• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/misc/logger.c
3  *
4  * A Logging Subsystem
5  *
6  * Copyright (C) 2007-2008 Google, Inc.
7  *
8  * Robert Love <rlove@google.com>
9  *
10  * This software is licensed under the terms of the GNU General Public
11  * License version 2, as published by the Free Software Foundation, and
12  * may be copied, distributed, and modified under those terms.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/module.h>
21 #include <linux/fs.h>
22 #include <linux/miscdevice.h>
23 #include <linux/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/time.h>
26 #include "logger.h"
27 
28 #include <asm/ioctls.h>
29 
30 /*
31  * struct logger_log - represents a specific log, such as 'main' or 'radio'
32  *
33  * This structure lives from module insertion until module removal, so it does
34  * not need additional reference counting. The structure is protected by the
35  * mutex 'mutex'.
36  */
37 struct logger_log {
38 	unsigned char *		buffer;	/* the ring buffer itself */
39 	struct miscdevice	misc;	/* misc device representing the log */
40 	wait_queue_head_t	wq;	/* wait queue for readers */
41 	struct list_head	readers; /* this log's readers */
42 	struct mutex		mutex;	/* mutex protecting buffer */
43 	size_t			w_off;	/* current write head offset */
44 	size_t			head;	/* new readers start here */
45 	size_t			size;	/* size of the log */
46 };
47 
48 /*
49  * struct logger_reader - a logging device open for reading
50  *
51  * This object lives from open to release, so we don't need additional
52  * reference counting. The structure is protected by log->mutex.
53  */
54 struct logger_reader {
55 	struct logger_log *	log;	/* associated log */
56 	struct list_head	list;	/* entry in logger_log's list */
57 	size_t			r_off;	/* current read head offset */
58 };
59 
60 /* logger_offset - returns index 'n' into the log via (optimized) modulus */
61 #define logger_offset(n)	((n) & (log->size - 1))
62 
63 /*
64  * file_get_log - Given a file structure, return the associated log
65  *
66  * This isn't aesthetic. We have several goals:
67  *
68  * 	1) Need to quickly obtain the associated log during an I/O operation
69  * 	2) Readers need to maintain state (logger_reader)
70  * 	3) Writers need to be very fast (open() should be a near no-op)
71  *
72  * In the reader case, we can trivially go file->logger_reader->logger_log.
73  * For a writer, we don't want to maintain a logger_reader, so we just go
74  * file->logger_log. Thus what file->private_data points at depends on whether
75  * or not the file was opened for reading. This function hides that dirtiness.
76  */
file_get_log(struct file * file)77 static inline struct logger_log * file_get_log(struct file *file)
78 {
79 	if (file->f_mode & FMODE_READ) {
80 		struct logger_reader *reader = file->private_data;
81 		return reader->log;
82 	} else
83 		return file->private_data;
84 }
85 
86 /*
87  * get_entry_len - Grabs the length of the payload of the next entry starting
88  * from 'off'.
89  *
90  * Caller needs to hold log->mutex.
91  */
get_entry_len(struct logger_log * log,size_t off)92 static __u32 get_entry_len(struct logger_log *log, size_t off)
93 {
94 	__u16 val;
95 
96 	switch (log->size - off) {
97 	case 1:
98 		memcpy(&val, log->buffer + off, 1);
99 		memcpy(((char *) &val) + 1, log->buffer, 1);
100 		break;
101 	default:
102 		memcpy(&val, log->buffer + off, 2);
103 	}
104 
105 	return sizeof(struct logger_entry) + val;
106 }
107 
108 /*
109  * do_read_log_to_user - reads exactly 'count' bytes from 'log' into the
110  * user-space buffer 'buf'. Returns 'count' on success.
111  *
112  * Caller must hold log->mutex.
113  */
do_read_log_to_user(struct logger_log * log,struct logger_reader * reader,char __user * buf,size_t count)114 static ssize_t do_read_log_to_user(struct logger_log *log,
115 				   struct logger_reader *reader,
116 				   char __user *buf,
117 				   size_t count)
118 {
119 	size_t len;
120 
121 	/*
122 	 * We read from the log in two disjoint operations. First, we read from
123 	 * the current read head offset up to 'count' bytes or to the end of
124 	 * the log, whichever comes first.
125 	 */
126 	len = min(count, log->size - reader->r_off);
127 	if (copy_to_user(buf, log->buffer + reader->r_off, len))
128 		return -EFAULT;
129 
130 	/*
131 	 * Second, we read any remaining bytes, starting back at the head of
132 	 * the log.
133 	 */
134 	if (count != len)
135 		if (copy_to_user(buf + len, log->buffer, count - len))
136 			return -EFAULT;
137 
138 	reader->r_off = logger_offset(reader->r_off + count);
139 
140 	return count;
141 }
142 
143 /*
144  * logger_read - our log's read() method
145  *
146  * Behavior:
147  *
148  * 	- O_NONBLOCK works
149  * 	- If there are no log entries to read, blocks until log is written to
150  * 	- Atomically reads exactly one log entry
151  *
152  * Optimal read size is LOGGER_ENTRY_MAX_LEN. Will set errno to EINVAL if read
153  * buffer is insufficient to hold next entry.
154  */
logger_read(struct file * file,char __user * buf,size_t count,loff_t * pos)155 static ssize_t logger_read(struct file *file, char __user *buf,
156 			   size_t count, loff_t *pos)
157 {
158 	struct logger_reader *reader = file->private_data;
159 	struct logger_log *log = reader->log;
160 	ssize_t ret;
161 	DEFINE_WAIT(wait);
162 
163 start:
164 	while (1) {
165 		prepare_to_wait(&log->wq, &wait, TASK_INTERRUPTIBLE);
166 
167 		mutex_lock(&log->mutex);
168 		ret = (log->w_off == reader->r_off);
169 		mutex_unlock(&log->mutex);
170 		if (!ret)
171 			break;
172 
173 		if (file->f_flags & O_NONBLOCK) {
174 			ret = -EAGAIN;
175 			break;
176 		}
177 
178 		if (signal_pending(current)) {
179 			ret = -EINTR;
180 			break;
181 		}
182 
183 		schedule();
184 	}
185 
186 	finish_wait(&log->wq, &wait);
187 	if (ret)
188 		return ret;
189 
190 	mutex_lock(&log->mutex);
191 
192 	/* is there still something to read or did we race? */
193 	if (unlikely(log->w_off == reader->r_off)) {
194 		mutex_unlock(&log->mutex);
195 		goto start;
196 	}
197 
198 	/* get the size of the next entry */
199 	ret = get_entry_len(log, reader->r_off);
200 	if (count < ret) {
201 		ret = -EINVAL;
202 		goto out;
203 	}
204 
205 	/* get exactly one entry from the log */
206 	ret = do_read_log_to_user(log, reader, buf, ret);
207 
208 out:
209 	mutex_unlock(&log->mutex);
210 
211 	return ret;
212 }
213 
214 /*
215  * get_next_entry - return the offset of the first valid entry at least 'len'
216  * bytes after 'off'.
217  *
218  * Caller must hold log->mutex.
219  */
get_next_entry(struct logger_log * log,size_t off,size_t len)220 static size_t get_next_entry(struct logger_log *log, size_t off, size_t len)
221 {
222 	size_t count = 0;
223 
224 	do {
225 		size_t nr = get_entry_len(log, off);
226 		off = logger_offset(off + nr);
227 		count += nr;
228 	} while (count < len);
229 
230 	return off;
231 }
232 
233 /*
234  * clock_interval - is a < c < b in mod-space? Put another way, does the line
235  * from a to b cross c?
236  */
clock_interval(size_t a,size_t b,size_t c)237 static inline int clock_interval(size_t a, size_t b, size_t c)
238 {
239 	if (b < a) {
240 		if (a < c || b >= c)
241 			return 1;
242 	} else {
243 		if (a < c && b >= c)
244 			return 1;
245 	}
246 
247 	return 0;
248 }
249 
250 /*
251  * fix_up_readers - walk the list of all readers and "fix up" any who were
252  * lapped by the writer; also do the same for the default "start head".
253  * We do this by "pulling forward" the readers and start head to the first
254  * entry after the new write head.
255  *
256  * The caller needs to hold log->mutex.
257  */
fix_up_readers(struct logger_log * log,size_t len)258 static void fix_up_readers(struct logger_log *log, size_t len)
259 {
260 	size_t old = log->w_off;
261 	size_t new = logger_offset(old + len);
262 	struct logger_reader *reader;
263 
264 	if (clock_interval(old, new, log->head))
265 		log->head = get_next_entry(log, log->head, len);
266 
267 	list_for_each_entry(reader, &log->readers, list)
268 		if (clock_interval(old, new, reader->r_off))
269 			reader->r_off = get_next_entry(log, reader->r_off, len);
270 }
271 
272 /*
273  * do_write_log - writes 'len' bytes from 'buf' to 'log'
274  *
275  * The caller needs to hold log->mutex.
276  */
do_write_log(struct logger_log * log,const void * buf,size_t count)277 static void do_write_log(struct logger_log *log, const void *buf, size_t count)
278 {
279 	size_t len;
280 
281 	len = min(count, log->size - log->w_off);
282 	memcpy(log->buffer + log->w_off, buf, len);
283 
284 	if (count != len)
285 		memcpy(log->buffer, buf + len, count - len);
286 
287 	log->w_off = logger_offset(log->w_off + count);
288 
289 }
290 
291 /*
292  * do_write_log_user - writes 'len' bytes from the user-space buffer 'buf' to
293  * the log 'log'
294  *
295  * The caller needs to hold log->mutex.
296  *
297  * Returns 'count' on success, negative error code on failure.
298  */
do_write_log_from_user(struct logger_log * log,const void __user * buf,size_t count)299 static ssize_t do_write_log_from_user(struct logger_log *log,
300 				      const void __user *buf, size_t count)
301 {
302 	size_t len;
303 
304 	len = min(count, log->size - log->w_off);
305 	if (len && copy_from_user(log->buffer + log->w_off, buf, len))
306 		return -EFAULT;
307 
308 	if (count != len)
309 		if (copy_from_user(log->buffer, buf + len, count - len))
310 			return -EFAULT;
311 
312 	log->w_off = logger_offset(log->w_off + count);
313 
314 	return count;
315 }
316 
317 /*
318  * logger_aio_write - our write method, implementing support for write(),
319  * writev(), and aio_write(). Writes are our fast path, and we try to optimize
320  * them above all else.
321  */
logger_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t ppos)322 ssize_t logger_aio_write(struct kiocb *iocb, const struct iovec *iov,
323 			 unsigned long nr_segs, loff_t ppos)
324 {
325 	struct logger_log *log = file_get_log(iocb->ki_filp);
326 	size_t orig = log->w_off;
327 	struct logger_entry header;
328 	struct timespec now;
329 	ssize_t ret = 0;
330 
331 	now = current_kernel_time();
332 
333 	header.pid = current->tgid;
334 	header.tid = current->pid;
335 	header.sec = now.tv_sec;
336 	header.nsec = now.tv_nsec;
337 	header.len = min_t(size_t, iocb->ki_left, LOGGER_ENTRY_MAX_PAYLOAD);
338 
339 	/* null writes succeed, return zero */
340 	if (unlikely(!header.len))
341 		return 0;
342 
343 	mutex_lock(&log->mutex);
344 
345 	/*
346 	 * Fix up any readers, pulling them forward to the first readable
347 	 * entry after (what will be) the new write offset. We do this now
348 	 * because if we partially fail, we can end up with clobbered log
349 	 * entries that encroach on readable buffer.
350 	 */
351 	fix_up_readers(log, sizeof(struct logger_entry) + header.len);
352 
353 	do_write_log(log, &header, sizeof(struct logger_entry));
354 
355 	while (nr_segs-- > 0) {
356 		size_t len;
357 		ssize_t nr;
358 
359 		/* figure out how much of this vector we can keep */
360 		len = min_t(size_t, iov->iov_len, header.len - ret);
361 
362 		/* write out this segment's payload */
363 		nr = do_write_log_from_user(log, iov->iov_base, len);
364 		if (unlikely(nr < 0)) {
365 			log->w_off = orig;
366 			mutex_unlock(&log->mutex);
367 			return nr;
368 		}
369 
370 		iov++;
371 		ret += nr;
372 	}
373 
374 	mutex_unlock(&log->mutex);
375 
376 	/* wake up any blocked readers */
377 	wake_up_interruptible(&log->wq);
378 
379 	return ret;
380 }
381 
382 static struct logger_log * get_log_from_minor(int);
383 
384 /*
385  * logger_open - the log's open() file operation
386  *
387  * Note how near a no-op this is in the write-only case. Keep it that way!
388  */
logger_open(struct inode * inode,struct file * file)389 static int logger_open(struct inode *inode, struct file *file)
390 {
391 	struct logger_log *log;
392 	int ret;
393 
394 	ret = nonseekable_open(inode, file);
395 	if (ret)
396 		return ret;
397 
398 	log = get_log_from_minor(MINOR(inode->i_rdev));
399 	if (!log)
400 		return -ENODEV;
401 
402 	if (file->f_mode & FMODE_READ) {
403 		struct logger_reader *reader;
404 
405 		reader = kmalloc(sizeof(struct logger_reader), GFP_KERNEL);
406 		if (!reader)
407 			return -ENOMEM;
408 
409 		reader->log = log;
410 		INIT_LIST_HEAD(&reader->list);
411 
412 		mutex_lock(&log->mutex);
413 		reader->r_off = log->head;
414 		list_add_tail(&reader->list, &log->readers);
415 		mutex_unlock(&log->mutex);
416 
417 		file->private_data = reader;
418 	} else
419 		file->private_data = log;
420 
421 	return 0;
422 }
423 
424 /*
425  * logger_release - the log's release file operation
426  *
427  * Note this is a total no-op in the write-only case. Keep it that way!
428  */
logger_release(struct inode * ignored,struct file * file)429 static int logger_release(struct inode *ignored, struct file *file)
430 {
431 	if (file->f_mode & FMODE_READ) {
432 		struct logger_reader *reader = file->private_data;
433 		list_del(&reader->list);
434 		kfree(reader);
435 	}
436 
437 	return 0;
438 }
439 
440 /*
441  * logger_poll - the log's poll file operation, for poll/select/epoll
442  *
443  * Note we always return POLLOUT, because you can always write() to the log.
444  * Note also that, strictly speaking, a return value of POLLIN does not
445  * guarantee that the log is readable without blocking, as there is a small
446  * chance that the writer can lap the reader in the interim between poll()
447  * returning and the read() request.
448  */
logger_poll(struct file * file,poll_table * wait)449 static unsigned int logger_poll(struct file *file, poll_table *wait)
450 {
451 	struct logger_reader *reader;
452 	struct logger_log *log;
453 	unsigned int ret = POLLOUT | POLLWRNORM;
454 
455 	if (!(file->f_mode & FMODE_READ))
456 		return ret;
457 
458 	reader = file->private_data;
459 	log = reader->log;
460 
461 	poll_wait(file, &log->wq, wait);
462 
463 	mutex_lock(&log->mutex);
464 	if (log->w_off != reader->r_off)
465 		ret |= POLLIN | POLLRDNORM;
466 	mutex_unlock(&log->mutex);
467 
468 	return ret;
469 }
470 
logger_ioctl(struct file * file,unsigned int cmd,unsigned long arg)471 static long logger_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
472 {
473 	struct logger_log *log = file_get_log(file);
474 	struct logger_reader *reader;
475 	long ret = -ENOTTY;
476 
477 	mutex_lock(&log->mutex);
478 
479 	switch (cmd) {
480 	case LOGGER_GET_LOG_BUF_SIZE:
481 		ret = log->size;
482 		break;
483 	case LOGGER_GET_LOG_LEN:
484 		if (!(file->f_mode & FMODE_READ)) {
485 			ret = -EBADF;
486 			break;
487 		}
488 		reader = file->private_data;
489 		if (log->w_off >= reader->r_off)
490 			ret = log->w_off - reader->r_off;
491 		else
492 			ret = (log->size - reader->r_off) + log->w_off;
493 		break;
494 	case LOGGER_GET_NEXT_ENTRY_LEN:
495 		if (!(file->f_mode & FMODE_READ)) {
496 			ret = -EBADF;
497 			break;
498 		}
499 		reader = file->private_data;
500 		if (log->w_off != reader->r_off)
501 			ret = get_entry_len(log, reader->r_off);
502 		else
503 			ret = 0;
504 		break;
505 	case LOGGER_FLUSH_LOG:
506 		if (!(file->f_mode & FMODE_WRITE)) {
507 			ret = -EBADF;
508 			break;
509 		}
510 		list_for_each_entry(reader, &log->readers, list)
511 			reader->r_off = log->w_off;
512 		log->head = log->w_off;
513 		ret = 0;
514 		break;
515 	}
516 
517 	mutex_unlock(&log->mutex);
518 
519 	return ret;
520 }
521 
522 static struct file_operations logger_fops = {
523 	.owner = THIS_MODULE,
524 	.read = logger_read,
525 	.aio_write = logger_aio_write,
526 	.poll = logger_poll,
527 	.unlocked_ioctl = logger_ioctl,
528 	.compat_ioctl = logger_ioctl,
529 	.open = logger_open,
530 	.release = logger_release,
531 };
532 
533 /*
534  * Defines a log structure with name 'NAME' and a size of 'SIZE' bytes, which
535  * must be a power of two, greater than LOGGER_ENTRY_MAX_LEN, and less than
536  * LONG_MAX minus LOGGER_ENTRY_MAX_LEN.
537  */
538 #define DEFINE_LOGGER_DEVICE(VAR, NAME, SIZE) \
539 static unsigned char _buf_ ## VAR[SIZE]; \
540 static struct logger_log VAR = { \
541 	.buffer = _buf_ ## VAR, \
542 	.misc = { \
543 		.minor = MISC_DYNAMIC_MINOR, \
544 		.name = NAME, \
545 		.fops = &logger_fops, \
546 		.parent = NULL, \
547 	}, \
548 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(VAR .wq), \
549 	.readers = LIST_HEAD_INIT(VAR .readers), \
550 	.mutex = __MUTEX_INITIALIZER(VAR .mutex), \
551 	.w_off = 0, \
552 	.head = 0, \
553 	.size = SIZE, \
554 };
555 
556 DEFINE_LOGGER_DEVICE(log_main, LOGGER_LOG_MAIN, 64*1024)
557 DEFINE_LOGGER_DEVICE(log_events, LOGGER_LOG_EVENTS, 256*1024)
558 DEFINE_LOGGER_DEVICE(log_radio, LOGGER_LOG_RADIO, 64*1024)
559 
get_log_from_minor(int minor)560 static struct logger_log * get_log_from_minor(int minor)
561 {
562 	if (log_main.misc.minor == minor)
563 		return &log_main;
564 	if (log_events.misc.minor == minor)
565 		return &log_events;
566 	if (log_radio.misc.minor == minor)
567 		return &log_radio;
568 	return NULL;
569 }
570 
init_log(struct logger_log * log)571 static int __init init_log(struct logger_log *log)
572 {
573 	int ret;
574 
575 	ret = misc_register(&log->misc);
576 	if (unlikely(ret)) {
577 		printk(KERN_ERR "logger: failed to register misc "
578 		       "device for log '%s'!\n", log->misc.name);
579 		return ret;
580 	}
581 
582 	printk(KERN_INFO "logger: created %luK log '%s'\n",
583 	       (unsigned long) log->size >> 10, log->misc.name);
584 
585 	return 0;
586 }
587 
logger_init(void)588 static int __init logger_init(void)
589 {
590 	int ret;
591 
592 	ret = init_log(&log_main);
593 	if (unlikely(ret))
594 		goto out;
595 
596 	ret = init_log(&log_events);
597 	if (unlikely(ret))
598 		goto out;
599 
600 	ret = init_log(&log_radio);
601 	if (unlikely(ret))
602 		goto out;
603 
604 out:
605 	return ret;
606 }
607 device_initcall(logger_init);
608