
1362  * 				SCSI mid-layer instead of the value returned
1363  * 				by the FW. This should be used if caller wants
1364  * 				an alternate status (as in the case of aborted
1365  * 				commands)
1366  */
1367 static void
megasas_complete_cmd(struct megasas_instance * instance,struct megasas_cmd * cmd,u8 alt_status)1368 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1369 		     u8 alt_status)
1370 {
1371 	int exception = 0;
1372 	struct megasas_header *hdr = &cmd->frame->hdr;
1373 
1374 	if (cmd->scmd)
1375 		cmd->scmd->SCp.ptr = NULL;
1376 
1377 	switch (hdr->cmd) {
1378 
1379 	case MFI_CMD_PD_SCSI_IO:
1380 	case MFI_CMD_LD_SCSI_IO:
1381 
1382 		/*
1383 		 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1384 		 * issued either through an IO path or an IOCTL path. If it
1385 		 * was via IOCTL, we will send it to internal completion.
1386 		 */
1387 		if (cmd->sync_cmd) {
1388 			cmd->sync_cmd = 0;
1389 			megasas_complete_int_cmd(instance, cmd);
1390 			break;
1391 		}
1392 
1393 	case MFI_CMD_LD_READ:
1394 	case MFI_CMD_LD_WRITE:
1395 
1396 		if (alt_status) {
1397 			cmd->scmd->result = alt_status << 16;
1398 			exception = 1;
1399 		}
1400 
1401 		if (exception) {
1402 
1403 			atomic_dec(&instance->fw_outstanding);
1404 
1405 			scsi_dma_unmap(cmd->scmd);
1406 			cmd->scmd->scsi_done(cmd->scmd);
1407 			megasas_return_cmd(instance, cmd);
1408 
1409 			break;
1410 		}
1411 
1412 		switch (hdr->cmd_status) {
1413 
1414 		case MFI_STAT_OK:
1415 			cmd->scmd->result = DID_OK << 16;
1416 			break;
1417 
1418 		case MFI_STAT_SCSI_IO_FAILED:
1419 		case MFI_STAT_LD_INIT_IN_PROGRESS:
1420 			cmd->scmd->result =
1421 			    (DID_ERROR << 16) | hdr->scsi_status;
1422 			break;
1423 
1424 		case MFI_STAT_SCSI_DONE_WITH_ERROR:
1425 
1426 			cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1427 
1428 			if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1429 				memset(cmd->scmd->sense_buffer, 0,
1430 				       SCSI_SENSE_BUFFERSIZE);
1431 				memcpy(cmd->scmd->sense_buffer, cmd->sense,
1432 				       hdr->sense_len);
1433 
1434 				cmd->scmd->result |= DRIVER_SENSE << 24;
1435 			}
1436 
1437 			break;
1438 
1439 		case MFI_STAT_LD_OFFLINE:
1440 		case MFI_STAT_DEVICE_NOT_FOUND:
1441 			cmd->scmd->result = DID_BAD_TARGET << 16;
1442 			break;
1443 
1444 		default:
1445 			printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1446 			       hdr->cmd_status);
1447 			cmd->scmd->result = DID_ERROR << 16;
1448 			break;
1449 		}
1450 
1451 		atomic_dec(&instance->fw_outstanding);
1452 
1453 		scsi_dma_unmap(cmd->scmd);
1454 		cmd->scmd->scsi_done(cmd->scmd);
1455 		megasas_return_cmd(instance, cmd);
1456 
1457 		break;
1458 
1459 	case MFI_CMD_SMP:
1460 	case MFI_CMD_STP:
1461 	case MFI_CMD_DCMD:
1462 
1463 		/*
1464 		 * See if got an event notification
1465 		 */
1466 		if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1467 			megasas_service_aen(instance, cmd);
1468 		else
1469 			megasas_complete_int_cmd(instance, cmd);
1470 
1471 		break;
1472 
1473 	case MFI_CMD_ABORT:
1474 		/*
1475 		 * Cmd issued to abort another cmd returned
1476 		 */
1477 		megasas_complete_abort(instance, cmd);
1478 		break;
1479 
1480 	default:
1481 		printk("megasas: Unknown command completed! [0x%X]\n",
1482 		       hdr->cmd);
1483 		break;
1484 	}
1485 }
1486 
1487 /**
1488  * megasas_deplete_reply_queue -	Processes all completed commands
1489  * @instance:				Adapter soft state
1490  * @alt_status:				Alternate status to be returned to
1491  * 					SCSI mid-layer instead of the status
1492  * 					returned by the FW
1493  */
1494 static int
megasas_deplete_reply_queue(struct megasas_instance * instance,u8 alt_status)1495 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1496 {
1497 	/*
1498 	 * Check if it is our interrupt
1499 	 * Clear the interrupt
1500 	 */
1501 	if(instance->instancet->clear_intr(instance->reg_set))
1502 		return IRQ_NONE;
1503 
1504 	if (instance->hw_crit_error)
1505 		goto out_done;
1506         /*
1507 	 * Schedule the tasklet for cmd completion
1508 	 */
1509 	tasklet_schedule(&instance->isr_tasklet);
1510 out_done:
1511 	return IRQ_HANDLED;
1512 }
1513 
1514 /**
1515  * megasas_isr - isr entry point
1516  */
megasas_isr(int irq,void * devp)1517 static irqreturn_t megasas_isr(int irq, void *devp)
1518 {
1519 	return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1520 					   DID_OK);
1521 }
1522 
1523 /**
1524  * megasas_transition_to_ready -	Move the FW to READY state
1525  * @instance:				Adapter soft state
1526  *
1527  * During the initialization, FW passes can potentially be in any one of
1528  * several possible states. If the FW in operational, waiting-for-handshake
1529  * states, driver must take steps to bring it to ready state. Otherwise, it
1530  * has to wait for the ready state.
1531  */
1532 static int
megasas_transition_to_ready(struct megasas_instance * instance)1533 megasas_transition_to_ready(struct megasas_instance* instance)
1534 {
1535 	int i;
1536 	u8 max_wait;
1537 	u32 fw_state;
1538 	u32 cur_state;
1539 
1540 	fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1541 
1542 	if (fw_state != MFI_STATE_READY)
1543  		printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1544  		       " state\n");
1545 
1546 	while (fw_state != MFI_STATE_READY) {
1547 
1548 		switch (fw_state) {
1549 
1550 		case MFI_STATE_FAULT:
1551 
1552 			printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1553 			return -ENODEV;
1554 
1555 		case MFI_STATE_WAIT_HANDSHAKE:
1556 			/*
1557 			 * Set the CLR bit in inbound doorbell
1558 			 */
1559 			writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1560 				&instance->reg_set->inbound_doorbell);
1561 
1562 			max_wait = 2;
1563 			cur_state = MFI_STATE_WAIT_HANDSHAKE;
1564 			break;
1565 
1566 		case MFI_STATE_BOOT_MESSAGE_PENDING:
1567 			writel(MFI_INIT_HOTPLUG,
1568 				&instance->reg_set->inbound_doorbell);
1569 
1570 			max_wait = 10;
1571 			cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1572 			break;
1573 
1574 		case MFI_STATE_OPERATIONAL:
1575 			/*
1576 			 * Bring it to READY state; assuming max wait 10 secs
1577 			 */
1578 			instance->instancet->disable_intr(instance->reg_set);
1579 			writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1580 
1581 			max_wait = 60;
1582 			cur_state = MFI_STATE_OPERATIONAL;
1583 			break;
1584 
1585 		case MFI_STATE_UNDEFINED:
1586 			/*
1587 			 * This state should not last for more than 2 seconds
1588 			 */
1589 			max_wait = 2;
1590 			cur_state = MFI_STATE_UNDEFINED;
1591 			break;
1592 
1593 		case MFI_STATE_BB_INIT:
1594 			max_wait = 2;
1595 			cur_state = MFI_STATE_BB_INIT;
1596 			break;
1597 
1598 		case MFI_STATE_FW_INIT:
1599 			max_wait = 20;
1600 			cur_state = MFI_STATE_FW_INIT;
1601 			break;
1602 
1603 		case MFI_STATE_FW_INIT_2:
1604 			max_wait = 20;
1605 			cur_state = MFI_STATE_FW_INIT_2;
1606 			break;
1607 
1608 		case MFI_STATE_DEVICE_SCAN:
1609 			max_wait = 20;
1610 			cur_state = MFI_STATE_DEVICE_SCAN;
1611 			break;
1612 
1613 		case MFI_STATE_FLUSH_CACHE:
1614 			max_wait = 20;
1615 			cur_state = MFI_STATE_FLUSH_CACHE;
1616 			break;
1617 
1618 		default:
1619 			printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1620 			       fw_state);
1621 			return -ENODEV;
1622 		}
1623 
1624 		/*
1625 		 * The cur_state should not last for more than max_wait secs
1626 		 */
1627 		for (i = 0; i < (max_wait * 1000); i++) {
1628 			fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1629 					MFI_STATE_MASK ;
1630 
1631 			if (fw_state == cur_state) {
1632 				msleep(1);
1633 			} else
1634 				break;
1635 		}
1636 
1637 		/*
1638 		 * Return error if fw_state hasn't changed after max_wait
1639 		 */
1640 		if (fw_state == cur_state) {
1641 			printk(KERN_DEBUG "FW state [%d] hasn't changed "
1642 			       "in %d secs\n", fw_state, max_wait);
1643 			return -ENODEV;
1644 		}
1645 	};
1646  	printk(KERN_INFO "megasas: FW now in Ready state\n");
1647 
1648 	return 0;
1649 }
1650 
1651 /**
1652  * megasas_teardown_frame_pool -	Destroy the cmd frame DMA pool
1653  * @instance:				Adapter soft state
1654  */
megasas_teardown_frame_pool(struct megasas_instance * instance)1655 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1656 {
1657 	int i;
1658 	u32 max_cmd = instance->max_fw_cmds;
1659 	struct megasas_cmd *cmd;
1660 
1661 	if (!instance->frame_dma_pool)
1662 		return;
1663 
1664 	/*
1665 	 * Return all frames to pool
1666 	 */
1667 	for (i = 0; i < max_cmd; i++) {
1668 
1669 		cmd = instance->cmd_list[i];
1670 
1671 		if (cmd->frame)
1672 			pci_pool_free(instance->frame_dma_pool, cmd->frame,
1673 				      cmd->frame_phys_addr);
1674 
1675 		if (cmd->sense)
1676 			pci_pool_free(instance->sense_dma_pool, cmd->sense,
1677 				      cmd->sense_phys_addr);
1678 	}
1679 
1680 	/*
1681 	 * Now destroy the pool itself
1682 	 */
1683 	pci_pool_destroy(instance->frame_dma_pool);
1684 	pci_pool_destroy(instance->sense_dma_pool);
1685 
1686 	instance->frame_dma_pool = NULL;
1687 	instance->sense_dma_pool = NULL;
1688 }
1689 
1690 /**
1691  * megasas_create_frame_pool -	Creates DMA pool for cmd frames
1692  * @instance:			Adapter soft state
1693  *
1694  * Each command packet has an embedded DMA memory buffer that is used for
1695  * filling MFI frame and the SG list that immediately follows the frame. This
1696  * function creates those DMA memory buffers for each command packet by using
1697  * PCI pool facility.
1698  */
megasas_create_frame_pool(struct megasas_instance * instance)1699 static int megasas_create_frame_pool(struct megasas_instance *instance)
1700 {
1701 	int i;
1702 	u32 max_cmd;
1703 	u32 sge_sz;
1704 	u32 sgl_sz;
1705 	u32 total_sz;
1706 	u32 frame_count;
1707 	struct megasas_cmd *cmd;
1708 
1709 	max_cmd = instance->max_fw_cmds;
1710 
1711 	/*
1712 	 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1713 	 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1714 	 */
1715 	sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1716 	    sizeof(struct megasas_sge32);
1717 
1718 	/*
1719 	 * Calculated the number of 64byte frames required for SGL
1720 	 */
1721 	sgl_sz = sge_sz * instance->max_num_sge;
1722 	frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1723 
1724 	/*
1725 	 * We need one extra frame for the MFI command
1726 	 */
1727 	frame_count++;
1728 
1729 	total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1730 	/*
1731 	 * Use DMA pool facility provided by PCI layer
1732 	 */
1733 	instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1734 						   instance->pdev, total_sz, 64,
1735 						   0);
1736 
1737 	if (!instance->frame_dma_pool) {
1738 		printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1739 		return -ENOMEM;
1740 	}
1741 
1742 	instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1743 						   instance->pdev, 128, 4, 0);
1744 
1745 	if (!instance->sense_dma_pool) {
1746 		printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1747 
1748 		pci_pool_destroy(instance->frame_dma_pool);
1749 		instance->frame_dma_pool = NULL;
1750 
1751 		return -ENOMEM;
1752 	}
1753 
1754 	/*
1755 	 * Allocate and attach a frame to each of the commands in cmd_list.
1756 	 * By making cmd->index as the context instead of the &cmd, we can
1757 	 * always use 32bit context regardless of the architecture
1758 	 */
1759 	for (i = 0; i < max_cmd; i++) {
1760 
1761 		cmd = instance->cmd_list[i];
1762 
1763 		cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1764 					    GFP_KERNEL, &cmd->frame_phys_addr);
1765 
1766 		cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1767 					    GFP_KERNEL, &cmd->sense_phys_addr);
1768 
1769 		/*
1770 		 * megasas_teardown_frame_pool() takes care of freeing
1771 		 * whatever has been allocated
1772 		 */
1773 		if (!cmd->frame || !cmd->sense) {
1774 			printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1775 			megasas_teardown_frame_pool(instance);
1776 			return -ENOMEM;
1777 		}
1778 
1779 		cmd->frame->io.context = cmd->index;
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 /**
1786  * megasas_free_cmds -	Free all the cmds in the free cmd pool
1787  * @instance:		Adapter soft state
1788  */
megasas_free_cmds(struct megasas_instance * instance)1789 static void megasas_free_cmds(struct megasas_instance *instance)
1790 {
1791 	int i;
1792 	/* First free the MFI frame pool */
1793 	megasas_teardown_frame_pool(instance);
1794 
1795 	/* Free all the commands in the cmd_list */
1796 	for (i = 0; i < instance->max_fw_cmds; i++)
1797 		kfree(instance->cmd_list[i]);
1798 
1799 	/* Free the cmd_list buffer itself */
1800 	kfree(instance->cmd_list);
1801 	instance->cmd_list = NULL;
1802 
1803 	INIT_LIST_HEAD(&instance->cmd_pool);
1804 }
1805 
1806 /**
1807  * megasas_alloc_cmds -	Allocates the command packets
1808  * @instance:		Adapter soft state
1809  *
1810  * Each command that is issued to the FW, whether IO commands from the OS or
1811  * internal commands like IOCTLs, are wrapped in local data structure called
1812  * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1813  * the FW.
1814  *
1815  * Each frame has a 32-bit field called context (tag). This context is used
1816  * to get back the megasas_cmd from the frame when a frame gets completed in
1817  * the ISR. Typically the address of the megasas_cmd itself would be used as
1818  * the context. But we wanted to keep the differences between 32 and 64 bit
1819  * systems to the mininum. We always use 32 bit integers for the context. In
1820  * this driver, the 32 bit values are the indices into an array cmd_list.
1821  * This array is used only to look up the megasas_cmd given the context. The
1822  * free commands themselves are maintained in a linked list called cmd_pool.
1823  */
megasas_alloc_cmds(struct megasas_instance * instance)1824 static int megasas_alloc_cmds(struct megasas_instance *instance)
1825 {
1826 	int i;
1827 	int j;
1828 	u32 max_cmd;
1829 	struct megasas_cmd *cmd;
1830 
1831 	max_cmd = instance->max_fw_cmds;
1832 
1833 	/*
1834 	 * instance->cmd_list is an array of struct megasas_cmd pointers.
1835 	 * Allocate the dynamic array first and then allocate individual
1836 	 * commands.
1837 	 */
1838 	instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1839 
1840 	if (!instance->cmd_list) {
1841 		printk(KERN_DEBUG "megasas: out of memory\n");
1842 		return -ENOMEM;
1843 	}
1844 
1845 
1846 	for (i = 0; i < max_cmd; i++) {
1847 		instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1848 						GFP_KERNEL);
1849 
1850 		if (!instance->cmd_list[i]) {
1851 
1852 			for (j = 0; j < i; j++)
1853 				kfree(instance->cmd_list[j]);
1854 
1855 			kfree(instance->cmd_list);
1856 			instance->cmd_list = NULL;
1857 
1858 			return -ENOMEM;
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * Add all the commands to command pool (instance->cmd_pool)
1864 	 */
1865 	for (i = 0; i < max_cmd; i++) {
1866 		cmd = instance->cmd_list[i];
1867 		memset(cmd, 0, sizeof(struct megasas_cmd));
1868 		cmd->index = i;
1869 		cmd->instance = instance;
1870 
1871 		list_add_tail(&cmd->list, &instance->cmd_pool);
1872 	}
1873 
1874 	/*
1875 	 * Create a frame pool and assign one frame to each cmd
1876 	 */
1877 	if (megasas_create_frame_pool(instance)) {
1878 		printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1879 		megasas_free_cmds(instance);
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  * megasas_get_controller_info -	Returns FW's controller structure
1887  * @instance:				Adapter soft state
1888  * @ctrl_info:				Controller information structure
1889  *
1890  * Issues an internal command (DCMD) to get the FW's controller structure.
1891  * This information is mainly used to find out the maximum IO transfer per
1892  * command supported by the FW.
1893  */
1894 static int
megasas_get_ctrl_info(struct megasas_instance * instance,struct megasas_ctrl_info * ctrl_info)1895 megasas_get_ctrl_info(struct megasas_instance *instance,
1896 		      struct megasas_ctrl_info *ctrl_info)
1897 {
1898 	int ret = 0;
1899 	struct megasas_cmd *cmd;
1900 	struct megasas_dcmd_frame *dcmd;
1901 	struct megasas_ctrl_info *ci;
1902 	dma_addr_t ci_h = 0;
1903 
1904 	cmd = megasas_get_cmd(instance);
1905 
1906 	if (!cmd) {
1907 		printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1908 		return -ENOMEM;
1909 	}
1910 
1911 	dcmd = &cmd->frame->dcmd;
1912 
1913 	ci = pci_alloc_consistent(instance->pdev,
1914 				  sizeof(struct megasas_ctrl_info), &ci_h);
1915 
1916 	if (!ci) {
1917 		printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1918 		megasas_return_cmd(instance, cmd);
1919 		return -ENOMEM;
1920 	}
1921 
1922 	memset(ci, 0, sizeof(*ci));
1923 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1924 
1925 	dcmd->cmd = MFI_CMD_DCMD;
1926 	dcmd->cmd_status = 0xFF;
1927 	dcmd->sge_count = 1;
1928 	dcmd->flags = MFI_FRAME_DIR_READ;
1929 	dcmd->timeout = 0;
1930 	dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1931 	dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1932 	dcmd->sgl.sge32[0].phys_addr = ci_h;
1933 	dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1934 
1935 	if (!megasas_issue_polled(instance, cmd)) {
1936 		ret = 0;
1937 		memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1938 	} else {
1939 		ret = -1;
1940 	}
1941 
1942 	pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1943 			    ci, ci_h);
1944 
1945 	megasas_return_cmd(instance, cmd);
1946 	return ret;
1947 }
1948 
1949 /**
1950  * megasas_issue_init_mfi -	Initializes the FW
1951  * @instance:		Adapter soft state
1952  *
1953  * Issues the INIT MFI cmd
1954  */
1955 static int
megasas_issue_init_mfi(struct megasas_instance * instance)1956 megasas_issue_init_mfi(struct megasas_instance *instance)
1957 {
1958 	u32 context;
1959 
1960 	struct megasas_cmd *cmd;
1961 
1962 	struct megasas_init_frame *init_frame;
1963 	struct megasas_init_queue_info *initq_info;
1964 	dma_addr_t init_frame_h;
1965 	dma_addr_t initq_info_h;
1966 
1967 	/*
1968 	 * Prepare a init frame. Note the init frame points to queue info
1969 	 * structure. Each frame has SGL allocated after first 64 bytes. For
1970 	 * this frame - since we don't need any SGL - we use SGL's space as
1971 	 * queue info structure
1972 	 *
1973 	 * We will not get a NULL command below. We just created the pool.
1974 	 */
1975 	cmd = megasas_get_cmd(instance);
1976 
1977 	init_frame = (struct megasas_init_frame *)cmd->frame;
1978 	initq_info = (struct megasas_init_queue_info *)
1979 		((unsigned long)init_frame + 64);
1980 
1981 	init_frame_h = cmd->frame_phys_addr;
1982 	initq_info_h = init_frame_h + 64;
1983 
1984 	context = init_frame->context;
1985 	memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1986 	memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1987 	init_frame->context = context;
1988 
1989 	initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1990 	initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1991 
1992 	initq_info->producer_index_phys_addr_lo = instance->producer_h;
1993 	initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1994 
1995 	init_frame->cmd = MFI_CMD_INIT;
1996 	init_frame->cmd_status = 0xFF;
1997 	init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1998 
1999 	init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
2000 
2001 	/*
2002 	 * disable the intr before firing the init frame to FW
2003 	 */
2004 	instance->instancet->disable_intr(instance->reg_set);
2005 
2006 	/*
2007 	 * Issue the init frame in polled mode
2008 	 */
2009 
2010 	if (megasas_issue_polled(instance, cmd)) {
2011 		printk(KERN_ERR "megasas: Failed to init firmware\n");
2012 		megasas_return_cmd(instance, cmd);
2013 		goto fail_fw_init;
2014 	}
2015 
2016 	megasas_return_cmd(instance, cmd);
2017 
2018 	return 0;
2019 
2020 fail_fw_init:
2021 	return -EINVAL;
2022 }
2023 
2024 /**
2025  * megasas_start_timer - Initializes a timer object
2026  * @instance:		Adapter soft state
2027  * @timer:		timer object to be initialized
2028  * @fn:			timer function
2029  * @interval:		time interval between timer function call
2030  */
2031 static inline void
megasas_start_timer(struct megasas_instance * instance,struct timer_list * timer,void * fn,unsigned long interval)2032 megasas_start_timer(struct megasas_instance *instance,
2033 			struct timer_list *timer,
2034 			void *fn, unsigned long interval)
2035 {
2036 	init_timer(timer);
2037 	timer->expires = jiffies + interval;
2038 	timer->data = (unsigned long)instance;
2039 	timer->function = fn;
2040 	add_timer(timer);
2041 }
2042 
2043 /**
2044  * megasas_io_completion_timer - Timer fn
2045  * @instance_addr:	Address of adapter soft state
2046  *
2047  * Schedules tasklet for cmd completion
2048  * if poll_mode_io is set
2049  */
2050 static void
megasas_io_completion_timer(unsigned long instance_addr)2051 megasas_io_completion_timer(unsigned long instance_addr)
2052 {
2053 	struct megasas_instance *instance =
2054 			(struct megasas_instance *)instance_addr;
2055 
2056 	if (atomic_read(&instance->fw_outstanding))
2057 		tasklet_schedule(&instance->isr_tasklet);
2058 
2059 	/* Restart timer */
2060 	if (poll_mode_io)
2061 		mod_timer(&instance->io_completion_timer,
2062 			jiffies + MEGASAS_COMPLETION_TIMER_INTERVAL);
2063 }
2064 
2065 /**
2066  * megasas_init_mfi -	Initializes the FW
2067  * @instance:		Adapter soft state
2068  *
2069  * This is the main function for initializing MFI firmware.
2070  */
megasas_init_mfi(struct megasas_instance * instance)2071 static int megasas_init_mfi(struct megasas_instance *instance)
2072 {
2073 	u32 context_sz;
2074 	u32 reply_q_sz;
2075 	u32 max_sectors_1;
2076 	u32 max_sectors_2;
2077 	u32 tmp_sectors;
2078 	struct megasas_register_set __iomem *reg_set;
2079 	struct megasas_ctrl_info *ctrl_info;
2080 	/*
2081 	 * Map the message registers
2082 	 */
2083 	if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
2084 		(instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0079GEN2)) {
2085 		instance->base_addr = pci_resource_start(instance->pdev, 1);
2086 	} else {
2087 		instance->base_addr = pci_resource_start(instance->pdev, 0);
2088 	}
2089 
2090 	if (pci_request_regions(instance->pdev, "megasas: LSI")) {
2091 		printk(KERN_DEBUG "megasas: IO memory region busy!\n");
2092 		return -EBUSY;
2093 	}
2094 
2095 	instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
2096 
2097 	if (!instance->reg_set) {
2098 		printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
2099 		goto fail_ioremap;
2100 	}
2101 
2102 	reg_set = instance->reg_set;
2103 
2104 	switch(instance->pdev->device)
2105 	{
2106 		case PCI_DEVICE_ID_LSI_SAS1078R:
2107 		case PCI_DEVICE_ID_LSI_SAS1078DE:
2108 			instance->instancet = &megasas_instance_template_ppc;
2109 			break;
2110 		case PCI_DEVICE_ID_LSI_SAS1078GEN2:
2111 		case PCI_DEVICE_ID_LSI_SAS0079GEN2:
2112 			instance->instancet = &megasas_instance_template_gen2;
2113 			break;
2114 		case PCI_DEVICE_ID_LSI_SAS1064R:
2115 		case PCI_DEVICE_ID_DELL_PERC5:
2116 		default:
2117 			instance->instancet = &megasas_instance_template_xscale;
2118 			break;
2119 	}
2120 
2121 	/*
2122 	 * We expect the FW state to be READY
2123 	 */
2124 	if (megasas_transition_to_ready(instance))
2125 		goto fail_ready_state;
2126 
2127 	/*
2128 	 * Get various operational parameters from status register
2129 	 */
2130 	instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
2131 	/*
2132 	 * Reduce the max supported cmds by 1. This is to ensure that the
2133 	 * reply_q_sz (1 more than the max cmd that driver may send)
2134 	 * does not exceed max cmds that the FW can support
2135 	 */
2136 	instance->max_fw_cmds = instance->max_fw_cmds-1;
2137 	instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
2138 					0x10;
2139 	/*
2140 	 * Create a pool of commands
2141 	 */
2142 	if (megasas_alloc_cmds(instance))
2143 		goto fail_alloc_cmds;
2144 
2145 	/*
2146 	 * Allocate memory for reply queue. Length of reply queue should
2147 	 * be _one_ more than the maximum commands handled by the firmware.
2148 	 *
2149 	 * Note: When FW completes commands, it places corresponding contex
2150 	 * values in this circular reply queue. This circular queue is a fairly
2151 	 * typical producer-consumer queue. FW is the producer (of completed
2152 	 * commands) and the driver is the consumer.
2153 	 */
2154 	context_sz = sizeof(u32);
2155 	reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
2156 
2157 	instance->reply_queue = pci_alloc_consistent(instance->pdev,
2158 						     reply_q_sz,
2159 						     &instance->reply_queue_h);
2160 
2161 	if (!instance->reply_queue) {
2162 		printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
2163 		goto fail_reply_queue;
2164 	}
2165 
2166 	if (megasas_issue_init_mfi(instance))
2167 		goto fail_fw_init;
2168 
2169 	ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
2170 
2171 	/*
2172 	 * Compute the max allowed sectors per IO: The controller info has two
2173 	 * limits on max sectors. Driver should use the minimum of these two.
2174 	 *
2175 	 * 1 << stripe_sz_ops.min = max sectors per strip
2176 	 *
2177 	 * Note that older firmwares ( < FW ver 30) didn't report information
2178 	 * to calculate max_sectors_1. So the number ended up as zero always.
2179 	 */
2180 	tmp_sectors = 0;
2181 	if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
2182 
2183 		max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
2184 		    ctrl_info->max_strips_per_io;
2185 		max_sectors_2 = ctrl_info->max_request_size;
2186 
2187 		tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
2188 	}
2189 
2190 	instance->max_sectors_per_req = instance->max_num_sge *
2191 						PAGE_SIZE / 512;
2192 	if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
2193 		instance->max_sectors_per_req = tmp_sectors;
2194 
2195 	kfree(ctrl_info);
2196 
2197         /*
2198 	* Setup tasklet for cmd completion
2199 	*/
2200 
2201 	tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2202 		(unsigned long)instance);
2203 
2204 	/* Initialize the cmd completion timer */
2205 	if (poll_mode_io)
2206 		megasas_start_timer(instance, &instance->io_completion_timer,
2207 				megasas_io_completion_timer,
2208 				MEGASAS_COMPLETION_TIMER_INTERVAL);
2209 	return 0;
2210 
2211       fail_fw_init:
2212 
2213 	pci_free_consistent(instance->pdev, reply_q_sz,
2214 			    instance->reply_queue, instance->reply_queue_h);
2215       fail_reply_queue:
2216 	megasas_free_cmds(instance);
2217 
2218       fail_alloc_cmds:
2219       fail_ready_state:
2220 	iounmap(instance->reg_set);
2221 
2222       fail_ioremap:
2223 	pci_release_regions(instance->pdev);
2224 
2225 	return -EINVAL;
2226 }
2227 
2228 /**
2229  * megasas_release_mfi -	Reverses the FW initialization
2230  * @intance:			Adapter soft state
2231  */
megasas_release_mfi(struct megasas_instance * instance)2232 static void megasas_release_mfi(struct megasas_instance *instance)
2233 {
2234 	u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2235 
2236 	pci_free_consistent(instance->pdev, reply_q_sz,
2237 			    instance->reply_queue, instance->reply_queue_h);
2238 
2239 	megasas_free_cmds(instance);
2240 
2241 	iounmap(instance->reg_set);
2242 
2243 	pci_release_regions(instance->pdev);
2244 }
2245 
2246 /**
2247  * megasas_get_seq_num -	Gets latest event sequence numbers
2248  * @instance:			Adapter soft state
2249  * @eli:			FW event log sequence numbers information
2250  *
2251  * FW maintains a log of all events in a non-volatile area. Upper layers would
2252  * usually find out the latest sequence number of the events, the seq number at
2253  * the boot etc. They would "read" all the events below the latest seq number
2254  * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2255  * number), they would subsribe to AEN (asynchronous event notification) and
2256  * wait for the events to happen.
2257  */
2258 static int
megasas_get_seq_num(struct megasas_instance * instance,struct megasas_evt_log_info * eli)2259 megasas_get_seq_num(struct megasas_instance *instance,
2260 		    struct megasas_evt_log_info *eli)
2261 {
2262 	struct megasas_cmd *cmd;
2263 	struct megasas_dcmd_frame *dcmd;
2264 	struct megasas_evt_log_info *el_info;
2265 	dma_addr_t el_info_h = 0;
2266 
2267 	cmd = megasas_get_cmd(instance);
2268 
2269 	if (!cmd) {
2270 		return -ENOMEM;
2271 	}
2272 
2273 	dcmd = &cmd->frame->dcmd;
2274 	el_info = pci_alloc_consistent(instance->pdev,
2275 				       sizeof(struct megasas_evt_log_info),
2276 				       &el_info_h);
2277 
2278 	if (!el_info) {
2279 		megasas_return_cmd(instance, cmd);
2280 		return -ENOMEM;
2281 	}
2282 
2283 	memset(el_info, 0, sizeof(*el_info));
2284 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2285 
2286 	dcmd->cmd = MFI_CMD_DCMD;
2287 	dcmd->cmd_status = 0x0;
2288 	dcmd->sge_count = 1;
2289 	dcmd->flags = MFI_FRAME_DIR_READ;
2290 	dcmd->timeout = 0;
2291 	dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2292 	dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2293 	dcmd->sgl.sge32[0].phys_addr = el_info_h;
2294 	dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2295 
2296 	megasas_issue_blocked_cmd(instance, cmd);
2297 
2298 	/*
2299 	 * Copy the data back into callers buffer
2300 	 */
2301 	memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2302 
2303 	pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2304 			    el_info, el_info_h);
2305 
2306 	megasas_return_cmd(instance, cmd);
2307 
2308 	return 0;
2309 }
2310 
2311 /**
2312  * megasas_register_aen -	Registers for asynchronous event notification
2313  * @instance:			Adapter soft state
2314  * @seq_num:			The starting sequence number
2315  * @class_locale:		Class of the event
2316  *
2317  * This function subscribes for AEN for events beyond the @seq_num. It requests
2318  * to be notified if and only if the event is of type @class_locale
2319  */
2320 static int
megasas_register_aen(struct megasas_instance * instance,u32 seq_num,u32 class_locale_word)2321 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2322 		     u32 class_locale_word)
2323 {
2324 	int ret_val;
2325 	struct megasas_cmd *cmd;
2326 	struct megasas_dcmd_frame *dcmd;
2327 	union megasas_evt_class_locale curr_aen;
2328 	union megasas_evt_class_locale prev_aen;
2329 
2330 	/*
2331 	 * If there an AEN pending already (aen_cmd), check if the
2332 	 * class_locale of that pending AEN is inclusive of the new
2333 	 * AEN request we currently have. If it is, then we don't have
2334 	 * to do anything. In other words, whichever events the current
2335 	 * AEN request is subscribing to, have already been subscribed
2336 	 * to.
2337 	 *
2338 	 * If the old_cmd is _not_ inclusive, then we have to abort
2339 	 * that command, form a class_locale that is superset of both
2340 	 * old and current and re-issue to the FW
2341 	 */
2342 
2343 	curr_aen.word = class_locale_word;
2344 
2345 	if (instance->aen_cmd) {
2346 
2347 		prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2348 
2349 		/*
2350 		 * A class whose enum value is smaller is inclusive of all
2351 		 * higher values. If a PROGRESS (= -1) was previously
2352 		 * registered, then a new registration requests for higher
2353 		 * classes need not be sent to FW. They are automatically
2354 		 * included.
2355 		 *
2356 		 * Locale numbers don't have such hierarchy. They are bitmap
2357 		 * values
2358 		 */
2359 		if ((prev_aen.members.class <= curr_aen.members.class) &&
2360 		    !((prev_aen.members.locale & curr_aen.members.locale) ^
2361 		      curr_aen.members.locale)) {
2362 			/*
2363 			 * Previously issued event registration includes
2364 			 * current request. Nothing to do.
2365 			 */
2366 			return 0;
2367 		} else {
2368 			curr_aen.members.locale |= prev_aen.members.locale;
2369 
2370 			if (prev_aen.members.class < curr_aen.members.class)
2371 				curr_aen.members.class = prev_aen.members.class;
2372 
2373 			instance->aen_cmd->abort_aen = 1;
2374 			ret_val = megasas_issue_blocked_abort_cmd(instance,
2375 								  instance->
2376 								  aen_cmd);
2377 
2378 			if (ret_val) {
2379 				printk(KERN_DEBUG "megasas: Failed to abort "
2380 				       "previous AEN command\n");
2381 				return ret_val;
2382 			}
2383 		}
2384 	}
2385 
2386 	cmd = megasas_get_cmd(instance);
2387 
2388 	if (!cmd)
2389 		return -ENOMEM;
2390 
2391 	dcmd = &cmd->frame->dcmd;
2392 
2393 	memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2394 
2395 	/*
2396 	 * Prepare DCMD for aen registration
2397 	 */
2398 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2399 
2400 	dcmd->cmd = MFI_CMD_DCMD;
2401 	dcmd->cmd_status = 0x0;
2402 	dcmd->sge_count = 1;
2403 	dcmd->flags = MFI_FRAME_DIR_READ;
2404 	dcmd->timeout = 0;
2405 	dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2406 	dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2407 	dcmd->mbox.w[0] = seq_num;
2408 	dcmd->mbox.w[1] = curr_aen.word;
2409 	dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2410 	dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2411 
2412 	/*
2413 	 * Store reference to the cmd used to register for AEN. When an
2414 	 * application wants us to register for AEN, we have to abort this
2415 	 * cmd and re-register with a new EVENT LOCALE supplied by that app
2416 	 */
2417 	instance->aen_cmd = cmd;
2418 
2419 	/*
2420 	 * Issue the aen registration frame
2421 	 */
2422 	instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2423 
2424 	return 0;
2425 }
2426 
2427 /**
2428  * megasas_start_aen -	Subscribes to AEN during driver load time
2429  * @instance:		Adapter soft state
2430  */
megasas_start_aen(struct megasas_instance * instance)2431 static int megasas_start_aen(struct megasas_instance *instance)
2432 {
2433 	struct megasas_evt_log_info eli;
2434 	union megasas_evt_class_locale class_locale;
2435 
2436 	/*
2437 	 * Get the latest sequence number from FW
2438 	 */
2439 	memset(&eli, 0, sizeof(eli));
2440 
2441 	if (megasas_get_seq_num(instance, &eli))
2442 		return -1;
2443 
2444 	/*
2445 	 * Register AEN with FW for latest sequence number plus 1
2446 	 */
2447 	class_locale.members.reserved = 0;
2448 	class_locale.members.locale = MR_EVT_LOCALE_ALL;
2449 	class_locale.members.class = MR_EVT_CLASS_DEBUG;
2450 
2451 	return megasas_register_aen(instance, eli.newest_seq_num + 1,
2452 				    class_locale.word);
2453 }
2454 
2455 /**
2456  * megasas_io_attach -	Attaches this driver to SCSI mid-layer
2457  * @instance:		Adapter soft state
2458  */
megasas_io_attach(struct megasas_instance * instance)2459 static int megasas_io_attach(struct megasas_instance *instance)
2460 {
2461 	struct Scsi_Host *host = instance->host;
2462 
2463 	/*
2464 	 * Export parameters required by SCSI mid-layer
2465 	 */
2466 	host->irq = instance->pdev->irq;
2467 	host->unique_id = instance->unique_id;
2468 	host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2469 	host->this_id = instance->init_id;
2470 	host->sg_tablesize = instance->max_num_sge;
2471 	host->max_sectors = instance->max_sectors_per_req;
2472 	host->cmd_per_lun = 128;
2473 	host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2474 	host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2475 	host->max_lun = MEGASAS_MAX_LUN;
2476 	host->max_cmd_len = 16;
2477 
2478 	/*
2479 	 * Notify the mid-layer about the new controller
2480 	 */
2481 	if (scsi_add_host(host, &instance->pdev->dev)) {
2482 		printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2483 		return -ENODEV;
2484 	}
2485 
2486 	/*
2487 	 * Trigger SCSI to scan our drives
2488 	 */
2489 	scsi_scan_host(host);
2490 	return 0;
2491 }
2492 
2493 static int
megasas_set_dma_mask(struct pci_dev * pdev)2494 megasas_set_dma_mask(struct pci_dev *pdev)
2495 {
2496 	/*
2497 	 * All our contollers are capable of performing 64-bit DMA
2498 	 */
2499 	if (IS_DMA64) {
2500 		if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2501 
2502 			if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2503 				goto fail_set_dma_mask;
2504 		}
2505 	} else {
2506 		if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2507 			goto fail_set_dma_mask;
2508 	}
2509 	return 0;
2510 
2511 fail_set_dma_mask:
2512 	return 1;
2513 }
2514 
2515 /**
2516  * megasas_probe_one -	PCI hotplug entry point
2517  * @pdev:		PCI device structure
2518  * @id:			PCI ids of supported hotplugged adapter
2519  */
2520 static int __devinit
megasas_probe_one(struct pci_dev * pdev,const struct pci_device_id * id)2521 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2522 {
2523 	int rval;
2524 	struct Scsi_Host *host;
2525 	struct megasas_instance *instance;
2526 
2527 	/*
2528 	 * Announce PCI information
2529 	 */
2530 	printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2531 	       pdev->vendor, pdev->device, pdev->subsystem_vendor,
2532 	       pdev->subsystem_device);
2533 
2534 	printk("bus %d:slot %d:func %d\n",
2535 	       pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2536 
2537 	/*
2538 	 * PCI prepping: enable device set bus mastering and dma mask
2539 	 */
2540 	rval = pci_enable_device(pdev);
2541 
2542 	if (rval) {
2543 		return rval;
2544 	}
2545 
2546 	pci_set_master(pdev);
2547 
2548 	if (megasas_set_dma_mask(pdev))
2549 		goto fail_set_dma_mask;
2550 
2551 	host = scsi_host_alloc(&megasas_template,
2552 			       sizeof(struct megasas_instance));
2553 
2554 	if (!host) {
2555 		printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2556 		goto fail_alloc_instance;
2557 	}
2558 
2559 	instance = (struct megasas_instance *)host->hostdata;
2560 	memset(instance, 0, sizeof(*instance));
2561 
2562 	instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2563 						  &instance->producer_h);
2564 	instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2565 						  &instance->consumer_h);
2566 
2567 	if (!instance->producer || !instance->consumer) {
2568 		printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2569 		       "producer, consumer\n");
2570 		goto fail_alloc_dma_buf;
2571 	}
2572 
2573 	*instance->producer = 0;
2574 	*instance->consumer = 0;
2575 
2576 	instance->evt_detail = pci_alloc_consistent(pdev,
2577 						    sizeof(struct
2578 							   megasas_evt_detail),
2579 						    &instance->evt_detail_h);
2580 
2581 	if (!instance->evt_detail) {
2582 		printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2583 		       "event detail structure\n");
2584 		goto fail_alloc_dma_buf;
2585 	}
2586 
2587 	/*
2588 	 * Initialize locks and queues
2589 	 */
2590 	INIT_LIST_HEAD(&instance->cmd_pool);
2591 
2592 	atomic_set(&instance->fw_outstanding,0);
2593 
2594 	init_waitqueue_head(&instance->int_cmd_wait_q);
2595 	init_waitqueue_head(&instance->abort_cmd_wait_q);
2596 
2597 	spin_lock_init(&instance->cmd_pool_lock);
2598 	spin_lock_init(&instance->completion_lock);
2599 
2600 	mutex_init(&instance->aen_mutex);
2601 	sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2602 
2603 	/*
2604 	 * Initialize PCI related and misc parameters
2605 	 */
2606 	instance->pdev = pdev;
2607 	instance->host = host;
2608 	instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2609 	instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2610 
2611 	megasas_dbg_lvl = 0;
2612 	instance->flag = 0;
2613 	instance->last_time = 0;
2614 
2615 	/*
2616 	 * Initialize MFI Firmware
2617 	 */
2618 	if (megasas_init_mfi(instance))
2619 		goto fail_init_mfi;
2620 
2621 	/*
2622 	 * Register IRQ
2623 	 */
2624 	if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2625 		printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2626 		goto fail_irq;
2627 	}
2628 
2629 	instance->instancet->enable_intr(instance->reg_set);
2630 
2631 	/*
2632 	 * Store instance in PCI softstate
2633 	 */
2634 	pci_set_drvdata(pdev, instance);
2635 
2636 	/*
2637 	 * Add this controller to megasas_mgmt_info structure so that it
2638 	 * can be exported to management applications
2639 	 */
2640 	megasas_mgmt_info.count++;
2641 	megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2642 	megasas_mgmt_info.max_index++;
2643 
2644 	/*
2645 	 * Initiate AEN (Asynchronous Event Notification)
2646 	 */
2647 	if (megasas_start_aen(instance)) {
2648 		printk(KERN_DEBUG "megasas: start aen failed\n");
2649 		goto fail_start_aen;
2650 	}
2651 
2652 	/*
2653 	 * Register with SCSI mid-layer
2654 	 */
2655 	if (megasas_io_attach(instance))
2656 		goto fail_io_attach;
2657 
2658 	return 0;
2659 
2660       fail_start_aen:
2661       fail_io_attach:
2662 	megasas_mgmt_info.count--;
2663 	megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2664 	megasas_mgmt_info.max_index--;
2665 
2666 	pci_set_drvdata(pdev, NULL);
2667 	instance->instancet->disable_intr(instance->reg_set);
2668 	free_irq(instance->pdev->irq, instance);
2669 
2670 	megasas_release_mfi(instance);
2671 
2672       fail_irq:
2673       fail_init_mfi:
2674       fail_alloc_dma_buf:
2675 	if (instance->evt_detail)
2676 		pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2677 				    instance->evt_detail,
2678 				    instance->evt_detail_h);
2679 
2680 	if (instance->producer)
2681 		pci_free_consistent(pdev, sizeof(u32), instance->producer,
2682 				    instance->producer_h);
2683 	if (instance->consumer)
2684 		pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2685 				    instance->consumer_h);
2686 	scsi_host_put(host);
2687 
2688       fail_alloc_instance:
2689       fail_set_dma_mask:
2690 	pci_disable_device(pdev);
2691 
2692 	return -ENODEV;
2693 }
2694 
2695 /**
2696  * megasas_flush_cache -	Requests FW to flush all its caches
2697  * @instance:			Adapter soft state
2698  */
megasas_flush_cache(struct megasas_instance * instance)2699 static void megasas_flush_cache(struct megasas_instance *instance)
2700 {
2701 	struct megasas_cmd *cmd;
2702 	struct megasas_dcmd_frame *dcmd;
2703 
2704 	cmd = megasas_get_cmd(instance);
2705 
2706 	if (!cmd)
2707 		return;
2708 
2709 	dcmd = &cmd->frame->dcmd;
2710 
2711 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2712 
2713 	dcmd->cmd = MFI_CMD_DCMD;
2714 	dcmd->cmd_status = 0x0;
2715 	dcmd->sge_count = 0;
2716 	dcmd->flags = MFI_FRAME_DIR_NONE;
2717 	dcmd->timeout = 0;
2718 	dcmd->data_xfer_len = 0;
2719 	dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2720 	dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2721 
2722 	megasas_issue_blocked_cmd(instance, cmd);
2723 
2724 	megasas_return_cmd(instance, cmd);
2725 
2726 	return;
2727 }
2728 
2729 /**
2730  * megasas_shutdown_controller -	Instructs FW to shutdown the controller
2731  * @instance:				Adapter soft state
2732  * @opcode:				Shutdown/Hibernate
2733  */
megasas_shutdown_controller(struct megasas_instance * instance,u32 opcode)2734 static void megasas_shutdown_controller(struct megasas_instance *instance,
2735 					u32 opcode)
2736 {
2737 	struct megasas_cmd *cmd;
2738 	struct megasas_dcmd_frame *dcmd;
2739 
2740 	cmd = megasas_get_cmd(instance);
2741 
2742 	if (!cmd)
2743 		return;
2744 
2745 	if (instance->aen_cmd)
2746 		megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2747 
2748 	dcmd = &cmd->frame->dcmd;
2749 
2750 	memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2751 
2752 	dcmd->cmd = MFI_CMD_DCMD;
2753 	dcmd->cmd_status = 0x0;
2754 	dcmd->sge_count = 0;
2755 	dcmd->flags = MFI_FRAME_DIR_NONE;
2756 	dcmd->timeout = 0;
2757 	dcmd->data_xfer_len = 0;
2758 	dcmd->opcode = opcode;
2759 
2760 	megasas_issue_blocked_cmd(instance, cmd);
2761 
2762 	megasas_return_cmd(instance, cmd);
2763 
2764 	return;
2765 }
2766 
2767 #ifdef CONFIG_PM
2768 /**
2769  * megasas_suspend -	driver suspend entry point
2770  * @pdev:		PCI device structure
2771  * @state:		PCI power state to suspend routine
2772  */
2773 static int
megasas_suspend(struct pci_dev * pdev,pm_message_t state)2774 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
2775 {
2776 	struct Scsi_Host *host;
2777 	struct megasas_instance *instance;
2778 
2779 	instance = pci_get_drvdata(pdev);
2780 	host = instance->host;
2781 
2782 	if (poll_mode_io)
2783 		del_timer_sync(&instance->io_completion_timer);
2784 
2785 	megasas_flush_cache(instance);
2786 	megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
2787 	tasklet_kill(&instance->isr_tasklet);
2788 
2789 	pci_set_drvdata(instance->pdev, instance);
2790 	instance->instancet->disable_intr(instance->reg_set);
2791 	free_irq(instance->pdev->irq, instance);
2792 
2793 	pci_save_state(pdev);
2794 	pci_disable_device(pdev);
2795 
2796 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2797 
2798 	return 0;
2799 }
2800 
2801 /**
2802  * megasas_resume-      driver resume entry point
2803  * @pdev:               PCI device structure
2804  */
2805 static int
megasas_resume(struct pci_dev * pdev)2806 megasas_resume(struct pci_dev *pdev)
2807 {
2808 	int rval;
2809 	struct Scsi_Host *host;
2810 	struct megasas_instance *instance;
2811 
2812 	instance = pci_get_drvdata(pdev);
2813 	host = instance->host;
2814 	pci_set_power_state(pdev, PCI_D0);
2815 	pci_enable_wake(pdev, PCI_D0, 0);
2816 	pci_restore_state(pdev);
2817 
2818 	/*
2819 	 * PCI prepping: enable device set bus mastering and dma mask
2820 	 */
2821 	rval = pci_enable_device(pdev);
2822 
2823 	if (rval) {
2824 		printk(KERN_ERR "megasas: Enable device failed\n");
2825 		return rval;
2826 	}
2827 
2828 	pci_set_master(pdev);
2829 
2830 	if (megasas_set_dma_mask(pdev))
2831 		goto fail_set_dma_mask;
2832 
2833 	/*
2834 	 * Initialize MFI Firmware
2835 	 */
2836 
2837 	*instance->producer = 0;
2838 	*instance->consumer = 0;
2839 
2840 	atomic_set(&instance->fw_outstanding, 0);
2841 
2842 	/*
2843 	 * We expect the FW state to be READY
2844 	 */
2845 	if (megasas_transition_to_ready(instance))
2846 		goto fail_ready_state;
2847 
2848 	if (megasas_issue_init_mfi(instance))
2849 		goto fail_init_mfi;
2850 
2851 	tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
2852 			(unsigned long)instance);
2853 
2854 	/*
2855 	 * Register IRQ
2856 	 */
2857 	if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED,
2858 		"megasas", instance)) {
2859 		printk(KERN_ERR "megasas: Failed to register IRQ\n");
2860 		goto fail_irq;
2861 	}
2862 
2863 	instance->instancet->enable_intr(instance->reg_set);
2864 
2865 	/*
2866 	 * Initiate AEN (Asynchronous Event Notification)
2867 	 */
2868 	if (megasas_start_aen(instance))
2869 		printk(KERN_ERR "megasas: Start AEN failed\n");
2870 
2871 	/* Initialize the cmd completion timer */
2872 	if (poll_mode_io)
2873 		megasas_start_timer(instance, &instance->io_completion_timer,
2874 				megasas_io_completion_timer,
2875 				MEGASAS_COMPLETION_TIMER_INTERVAL);
2876 	return 0;
2877 
2878 fail_irq:
2879 fail_init_mfi:
2880 	if (instance->evt_detail)
2881 		pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2882 				instance->evt_detail,
2883 				instance->evt_detail_h);
2884 
2885 	if (instance->producer)
2886 		pci_free_consistent(pdev, sizeof(u32), instance->producer,
2887 				instance->producer_h);
2888 	if (instance->consumer)
2889 		pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2890 				instance->consumer_h);
2891 	scsi_host_put(host);
2892 
2893 fail_set_dma_mask:
2894 fail_ready_state:
2895 
2896 	pci_disable_device(pdev);
2897 
2898 	return -ENODEV;
2899 }
2900 #else
2901 #define megasas_suspend	NULL
2902 #define megasas_resume	NULL
2903 #endif
2904 
2905 /**
2906  * megasas_detach_one -	PCI hot"un"plug entry point
2907  * @pdev:		PCI device structure
2908  */
megasas_detach_one(struct pci_dev * pdev)2909 static void __devexit megasas_detach_one(struct pci_dev *pdev)
2910 {
2911 	int i;
2912 	struct Scsi_Host *host;
2913 	struct megasas_instance *instance;
2914 
2915 	instance = pci_get_drvdata(pdev);
2916 	host = instance->host;
2917 
2918 	if (poll_mode_io)
2919 		del_timer_sync(&instance->io_completion_timer);
2920 
2921 	scsi_remove_host(instance->host);
2922 	megasas_flush_cache(instance);
2923 	megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2924 	tasklet_kill(&instance->isr_tasklet);
2925 
2926 	/*
2927 	 * Take the instance off the instance array. Note that we will not
2928 	 * decrement the max_index. We let this array be sparse array
2929 	 */
2930 	for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2931 		if (megasas_mgmt_info.instance[i] == instance) {
2932 			megasas_mgmt_info.count--;
2933 			megasas_mgmt_info.instance[i] = NULL;
2934 
2935 			break;
2936 		}
2937 	}
2938 
2939 	pci_set_drvdata(instance->pdev, NULL);
2940 
2941 	instance->instancet->disable_intr(instance->reg_set);
2942 
2943 	free_irq(instance->pdev->irq, instance);
2944 
2945 	megasas_release_mfi(instance);
2946 
2947 	pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2948 			    instance->evt_detail, instance->evt_detail_h);
2949 
2950 	pci_free_consistent(pdev, sizeof(u32), instance->producer,
2951 			    instance->producer_h);
2952 
2953 	pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2954 			    instance->consumer_h);
2955 
2956 	scsi_host_put(host);
2957 
2958 	pci_set_drvdata(pdev, NULL);
2959 
2960 	pci_disable_device(pdev);
2961 
2962 	return;
2963 }
2964 
2965 /**
2966  * megasas_shutdown -	Shutdown entry point
2967  * @device:		Generic device structure
2968  */
megasas_shutdown(struct pci_dev * pdev)2969 static void megasas_shutdown(struct pci_dev *pdev)
2970 {
2971 	struct megasas_instance *instance = pci_get_drvdata(pdev);
2972 	megasas_flush_cache(instance);
2973 	megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
2974 }
2975 
2976 /**
2977  * megasas_mgmt_open -	char node "open" entry point
2978  */
megasas_mgmt_open(struct inode * inode,struct file * filep)2979 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2980 {
2981 	cycle_kernel_lock();
2982 	/*
2983 	 * Allow only those users with admin rights
2984 	 */
2985 	if (!capable(CAP_SYS_ADMIN))
2986 		return -EACCES;
2987 
2988 	return 0;
2989 }
2990 
2991 /**
2992  * megasas_mgmt_fasync -	Async notifier registration from applications
2993  *
2994  * This function adds the calling process to a driver global queue. When an
2995  * event occurs, SIGIO will be sent to all processes in this queue.
2996  */
megasas_mgmt_fasync(int fd,struct file * filep,int mode)2997 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2998 {
2999 	int rc;
3000 
3001 	mutex_lock(&megasas_async_queue_mutex);
3002 
3003 	rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
3004 
3005 	mutex_unlock(&megasas_async_queue_mutex);
3006 
3007 	if (rc >= 0) {
3008 		/* For sanity check when we get ioctl */
3009 		filep->private_data = filep;
3010 		return 0;
3011 	}
3012 
3013 	printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
3014 
3015 	return rc;
3016 }
3017 
3018 /**
3019  * megasas_mgmt_fw_ioctl -	Issues management ioctls to FW
3020  * @instance:			Adapter soft state
3021  * @argp:			User's ioctl packet
3022  */
3023 static int
megasas_mgmt_fw_ioctl(struct megasas_instance * instance,struct megasas_iocpacket __user * user_ioc,struct megasas_iocpacket * ioc)3024 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
3025 		      struct megasas_iocpacket __user * user_ioc,
3026 		      struct megasas_iocpacket *ioc)
3027 {
3028 	struct megasas_sge32 *kern_sge32;
3029 	struct megasas_cmd *cmd;
3030 	void *kbuff_arr[MAX_IOCTL_SGE];
3031 	dma_addr_t buf_handle = 0;
3032 	int error = 0, i;
3033 	void *sense = NULL;
3034 	dma_addr_t sense_handle;
3035 	u32 *sense_ptr;
3036 
3037 	memset(kbuff_arr, 0, sizeof(kbuff_arr));
3038 
3039 	if (ioc->sge_count > MAX_IOCTL_SGE) {
3040 		printk(KERN_DEBUG "megasas: SGE count [%d] >  max limit [%d]\n",
3041 		       ioc->sge_count, MAX_IOCTL_SGE);
3042 		return -EINVAL;
3043 	}
3044 
3045 	cmd = megasas_get_cmd(instance);
3046 	if (!cmd) {
3047 		printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
3048 		return -ENOMEM;
3049 	}
3050 
3051 	/*
3052 	 * User's IOCTL packet has 2 frames (maximum). Copy those two
3053 	 * frames into our cmd's frames. cmd->frame's context will get
3054 	 * overwritten when we copy from user's frames. So set that value
3055 	 * alone separately
3056 	 */
3057 	memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
3058 	cmd->frame->hdr.context = cmd->index;
3059 
3060 	/*
3061 	 * The management interface between applications and the fw uses
3062 	 * MFI frames. E.g, RAID configuration changes, LD property changes
3063 	 * etc are accomplishes through different kinds of MFI frames. The
3064 	 * driver needs to care only about substituting user buffers with
3065 	 * kernel buffers in SGLs. The location of SGL is embedded in the
3066 	 * struct iocpacket itself.
3067 	 */
3068 	kern_sge32 = (struct megasas_sge32 *)
3069 	    ((unsigned long)cmd->frame + ioc->sgl_off);
3070 
3071 	/*
3072 	 * For each user buffer, create a mirror buffer and copy in
3073 	 */
3074 	for (i = 0; i < ioc->sge_count; i++) {
3075 		kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
3076 						    ioc->sgl[i].iov_len,
3077 						    &buf_handle, GFP_KERNEL);
3078 		if (!kbuff_arr[i]) {
3079 			printk(KERN_DEBUG "megasas: Failed to alloc "
3080 			       "kernel SGL buffer for IOCTL \n");
3081 			error = -ENOMEM;
3082 			goto out;
3083 		}
3084 
3085 		/*
3086 		 * We don't change the dma_coherent_mask, so
3087 		 * pci_alloc_consistent only returns 32bit addresses
3088 		 */
3089 		kern_sge32[i].phys_addr = (u32) buf_handle;
3090 		kern_sge32[i].length = ioc->sgl[i].iov_len;
3091 
3092 		/*
3093 		 * We created a kernel buffer corresponding to the
3094 		 * user buffer. Now copy in from the user buffer
3095 		 */
3096 		if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
3097 				   (u32) (ioc->sgl[i].iov_len))) {
3098 			error = -EFAULT;
3099 			goto out;
3100 		}
3101 	}
3102 
3103 	if (ioc->sense_len) {
3104 		sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
3105 					     &sense_handle, GFP_KERNEL);
3106 		if (!sense) {
3107 			error = -ENOMEM;
3108 			goto out;
3109 		}
3110 
3111 		sense_ptr =
3112 		    (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
3113 		*sense_ptr = sense_handle;
3114 	}
3115 
3116 	/*
3117 	 * Set the sync_cmd flag so that the ISR knows not to complete this
3118 	 * cmd to the SCSI mid-layer
3119 	 */
3120 	cmd->sync_cmd = 1;
3121 	megasas_issue_blocked_cmd(instance, cmd);
3122 	cmd->sync_cmd = 0;
3123 
3124 	/*
3125 	 * copy out the kernel buffers to user buffers
3126 	 */
3127 	for (i = 0; i < ioc->sge_count; i++) {
3128 		if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
3129 				 ioc->sgl[i].iov_len)) {
3130 			error = -EFAULT;
3131 			goto out;
3132 		}
3133 	}
3134 
3135 	/*
3136 	 * copy out the sense
3137 	 */
3138 	if (ioc->sense_len) {
3139 		/*
3140 		 * sense_ptr points to the location that has the user
3141 		 * sense buffer address
3142 		 */
3143 		sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
3144 				     ioc->sense_off);
3145 
3146 		if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
3147 				 sense, ioc->sense_len)) {
3148 			printk(KERN_ERR "megasas: Failed to copy out to user "
3149 					"sense data\n");
3150 			error = -EFAULT;
3151 			goto out;
3152 		}
3153 	}
3154 
3155 	/*
3156 	 * copy the status codes returned by the fw
3157 	 */
3158 	if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
3159 			 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
3160 		printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
3161 		error = -EFAULT;
3162 	}
3163 
3164       out:
3165 	if (sense) {
3166 		dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
3167 				    sense, sense_handle);
3168 	}
3169 
3170 	for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
3171 		dma_free_coherent(&instance->pdev->dev,
3172 				    kern_sge32[i].length,
3173 				    kbuff_arr[i], kern_sge32[i].phys_addr);
3174 	}
3175 
3176 	megasas_return_cmd(instance, cmd);
3177 	return error;
3178 }
3179 
megasas_lookup_instance(u16 host_no)3180 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
3181 {
3182 	int i;
3183 
3184 	for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3185 
3186 		if ((megasas_mgmt_info.instance[i]) &&
3187 		    (megasas_mgmt_info.instance[i]->host->host_no == host_no))
3188 			return megasas_mgmt_info.instance[i];
3189 	}
3190 
3191 	return NULL;
3192 }
3193 
megasas_mgmt_ioctl_fw(struct file * file,unsigned long arg)3194 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
3195 {
3196 	struct megasas_iocpacket __user *user_ioc =
3197 	    (struct megasas_iocpacket __user *)arg;
3198 	struct megasas_iocpacket *ioc;
3199 	struct megasas_instance *instance;
3200 	int error;
3201 
3202 	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
3203 	if (!ioc)
3204 		return -ENOMEM;
3205 
3206 	if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
3207 		error = -EFAULT;
3208 		goto out_kfree_ioc;
3209 	}
3210 
3211 	instance = megasas_lookup_instance(ioc->host_no);
3212 	if (!instance) {
3213 		error = -ENODEV;
3214 		goto out_kfree_ioc;
3215 	}
3216 
3217 	/*
3218 	 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
3219 	 */
3220 	if (down_interruptible(&instance->ioctl_sem)) {
3221 		error = -ERESTARTSYS;
3222 		goto out_kfree_ioc;
3223 	}
3224 	error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
3225 	up(&instance->ioctl_sem);
3226 
3227       out_kfree_ioc:
3228 	kfree(ioc);
3229 	return error;
3230 }
3231 
megasas_mgmt_ioctl_aen(struct file * file,unsigned long arg)3232 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
3233 {
3234 	struct megasas_instance *instance;
3235 	struct megasas_aen aen;
3236 	int error;
3237 
3238 	if (file->private_data != file) {
3239 		printk(KERN_DEBUG "megasas: fasync_helper was not "
3240 		       "called first\n");
3241 		return -EINVAL;
3242 	}
3243 
3244 	if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
3245 		return -EFAULT;
3246 
3247 	instance = megasas_lookup_instance(aen.host_no);
3248 
3249 	if (!instance)
3250 		return -ENODEV;
3251 
3252 	mutex_lock(&instance->aen_mutex);
3253 	error = megasas_register_aen(instance, aen.seq_num,
3254 				     aen.class_locale_word);
3255 	mutex_unlock(&instance->aen_mutex);
3256 	return error;
3257 }
3258 
3259 /**
3260  * megasas_mgmt_ioctl -	char node ioctl entry point
3261  */
3262 static long
megasas_mgmt_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3263 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3264 {
3265 	switch (cmd) {
3266 	case MEGASAS_IOC_FIRMWARE:
3267 		return megasas_mgmt_ioctl_fw(file, arg);
3268 
3269 	case MEGASAS_IOC_GET_AEN:
3270 		return megasas_mgmt_ioctl_aen(file, arg);
3271 	}
3272 
3273 	return -ENOTTY;
3274 }
3275 
3276 #ifdef CONFIG_COMPAT
megasas_mgmt_compat_ioctl_fw(struct file * file,unsigned long arg)3277 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
3278 {
3279 	struct compat_megasas_iocpacket __user *cioc =
3280 	    (struct compat_megasas_iocpacket __user *)arg;
3281 	struct megasas_iocpacket __user *ioc =
3282 	    compat_alloc_user_space(sizeof(struct megasas_iocpacket));
3283 	int i;
3284 	int error = 0;
3285 
3286 	if (clear_user(ioc, sizeof(*ioc)))
3287 		return -EFAULT;
3288 
3289 	if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
3290 	    copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
3291 	    copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
3292 	    copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
3293 	    copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
3294 	    copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
3295 		return -EFAULT;
3296 
3297 	for (i = 0; i < MAX_IOCTL_SGE; i++) {
3298 		compat_uptr_t ptr;
3299 
3300 		if (get_user(ptr, &cioc->sgl[i].iov_base) ||
3301 		    put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
3302 		    copy_in_user(&ioc->sgl[i].iov_len,
3303 				 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
3304 			return -EFAULT;
3305 	}
3306 
3307 	error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
3308 
3309 	if (copy_in_user(&cioc->frame.hdr.cmd_status,
3310 			 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
3311 		printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
3312 		return -EFAULT;
3313 	}
3314 	return error;
3315 }
3316 
3317 static long
megasas_mgmt_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3318 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
3319 			  unsigned long arg)
3320 {
3321 	switch (cmd) {
3322 	case MEGASAS_IOC_FIRMWARE32:
3323 		return megasas_mgmt_compat_ioctl_fw(file, arg);
3324 	case MEGASAS_IOC_GET_AEN:
3325 		return megasas_mgmt_ioctl_aen(file, arg);
3326 	}
3327 
3328 	return -ENOTTY;
3329 }
3330 #endif
3331 
3332 /*
3333  * File operations structure for management interface
3334  */
3335 static const struct file_operations megasas_mgmt_fops = {
3336 	.owner = THIS_MODULE,
3337 	.open = megasas_mgmt_open,
3338 	.fasync = megasas_mgmt_fasync,
3339 	.unlocked_ioctl = megasas_mgmt_ioctl,
3340 #ifdef CONFIG_COMPAT
3341 	.compat_ioctl = megasas_mgmt_compat_ioctl,
3342 #endif
3343 };
3344 
3345 /*
3346  * PCI hotplug support registration structure
3347  */
3348 static struct pci_driver megasas_pci_driver = {
3349 
3350 	.name = "megaraid_sas",
3351 	.id_table = megasas_pci_table,
3352 	.probe = megasas_probe_one,
3353 	.remove = __devexit_p(megasas_detach_one),
3354 	.suspend = megasas_suspend,
3355 	.resume = megasas_resume,
3356 	.shutdown = megasas_shutdown,
3357 };
3358 
3359 /*
3360  * Sysfs driver attributes
3361  */
megasas_sysfs_show_version(struct device_driver * dd,char * buf)3362 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
3363 {
3364 	return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
3365 			MEGASAS_VERSION);
3366 }
3367 
3368 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
3369 
3370 static ssize_t
megasas_sysfs_show_release_date(struct device_driver * dd,char * buf)3371 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
3372 {
3373 	return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
3374 			MEGASAS_RELDATE);
3375 }
3376 
3377 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3378 		   NULL);
3379 
3380 static ssize_t
megasas_sysfs_show_dbg_lvl(struct device_driver * dd,char * buf)3381 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3382 {
3383 	return sprintf(buf, "%u\n", megasas_dbg_lvl);
3384 }
3385 
3386 static ssize_t
megasas_sysfs_set_dbg_lvl(struct device_driver * dd,const char * buf,size_t count)3387 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3388 {
3389 	int retval = count;
3390 	if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3391 		printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3392 		retval = -EINVAL;
3393 	}
3394 	return retval;
3395 }
3396 
3397 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl,
3398 		megasas_sysfs_set_dbg_lvl);
3399 
3400 static ssize_t
megasas_sysfs_show_poll_mode_io(struct device_driver * dd,char * buf)3401 megasas_sysfs_show_poll_mode_io(struct device_driver *dd, char *buf)
3402 {
3403 	return sprintf(buf, "%u\n", poll_mode_io);
3404 }
3405 
3406 static ssize_t
megasas_sysfs_set_poll_mode_io(struct device_driver * dd,const char * buf,size_t count)3407 megasas_sysfs_set_poll_mode_io(struct device_driver *dd,
3408 				const char *buf, size_t count)
3409 {
3410 	int retval = count;
3411 	int tmp = poll_mode_io;
3412 	int i;
3413 	struct megasas_instance *instance;
3414 
3415 	if (sscanf(buf, "%u", &poll_mode_io) < 1) {
3416 		printk(KERN_ERR "megasas: could not set poll_mode_io\n");
3417 		retval = -EINVAL;
3418 	}
3419 
3420 	/*
3421 	 * Check if poll_mode_io is already set or is same as previous value
3422 	 */
3423 	if ((tmp && poll_mode_io) || (tmp == poll_mode_io))
3424 		goto out;
3425 
3426 	if (poll_mode_io) {
3427 		/*
3428 		 * Start timers for all adapters
3429 		 */
3430 		for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3431 			instance = megasas_mgmt_info.instance[i];
3432 			if (instance) {
3433 				megasas_start_timer(instance,
3434 					&instance->io_completion_timer,
3435 					megasas_io_completion_timer,
3436 					MEGASAS_COMPLETION_TIMER_INTERVAL);
3437 			}
3438 		}
3439 	} else {
3440 		/*
3441 		 * Delete timers for all adapters
3442 		 */
3443 		for (i = 0; i < megasas_mgmt_info.max_index; i++) {
3444 			instance = megasas_mgmt_info.instance[i];
3445 			if (instance)
3446 				del_timer_sync(&instance->io_completion_timer);
3447 		}
3448 	}
3449 
3450 out:
3451 	return retval;
3452 }
3453 
3454 static DRIVER_ATTR(poll_mode_io, S_IRUGO|S_IWUGO,
3455 		megasas_sysfs_show_poll_mode_io,
3456 		megasas_sysfs_set_poll_mode_io);
3457 
3458 /**
3459  * megasas_init - Driver load entry point
3460  */
megasas_init(void)3461 static int __init megasas_init(void)
3462 {
3463 	int rval;
3464 
3465 	/*
3466 	 * Announce driver version and other information
3467 	 */
3468 	printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3469 	       MEGASAS_EXT_VERSION);
3470 
3471 	memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3472 
3473 	/*
3474 	 * Register character device node
3475 	 */
3476 	rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3477 
3478 	if (rval < 0) {
3479 		printk(KERN_DEBUG "megasas: failed to open device node\n");
3480 		return rval;
3481 	}
3482 
3483 	megasas_mgmt_majorno = rval;
3484 
3485 	/*
3486 	 * Register ourselves as PCI hotplug module
3487 	 */
3488 	rval = pci_register_driver(&megasas_pci_driver);
3489 
3490 	if (rval) {
3491 		printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3492 		goto err_pcidrv;
3493 	}
3494 
3495 	rval = driver_create_file(&megasas_pci_driver.driver,
3496 				  &driver_attr_version);
3497 	if (rval)
3498 		goto err_dcf_attr_ver;
3499 	rval = driver_create_file(&megasas_pci_driver.driver,
3500 				  &driver_attr_release_date);
3501 	if (rval)
3502 		goto err_dcf_rel_date;
3503 	rval = driver_create_file(&megasas_pci_driver.driver,
3504 				  &driver_attr_dbg_lvl);
3505 	if (rval)
3506 		goto err_dcf_dbg_lvl;
3507 	rval = driver_create_file(&megasas_pci_driver.driver,
3508 				  &driver_attr_poll_mode_io);
3509 	if (rval)
3510 		goto err_dcf_poll_mode_io;
3511 
3512 	return rval;
3513 
3514 err_dcf_poll_mode_io:
3515 	driver_remove_file(&megasas_pci_driver.driver,
3516 			   &driver_attr_dbg_lvl);
3517 err_dcf_dbg_lvl:
3518 	driver_remove_file(&megasas_pci_driver.driver,
3519 			   &driver_attr_release_date);
3520 err_dcf_rel_date:
3521 	driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3522 err_dcf_attr_ver:
3523 	pci_unregister_driver(&megasas_pci_driver);
3524 err_pcidrv:
3525 	unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3526   	return rval;
3527 }
3528 
3529 /**
3530  * megasas_exit - Driver unload entry point
3531  */
megasas_exit(void)3532 static void __exit megasas_exit(void)
3533 {
3534 	driver_remove_file(&megasas_pci_driver.driver,
3535 			   &driver_attr_poll_mode_io);
3536 	driver_remove_file(&megasas_pci_driver.driver,
3537 			   &driver_attr_dbg_lvl);
3538 	driver_remove_file(&megasas_pci_driver.driver,
3539 			   &driver_attr_release_date);
3540 	driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3541 
3542 	pci_unregister_driver(&megasas_pci_driver);
3543 	unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3544 }
3545 
3546 module_init(megasas_init);
3547 module_exit(megasas_exit);
3548