• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
3  *
4  * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5  * Author: Thomas Dahlmann
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  */
21 
22 /*
23  * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
24  * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
25  * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
26  *
27  * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
28  * be used as host port) and UOC bits PAD_EN and APU are set (should be done
29  * by BIOS init).
30  *
31  * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
32  * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
33  * can be used with gadget ether.
34  */
35 
36 /* debug control */
37 /* #define UDC_VERBOSE */
38 
39 /* Driver strings */
40 #define UDC_MOD_DESCRIPTION		"AMD 5536 UDC - USB Device Controller"
41 #define UDC_DRIVER_VERSION_STRING	"01.00.0206 - $Revision: #3 $"
42 
43 /* system */
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/kernel.h>
47 #include <linux/delay.h>
48 #include <linux/ioport.h>
49 #include <linux/sched.h>
50 #include <linux/slab.h>
51 #include <linux/smp_lock.h>
52 #include <linux/errno.h>
53 #include <linux/init.h>
54 #include <linux/timer.h>
55 #include <linux/list.h>
56 #include <linux/interrupt.h>
57 #include <linux/ioctl.h>
58 #include <linux/fs.h>
59 #include <linux/dmapool.h>
60 #include <linux/moduleparam.h>
61 #include <linux/device.h>
62 #include <linux/io.h>
63 #include <linux/irq.h>
64 
65 #include <asm/byteorder.h>
66 #include <asm/system.h>
67 #include <asm/unaligned.h>
68 
69 /* gadget stack */
70 #include <linux/usb/ch9.h>
71 #include <linux/usb/gadget.h>
72 
73 /* udc specific */
74 #include "amd5536udc.h"
75 
76 
77 static void udc_tasklet_disconnect(unsigned long);
78 static void empty_req_queue(struct udc_ep *);
79 static int udc_probe(struct udc *dev);
80 static void udc_basic_init(struct udc *dev);
81 static void udc_setup_endpoints(struct udc *dev);
82 static void udc_soft_reset(struct udc *dev);
83 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
84 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
85 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
86 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
87 				unsigned long buf_len, gfp_t gfp_flags);
88 static int udc_remote_wakeup(struct udc *dev);
89 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
90 static void udc_pci_remove(struct pci_dev *pdev);
91 
92 /* description */
93 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
94 static const char name[] = "amd5536udc";
95 
96 /* structure to hold endpoint function pointers */
97 static const struct usb_ep_ops udc_ep_ops;
98 
99 /* received setup data */
100 static union udc_setup_data setup_data;
101 
102 /* pointer to device object */
103 static struct udc *udc;
104 
105 /* irq spin lock for soft reset */
106 static DEFINE_SPINLOCK(udc_irq_spinlock);
107 /* stall spin lock */
108 static DEFINE_SPINLOCK(udc_stall_spinlock);
109 
110 /*
111 * slave mode: pending bytes in rx fifo after nyet,
112 * used if EPIN irq came but no req was available
113 */
114 static unsigned int udc_rxfifo_pending;
115 
116 /* count soft resets after suspend to avoid loop */
117 static int soft_reset_occured;
118 static int soft_reset_after_usbreset_occured;
119 
120 /* timer */
121 static struct timer_list udc_timer;
122 static int stop_timer;
123 
124 /* set_rde -- Is used to control enabling of RX DMA. Problem is
125  * that UDC has only one bit (RDE) to enable/disable RX DMA for
126  * all OUT endpoints. So we have to handle race conditions like
127  * when OUT data reaches the fifo but no request was queued yet.
128  * This cannot be solved by letting the RX DMA disabled until a
129  * request gets queued because there may be other OUT packets
130  * in the FIFO (important for not blocking control traffic).
131  * The value of set_rde controls the correspondig timer.
132  *
133  * set_rde -1 == not used, means it is alloed to be set to 0 or 1
134  * set_rde  0 == do not touch RDE, do no start the RDE timer
135  * set_rde  1 == timer function will look whether FIFO has data
136  * set_rde  2 == set by timer function to enable RX DMA on next call
137  */
138 static int set_rde = -1;
139 
140 static DECLARE_COMPLETION(on_exit);
141 static struct timer_list udc_pollstall_timer;
142 static int stop_pollstall_timer;
143 static DECLARE_COMPLETION(on_pollstall_exit);
144 
145 /* tasklet for usb disconnect */
146 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
147 		(unsigned long) &udc);
148 
149 
150 /* endpoint names used for print */
151 static const char ep0_string[] = "ep0in";
152 static const char *ep_string[] = {
153 	ep0_string,
154 	"ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
155 	"ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
156 	"ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
157 	"ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
158 	"ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
159 	"ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
160 	"ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
161 };
162 
163 /* DMA usage flag */
164 static int use_dma = 1;
165 /* packet per buffer dma */
166 static int use_dma_ppb = 1;
167 /* with per descr. update */
168 static int use_dma_ppb_du;
169 /* buffer fill mode */
170 static int use_dma_bufferfill_mode;
171 /* full speed only mode */
172 static int use_fullspeed;
173 /* tx buffer size for high speed */
174 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
175 
176 /* module parameters */
177 module_param(use_dma, bool, S_IRUGO);
178 MODULE_PARM_DESC(use_dma, "true for DMA");
179 module_param(use_dma_ppb, bool, S_IRUGO);
180 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
181 module_param(use_dma_ppb_du, bool, S_IRUGO);
182 MODULE_PARM_DESC(use_dma_ppb_du,
183 	"true for DMA in packet per buffer mode with descriptor update");
184 module_param(use_fullspeed, bool, S_IRUGO);
185 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
186 
187 /*---------------------------------------------------------------------------*/
188 /* Prints UDC device registers and endpoint irq registers */
print_regs(struct udc * dev)189 static void print_regs(struct udc *dev)
190 {
191 	DBG(dev, "------- Device registers -------\n");
192 	DBG(dev, "dev config     = %08x\n", readl(&dev->regs->cfg));
193 	DBG(dev, "dev control    = %08x\n", readl(&dev->regs->ctl));
194 	DBG(dev, "dev status     = %08x\n", readl(&dev->regs->sts));
195 	DBG(dev, "\n");
196 	DBG(dev, "dev int's      = %08x\n", readl(&dev->regs->irqsts));
197 	DBG(dev, "dev intmask    = %08x\n", readl(&dev->regs->irqmsk));
198 	DBG(dev, "\n");
199 	DBG(dev, "dev ep int's   = %08x\n", readl(&dev->regs->ep_irqsts));
200 	DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
201 	DBG(dev, "\n");
202 	DBG(dev, "USE DMA        = %d\n", use_dma);
203 	if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
204 		DBG(dev, "DMA mode       = PPBNDU (packet per buffer "
205 			"WITHOUT desc. update)\n");
206 		dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
207 	} else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
208 		DBG(dev, "DMA mode       = PPBDU (packet per buffer "
209 			"WITH desc. update)\n");
210 		dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
211 	}
212 	if (use_dma && use_dma_bufferfill_mode) {
213 		DBG(dev, "DMA mode       = BF (buffer fill mode)\n");
214 		dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
215 	}
216 	if (!use_dma) {
217 		dev_info(&dev->pdev->dev, "FIFO mode\n");
218 	}
219 	DBG(dev, "-------------------------------------------------------\n");
220 }
221 
222 /* Masks unused interrupts */
udc_mask_unused_interrupts(struct udc * dev)223 static int udc_mask_unused_interrupts(struct udc *dev)
224 {
225 	u32 tmp;
226 
227 	/* mask all dev interrupts */
228 	tmp =	AMD_BIT(UDC_DEVINT_SVC) |
229 		AMD_BIT(UDC_DEVINT_ENUM) |
230 		AMD_BIT(UDC_DEVINT_US) |
231 		AMD_BIT(UDC_DEVINT_UR) |
232 		AMD_BIT(UDC_DEVINT_ES) |
233 		AMD_BIT(UDC_DEVINT_SI) |
234 		AMD_BIT(UDC_DEVINT_SOF)|
235 		AMD_BIT(UDC_DEVINT_SC);
236 	writel(tmp, &dev->regs->irqmsk);
237 
238 	/* mask all ep interrupts */
239 	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
240 
241 	return 0;
242 }
243 
244 /* Enables endpoint 0 interrupts */
udc_enable_ep0_interrupts(struct udc * dev)245 static int udc_enable_ep0_interrupts(struct udc *dev)
246 {
247 	u32 tmp;
248 
249 	DBG(dev, "udc_enable_ep0_interrupts()\n");
250 
251 	/* read irq mask */
252 	tmp = readl(&dev->regs->ep_irqmsk);
253 	/* enable ep0 irq's */
254 	tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
255 		& AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
256 	writel(tmp, &dev->regs->ep_irqmsk);
257 
258 	return 0;
259 }
260 
261 /* Enables device interrupts for SET_INTF and SET_CONFIG */
udc_enable_dev_setup_interrupts(struct udc * dev)262 static int udc_enable_dev_setup_interrupts(struct udc *dev)
263 {
264 	u32 tmp;
265 
266 	DBG(dev, "enable device interrupts for setup data\n");
267 
268 	/* read irq mask */
269 	tmp = readl(&dev->regs->irqmsk);
270 
271 	/* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
272 	tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
273 		& AMD_UNMASK_BIT(UDC_DEVINT_SC)
274 		& AMD_UNMASK_BIT(UDC_DEVINT_UR)
275 		& AMD_UNMASK_BIT(UDC_DEVINT_SVC)
276 		& AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
277 	writel(tmp, &dev->regs->irqmsk);
278 
279 	return 0;
280 }
281 
282 /* Calculates fifo start of endpoint based on preceeding endpoints */
udc_set_txfifo_addr(struct udc_ep * ep)283 static int udc_set_txfifo_addr(struct udc_ep *ep)
284 {
285 	struct udc	*dev;
286 	u32 tmp;
287 	int i;
288 
289 	if (!ep || !(ep->in))
290 		return -EINVAL;
291 
292 	dev = ep->dev;
293 	ep->txfifo = dev->txfifo;
294 
295 	/* traverse ep's */
296 	for (i = 0; i < ep->num; i++) {
297 		if (dev->ep[i].regs) {
298 			/* read fifo size */
299 			tmp = readl(&dev->ep[i].regs->bufin_framenum);
300 			tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
301 			ep->txfifo += tmp;
302 		}
303 	}
304 	return 0;
305 }
306 
307 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
308 static u32 cnak_pending;
309 
UDC_QUEUE_CNAK(struct udc_ep * ep,unsigned num)310 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
311 {
312 	if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
313 		DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
314 		cnak_pending |= 1 << (num);
315 		ep->naking = 1;
316 	} else
317 		cnak_pending = cnak_pending & (~(1 << (num)));
318 }
319 
320 
321 /* Enables endpoint, is called by gadget driver */
322 static int
udc_ep_enable(struct usb_ep * usbep,const struct usb_endpoint_descriptor * desc)323 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
324 {
325 	struct udc_ep		*ep;
326 	struct udc		*dev;
327 	u32			tmp;
328 	unsigned long		iflags;
329 	u8 udc_csr_epix;
330 	unsigned		maxpacket;
331 
332 	if (!usbep
333 			|| usbep->name == ep0_string
334 			|| !desc
335 			|| desc->bDescriptorType != USB_DT_ENDPOINT)
336 		return -EINVAL;
337 
338 	ep = container_of(usbep, struct udc_ep, ep);
339 	dev = ep->dev;
340 
341 	DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
342 
343 	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
344 		return -ESHUTDOWN;
345 
346 	spin_lock_irqsave(&dev->lock, iflags);
347 	ep->desc = desc;
348 
349 	ep->halted = 0;
350 
351 	/* set traffic type */
352 	tmp = readl(&dev->ep[ep->num].regs->ctl);
353 	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
354 	writel(tmp, &dev->ep[ep->num].regs->ctl);
355 
356 	/* set max packet size */
357 	maxpacket = le16_to_cpu(desc->wMaxPacketSize);
358 	tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
359 	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
360 	ep->ep.maxpacket = maxpacket;
361 	writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
362 
363 	/* IN ep */
364 	if (ep->in) {
365 
366 		/* ep ix in UDC CSR register space */
367 		udc_csr_epix = ep->num;
368 
369 		/* set buffer size (tx fifo entries) */
370 		tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
371 		/* double buffering: fifo size = 2 x max packet size */
372 		tmp = AMD_ADDBITS(
373 				tmp,
374 				maxpacket * UDC_EPIN_BUFF_SIZE_MULT
375 					  / UDC_DWORD_BYTES,
376 				UDC_EPIN_BUFF_SIZE);
377 		writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
378 
379 		/* calc. tx fifo base addr */
380 		udc_set_txfifo_addr(ep);
381 
382 		/* flush fifo */
383 		tmp = readl(&ep->regs->ctl);
384 		tmp |= AMD_BIT(UDC_EPCTL_F);
385 		writel(tmp, &ep->regs->ctl);
386 
387 	/* OUT ep */
388 	} else {
389 		/* ep ix in UDC CSR register space */
390 		udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
391 
392 		/* set max packet size UDC CSR	*/
393 		tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
394 		tmp = AMD_ADDBITS(tmp, maxpacket,
395 					UDC_CSR_NE_MAX_PKT);
396 		writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
397 
398 		if (use_dma && !ep->in) {
399 			/* alloc and init BNA dummy request */
400 			ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
401 			ep->bna_occurred = 0;
402 		}
403 
404 		if (ep->num != UDC_EP0OUT_IX)
405 			dev->data_ep_enabled = 1;
406 	}
407 
408 	/* set ep values */
409 	tmp = readl(&dev->csr->ne[udc_csr_epix]);
410 	/* max packet */
411 	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
412 	/* ep number */
413 	tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
414 	/* ep direction */
415 	tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
416 	/* ep type */
417 	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
418 	/* ep config */
419 	tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
420 	/* ep interface */
421 	tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
422 	/* ep alt */
423 	tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
424 	/* write reg */
425 	writel(tmp, &dev->csr->ne[udc_csr_epix]);
426 
427 	/* enable ep irq */
428 	tmp = readl(&dev->regs->ep_irqmsk);
429 	tmp &= AMD_UNMASK_BIT(ep->num);
430 	writel(tmp, &dev->regs->ep_irqmsk);
431 
432 	/*
433 	 * clear NAK by writing CNAK
434 	 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
435 	 */
436 	if (!use_dma || ep->in) {
437 		tmp = readl(&ep->regs->ctl);
438 		tmp |= AMD_BIT(UDC_EPCTL_CNAK);
439 		writel(tmp, &ep->regs->ctl);
440 		ep->naking = 0;
441 		UDC_QUEUE_CNAK(ep, ep->num);
442 	}
443 	tmp = desc->bEndpointAddress;
444 	DBG(dev, "%s enabled\n", usbep->name);
445 
446 	spin_unlock_irqrestore(&dev->lock, iflags);
447 	return 0;
448 }
449 
450 /* Resets endpoint */
ep_init(struct udc_regs __iomem * regs,struct udc_ep * ep)451 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
452 {
453 	u32		tmp;
454 
455 	VDBG(ep->dev, "ep-%d reset\n", ep->num);
456 	ep->desc = NULL;
457 	ep->ep.ops = &udc_ep_ops;
458 	INIT_LIST_HEAD(&ep->queue);
459 
460 	ep->ep.maxpacket = (u16) ~0;
461 	/* set NAK */
462 	tmp = readl(&ep->regs->ctl);
463 	tmp |= AMD_BIT(UDC_EPCTL_SNAK);
464 	writel(tmp, &ep->regs->ctl);
465 	ep->naking = 1;
466 
467 	/* disable interrupt */
468 	tmp = readl(&regs->ep_irqmsk);
469 	tmp |= AMD_BIT(ep->num);
470 	writel(tmp, &regs->ep_irqmsk);
471 
472 	if (ep->in) {
473 		/* unset P and IN bit of potential former DMA */
474 		tmp = readl(&ep->regs->ctl);
475 		tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
476 		writel(tmp, &ep->regs->ctl);
477 
478 		tmp = readl(&ep->regs->sts);
479 		tmp |= AMD_BIT(UDC_EPSTS_IN);
480 		writel(tmp, &ep->regs->sts);
481 
482 		/* flush the fifo */
483 		tmp = readl(&ep->regs->ctl);
484 		tmp |= AMD_BIT(UDC_EPCTL_F);
485 		writel(tmp, &ep->regs->ctl);
486 
487 	}
488 	/* reset desc pointer */
489 	writel(0, &ep->regs->desptr);
490 }
491 
492 /* Disables endpoint, is called by gadget driver */
udc_ep_disable(struct usb_ep * usbep)493 static int udc_ep_disable(struct usb_ep *usbep)
494 {
495 	struct udc_ep	*ep = NULL;
496 	unsigned long	iflags;
497 
498 	if (!usbep)
499 		return -EINVAL;
500 
501 	ep = container_of(usbep, struct udc_ep, ep);
502 	if (usbep->name == ep0_string || !ep->desc)
503 		return -EINVAL;
504 
505 	DBG(ep->dev, "Disable ep-%d\n", ep->num);
506 
507 	spin_lock_irqsave(&ep->dev->lock, iflags);
508 	udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
509 	empty_req_queue(ep);
510 	ep_init(ep->dev->regs, ep);
511 	spin_unlock_irqrestore(&ep->dev->lock, iflags);
512 
513 	return 0;
514 }
515 
516 /* Allocates request packet, called by gadget driver */
517 static struct usb_request *
udc_alloc_request(struct usb_ep * usbep,gfp_t gfp)518 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
519 {
520 	struct udc_request	*req;
521 	struct udc_data_dma	*dma_desc;
522 	struct udc_ep	*ep;
523 
524 	if (!usbep)
525 		return NULL;
526 
527 	ep = container_of(usbep, struct udc_ep, ep);
528 
529 	VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
530 	req = kzalloc(sizeof(struct udc_request), gfp);
531 	if (!req)
532 		return NULL;
533 
534 	req->req.dma = DMA_DONT_USE;
535 	INIT_LIST_HEAD(&req->queue);
536 
537 	if (ep->dma) {
538 		/* ep0 in requests are allocated from data pool here */
539 		dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
540 						&req->td_phys);
541 		if (!dma_desc) {
542 			kfree(req);
543 			return NULL;
544 		}
545 
546 		VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
547 				"td_phys = %lx\n",
548 				req, dma_desc,
549 				(unsigned long)req->td_phys);
550 		/* prevent from using desc. - set HOST BUSY */
551 		dma_desc->status = AMD_ADDBITS(dma_desc->status,
552 						UDC_DMA_STP_STS_BS_HOST_BUSY,
553 						UDC_DMA_STP_STS_BS);
554 		dma_desc->bufptr = __constant_cpu_to_le32(DMA_DONT_USE);
555 		req->td_data = dma_desc;
556 		req->td_data_last = NULL;
557 		req->chain_len = 1;
558 	}
559 
560 	return &req->req;
561 }
562 
563 /* Frees request packet, called by gadget driver */
564 static void
udc_free_request(struct usb_ep * usbep,struct usb_request * usbreq)565 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
566 {
567 	struct udc_ep	*ep;
568 	struct udc_request	*req;
569 
570 	if (!usbep || !usbreq)
571 		return;
572 
573 	ep = container_of(usbep, struct udc_ep, ep);
574 	req = container_of(usbreq, struct udc_request, req);
575 	VDBG(ep->dev, "free_req req=%p\n", req);
576 	BUG_ON(!list_empty(&req->queue));
577 	if (req->td_data) {
578 		VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
579 
580 		/* free dma chain if created */
581 		if (req->chain_len > 1) {
582 			udc_free_dma_chain(ep->dev, req);
583 		}
584 
585 		pci_pool_free(ep->dev->data_requests, req->td_data,
586 							req->td_phys);
587 	}
588 	kfree(req);
589 }
590 
591 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
udc_init_bna_dummy(struct udc_request * req)592 static void udc_init_bna_dummy(struct udc_request *req)
593 {
594 	if (req) {
595 		/* set last bit */
596 		req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
597 		/* set next pointer to itself */
598 		req->td_data->next = req->td_phys;
599 		/* set HOST BUSY */
600 		req->td_data->status
601 			= AMD_ADDBITS(req->td_data->status,
602 					UDC_DMA_STP_STS_BS_DMA_DONE,
603 					UDC_DMA_STP_STS_BS);
604 #ifdef UDC_VERBOSE
605 		pr_debug("bna desc = %p, sts = %08x\n",
606 			req->td_data, req->td_data->status);
607 #endif
608 	}
609 }
610 
611 /* Allocate BNA dummy descriptor */
udc_alloc_bna_dummy(struct udc_ep * ep)612 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
613 {
614 	struct udc_request *req = NULL;
615 	struct usb_request *_req = NULL;
616 
617 	/* alloc the dummy request */
618 	_req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
619 	if (_req) {
620 		req = container_of(_req, struct udc_request, req);
621 		ep->bna_dummy_req = req;
622 		udc_init_bna_dummy(req);
623 	}
624 	return req;
625 }
626 
627 /* Write data to TX fifo for IN packets */
628 static void
udc_txfifo_write(struct udc_ep * ep,struct usb_request * req)629 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
630 {
631 	u8			*req_buf;
632 	u32			*buf;
633 	int			i, j;
634 	unsigned		bytes = 0;
635 	unsigned		remaining = 0;
636 
637 	if (!req || !ep)
638 		return;
639 
640 	req_buf = req->buf + req->actual;
641 	prefetch(req_buf);
642 	remaining = req->length - req->actual;
643 
644 	buf = (u32 *) req_buf;
645 
646 	bytes = ep->ep.maxpacket;
647 	if (bytes > remaining)
648 		bytes = remaining;
649 
650 	/* dwords first */
651 	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
652 		writel(*(buf + i), ep->txfifo);
653 	}
654 
655 	/* remaining bytes must be written by byte access */
656 	for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
657 		writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
658 							ep->txfifo);
659 	}
660 
661 	/* dummy write confirm */
662 	writel(0, &ep->regs->confirm);
663 }
664 
665 /* Read dwords from RX fifo for OUT transfers */
udc_rxfifo_read_dwords(struct udc * dev,u32 * buf,int dwords)666 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
667 {
668 	int i;
669 
670 	VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
671 
672 	for (i = 0; i < dwords; i++) {
673 		*(buf + i) = readl(dev->rxfifo);
674 	}
675 	return 0;
676 }
677 
678 /* Read bytes from RX fifo for OUT transfers */
udc_rxfifo_read_bytes(struct udc * dev,u8 * buf,int bytes)679 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
680 {
681 	int i, j;
682 	u32 tmp;
683 
684 	VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
685 
686 	/* dwords first */
687 	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
688 		*((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
689 	}
690 
691 	/* remaining bytes must be read by byte access */
692 	if (bytes % UDC_DWORD_BYTES) {
693 		tmp = readl(dev->rxfifo);
694 		for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
695 			*(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
696 			tmp = tmp >> UDC_BITS_PER_BYTE;
697 		}
698 	}
699 
700 	return 0;
701 }
702 
703 /* Read data from RX fifo for OUT transfers */
704 static int
udc_rxfifo_read(struct udc_ep * ep,struct udc_request * req)705 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
706 {
707 	u8 *buf;
708 	unsigned buf_space;
709 	unsigned bytes = 0;
710 	unsigned finished = 0;
711 
712 	/* received number bytes */
713 	bytes = readl(&ep->regs->sts);
714 	bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
715 
716 	buf_space = req->req.length - req->req.actual;
717 	buf = req->req.buf + req->req.actual;
718 	if (bytes > buf_space) {
719 		if ((buf_space % ep->ep.maxpacket) != 0) {
720 			DBG(ep->dev,
721 				"%s: rx %d bytes, rx-buf space = %d bytesn\n",
722 				ep->ep.name, bytes, buf_space);
723 			req->req.status = -EOVERFLOW;
724 		}
725 		bytes = buf_space;
726 	}
727 	req->req.actual += bytes;
728 
729 	/* last packet ? */
730 	if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
731 		|| ((req->req.actual == req->req.length) && !req->req.zero))
732 		finished = 1;
733 
734 	/* read rx fifo bytes */
735 	VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
736 	udc_rxfifo_read_bytes(ep->dev, buf, bytes);
737 
738 	return finished;
739 }
740 
741 /* create/re-init a DMA descriptor or a DMA descriptor chain */
prep_dma(struct udc_ep * ep,struct udc_request * req,gfp_t gfp)742 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
743 {
744 	int	retval = 0;
745 	u32	tmp;
746 
747 	VDBG(ep->dev, "prep_dma\n");
748 	VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
749 			ep->num, req->td_data);
750 
751 	/* set buffer pointer */
752 	req->td_data->bufptr = req->req.dma;
753 
754 	/* set last bit */
755 	req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
756 
757 	/* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
758 	if (use_dma_ppb) {
759 
760 		retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
761 		if (retval != 0) {
762 			if (retval == -ENOMEM)
763 				DBG(ep->dev, "Out of DMA memory\n");
764 			return retval;
765 		}
766 		if (ep->in) {
767 			if (req->req.length == ep->ep.maxpacket) {
768 				/* write tx bytes */
769 				req->td_data->status =
770 					AMD_ADDBITS(req->td_data->status,
771 						ep->ep.maxpacket,
772 						UDC_DMA_IN_STS_TXBYTES);
773 
774 			}
775 		}
776 
777 	}
778 
779 	if (ep->in) {
780 		VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
781 				"maxpacket=%d ep%d\n",
782 				use_dma_ppb, req->req.length,
783 				ep->ep.maxpacket, ep->num);
784 		/*
785 		 * if bytes < max packet then tx bytes must
786 		 * be written in packet per buffer mode
787 		 */
788 		if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
789 				|| ep->num == UDC_EP0OUT_IX
790 				|| ep->num == UDC_EP0IN_IX) {
791 			/* write tx bytes */
792 			req->td_data->status =
793 				AMD_ADDBITS(req->td_data->status,
794 						req->req.length,
795 						UDC_DMA_IN_STS_TXBYTES);
796 			/* reset frame num */
797 			req->td_data->status =
798 				AMD_ADDBITS(req->td_data->status,
799 						0,
800 						UDC_DMA_IN_STS_FRAMENUM);
801 		}
802 		/* set HOST BUSY */
803 		req->td_data->status =
804 			AMD_ADDBITS(req->td_data->status,
805 				UDC_DMA_STP_STS_BS_HOST_BUSY,
806 				UDC_DMA_STP_STS_BS);
807 	} else {
808 		VDBG(ep->dev, "OUT set host ready\n");
809 		/* set HOST READY */
810 		req->td_data->status =
811 			AMD_ADDBITS(req->td_data->status,
812 				UDC_DMA_STP_STS_BS_HOST_READY,
813 				UDC_DMA_STP_STS_BS);
814 
815 
816 			/* clear NAK by writing CNAK */
817 			if (ep->naking) {
818 				tmp = readl(&ep->regs->ctl);
819 				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
820 				writel(tmp, &ep->regs->ctl);
821 				ep->naking = 0;
822 				UDC_QUEUE_CNAK(ep, ep->num);
823 			}
824 
825 	}
826 
827 	return retval;
828 }
829 
830 /* Completes request packet ... caller MUST hold lock */
831 static void
complete_req(struct udc_ep * ep,struct udc_request * req,int sts)832 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
833 __releases(ep->dev->lock)
834 __acquires(ep->dev->lock)
835 {
836 	struct udc		*dev;
837 	unsigned		halted;
838 
839 	VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
840 
841 	dev = ep->dev;
842 	/* unmap DMA */
843 	if (req->dma_mapping) {
844 		if (ep->in)
845 			pci_unmap_single(dev->pdev,
846 					req->req.dma,
847 					req->req.length,
848 					PCI_DMA_TODEVICE);
849 		else
850 			pci_unmap_single(dev->pdev,
851 					req->req.dma,
852 					req->req.length,
853 					PCI_DMA_FROMDEVICE);
854 		req->dma_mapping = 0;
855 		req->req.dma = DMA_DONT_USE;
856 	}
857 
858 	halted = ep->halted;
859 	ep->halted = 1;
860 
861 	/* set new status if pending */
862 	if (req->req.status == -EINPROGRESS)
863 		req->req.status = sts;
864 
865 	/* remove from ep queue */
866 	list_del_init(&req->queue);
867 
868 	VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
869 		&req->req, req->req.length, ep->ep.name, sts);
870 
871 	spin_unlock(&dev->lock);
872 	req->req.complete(&ep->ep, &req->req);
873 	spin_lock(&dev->lock);
874 	ep->halted = halted;
875 }
876 
877 /* frees pci pool descriptors of a DMA chain */
udc_free_dma_chain(struct udc * dev,struct udc_request * req)878 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
879 {
880 
881 	int ret_val = 0;
882 	struct udc_data_dma	*td;
883 	struct udc_data_dma	*td_last = NULL;
884 	unsigned int i;
885 
886 	DBG(dev, "free chain req = %p\n", req);
887 
888 	/* do not free first desc., will be done by free for request */
889 	td_last = req->td_data;
890 	td = phys_to_virt(td_last->next);
891 
892 	for (i = 1; i < req->chain_len; i++) {
893 
894 		pci_pool_free(dev->data_requests, td,
895 				(dma_addr_t) td_last->next);
896 		td_last = td;
897 		td = phys_to_virt(td_last->next);
898 	}
899 
900 	return ret_val;
901 }
902 
903 /* Iterates to the end of a DMA chain and returns last descriptor */
udc_get_last_dma_desc(struct udc_request * req)904 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
905 {
906 	struct udc_data_dma	*td;
907 
908 	td = req->td_data;
909 	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
910 		td = phys_to_virt(td->next);
911 	}
912 
913 	return td;
914 
915 }
916 
917 /* Iterates to the end of a DMA chain and counts bytes received */
udc_get_ppbdu_rxbytes(struct udc_request * req)918 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
919 {
920 	struct udc_data_dma	*td;
921 	u32 count;
922 
923 	td = req->td_data;
924 	/* received number bytes */
925 	count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
926 
927 	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
928 		td = phys_to_virt(td->next);
929 		/* received number bytes */
930 		if (td) {
931 			count += AMD_GETBITS(td->status,
932 				UDC_DMA_OUT_STS_RXBYTES);
933 		}
934 	}
935 
936 	return count;
937 
938 }
939 
940 /* Creates or re-inits a DMA chain */
udc_create_dma_chain(struct udc_ep * ep,struct udc_request * req,unsigned long buf_len,gfp_t gfp_flags)941 static int udc_create_dma_chain(
942 	struct udc_ep *ep,
943 	struct udc_request *req,
944 	unsigned long buf_len, gfp_t gfp_flags
945 )
946 {
947 	unsigned long bytes = req->req.length;
948 	unsigned int i;
949 	dma_addr_t dma_addr;
950 	struct udc_data_dma	*td = NULL;
951 	struct udc_data_dma	*last = NULL;
952 	unsigned long txbytes;
953 	unsigned create_new_chain = 0;
954 	unsigned len;
955 
956 	VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
957 			bytes, buf_len);
958 	dma_addr = DMA_DONT_USE;
959 
960 	/* unset L bit in first desc for OUT */
961 	if (!ep->in) {
962 		req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
963 	}
964 
965 	/* alloc only new desc's if not already available */
966 	len = req->req.length / ep->ep.maxpacket;
967 	if (req->req.length % ep->ep.maxpacket) {
968 		len++;
969 	}
970 
971 	if (len > req->chain_len) {
972 		/* shorter chain already allocated before */
973 		if (req->chain_len > 1) {
974 			udc_free_dma_chain(ep->dev, req);
975 		}
976 		req->chain_len = len;
977 		create_new_chain = 1;
978 	}
979 
980 	td = req->td_data;
981 	/* gen. required number of descriptors and buffers */
982 	for (i = buf_len; i < bytes; i += buf_len) {
983 		/* create or determine next desc. */
984 		if (create_new_chain) {
985 
986 			td = pci_pool_alloc(ep->dev->data_requests,
987 					gfp_flags, &dma_addr);
988 			if (!td)
989 				return -ENOMEM;
990 
991 			td->status = 0;
992 		} else if (i == buf_len) {
993 			/* first td */
994 			td = (struct udc_data_dma *) phys_to_virt(
995 						req->td_data->next);
996 			td->status = 0;
997 		} else {
998 			td = (struct udc_data_dma *) phys_to_virt(last->next);
999 			td->status = 0;
1000 		}
1001 
1002 
1003 		if (td)
1004 			td->bufptr = req->req.dma + i; /* assign buffer */
1005 		else
1006 			break;
1007 
1008 		/* short packet ? */
1009 		if ((bytes - i) >= buf_len) {
1010 			txbytes = buf_len;
1011 		} else {
1012 			/* short packet */
1013 			txbytes = bytes - i;
1014 		}
1015 
1016 		/* link td and assign tx bytes */
1017 		if (i == buf_len) {
1018 			if (create_new_chain) {
1019 				req->td_data->next = dma_addr;
1020 			} else {
1021 				/* req->td_data->next = virt_to_phys(td); */
1022 			}
1023 			/* write tx bytes */
1024 			if (ep->in) {
1025 				/* first desc */
1026 				req->td_data->status =
1027 					AMD_ADDBITS(req->td_data->status,
1028 							ep->ep.maxpacket,
1029 							UDC_DMA_IN_STS_TXBYTES);
1030 				/* second desc */
1031 				td->status = AMD_ADDBITS(td->status,
1032 							txbytes,
1033 							UDC_DMA_IN_STS_TXBYTES);
1034 			}
1035 		} else {
1036 			if (create_new_chain) {
1037 				last->next = dma_addr;
1038 			} else {
1039 				/* last->next = virt_to_phys(td); */
1040 			}
1041 			if (ep->in) {
1042 				/* write tx bytes */
1043 				td->status = AMD_ADDBITS(td->status,
1044 							txbytes,
1045 							UDC_DMA_IN_STS_TXBYTES);
1046 			}
1047 		}
1048 		last = td;
1049 	}
1050 	/* set last bit */
1051 	if (td) {
1052 		td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1053 		/* last desc. points to itself */
1054 		req->td_data_last = td;
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 /* Enabling RX DMA */
udc_set_rde(struct udc * dev)1061 static void udc_set_rde(struct udc *dev)
1062 {
1063 	u32 tmp;
1064 
1065 	VDBG(dev, "udc_set_rde()\n");
1066 	/* stop RDE timer */
1067 	if (timer_pending(&udc_timer)) {
1068 		set_rde = 0;
1069 		mod_timer(&udc_timer, jiffies - 1);
1070 	}
1071 	/* set RDE */
1072 	tmp = readl(&dev->regs->ctl);
1073 	tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1074 	writel(tmp, &dev->regs->ctl);
1075 }
1076 
1077 /* Queues a request packet, called by gadget driver */
1078 static int
udc_queue(struct usb_ep * usbep,struct usb_request * usbreq,gfp_t gfp)1079 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1080 {
1081 	int			retval = 0;
1082 	u8			open_rxfifo = 0;
1083 	unsigned long		iflags;
1084 	struct udc_ep		*ep;
1085 	struct udc_request	*req;
1086 	struct udc		*dev;
1087 	u32			tmp;
1088 
1089 	/* check the inputs */
1090 	req = container_of(usbreq, struct udc_request, req);
1091 
1092 	if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1093 			|| !list_empty(&req->queue))
1094 		return -EINVAL;
1095 
1096 	ep = container_of(usbep, struct udc_ep, ep);
1097 	if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1098 		return -EINVAL;
1099 
1100 	VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1101 	dev = ep->dev;
1102 
1103 	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1104 		return -ESHUTDOWN;
1105 
1106 	/* map dma (usually done before) */
1107 	if (ep->dma && usbreq->length != 0
1108 			&& (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
1109 		VDBG(dev, "DMA map req %p\n", req);
1110 		if (ep->in)
1111 			usbreq->dma = pci_map_single(dev->pdev,
1112 						usbreq->buf,
1113 						usbreq->length,
1114 						PCI_DMA_TODEVICE);
1115 		else
1116 			usbreq->dma = pci_map_single(dev->pdev,
1117 						usbreq->buf,
1118 						usbreq->length,
1119 						PCI_DMA_FROMDEVICE);
1120 		req->dma_mapping = 1;
1121 	}
1122 
1123 	VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1124 			usbep->name, usbreq, usbreq->length,
1125 			req->td_data, usbreq->buf);
1126 
1127 	spin_lock_irqsave(&dev->lock, iflags);
1128 	usbreq->actual = 0;
1129 	usbreq->status = -EINPROGRESS;
1130 	req->dma_done = 0;
1131 
1132 	/* on empty queue just do first transfer */
1133 	if (list_empty(&ep->queue)) {
1134 		/* zlp */
1135 		if (usbreq->length == 0) {
1136 			/* IN zlp's are handled by hardware */
1137 			complete_req(ep, req, 0);
1138 			VDBG(dev, "%s: zlp\n", ep->ep.name);
1139 			/*
1140 			 * if set_config or set_intf is waiting for ack by zlp
1141 			 * then set CSR_DONE
1142 			 */
1143 			if (dev->set_cfg_not_acked) {
1144 				tmp = readl(&dev->regs->ctl);
1145 				tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1146 				writel(tmp, &dev->regs->ctl);
1147 				dev->set_cfg_not_acked = 0;
1148 			}
1149 			/* setup command is ACK'ed now by zlp */
1150 			if (dev->waiting_zlp_ack_ep0in) {
1151 				/* clear NAK by writing CNAK in EP0_IN */
1152 				tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1153 				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1154 				writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1155 				dev->ep[UDC_EP0IN_IX].naking = 0;
1156 				UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1157 							UDC_EP0IN_IX);
1158 				dev->waiting_zlp_ack_ep0in = 0;
1159 			}
1160 			goto finished;
1161 		}
1162 		if (ep->dma) {
1163 			retval = prep_dma(ep, req, gfp);
1164 			if (retval != 0)
1165 				goto finished;
1166 			/* write desc pointer to enable DMA */
1167 			if (ep->in) {
1168 				/* set HOST READY */
1169 				req->td_data->status =
1170 					AMD_ADDBITS(req->td_data->status,
1171 						UDC_DMA_IN_STS_BS_HOST_READY,
1172 						UDC_DMA_IN_STS_BS);
1173 			}
1174 
1175 			/* disabled rx dma while descriptor update */
1176 			if (!ep->in) {
1177 				/* stop RDE timer */
1178 				if (timer_pending(&udc_timer)) {
1179 					set_rde = 0;
1180 					mod_timer(&udc_timer, jiffies - 1);
1181 				}
1182 				/* clear RDE */
1183 				tmp = readl(&dev->regs->ctl);
1184 				tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1185 				writel(tmp, &dev->regs->ctl);
1186 				open_rxfifo = 1;
1187 
1188 				/*
1189 				 * if BNA occurred then let BNA dummy desc.
1190 				 * point to current desc.
1191 				 */
1192 				if (ep->bna_occurred) {
1193 					VDBG(dev, "copy to BNA dummy desc.\n");
1194 					memcpy(ep->bna_dummy_req->td_data,
1195 						req->td_data,
1196 						sizeof(struct udc_data_dma));
1197 				}
1198 			}
1199 			/* write desc pointer */
1200 			writel(req->td_phys, &ep->regs->desptr);
1201 
1202 			/* clear NAK by writing CNAK */
1203 			if (ep->naking) {
1204 				tmp = readl(&ep->regs->ctl);
1205 				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1206 				writel(tmp, &ep->regs->ctl);
1207 				ep->naking = 0;
1208 				UDC_QUEUE_CNAK(ep, ep->num);
1209 			}
1210 
1211 			if (ep->in) {
1212 				/* enable ep irq */
1213 				tmp = readl(&dev->regs->ep_irqmsk);
1214 				tmp &= AMD_UNMASK_BIT(ep->num);
1215 				writel(tmp, &dev->regs->ep_irqmsk);
1216 			}
1217 		}
1218 
1219 	} else if (ep->dma) {
1220 
1221 		/*
1222 		 * prep_dma not used for OUT ep's, this is not possible
1223 		 * for PPB modes, because of chain creation reasons
1224 		 */
1225 		if (ep->in) {
1226 			retval = prep_dma(ep, req, gfp);
1227 			if (retval != 0)
1228 				goto finished;
1229 		}
1230 	}
1231 	VDBG(dev, "list_add\n");
1232 	/* add request to ep queue */
1233 	if (req) {
1234 
1235 		list_add_tail(&req->queue, &ep->queue);
1236 
1237 		/* open rxfifo if out data queued */
1238 		if (open_rxfifo) {
1239 			/* enable DMA */
1240 			req->dma_going = 1;
1241 			udc_set_rde(dev);
1242 			if (ep->num != UDC_EP0OUT_IX)
1243 				dev->data_ep_queued = 1;
1244 		}
1245 		/* stop OUT naking */
1246 		if (!ep->in) {
1247 			if (!use_dma && udc_rxfifo_pending) {
1248 				DBG(dev, "udc_queue(): pending bytes in "
1249 					"rxfifo after nyet\n");
1250 				/*
1251 				 * read pending bytes afer nyet:
1252 				 * referring to isr
1253 				 */
1254 				if (udc_rxfifo_read(ep, req)) {
1255 					/* finish */
1256 					complete_req(ep, req, 0);
1257 				}
1258 				udc_rxfifo_pending = 0;
1259 
1260 			}
1261 		}
1262 	}
1263 
1264 finished:
1265 	spin_unlock_irqrestore(&dev->lock, iflags);
1266 	return retval;
1267 }
1268 
1269 /* Empty request queue of an endpoint; caller holds spinlock */
empty_req_queue(struct udc_ep * ep)1270 static void empty_req_queue(struct udc_ep *ep)
1271 {
1272 	struct udc_request	*req;
1273 
1274 	ep->halted = 1;
1275 	while (!list_empty(&ep->queue)) {
1276 		req = list_entry(ep->queue.next,
1277 			struct udc_request,
1278 			queue);
1279 		complete_req(ep, req, -ESHUTDOWN);
1280 	}
1281 }
1282 
1283 /* Dequeues a request packet, called by gadget driver */
udc_dequeue(struct usb_ep * usbep,struct usb_request * usbreq)1284 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1285 {
1286 	struct udc_ep		*ep;
1287 	struct udc_request	*req;
1288 	unsigned		halted;
1289 	unsigned long		iflags;
1290 
1291 	ep = container_of(usbep, struct udc_ep, ep);
1292 	if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
1293 				&& ep->num != UDC_EP0OUT_IX)))
1294 		return -EINVAL;
1295 
1296 	req = container_of(usbreq, struct udc_request, req);
1297 
1298 	spin_lock_irqsave(&ep->dev->lock, iflags);
1299 	halted = ep->halted;
1300 	ep->halted = 1;
1301 	/* request in processing or next one */
1302 	if (ep->queue.next == &req->queue) {
1303 		if (ep->dma && req->dma_going) {
1304 			if (ep->in)
1305 				ep->cancel_transfer = 1;
1306 			else {
1307 				u32 tmp;
1308 				u32 dma_sts;
1309 				/* stop potential receive DMA */
1310 				tmp = readl(&udc->regs->ctl);
1311 				writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1312 							&udc->regs->ctl);
1313 				/*
1314 				 * Cancel transfer later in ISR
1315 				 * if descriptor was touched.
1316 				 */
1317 				dma_sts = AMD_GETBITS(req->td_data->status,
1318 							UDC_DMA_OUT_STS_BS);
1319 				if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1320 					ep->cancel_transfer = 1;
1321 				else {
1322 					udc_init_bna_dummy(ep->req);
1323 					writel(ep->bna_dummy_req->td_phys,
1324 						&ep->regs->desptr);
1325 				}
1326 				writel(tmp, &udc->regs->ctl);
1327 			}
1328 		}
1329 	}
1330 	complete_req(ep, req, -ECONNRESET);
1331 	ep->halted = halted;
1332 
1333 	spin_unlock_irqrestore(&ep->dev->lock, iflags);
1334 	return 0;
1335 }
1336 
1337 /* Halt or clear halt of endpoint */
1338 static int
udc_set_halt(struct usb_ep * usbep,int halt)1339 udc_set_halt(struct usb_ep *usbep, int halt)
1340 {
1341 	struct udc_ep	*ep;
1342 	u32 tmp;
1343 	unsigned long iflags;
1344 	int retval = 0;
1345 
1346 	if (!usbep)
1347 		return -EINVAL;
1348 
1349 	pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1350 
1351 	ep = container_of(usbep, struct udc_ep, ep);
1352 	if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1353 		return -EINVAL;
1354 	if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1355 		return -ESHUTDOWN;
1356 
1357 	spin_lock_irqsave(&udc_stall_spinlock, iflags);
1358 	/* halt or clear halt */
1359 	if (halt) {
1360 		if (ep->num == 0)
1361 			ep->dev->stall_ep0in = 1;
1362 		else {
1363 			/*
1364 			 * set STALL
1365 			 * rxfifo empty not taken into acount
1366 			 */
1367 			tmp = readl(&ep->regs->ctl);
1368 			tmp |= AMD_BIT(UDC_EPCTL_S);
1369 			writel(tmp, &ep->regs->ctl);
1370 			ep->halted = 1;
1371 
1372 			/* setup poll timer */
1373 			if (!timer_pending(&udc_pollstall_timer)) {
1374 				udc_pollstall_timer.expires = jiffies +
1375 					HZ * UDC_POLLSTALL_TIMER_USECONDS
1376 					/ (1000 * 1000);
1377 				if (!stop_pollstall_timer) {
1378 					DBG(ep->dev, "start polltimer\n");
1379 					add_timer(&udc_pollstall_timer);
1380 				}
1381 			}
1382 		}
1383 	} else {
1384 		/* ep is halted by set_halt() before */
1385 		if (ep->halted) {
1386 			tmp = readl(&ep->regs->ctl);
1387 			/* clear stall bit */
1388 			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1389 			/* clear NAK by writing CNAK */
1390 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1391 			writel(tmp, &ep->regs->ctl);
1392 			ep->halted = 0;
1393 			UDC_QUEUE_CNAK(ep, ep->num);
1394 		}
1395 	}
1396 	spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1397 	return retval;
1398 }
1399 
1400 /* gadget interface */
1401 static const struct usb_ep_ops udc_ep_ops = {
1402 	.enable		= udc_ep_enable,
1403 	.disable	= udc_ep_disable,
1404 
1405 	.alloc_request	= udc_alloc_request,
1406 	.free_request	= udc_free_request,
1407 
1408 	.queue		= udc_queue,
1409 	.dequeue	= udc_dequeue,
1410 
1411 	.set_halt	= udc_set_halt,
1412 	/* fifo ops not implemented */
1413 };
1414 
1415 /*-------------------------------------------------------------------------*/
1416 
1417 /* Get frame counter (not implemented) */
udc_get_frame(struct usb_gadget * gadget)1418 static int udc_get_frame(struct usb_gadget *gadget)
1419 {
1420 	return -EOPNOTSUPP;
1421 }
1422 
1423 /* Remote wakeup gadget interface */
udc_wakeup(struct usb_gadget * gadget)1424 static int udc_wakeup(struct usb_gadget *gadget)
1425 {
1426 	struct udc		*dev;
1427 
1428 	if (!gadget)
1429 		return -EINVAL;
1430 	dev = container_of(gadget, struct udc, gadget);
1431 	udc_remote_wakeup(dev);
1432 
1433 	return 0;
1434 }
1435 
1436 /* gadget operations */
1437 static const struct usb_gadget_ops udc_ops = {
1438 	.wakeup		= udc_wakeup,
1439 	.get_frame	= udc_get_frame,
1440 };
1441 
1442 /* Setups endpoint parameters, adds endpoints to linked list */
make_ep_lists(struct udc * dev)1443 static void make_ep_lists(struct udc *dev)
1444 {
1445 	/* make gadget ep lists */
1446 	INIT_LIST_HEAD(&dev->gadget.ep_list);
1447 	list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1448 						&dev->gadget.ep_list);
1449 	list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1450 						&dev->gadget.ep_list);
1451 	list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1452 						&dev->gadget.ep_list);
1453 
1454 	/* fifo config */
1455 	dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1456 	if (dev->gadget.speed == USB_SPEED_FULL)
1457 		dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1458 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1459 		dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1460 	dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1461 }
1462 
1463 /* init registers at driver load time */
startup_registers(struct udc * dev)1464 static int startup_registers(struct udc *dev)
1465 {
1466 	u32 tmp;
1467 
1468 	/* init controller by soft reset */
1469 	udc_soft_reset(dev);
1470 
1471 	/* mask not needed interrupts */
1472 	udc_mask_unused_interrupts(dev);
1473 
1474 	/* put into initial config */
1475 	udc_basic_init(dev);
1476 	/* link up all endpoints */
1477 	udc_setup_endpoints(dev);
1478 
1479 	/* program speed */
1480 	tmp = readl(&dev->regs->cfg);
1481 	if (use_fullspeed) {
1482 		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1483 	} else {
1484 		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1485 	}
1486 	writel(tmp, &dev->regs->cfg);
1487 
1488 	return 0;
1489 }
1490 
1491 /* Inits UDC context */
udc_basic_init(struct udc * dev)1492 static void udc_basic_init(struct udc *dev)
1493 {
1494 	u32	tmp;
1495 
1496 	DBG(dev, "udc_basic_init()\n");
1497 
1498 	dev->gadget.speed = USB_SPEED_UNKNOWN;
1499 
1500 	/* stop RDE timer */
1501 	if (timer_pending(&udc_timer)) {
1502 		set_rde = 0;
1503 		mod_timer(&udc_timer, jiffies - 1);
1504 	}
1505 	/* stop poll stall timer */
1506 	if (timer_pending(&udc_pollstall_timer)) {
1507 		mod_timer(&udc_pollstall_timer, jiffies - 1);
1508 	}
1509 	/* disable DMA */
1510 	tmp = readl(&dev->regs->ctl);
1511 	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1512 	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1513 	writel(tmp, &dev->regs->ctl);
1514 
1515 	/* enable dynamic CSR programming */
1516 	tmp = readl(&dev->regs->cfg);
1517 	tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1518 	/* set self powered */
1519 	tmp |= AMD_BIT(UDC_DEVCFG_SP);
1520 	/* set remote wakeupable */
1521 	tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1522 	writel(tmp, &dev->regs->cfg);
1523 
1524 	make_ep_lists(dev);
1525 
1526 	dev->data_ep_enabled = 0;
1527 	dev->data_ep_queued = 0;
1528 }
1529 
1530 /* Sets initial endpoint parameters */
udc_setup_endpoints(struct udc * dev)1531 static void udc_setup_endpoints(struct udc *dev)
1532 {
1533 	struct udc_ep	*ep;
1534 	u32	tmp;
1535 	u32	reg;
1536 
1537 	DBG(dev, "udc_setup_endpoints()\n");
1538 
1539 	/* read enum speed */
1540 	tmp = readl(&dev->regs->sts);
1541 	tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1542 	if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
1543 		dev->gadget.speed = USB_SPEED_HIGH;
1544 	} else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
1545 		dev->gadget.speed = USB_SPEED_FULL;
1546 	}
1547 
1548 	/* set basic ep parameters */
1549 	for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1550 		ep = &dev->ep[tmp];
1551 		ep->dev = dev;
1552 		ep->ep.name = ep_string[tmp];
1553 		ep->num = tmp;
1554 		/* txfifo size is calculated at enable time */
1555 		ep->txfifo = dev->txfifo;
1556 
1557 		/* fifo size */
1558 		if (tmp < UDC_EPIN_NUM) {
1559 			ep->fifo_depth = UDC_TXFIFO_SIZE;
1560 			ep->in = 1;
1561 		} else {
1562 			ep->fifo_depth = UDC_RXFIFO_SIZE;
1563 			ep->in = 0;
1564 
1565 		}
1566 		ep->regs = &dev->ep_regs[tmp];
1567 		/*
1568 		 * ep will be reset only if ep was not enabled before to avoid
1569 		 * disabling ep interrupts when ENUM interrupt occurs but ep is
1570 		 * not enabled by gadget driver
1571 		 */
1572 		if (!ep->desc) {
1573 			ep_init(dev->regs, ep);
1574 		}
1575 
1576 		if (use_dma) {
1577 			/*
1578 			 * ep->dma is not really used, just to indicate that
1579 			 * DMA is active: remove this
1580 			 * dma regs = dev control regs
1581 			 */
1582 			ep->dma = &dev->regs->ctl;
1583 
1584 			/* nak OUT endpoints until enable - not for ep0 */
1585 			if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1586 						&& tmp > UDC_EPIN_NUM) {
1587 				/* set NAK */
1588 				reg = readl(&dev->ep[tmp].regs->ctl);
1589 				reg |= AMD_BIT(UDC_EPCTL_SNAK);
1590 				writel(reg, &dev->ep[tmp].regs->ctl);
1591 				dev->ep[tmp].naking = 1;
1592 
1593 			}
1594 		}
1595 	}
1596 	/* EP0 max packet */
1597 	if (dev->gadget.speed == USB_SPEED_FULL) {
1598 		dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1599 		dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1600 						UDC_FS_EP0OUT_MAX_PKT_SIZE;
1601 	} else if (dev->gadget.speed == USB_SPEED_HIGH) {
1602 		dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1603 		dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1604 	}
1605 
1606 	/*
1607 	 * with suspend bug workaround, ep0 params for gadget driver
1608 	 * are set at gadget driver bind() call
1609 	 */
1610 	dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1611 	dev->ep[UDC_EP0IN_IX].halted = 0;
1612 	INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1613 
1614 	/* init cfg/alt/int */
1615 	dev->cur_config = 0;
1616 	dev->cur_intf = 0;
1617 	dev->cur_alt = 0;
1618 }
1619 
1620 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
usb_connect(struct udc * dev)1621 static void usb_connect(struct udc *dev)
1622 {
1623 
1624 	dev_info(&dev->pdev->dev, "USB Connect\n");
1625 
1626 	dev->connected = 1;
1627 
1628 	/* put into initial config */
1629 	udc_basic_init(dev);
1630 
1631 	/* enable device setup interrupts */
1632 	udc_enable_dev_setup_interrupts(dev);
1633 }
1634 
1635 /*
1636  * Calls gadget with disconnect event and resets the UDC and makes
1637  * initial bringup to be ready for ep0 events
1638  */
usb_disconnect(struct udc * dev)1639 static void usb_disconnect(struct udc *dev)
1640 {
1641 
1642 	dev_info(&dev->pdev->dev, "USB Disconnect\n");
1643 
1644 	dev->connected = 0;
1645 
1646 	/* mask interrupts */
1647 	udc_mask_unused_interrupts(dev);
1648 
1649 	/* REVISIT there doesn't seem to be a point to having this
1650 	 * talk to a tasklet ... do it directly, we already hold
1651 	 * the spinlock needed to process the disconnect.
1652 	 */
1653 
1654 	tasklet_schedule(&disconnect_tasklet);
1655 }
1656 
1657 /* Tasklet for disconnect to be outside of interrupt context */
udc_tasklet_disconnect(unsigned long par)1658 static void udc_tasklet_disconnect(unsigned long par)
1659 {
1660 	struct udc *dev = (struct udc *)(*((struct udc **) par));
1661 	u32 tmp;
1662 
1663 	DBG(dev, "Tasklet disconnect\n");
1664 	spin_lock_irq(&dev->lock);
1665 
1666 	if (dev->driver) {
1667 		spin_unlock(&dev->lock);
1668 		dev->driver->disconnect(&dev->gadget);
1669 		spin_lock(&dev->lock);
1670 
1671 		/* empty queues */
1672 		for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1673 			empty_req_queue(&dev->ep[tmp]);
1674 		}
1675 
1676 	}
1677 
1678 	/* disable ep0 */
1679 	ep_init(dev->regs,
1680 			&dev->ep[UDC_EP0IN_IX]);
1681 
1682 
1683 	if (!soft_reset_occured) {
1684 		/* init controller by soft reset */
1685 		udc_soft_reset(dev);
1686 		soft_reset_occured++;
1687 	}
1688 
1689 	/* re-enable dev interrupts */
1690 	udc_enable_dev_setup_interrupts(dev);
1691 	/* back to full speed ? */
1692 	if (use_fullspeed) {
1693 		tmp = readl(&dev->regs->cfg);
1694 		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1695 		writel(tmp, &dev->regs->cfg);
1696 	}
1697 
1698 	spin_unlock_irq(&dev->lock);
1699 }
1700 
1701 /* Reset the UDC core */
udc_soft_reset(struct udc * dev)1702 static void udc_soft_reset(struct udc *dev)
1703 {
1704 	unsigned long	flags;
1705 
1706 	DBG(dev, "Soft reset\n");
1707 	/*
1708 	 * reset possible waiting interrupts, because int.
1709 	 * status is lost after soft reset,
1710 	 * ep int. status reset
1711 	 */
1712 	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1713 	/* device int. status reset */
1714 	writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1715 
1716 	spin_lock_irqsave(&udc_irq_spinlock, flags);
1717 	writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1718 	readl(&dev->regs->cfg);
1719 	spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1720 
1721 }
1722 
1723 /* RDE timer callback to set RDE bit */
udc_timer_function(unsigned long v)1724 static void udc_timer_function(unsigned long v)
1725 {
1726 	u32 tmp;
1727 
1728 	spin_lock_irq(&udc_irq_spinlock);
1729 
1730 	if (set_rde > 0) {
1731 		/*
1732 		 * open the fifo if fifo was filled on last timer call
1733 		 * conditionally
1734 		 */
1735 		if (set_rde > 1) {
1736 			/* set RDE to receive setup data */
1737 			tmp = readl(&udc->regs->ctl);
1738 			tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1739 			writel(tmp, &udc->regs->ctl);
1740 			set_rde = -1;
1741 		} else if (readl(&udc->regs->sts)
1742 				& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1743 			/*
1744 			 * if fifo empty setup polling, do not just
1745 			 * open the fifo
1746 			 */
1747 			udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1748 			if (!stop_timer) {
1749 				add_timer(&udc_timer);
1750 			}
1751 		} else {
1752 			/*
1753 			 * fifo contains data now, setup timer for opening
1754 			 * the fifo when timer expires to be able to receive
1755 			 * setup packets, when data packets gets queued by
1756 			 * gadget layer then timer will forced to expire with
1757 			 * set_rde=0 (RDE is set in udc_queue())
1758 			 */
1759 			set_rde++;
1760 			/* debug: lhadmot_timer_start = 221070 */
1761 			udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1762 			if (!stop_timer) {
1763 				add_timer(&udc_timer);
1764 			}
1765 		}
1766 
1767 	} else
1768 		set_rde = -1; /* RDE was set by udc_queue() */
1769 	spin_unlock_irq(&udc_irq_spinlock);
1770 	if (stop_timer)
1771 		complete(&on_exit);
1772 
1773 }
1774 
1775 /* Handle halt state, used in stall poll timer */
udc_handle_halt_state(struct udc_ep * ep)1776 static void udc_handle_halt_state(struct udc_ep *ep)
1777 {
1778 	u32 tmp;
1779 	/* set stall as long not halted */
1780 	if (ep->halted == 1) {
1781 		tmp = readl(&ep->regs->ctl);
1782 		/* STALL cleared ? */
1783 		if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1784 			/*
1785 			 * FIXME: MSC spec requires that stall remains
1786 			 * even on receivng of CLEAR_FEATURE HALT. So
1787 			 * we would set STALL again here to be compliant.
1788 			 * But with current mass storage drivers this does
1789 			 * not work (would produce endless host retries).
1790 			 * So we clear halt on CLEAR_FEATURE.
1791 			 *
1792 			DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1793 			tmp |= AMD_BIT(UDC_EPCTL_S);
1794 			writel(tmp, &ep->regs->ctl);*/
1795 
1796 			/* clear NAK by writing CNAK */
1797 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1798 			writel(tmp, &ep->regs->ctl);
1799 			ep->halted = 0;
1800 			UDC_QUEUE_CNAK(ep, ep->num);
1801 		}
1802 	}
1803 }
1804 
1805 /* Stall timer callback to poll S bit and set it again after */
udc_pollstall_timer_function(unsigned long v)1806 static void udc_pollstall_timer_function(unsigned long v)
1807 {
1808 	struct udc_ep *ep;
1809 	int halted = 0;
1810 
1811 	spin_lock_irq(&udc_stall_spinlock);
1812 	/*
1813 	 * only one IN and OUT endpoints are handled
1814 	 * IN poll stall
1815 	 */
1816 	ep = &udc->ep[UDC_EPIN_IX];
1817 	udc_handle_halt_state(ep);
1818 	if (ep->halted)
1819 		halted = 1;
1820 	/* OUT poll stall */
1821 	ep = &udc->ep[UDC_EPOUT_IX];
1822 	udc_handle_halt_state(ep);
1823 	if (ep->halted)
1824 		halted = 1;
1825 
1826 	/* setup timer again when still halted */
1827 	if (!stop_pollstall_timer && halted) {
1828 		udc_pollstall_timer.expires = jiffies +
1829 					HZ * UDC_POLLSTALL_TIMER_USECONDS
1830 					/ (1000 * 1000);
1831 		add_timer(&udc_pollstall_timer);
1832 	}
1833 	spin_unlock_irq(&udc_stall_spinlock);
1834 
1835 	if (stop_pollstall_timer)
1836 		complete(&on_pollstall_exit);
1837 }
1838 
1839 /* Inits endpoint 0 so that SETUP packets are processed */
activate_control_endpoints(struct udc * dev)1840 static void activate_control_endpoints(struct udc *dev)
1841 {
1842 	u32 tmp;
1843 
1844 	DBG(dev, "activate_control_endpoints\n");
1845 
1846 	/* flush fifo */
1847 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1848 	tmp |= AMD_BIT(UDC_EPCTL_F);
1849 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1850 
1851 	/* set ep0 directions */
1852 	dev->ep[UDC_EP0IN_IX].in = 1;
1853 	dev->ep[UDC_EP0OUT_IX].in = 0;
1854 
1855 	/* set buffer size (tx fifo entries) of EP0_IN */
1856 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1857 	if (dev->gadget.speed == USB_SPEED_FULL)
1858 		tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1859 					UDC_EPIN_BUFF_SIZE);
1860 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1861 		tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1862 					UDC_EPIN_BUFF_SIZE);
1863 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1864 
1865 	/* set max packet size of EP0_IN */
1866 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1867 	if (dev->gadget.speed == USB_SPEED_FULL)
1868 		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1869 					UDC_EP_MAX_PKT_SIZE);
1870 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1871 		tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1872 				UDC_EP_MAX_PKT_SIZE);
1873 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1874 
1875 	/* set max packet size of EP0_OUT */
1876 	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1877 	if (dev->gadget.speed == USB_SPEED_FULL)
1878 		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1879 					UDC_EP_MAX_PKT_SIZE);
1880 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1881 		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1882 					UDC_EP_MAX_PKT_SIZE);
1883 	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1884 
1885 	/* set max packet size of EP0 in UDC CSR */
1886 	tmp = readl(&dev->csr->ne[0]);
1887 	if (dev->gadget.speed == USB_SPEED_FULL)
1888 		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1889 					UDC_CSR_NE_MAX_PKT);
1890 	else if (dev->gadget.speed == USB_SPEED_HIGH)
1891 		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1892 					UDC_CSR_NE_MAX_PKT);
1893 	writel(tmp, &dev->csr->ne[0]);
1894 
1895 	if (use_dma) {
1896 		dev->ep[UDC_EP0OUT_IX].td->status |=
1897 			AMD_BIT(UDC_DMA_OUT_STS_L);
1898 		/* write dma desc address */
1899 		writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1900 			&dev->ep[UDC_EP0OUT_IX].regs->subptr);
1901 		writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1902 			&dev->ep[UDC_EP0OUT_IX].regs->desptr);
1903 		/* stop RDE timer */
1904 		if (timer_pending(&udc_timer)) {
1905 			set_rde = 0;
1906 			mod_timer(&udc_timer, jiffies - 1);
1907 		}
1908 		/* stop pollstall timer */
1909 		if (timer_pending(&udc_pollstall_timer)) {
1910 			mod_timer(&udc_pollstall_timer, jiffies - 1);
1911 		}
1912 		/* enable DMA */
1913 		tmp = readl(&dev->regs->ctl);
1914 		tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1915 				| AMD_BIT(UDC_DEVCTL_RDE)
1916 				| AMD_BIT(UDC_DEVCTL_TDE);
1917 		if (use_dma_bufferfill_mode) {
1918 			tmp |= AMD_BIT(UDC_DEVCTL_BF);
1919 		} else if (use_dma_ppb_du) {
1920 			tmp |= AMD_BIT(UDC_DEVCTL_DU);
1921 		}
1922 		writel(tmp, &dev->regs->ctl);
1923 	}
1924 
1925 	/* clear NAK by writing CNAK for EP0IN */
1926 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1927 	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1928 	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1929 	dev->ep[UDC_EP0IN_IX].naking = 0;
1930 	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1931 
1932 	/* clear NAK by writing CNAK for EP0OUT */
1933 	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1934 	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1935 	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1936 	dev->ep[UDC_EP0OUT_IX].naking = 0;
1937 	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1938 }
1939 
1940 /* Make endpoint 0 ready for control traffic */
setup_ep0(struct udc * dev)1941 static int setup_ep0(struct udc *dev)
1942 {
1943 	activate_control_endpoints(dev);
1944 	/* enable ep0 interrupts */
1945 	udc_enable_ep0_interrupts(dev);
1946 	/* enable device setup interrupts */
1947 	udc_enable_dev_setup_interrupts(dev);
1948 
1949 	return 0;
1950 }
1951 
1952 /* Called by gadget driver to register itself */
usb_gadget_register_driver(struct usb_gadget_driver * driver)1953 int usb_gadget_register_driver(struct usb_gadget_driver *driver)
1954 {
1955 	struct udc		*dev = udc;
1956 	int			retval;
1957 	u32 tmp;
1958 
1959 	if (!driver || !driver->bind || !driver->setup
1960 			|| driver->speed != USB_SPEED_HIGH)
1961 		return -EINVAL;
1962 	if (!dev)
1963 		return -ENODEV;
1964 	if (dev->driver)
1965 		return -EBUSY;
1966 
1967 	driver->driver.bus = NULL;
1968 	dev->driver = driver;
1969 	dev->gadget.dev.driver = &driver->driver;
1970 
1971 	retval = driver->bind(&dev->gadget);
1972 
1973 	/* Some gadget drivers use both ep0 directions.
1974 	 * NOTE: to gadget driver, ep0 is just one endpoint...
1975 	 */
1976 	dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1977 		dev->ep[UDC_EP0IN_IX].ep.driver_data;
1978 
1979 	if (retval) {
1980 		DBG(dev, "binding to %s returning %d\n",
1981 				driver->driver.name, retval);
1982 		dev->driver = NULL;
1983 		dev->gadget.dev.driver = NULL;
1984 		return retval;
1985 	}
1986 
1987 	/* get ready for ep0 traffic */
1988 	setup_ep0(dev);
1989 
1990 	/* clear SD */
1991 	tmp = readl(&dev->regs->ctl);
1992 	tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1993 	writel(tmp, &dev->regs->ctl);
1994 
1995 	usb_connect(dev);
1996 
1997 	return 0;
1998 }
1999 EXPORT_SYMBOL(usb_gadget_register_driver);
2000 
2001 /* shutdown requests and disconnect from gadget */
2002 static void
shutdown(struct udc * dev,struct usb_gadget_driver * driver)2003 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
2004 __releases(dev->lock)
2005 __acquires(dev->lock)
2006 {
2007 	int tmp;
2008 
2009 	/* empty queues and init hardware */
2010 	udc_basic_init(dev);
2011 	for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
2012 		empty_req_queue(&dev->ep[tmp]);
2013 	}
2014 
2015 	if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
2016 		spin_unlock(&dev->lock);
2017 		driver->disconnect(&dev->gadget);
2018 		spin_lock(&dev->lock);
2019 	}
2020 	/* init */
2021 	udc_setup_endpoints(dev);
2022 }
2023 
2024 /* Called by gadget driver to unregister itself */
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)2025 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2026 {
2027 	struct udc	*dev = udc;
2028 	unsigned long	flags;
2029 	u32 tmp;
2030 
2031 	if (!dev)
2032 		return -ENODEV;
2033 	if (!driver || driver != dev->driver || !driver->unbind)
2034 		return -EINVAL;
2035 
2036 	spin_lock_irqsave(&dev->lock, flags);
2037 	udc_mask_unused_interrupts(dev);
2038 	shutdown(dev, driver);
2039 	spin_unlock_irqrestore(&dev->lock, flags);
2040 
2041 	driver->unbind(&dev->gadget);
2042 	dev->gadget.dev.driver = NULL;
2043 	dev->driver = NULL;
2044 
2045 	/* set SD */
2046 	tmp = readl(&dev->regs->ctl);
2047 	tmp |= AMD_BIT(UDC_DEVCTL_SD);
2048 	writel(tmp, &dev->regs->ctl);
2049 
2050 
2051 	DBG(dev, "%s: unregistered\n", driver->driver.name);
2052 
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL(usb_gadget_unregister_driver);
2056 
2057 
2058 /* Clear pending NAK bits */
udc_process_cnak_queue(struct udc * dev)2059 static void udc_process_cnak_queue(struct udc *dev)
2060 {
2061 	u32 tmp;
2062 	u32 reg;
2063 
2064 	/* check epin's */
2065 	DBG(dev, "CNAK pending queue processing\n");
2066 	for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2067 		if (cnak_pending & (1 << tmp)) {
2068 			DBG(dev, "CNAK pending for ep%d\n", tmp);
2069 			/* clear NAK by writing CNAK */
2070 			reg = readl(&dev->ep[tmp].regs->ctl);
2071 			reg |= AMD_BIT(UDC_EPCTL_CNAK);
2072 			writel(reg, &dev->ep[tmp].regs->ctl);
2073 			dev->ep[tmp].naking = 0;
2074 			UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2075 		}
2076 	}
2077 	/* ...	and ep0out */
2078 	if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2079 		DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2080 		/* clear NAK by writing CNAK */
2081 		reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2082 		reg |= AMD_BIT(UDC_EPCTL_CNAK);
2083 		writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2084 		dev->ep[UDC_EP0OUT_IX].naking = 0;
2085 		UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2086 				dev->ep[UDC_EP0OUT_IX].num);
2087 	}
2088 }
2089 
2090 /* Enabling RX DMA after setup packet */
udc_ep0_set_rde(struct udc * dev)2091 static void udc_ep0_set_rde(struct udc *dev)
2092 {
2093 	if (use_dma) {
2094 		/*
2095 		 * only enable RXDMA when no data endpoint enabled
2096 		 * or data is queued
2097 		 */
2098 		if (!dev->data_ep_enabled || dev->data_ep_queued) {
2099 			udc_set_rde(dev);
2100 		} else {
2101 			/*
2102 			 * setup timer for enabling RDE (to not enable
2103 			 * RXFIFO DMA for data endpoints to early)
2104 			 */
2105 			if (set_rde != 0 && !timer_pending(&udc_timer)) {
2106 				udc_timer.expires =
2107 					jiffies + HZ/UDC_RDE_TIMER_DIV;
2108 				set_rde = 1;
2109 				if (!stop_timer) {
2110 					add_timer(&udc_timer);
2111 				}
2112 			}
2113 		}
2114 	}
2115 }
2116 
2117 
2118 /* Interrupt handler for data OUT traffic */
udc_data_out_isr(struct udc * dev,int ep_ix)2119 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2120 {
2121 	irqreturn_t		ret_val = IRQ_NONE;
2122 	u32			tmp;
2123 	struct udc_ep		*ep;
2124 	struct udc_request	*req;
2125 	unsigned int		count;
2126 	struct udc_data_dma	*td = NULL;
2127 	unsigned		dma_done;
2128 
2129 	VDBG(dev, "ep%d irq\n", ep_ix);
2130 	ep = &dev->ep[ep_ix];
2131 
2132 	tmp = readl(&ep->regs->sts);
2133 	if (use_dma) {
2134 		/* BNA event ? */
2135 		if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2136 			DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
2137 					ep->num, readl(&ep->regs->desptr));
2138 			/* clear BNA */
2139 			writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2140 			if (!ep->cancel_transfer)
2141 				ep->bna_occurred = 1;
2142 			else
2143 				ep->cancel_transfer = 0;
2144 			ret_val = IRQ_HANDLED;
2145 			goto finished;
2146 		}
2147 	}
2148 	/* HE event ? */
2149 	if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2150 		dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
2151 
2152 		/* clear HE */
2153 		writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2154 		ret_val = IRQ_HANDLED;
2155 		goto finished;
2156 	}
2157 
2158 	if (!list_empty(&ep->queue)) {
2159 
2160 		/* next request */
2161 		req = list_entry(ep->queue.next,
2162 			struct udc_request, queue);
2163 	} else {
2164 		req = NULL;
2165 		udc_rxfifo_pending = 1;
2166 	}
2167 	VDBG(dev, "req = %p\n", req);
2168 	/* fifo mode */
2169 	if (!use_dma) {
2170 
2171 		/* read fifo */
2172 		if (req && udc_rxfifo_read(ep, req)) {
2173 			ret_val = IRQ_HANDLED;
2174 
2175 			/* finish */
2176 			complete_req(ep, req, 0);
2177 			/* next request */
2178 			if (!list_empty(&ep->queue) && !ep->halted) {
2179 				req = list_entry(ep->queue.next,
2180 					struct udc_request, queue);
2181 			} else
2182 				req = NULL;
2183 		}
2184 
2185 	/* DMA */
2186 	} else if (!ep->cancel_transfer && req != NULL) {
2187 		ret_val = IRQ_HANDLED;
2188 
2189 		/* check for DMA done */
2190 		if (!use_dma_ppb) {
2191 			dma_done = AMD_GETBITS(req->td_data->status,
2192 						UDC_DMA_OUT_STS_BS);
2193 		/* packet per buffer mode - rx bytes */
2194 		} else {
2195 			/*
2196 			 * if BNA occurred then recover desc. from
2197 			 * BNA dummy desc.
2198 			 */
2199 			if (ep->bna_occurred) {
2200 				VDBG(dev, "Recover desc. from BNA dummy\n");
2201 				memcpy(req->td_data, ep->bna_dummy_req->td_data,
2202 						sizeof(struct udc_data_dma));
2203 				ep->bna_occurred = 0;
2204 				udc_init_bna_dummy(ep->req);
2205 			}
2206 			td = udc_get_last_dma_desc(req);
2207 			dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2208 		}
2209 		if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2210 			/* buffer fill mode - rx bytes */
2211 			if (!use_dma_ppb) {
2212 				/* received number bytes */
2213 				count = AMD_GETBITS(req->td_data->status,
2214 						UDC_DMA_OUT_STS_RXBYTES);
2215 				VDBG(dev, "rx bytes=%u\n", count);
2216 			/* packet per buffer mode - rx bytes */
2217 			} else {
2218 				VDBG(dev, "req->td_data=%p\n", req->td_data);
2219 				VDBG(dev, "last desc = %p\n", td);
2220 				/* received number bytes */
2221 				if (use_dma_ppb_du) {
2222 					/* every desc. counts bytes */
2223 					count = udc_get_ppbdu_rxbytes(req);
2224 				} else {
2225 					/* last desc. counts bytes */
2226 					count = AMD_GETBITS(td->status,
2227 						UDC_DMA_OUT_STS_RXBYTES);
2228 					if (!count && req->req.length
2229 						== UDC_DMA_MAXPACKET) {
2230 						/*
2231 						 * on 64k packets the RXBYTES
2232 						 * field is zero
2233 						 */
2234 						count = UDC_DMA_MAXPACKET;
2235 					}
2236 				}
2237 				VDBG(dev, "last desc rx bytes=%u\n", count);
2238 			}
2239 
2240 			tmp = req->req.length - req->req.actual;
2241 			if (count > tmp) {
2242 				if ((tmp % ep->ep.maxpacket) != 0) {
2243 					DBG(dev, "%s: rx %db, space=%db\n",
2244 						ep->ep.name, count, tmp);
2245 					req->req.status = -EOVERFLOW;
2246 				}
2247 				count = tmp;
2248 			}
2249 			req->req.actual += count;
2250 			req->dma_going = 0;
2251 			/* complete request */
2252 			complete_req(ep, req, 0);
2253 
2254 			/* next request */
2255 			if (!list_empty(&ep->queue) && !ep->halted) {
2256 				req = list_entry(ep->queue.next,
2257 					struct udc_request,
2258 					queue);
2259 				/*
2260 				 * DMA may be already started by udc_queue()
2261 				 * called by gadget drivers completion
2262 				 * routine. This happens when queue
2263 				 * holds one request only.
2264 				 */
2265 				if (req->dma_going == 0) {
2266 					/* next dma */
2267 					if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2268 						goto finished;
2269 					/* write desc pointer */
2270 					writel(req->td_phys,
2271 						&ep->regs->desptr);
2272 					req->dma_going = 1;
2273 					/* enable DMA */
2274 					udc_set_rde(dev);
2275 				}
2276 			} else {
2277 				/*
2278 				 * implant BNA dummy descriptor to allow
2279 				 * RXFIFO opening by RDE
2280 				 */
2281 				if (ep->bna_dummy_req) {
2282 					/* write desc pointer */
2283 					writel(ep->bna_dummy_req->td_phys,
2284 						&ep->regs->desptr);
2285 					ep->bna_occurred = 0;
2286 				}
2287 
2288 				/*
2289 				 * schedule timer for setting RDE if queue
2290 				 * remains empty to allow ep0 packets pass
2291 				 * through
2292 				 */
2293 				if (set_rde != 0
2294 						&& !timer_pending(&udc_timer)) {
2295 					udc_timer.expires =
2296 						jiffies
2297 						+ HZ*UDC_RDE_TIMER_SECONDS;
2298 					set_rde = 1;
2299 					if (!stop_timer) {
2300 						add_timer(&udc_timer);
2301 					}
2302 				}
2303 				if (ep->num != UDC_EP0OUT_IX)
2304 					dev->data_ep_queued = 0;
2305 			}
2306 
2307 		} else {
2308 			/*
2309 			* RX DMA must be reenabled for each desc in PPBDU mode
2310 			* and must be enabled for PPBNDU mode in case of BNA
2311 			*/
2312 			udc_set_rde(dev);
2313 		}
2314 
2315 	} else if (ep->cancel_transfer) {
2316 		ret_val = IRQ_HANDLED;
2317 		ep->cancel_transfer = 0;
2318 	}
2319 
2320 	/* check pending CNAKS */
2321 	if (cnak_pending) {
2322 		/* CNAk processing when rxfifo empty only */
2323 		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2324 			udc_process_cnak_queue(dev);
2325 		}
2326 	}
2327 
2328 	/* clear OUT bits in ep status */
2329 	writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2330 finished:
2331 	return ret_val;
2332 }
2333 
2334 /* Interrupt handler for data IN traffic */
udc_data_in_isr(struct udc * dev,int ep_ix)2335 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2336 {
2337 	irqreturn_t ret_val = IRQ_NONE;
2338 	u32 tmp;
2339 	u32 epsts;
2340 	struct udc_ep *ep;
2341 	struct udc_request *req;
2342 	struct udc_data_dma *td;
2343 	unsigned dma_done;
2344 	unsigned len;
2345 
2346 	ep = &dev->ep[ep_ix];
2347 
2348 	epsts = readl(&ep->regs->sts);
2349 	if (use_dma) {
2350 		/* BNA ? */
2351 		if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2352 			dev_err(&dev->pdev->dev,
2353 				"BNA ep%din occured - DESPTR = %08lx \n",
2354 				ep->num,
2355 				(unsigned long) readl(&ep->regs->desptr));
2356 
2357 			/* clear BNA */
2358 			writel(epsts, &ep->regs->sts);
2359 			ret_val = IRQ_HANDLED;
2360 			goto finished;
2361 		}
2362 	}
2363 	/* HE event ? */
2364 	if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2365 		dev_err(&dev->pdev->dev,
2366 			"HE ep%dn occured - DESPTR = %08lx \n",
2367 			ep->num, (unsigned long) readl(&ep->regs->desptr));
2368 
2369 		/* clear HE */
2370 		writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2371 		ret_val = IRQ_HANDLED;
2372 		goto finished;
2373 	}
2374 
2375 	/* DMA completion */
2376 	if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2377 		VDBG(dev, "TDC set- completion\n");
2378 		ret_val = IRQ_HANDLED;
2379 		if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2380 			req = list_entry(ep->queue.next,
2381 					struct udc_request, queue);
2382 			if (req) {
2383 				/*
2384 				 * length bytes transfered
2385 				 * check dma done of last desc. in PPBDU mode
2386 				 */
2387 				if (use_dma_ppb_du) {
2388 					td = udc_get_last_dma_desc(req);
2389 					if (td) {
2390 						dma_done =
2391 							AMD_GETBITS(td->status,
2392 							UDC_DMA_IN_STS_BS);
2393 						/* don't care DMA done */
2394 						req->req.actual =
2395 							req->req.length;
2396 					}
2397 				} else {
2398 					/* assume all bytes transferred */
2399 					req->req.actual = req->req.length;
2400 				}
2401 
2402 				if (req->req.actual == req->req.length) {
2403 					/* complete req */
2404 					complete_req(ep, req, 0);
2405 					req->dma_going = 0;
2406 					/* further request available ? */
2407 					if (list_empty(&ep->queue)) {
2408 						/* disable interrupt */
2409 						tmp = readl(
2410 							&dev->regs->ep_irqmsk);
2411 						tmp |= AMD_BIT(ep->num);
2412 						writel(tmp,
2413 							&dev->regs->ep_irqmsk);
2414 					}
2415 
2416 				}
2417 			}
2418 		}
2419 		ep->cancel_transfer = 0;
2420 
2421 	}
2422 	/*
2423 	 * status reg has IN bit set and TDC not set (if TDC was handled,
2424 	 * IN must not be handled (UDC defect) ?
2425 	 */
2426 	if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2427 			&& !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2428 		ret_val = IRQ_HANDLED;
2429 		if (!list_empty(&ep->queue)) {
2430 			/* next request */
2431 			req = list_entry(ep->queue.next,
2432 					struct udc_request, queue);
2433 			/* FIFO mode */
2434 			if (!use_dma) {
2435 				/* write fifo */
2436 				udc_txfifo_write(ep, &req->req);
2437 				len = req->req.length - req->req.actual;
2438 						if (len > ep->ep.maxpacket)
2439 							len = ep->ep.maxpacket;
2440 						req->req.actual += len;
2441 				if (req->req.actual == req->req.length
2442 					|| (len != ep->ep.maxpacket)) {
2443 					/* complete req */
2444 					complete_req(ep, req, 0);
2445 				}
2446 			/* DMA */
2447 			} else if (req && !req->dma_going) {
2448 				VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2449 					req, req->td_data);
2450 				if (req->td_data) {
2451 
2452 					req->dma_going = 1;
2453 
2454 					/*
2455 					 * unset L bit of first desc.
2456 					 * for chain
2457 					 */
2458 					if (use_dma_ppb && req->req.length >
2459 							ep->ep.maxpacket) {
2460 						req->td_data->status &=
2461 							AMD_CLEAR_BIT(
2462 							UDC_DMA_IN_STS_L);
2463 					}
2464 
2465 					/* write desc pointer */
2466 					writel(req->td_phys, &ep->regs->desptr);
2467 
2468 					/* set HOST READY */
2469 					req->td_data->status =
2470 						AMD_ADDBITS(
2471 						req->td_data->status,
2472 						UDC_DMA_IN_STS_BS_HOST_READY,
2473 						UDC_DMA_IN_STS_BS);
2474 
2475 					/* set poll demand bit */
2476 					tmp = readl(&ep->regs->ctl);
2477 					tmp |= AMD_BIT(UDC_EPCTL_P);
2478 					writel(tmp, &ep->regs->ctl);
2479 				}
2480 			}
2481 
2482 		}
2483 	}
2484 	/* clear status bits */
2485 	writel(epsts, &ep->regs->sts);
2486 
2487 finished:
2488 	return ret_val;
2489 
2490 }
2491 
2492 /* Interrupt handler for Control OUT traffic */
udc_control_out_isr(struct udc * dev)2493 static irqreturn_t udc_control_out_isr(struct udc *dev)
2494 __releases(dev->lock)
2495 __acquires(dev->lock)
2496 {
2497 	irqreturn_t ret_val = IRQ_NONE;
2498 	u32 tmp;
2499 	int setup_supported;
2500 	u32 count;
2501 	int set = 0;
2502 	struct udc_ep	*ep;
2503 	struct udc_ep	*ep_tmp;
2504 
2505 	ep = &dev->ep[UDC_EP0OUT_IX];
2506 
2507 	/* clear irq */
2508 	writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2509 
2510 	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2511 	/* check BNA and clear if set */
2512 	if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2513 		VDBG(dev, "ep0: BNA set\n");
2514 		writel(AMD_BIT(UDC_EPSTS_BNA),
2515 			&dev->ep[UDC_EP0OUT_IX].regs->sts);
2516 		ep->bna_occurred = 1;
2517 		ret_val = IRQ_HANDLED;
2518 		goto finished;
2519 	}
2520 
2521 	/* type of data: SETUP or DATA 0 bytes */
2522 	tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2523 	VDBG(dev, "data_typ = %x\n", tmp);
2524 
2525 	/* setup data */
2526 	if (tmp == UDC_EPSTS_OUT_SETUP) {
2527 		ret_val = IRQ_HANDLED;
2528 
2529 		ep->dev->stall_ep0in = 0;
2530 		dev->waiting_zlp_ack_ep0in = 0;
2531 
2532 		/* set NAK for EP0_IN */
2533 		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2534 		tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2535 		writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2536 		dev->ep[UDC_EP0IN_IX].naking = 1;
2537 		/* get setup data */
2538 		if (use_dma) {
2539 
2540 			/* clear OUT bits in ep status */
2541 			writel(UDC_EPSTS_OUT_CLEAR,
2542 				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2543 
2544 			setup_data.data[0] =
2545 				dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2546 			setup_data.data[1] =
2547 				dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2548 			/* set HOST READY */
2549 			dev->ep[UDC_EP0OUT_IX].td_stp->status =
2550 					UDC_DMA_STP_STS_BS_HOST_READY;
2551 		} else {
2552 			/* read fifo */
2553 			udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2554 		}
2555 
2556 		/* determine direction of control data */
2557 		if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2558 			dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2559 			/* enable RDE */
2560 			udc_ep0_set_rde(dev);
2561 			set = 0;
2562 		} else {
2563 			dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2564 			/*
2565 			 * implant BNA dummy descriptor to allow RXFIFO opening
2566 			 * by RDE
2567 			 */
2568 			if (ep->bna_dummy_req) {
2569 				/* write desc pointer */
2570 				writel(ep->bna_dummy_req->td_phys,
2571 					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2572 				ep->bna_occurred = 0;
2573 			}
2574 
2575 			set = 1;
2576 			dev->ep[UDC_EP0OUT_IX].naking = 1;
2577 			/*
2578 			 * setup timer for enabling RDE (to not enable
2579 			 * RXFIFO DMA for data to early)
2580 			 */
2581 			set_rde = 1;
2582 			if (!timer_pending(&udc_timer)) {
2583 				udc_timer.expires = jiffies +
2584 							HZ/UDC_RDE_TIMER_DIV;
2585 				if (!stop_timer) {
2586 					add_timer(&udc_timer);
2587 				}
2588 			}
2589 		}
2590 
2591 		/*
2592 		 * mass storage reset must be processed here because
2593 		 * next packet may be a CLEAR_FEATURE HALT which would not
2594 		 * clear the stall bit when no STALL handshake was received
2595 		 * before (autostall can cause this)
2596 		 */
2597 		if (setup_data.data[0] == UDC_MSCRES_DWORD0
2598 				&& setup_data.data[1] == UDC_MSCRES_DWORD1) {
2599 			DBG(dev, "MSC Reset\n");
2600 			/*
2601 			 * clear stall bits
2602 			 * only one IN and OUT endpoints are handled
2603 			 */
2604 			ep_tmp = &udc->ep[UDC_EPIN_IX];
2605 			udc_set_halt(&ep_tmp->ep, 0);
2606 			ep_tmp = &udc->ep[UDC_EPOUT_IX];
2607 			udc_set_halt(&ep_tmp->ep, 0);
2608 		}
2609 
2610 		/* call gadget with setup data received */
2611 		spin_unlock(&dev->lock);
2612 		setup_supported = dev->driver->setup(&dev->gadget,
2613 						&setup_data.request);
2614 		spin_lock(&dev->lock);
2615 
2616 		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2617 		/* ep0 in returns data (not zlp) on IN phase */
2618 		if (setup_supported >= 0 && setup_supported <
2619 				UDC_EP0IN_MAXPACKET) {
2620 			/* clear NAK by writing CNAK in EP0_IN */
2621 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2622 			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2623 			dev->ep[UDC_EP0IN_IX].naking = 0;
2624 			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2625 
2626 		/* if unsupported request then stall */
2627 		} else if (setup_supported < 0) {
2628 			tmp |= AMD_BIT(UDC_EPCTL_S);
2629 			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2630 		} else
2631 			dev->waiting_zlp_ack_ep0in = 1;
2632 
2633 
2634 		/* clear NAK by writing CNAK in EP0_OUT */
2635 		if (!set) {
2636 			tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2637 			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2638 			writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2639 			dev->ep[UDC_EP0OUT_IX].naking = 0;
2640 			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2641 		}
2642 
2643 		if (!use_dma) {
2644 			/* clear OUT bits in ep status */
2645 			writel(UDC_EPSTS_OUT_CLEAR,
2646 				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2647 		}
2648 
2649 	/* data packet 0 bytes */
2650 	} else if (tmp == UDC_EPSTS_OUT_DATA) {
2651 		/* clear OUT bits in ep status */
2652 		writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2653 
2654 		/* get setup data: only 0 packet */
2655 		if (use_dma) {
2656 			/* no req if 0 packet, just reactivate */
2657 			if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2658 				VDBG(dev, "ZLP\n");
2659 
2660 				/* set HOST READY */
2661 				dev->ep[UDC_EP0OUT_IX].td->status =
2662 					AMD_ADDBITS(
2663 					dev->ep[UDC_EP0OUT_IX].td->status,
2664 					UDC_DMA_OUT_STS_BS_HOST_READY,
2665 					UDC_DMA_OUT_STS_BS);
2666 				/* enable RDE */
2667 				udc_ep0_set_rde(dev);
2668 				ret_val = IRQ_HANDLED;
2669 
2670 			} else {
2671 				/* control write */
2672 				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2673 				/* re-program desc. pointer for possible ZLPs */
2674 				writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2675 					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2676 				/* enable RDE */
2677 				udc_ep0_set_rde(dev);
2678 			}
2679 		} else {
2680 
2681 			/* received number bytes */
2682 			count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2683 			count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2684 			/* out data for fifo mode not working */
2685 			count = 0;
2686 
2687 			/* 0 packet or real data ? */
2688 			if (count != 0) {
2689 				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2690 			} else {
2691 				/* dummy read confirm */
2692 				readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2693 				ret_val = IRQ_HANDLED;
2694 			}
2695 		}
2696 	}
2697 
2698 	/* check pending CNAKS */
2699 	if (cnak_pending) {
2700 		/* CNAk processing when rxfifo empty only */
2701 		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2702 			udc_process_cnak_queue(dev);
2703 		}
2704 	}
2705 
2706 finished:
2707 	return ret_val;
2708 }
2709 
2710 /* Interrupt handler for Control IN traffic */
udc_control_in_isr(struct udc * dev)2711 static irqreturn_t udc_control_in_isr(struct udc *dev)
2712 {
2713 	irqreturn_t ret_val = IRQ_NONE;
2714 	u32 tmp;
2715 	struct udc_ep *ep;
2716 	struct udc_request *req;
2717 	unsigned len;
2718 
2719 	ep = &dev->ep[UDC_EP0IN_IX];
2720 
2721 	/* clear irq */
2722 	writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2723 
2724 	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2725 	/* DMA completion */
2726 	if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2727 		VDBG(dev, "isr: TDC clear \n");
2728 		ret_val = IRQ_HANDLED;
2729 
2730 		/* clear TDC bit */
2731 		writel(AMD_BIT(UDC_EPSTS_TDC),
2732 				&dev->ep[UDC_EP0IN_IX].regs->sts);
2733 
2734 	/* status reg has IN bit set ? */
2735 	} else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2736 		ret_val = IRQ_HANDLED;
2737 
2738 		if (ep->dma) {
2739 			/* clear IN bit */
2740 			writel(AMD_BIT(UDC_EPSTS_IN),
2741 				&dev->ep[UDC_EP0IN_IX].regs->sts);
2742 		}
2743 		if (dev->stall_ep0in) {
2744 			DBG(dev, "stall ep0in\n");
2745 			/* halt ep0in */
2746 			tmp = readl(&ep->regs->ctl);
2747 			tmp |= AMD_BIT(UDC_EPCTL_S);
2748 			writel(tmp, &ep->regs->ctl);
2749 		} else {
2750 			if (!list_empty(&ep->queue)) {
2751 				/* next request */
2752 				req = list_entry(ep->queue.next,
2753 						struct udc_request, queue);
2754 
2755 				if (ep->dma) {
2756 					/* write desc pointer */
2757 					writel(req->td_phys, &ep->regs->desptr);
2758 					/* set HOST READY */
2759 					req->td_data->status =
2760 						AMD_ADDBITS(
2761 						req->td_data->status,
2762 						UDC_DMA_STP_STS_BS_HOST_READY,
2763 						UDC_DMA_STP_STS_BS);
2764 
2765 					/* set poll demand bit */
2766 					tmp =
2767 					readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2768 					tmp |= AMD_BIT(UDC_EPCTL_P);
2769 					writel(tmp,
2770 					&dev->ep[UDC_EP0IN_IX].regs->ctl);
2771 
2772 					/* all bytes will be transferred */
2773 					req->req.actual = req->req.length;
2774 
2775 					/* complete req */
2776 					complete_req(ep, req, 0);
2777 
2778 				} else {
2779 					/* write fifo */
2780 					udc_txfifo_write(ep, &req->req);
2781 
2782 					/* lengh bytes transfered */
2783 					len = req->req.length - req->req.actual;
2784 					if (len > ep->ep.maxpacket)
2785 						len = ep->ep.maxpacket;
2786 
2787 					req->req.actual += len;
2788 					if (req->req.actual == req->req.length
2789 						|| (len != ep->ep.maxpacket)) {
2790 						/* complete req */
2791 						complete_req(ep, req, 0);
2792 					}
2793 				}
2794 
2795 			}
2796 		}
2797 		ep->halted = 0;
2798 		dev->stall_ep0in = 0;
2799 		if (!ep->dma) {
2800 			/* clear IN bit */
2801 			writel(AMD_BIT(UDC_EPSTS_IN),
2802 				&dev->ep[UDC_EP0IN_IX].regs->sts);
2803 		}
2804 	}
2805 
2806 	return ret_val;
2807 }
2808 
2809 
2810 /* Interrupt handler for global device events */
udc_dev_isr(struct udc * dev,u32 dev_irq)2811 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2812 __releases(dev->lock)
2813 __acquires(dev->lock)
2814 {
2815 	irqreturn_t ret_val = IRQ_NONE;
2816 	u32 tmp;
2817 	u32 cfg;
2818 	struct udc_ep *ep;
2819 	u16 i;
2820 	u8 udc_csr_epix;
2821 
2822 	/* SET_CONFIG irq ? */
2823 	if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2824 		ret_val = IRQ_HANDLED;
2825 
2826 		/* read config value */
2827 		tmp = readl(&dev->regs->sts);
2828 		cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2829 		DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2830 		dev->cur_config = cfg;
2831 		dev->set_cfg_not_acked = 1;
2832 
2833 		/* make usb request for gadget driver */
2834 		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2835 		setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2836 		setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2837 
2838 		/* programm the NE registers */
2839 		for (i = 0; i < UDC_EP_NUM; i++) {
2840 			ep = &dev->ep[i];
2841 			if (ep->in) {
2842 
2843 				/* ep ix in UDC CSR register space */
2844 				udc_csr_epix = ep->num;
2845 
2846 
2847 			/* OUT ep */
2848 			} else {
2849 				/* ep ix in UDC CSR register space */
2850 				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2851 			}
2852 
2853 			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2854 			/* ep cfg */
2855 			tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2856 						UDC_CSR_NE_CFG);
2857 			/* write reg */
2858 			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2859 
2860 			/* clear stall bits */
2861 			ep->halted = 0;
2862 			tmp = readl(&ep->regs->ctl);
2863 			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2864 			writel(tmp, &ep->regs->ctl);
2865 		}
2866 		/* call gadget zero with setup data received */
2867 		spin_unlock(&dev->lock);
2868 		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2869 		spin_lock(&dev->lock);
2870 
2871 	} /* SET_INTERFACE ? */
2872 	if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2873 		ret_val = IRQ_HANDLED;
2874 
2875 		dev->set_cfg_not_acked = 1;
2876 		/* read interface and alt setting values */
2877 		tmp = readl(&dev->regs->sts);
2878 		dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2879 		dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2880 
2881 		/* make usb request for gadget driver */
2882 		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2883 		setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2884 		setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2885 		setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2886 		setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2887 
2888 		DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2889 				dev->cur_alt, dev->cur_intf);
2890 
2891 		/* programm the NE registers */
2892 		for (i = 0; i < UDC_EP_NUM; i++) {
2893 			ep = &dev->ep[i];
2894 			if (ep->in) {
2895 
2896 				/* ep ix in UDC CSR register space */
2897 				udc_csr_epix = ep->num;
2898 
2899 
2900 			/* OUT ep */
2901 			} else {
2902 				/* ep ix in UDC CSR register space */
2903 				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2904 			}
2905 
2906 			/* UDC CSR reg */
2907 			/* set ep values */
2908 			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2909 			/* ep interface */
2910 			tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2911 						UDC_CSR_NE_INTF);
2912 			/* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2913 			/* ep alt */
2914 			tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2915 						UDC_CSR_NE_ALT);
2916 			/* write reg */
2917 			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2918 
2919 			/* clear stall bits */
2920 			ep->halted = 0;
2921 			tmp = readl(&ep->regs->ctl);
2922 			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2923 			writel(tmp, &ep->regs->ctl);
2924 		}
2925 
2926 		/* call gadget zero with setup data received */
2927 		spin_unlock(&dev->lock);
2928 		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2929 		spin_lock(&dev->lock);
2930 
2931 	} /* USB reset */
2932 	if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2933 		DBG(dev, "USB Reset interrupt\n");
2934 		ret_val = IRQ_HANDLED;
2935 
2936 		/* allow soft reset when suspend occurs */
2937 		soft_reset_occured = 0;
2938 
2939 		dev->waiting_zlp_ack_ep0in = 0;
2940 		dev->set_cfg_not_acked = 0;
2941 
2942 		/* mask not needed interrupts */
2943 		udc_mask_unused_interrupts(dev);
2944 
2945 		/* call gadget to resume and reset configs etc. */
2946 		spin_unlock(&dev->lock);
2947 		if (dev->sys_suspended && dev->driver->resume) {
2948 			dev->driver->resume(&dev->gadget);
2949 			dev->sys_suspended = 0;
2950 		}
2951 		dev->driver->disconnect(&dev->gadget);
2952 		spin_lock(&dev->lock);
2953 
2954 		/* disable ep0 to empty req queue */
2955 		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2956 		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2957 
2958 		/* soft reset when rxfifo not empty */
2959 		tmp = readl(&dev->regs->sts);
2960 		if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2961 				&& !soft_reset_after_usbreset_occured) {
2962 			udc_soft_reset(dev);
2963 			soft_reset_after_usbreset_occured++;
2964 		}
2965 
2966 		/*
2967 		 * DMA reset to kill potential old DMA hw hang,
2968 		 * POLL bit is already reset by ep_init() through
2969 		 * disconnect()
2970 		 */
2971 		DBG(dev, "DMA machine reset\n");
2972 		tmp = readl(&dev->regs->cfg);
2973 		writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2974 		writel(tmp, &dev->regs->cfg);
2975 
2976 		/* put into initial config */
2977 		udc_basic_init(dev);
2978 
2979 		/* enable device setup interrupts */
2980 		udc_enable_dev_setup_interrupts(dev);
2981 
2982 		/* enable suspend interrupt */
2983 		tmp = readl(&dev->regs->irqmsk);
2984 		tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2985 		writel(tmp, &dev->regs->irqmsk);
2986 
2987 	} /* USB suspend */
2988 	if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2989 		DBG(dev, "USB Suspend interrupt\n");
2990 		ret_val = IRQ_HANDLED;
2991 		if (dev->driver->suspend) {
2992 			spin_unlock(&dev->lock);
2993 			dev->sys_suspended = 1;
2994 			dev->driver->suspend(&dev->gadget);
2995 			spin_lock(&dev->lock);
2996 		}
2997 	} /* new speed ? */
2998 	if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2999 		DBG(dev, "ENUM interrupt\n");
3000 		ret_val = IRQ_HANDLED;
3001 		soft_reset_after_usbreset_occured = 0;
3002 
3003 		/* disable ep0 to empty req queue */
3004 		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
3005 		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
3006 
3007 		/* link up all endpoints */
3008 		udc_setup_endpoints(dev);
3009 		if (dev->gadget.speed == USB_SPEED_HIGH) {
3010 			dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3011 				"high");
3012 		} else if (dev->gadget.speed == USB_SPEED_FULL) {
3013 			dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
3014 				"full");
3015 		}
3016 
3017 		/* init ep 0 */
3018 		activate_control_endpoints(dev);
3019 
3020 		/* enable ep0 interrupts */
3021 		udc_enable_ep0_interrupts(dev);
3022 	}
3023 	/* session valid change interrupt */
3024 	if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
3025 		DBG(dev, "USB SVC interrupt\n");
3026 		ret_val = IRQ_HANDLED;
3027 
3028 		/* check that session is not valid to detect disconnect */
3029 		tmp = readl(&dev->regs->sts);
3030 		if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
3031 			/* disable suspend interrupt */
3032 			tmp = readl(&dev->regs->irqmsk);
3033 			tmp |= AMD_BIT(UDC_DEVINT_US);
3034 			writel(tmp, &dev->regs->irqmsk);
3035 			DBG(dev, "USB Disconnect (session valid low)\n");
3036 			/* cleanup on disconnect */
3037 			usb_disconnect(udc);
3038 		}
3039 
3040 	}
3041 
3042 	return ret_val;
3043 }
3044 
3045 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
udc_irq(int irq,void * pdev)3046 static irqreturn_t udc_irq(int irq, void *pdev)
3047 {
3048 	struct udc *dev = pdev;
3049 	u32 reg;
3050 	u16 i;
3051 	u32 ep_irq;
3052 	irqreturn_t ret_val = IRQ_NONE;
3053 
3054 	spin_lock(&dev->lock);
3055 
3056 	/* check for ep irq */
3057 	reg = readl(&dev->regs->ep_irqsts);
3058 	if (reg) {
3059 		if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3060 			ret_val |= udc_control_out_isr(dev);
3061 		if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3062 			ret_val |= udc_control_in_isr(dev);
3063 
3064 		/*
3065 		 * data endpoint
3066 		 * iterate ep's
3067 		 */
3068 		for (i = 1; i < UDC_EP_NUM; i++) {
3069 			ep_irq = 1 << i;
3070 			if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3071 				continue;
3072 
3073 			/* clear irq status */
3074 			writel(ep_irq, &dev->regs->ep_irqsts);
3075 
3076 			/* irq for out ep ? */
3077 			if (i > UDC_EPIN_NUM)
3078 				ret_val |= udc_data_out_isr(dev, i);
3079 			else
3080 				ret_val |= udc_data_in_isr(dev, i);
3081 		}
3082 
3083 	}
3084 
3085 
3086 	/* check for dev irq */
3087 	reg = readl(&dev->regs->irqsts);
3088 	if (reg) {
3089 		/* clear irq */
3090 		writel(reg, &dev->regs->irqsts);
3091 		ret_val |= udc_dev_isr(dev, reg);
3092 	}
3093 
3094 
3095 	spin_unlock(&dev->lock);
3096 	return ret_val;
3097 }
3098 
3099 /* Tears down device */
gadget_release(struct device * pdev)3100 static void gadget_release(struct device *pdev)
3101 {
3102 	struct amd5536udc *dev = dev_get_drvdata(pdev);
3103 	kfree(dev);
3104 }
3105 
3106 /* Cleanup on device remove */
udc_remove(struct udc * dev)3107 static void udc_remove(struct udc *dev)
3108 {
3109 	/* remove timer */
3110 	stop_timer++;
3111 	if (timer_pending(&udc_timer))
3112 		wait_for_completion(&on_exit);
3113 	if (udc_timer.data)
3114 		del_timer_sync(&udc_timer);
3115 	/* remove pollstall timer */
3116 	stop_pollstall_timer++;
3117 	if (timer_pending(&udc_pollstall_timer))
3118 		wait_for_completion(&on_pollstall_exit);
3119 	if (udc_pollstall_timer.data)
3120 		del_timer_sync(&udc_pollstall_timer);
3121 	udc = NULL;
3122 }
3123 
3124 /* Reset all pci context */
udc_pci_remove(struct pci_dev * pdev)3125 static void udc_pci_remove(struct pci_dev *pdev)
3126 {
3127 	struct udc		*dev;
3128 
3129 	dev = pci_get_drvdata(pdev);
3130 
3131 	/* gadget driver must not be registered */
3132 	BUG_ON(dev->driver != NULL);
3133 
3134 	/* dma pool cleanup */
3135 	if (dev->data_requests)
3136 		pci_pool_destroy(dev->data_requests);
3137 
3138 	if (dev->stp_requests) {
3139 		/* cleanup DMA desc's for ep0in */
3140 		pci_pool_free(dev->stp_requests,
3141 			dev->ep[UDC_EP0OUT_IX].td_stp,
3142 			dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3143 		pci_pool_free(dev->stp_requests,
3144 			dev->ep[UDC_EP0OUT_IX].td,
3145 			dev->ep[UDC_EP0OUT_IX].td_phys);
3146 
3147 		pci_pool_destroy(dev->stp_requests);
3148 	}
3149 
3150 	/* reset controller */
3151 	writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3152 	if (dev->irq_registered)
3153 		free_irq(pdev->irq, dev);
3154 	if (dev->regs)
3155 		iounmap(dev->regs);
3156 	if (dev->mem_region)
3157 		release_mem_region(pci_resource_start(pdev, 0),
3158 				pci_resource_len(pdev, 0));
3159 	if (dev->active)
3160 		pci_disable_device(pdev);
3161 
3162 	device_unregister(&dev->gadget.dev);
3163 	pci_set_drvdata(pdev, NULL);
3164 
3165 	udc_remove(dev);
3166 }
3167 
3168 /* create dma pools on init */
init_dma_pools(struct udc * dev)3169 static int init_dma_pools(struct udc *dev)
3170 {
3171 	struct udc_stp_dma	*td_stp;
3172 	struct udc_data_dma	*td_data;
3173 	int retval;
3174 
3175 	/* consistent DMA mode setting ? */
3176 	if (use_dma_ppb) {
3177 		use_dma_bufferfill_mode = 0;
3178 	} else {
3179 		use_dma_ppb_du = 0;
3180 		use_dma_bufferfill_mode = 1;
3181 	}
3182 
3183 	/* DMA setup */
3184 	dev->data_requests = dma_pool_create("data_requests", NULL,
3185 		sizeof(struct udc_data_dma), 0, 0);
3186 	if (!dev->data_requests) {
3187 		DBG(dev, "can't get request data pool\n");
3188 		retval = -ENOMEM;
3189 		goto finished;
3190 	}
3191 
3192 	/* EP0 in dma regs = dev control regs */
3193 	dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3194 
3195 	/* dma desc for setup data */
3196 	dev->stp_requests = dma_pool_create("setup requests", NULL,
3197 		sizeof(struct udc_stp_dma), 0, 0);
3198 	if (!dev->stp_requests) {
3199 		DBG(dev, "can't get stp request pool\n");
3200 		retval = -ENOMEM;
3201 		goto finished;
3202 	}
3203 	/* setup */
3204 	td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3205 				&dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3206 	if (td_stp == NULL) {
3207 		retval = -ENOMEM;
3208 		goto finished;
3209 	}
3210 	dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3211 
3212 	/* data: 0 packets !? */
3213 	td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3214 				&dev->ep[UDC_EP0OUT_IX].td_phys);
3215 	if (td_data == NULL) {
3216 		retval = -ENOMEM;
3217 		goto finished;
3218 	}
3219 	dev->ep[UDC_EP0OUT_IX].td = td_data;
3220 	return 0;
3221 
3222 finished:
3223 	return retval;
3224 }
3225 
3226 /* Called by pci bus driver to init pci context */
udc_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)3227 static int udc_pci_probe(
3228 	struct pci_dev *pdev,
3229 	const struct pci_device_id *id
3230 )
3231 {
3232 	struct udc		*dev;
3233 	unsigned long		resource;
3234 	unsigned long		len;
3235 	int			retval = 0;
3236 
3237 	/* one udc only */
3238 	if (udc) {
3239 		dev_dbg(&pdev->dev, "already probed\n");
3240 		return -EBUSY;
3241 	}
3242 
3243 	/* init */
3244 	dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3245 	if (!dev) {
3246 		retval = -ENOMEM;
3247 		goto finished;
3248 	}
3249 
3250 	/* pci setup */
3251 	if (pci_enable_device(pdev) < 0) {
3252 		kfree(dev);
3253 		dev = NULL;
3254 		retval = -ENODEV;
3255 		goto finished;
3256 	}
3257 	dev->active = 1;
3258 
3259 	/* PCI resource allocation */
3260 	resource = pci_resource_start(pdev, 0);
3261 	len = pci_resource_len(pdev, 0);
3262 
3263 	if (!request_mem_region(resource, len, name)) {
3264 		dev_dbg(&pdev->dev, "pci device used already\n");
3265 		kfree(dev);
3266 		dev = NULL;
3267 		retval = -EBUSY;
3268 		goto finished;
3269 	}
3270 	dev->mem_region = 1;
3271 
3272 	dev->virt_addr = ioremap_nocache(resource, len);
3273 	if (dev->virt_addr == NULL) {
3274 		dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3275 		kfree(dev);
3276 		dev = NULL;
3277 		retval = -EFAULT;
3278 		goto finished;
3279 	}
3280 
3281 	if (!pdev->irq) {
3282 		dev_err(&dev->pdev->dev, "irq not set\n");
3283 		kfree(dev);
3284 		dev = NULL;
3285 		retval = -ENODEV;
3286 		goto finished;
3287 	}
3288 
3289 	if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3290 		dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3291 		kfree(dev);
3292 		dev = NULL;
3293 		retval = -EBUSY;
3294 		goto finished;
3295 	}
3296 	dev->irq_registered = 1;
3297 
3298 	pci_set_drvdata(pdev, dev);
3299 
3300 	/* chip revision for Hs AMD5536 */
3301 	dev->chiprev = pdev->revision;
3302 
3303 	pci_set_master(pdev);
3304 	pci_try_set_mwi(pdev);
3305 
3306 	/* init dma pools */
3307 	if (use_dma) {
3308 		retval = init_dma_pools(dev);
3309 		if (retval != 0)
3310 			goto finished;
3311 	}
3312 
3313 	dev->phys_addr = resource;
3314 	dev->irq = pdev->irq;
3315 	dev->pdev = pdev;
3316 	dev->gadget.dev.parent = &pdev->dev;
3317 	dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3318 
3319 	/* general probing */
3320 	if (udc_probe(dev) == 0)
3321 		return 0;
3322 
3323 finished:
3324 	if (dev)
3325 		udc_pci_remove(pdev);
3326 	return retval;
3327 }
3328 
3329 /* general probe */
udc_probe(struct udc * dev)3330 static int udc_probe(struct udc *dev)
3331 {
3332 	char		tmp[128];
3333 	u32		reg;
3334 	int		retval;
3335 
3336 	/* mark timer as not initialized */
3337 	udc_timer.data = 0;
3338 	udc_pollstall_timer.data = 0;
3339 
3340 	/* device struct setup */
3341 	spin_lock_init(&dev->lock);
3342 	dev->gadget.ops = &udc_ops;
3343 
3344 	dev_set_name(&dev->gadget.dev, "gadget");
3345 	dev->gadget.dev.release = gadget_release;
3346 	dev->gadget.name = name;
3347 	dev->gadget.name = name;
3348 	dev->gadget.is_dualspeed = 1;
3349 
3350 	/* udc csr registers base */
3351 	dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3352 	/* dev registers base */
3353 	dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3354 	/* ep registers base */
3355 	dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3356 	/* fifo's base */
3357 	dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3358 	dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3359 
3360 	/* init registers, interrupts, ... */
3361 	startup_registers(dev);
3362 
3363 	dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3364 
3365 	snprintf(tmp, sizeof tmp, "%d", dev->irq);
3366 	dev_info(&dev->pdev->dev,
3367 		"irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3368 		tmp, dev->phys_addr, dev->chiprev,
3369 		(dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3370 	strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3371 	if (dev->chiprev == UDC_HSA0_REV) {
3372 		dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3373 		retval = -ENODEV;
3374 		goto finished;
3375 	}
3376 	dev_info(&dev->pdev->dev,
3377 		"driver version: %s(for Geode5536 B1)\n", tmp);
3378 	udc = dev;
3379 
3380 	retval = device_register(&dev->gadget.dev);
3381 	if (retval)
3382 		goto finished;
3383 
3384 	/* timer init */
3385 	init_timer(&udc_timer);
3386 	udc_timer.function = udc_timer_function;
3387 	udc_timer.data = 1;
3388 	/* timer pollstall init */
3389 	init_timer(&udc_pollstall_timer);
3390 	udc_pollstall_timer.function = udc_pollstall_timer_function;
3391 	udc_pollstall_timer.data = 1;
3392 
3393 	/* set SD */
3394 	reg = readl(&dev->regs->ctl);
3395 	reg |= AMD_BIT(UDC_DEVCTL_SD);
3396 	writel(reg, &dev->regs->ctl);
3397 
3398 	/* print dev register info */
3399 	print_regs(dev);
3400 
3401 	return 0;
3402 
3403 finished:
3404 	return retval;
3405 }
3406 
3407 /* Initiates a remote wakeup */
udc_remote_wakeup(struct udc * dev)3408 static int udc_remote_wakeup(struct udc *dev)
3409 {
3410 	unsigned long flags;
3411 	u32 tmp;
3412 
3413 	DBG(dev, "UDC initiates remote wakeup\n");
3414 
3415 	spin_lock_irqsave(&dev->lock, flags);
3416 
3417 	tmp = readl(&dev->regs->ctl);
3418 	tmp |= AMD_BIT(UDC_DEVCTL_RES);
3419 	writel(tmp, &dev->regs->ctl);
3420 	tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3421 	writel(tmp, &dev->regs->ctl);
3422 
3423 	spin_unlock_irqrestore(&dev->lock, flags);
3424 	return 0;
3425 }
3426 
3427 /* PCI device parameters */
3428 static const struct pci_device_id pci_id[] = {
3429 	{
3430 		PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3431 		.class =	(PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3432 		.class_mask =	0xffffffff,
3433 	},
3434 	{},
3435 };
3436 MODULE_DEVICE_TABLE(pci, pci_id);
3437 
3438 /* PCI functions */
3439 static struct pci_driver udc_pci_driver = {
3440 	.name =		(char *) name,
3441 	.id_table =	pci_id,
3442 	.probe =	udc_pci_probe,
3443 	.remove =	udc_pci_remove,
3444 };
3445 
3446 /* Inits driver */
init(void)3447 static int __init init(void)
3448 {
3449 	return pci_register_driver(&udc_pci_driver);
3450 }
3451 module_init(init);
3452 
3453 /* Cleans driver */
cleanup(void)3454 static void __exit cleanup(void)
3455 {
3456 	pci_unregister_driver(&udc_pci_driver);
3457 }
3458 module_exit(cleanup);
3459 
3460 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3461 MODULE_AUTHOR("Thomas Dahlmann");
3462 MODULE_LICENSE("GPL");
3463 
3464