1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/smp_lock.h>
19
20 #include <asm/uaccess.h>
21
22 #include "usb_mon.h"
23
24 /*
25 * Defined by USB 2.0 clause 9.3, table 9.2.
26 */
27 #define SETUP_LEN 8
28
29 /* ioctl macros */
30 #define MON_IOC_MAGIC 0x92
31
32 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
33 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
34 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
35 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
36 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
37 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
38 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
39 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40
41 #ifdef CONFIG_COMPAT
42 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
43 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
44 #endif
45
46 /*
47 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
48 * But it's all right. Just use a simple way to make sure the chunk is never
49 * smaller than a page.
50 *
51 * N.B. An application does not know our chunk size.
52 *
53 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
54 * page-sized chunks for the time being.
55 */
56 #define CHUNK_SIZE PAGE_SIZE
57 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
58
59 /*
60 * The magic limit was calculated so that it allows the monitoring
61 * application to pick data once in two ticks. This way, another application,
62 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
63 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
64 * enormous overhead built into the bus protocol, so we need about 1000 KB.
65 *
66 * This is still too much for most cases, where we just snoop a few
67 * descriptor fetches for enumeration. So, the default is a "reasonable"
68 * amount for systems with HZ=250 and incomplete bus saturation.
69 *
70 * XXX What about multi-megabyte URBs which take minutes to transfer?
71 */
72 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
73 #define BUFF_DFL CHUNK_ALIGN(300*1024)
74 #define BUFF_MIN CHUNK_ALIGN(8*1024)
75
76 /*
77 * The per-event API header (2 per URB).
78 *
79 * This structure is seen in userland as defined by the documentation.
80 */
81 struct mon_bin_hdr {
82 u64 id; /* URB ID - from submission to callback */
83 unsigned char type; /* Same as in text API; extensible. */
84 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
85 unsigned char epnum; /* Endpoint number and transfer direction */
86 unsigned char devnum; /* Device address */
87 unsigned short busnum; /* Bus number */
88 char flag_setup;
89 char flag_data;
90 s64 ts_sec; /* gettimeofday */
91 s32 ts_usec; /* gettimeofday */
92 int status;
93 unsigned int len_urb; /* Length of data (submitted or actual) */
94 unsigned int len_cap; /* Delivered length */
95 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
96 };
97
98 /* per file statistic */
99 struct mon_bin_stats {
100 u32 queued;
101 u32 dropped;
102 };
103
104 struct mon_bin_get {
105 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
106 void __user *data;
107 size_t alloc; /* Length of data (can be zero) */
108 };
109
110 struct mon_bin_mfetch {
111 u32 __user *offvec; /* Vector of events fetched */
112 u32 nfetch; /* Number of events to fetch (out: fetched) */
113 u32 nflush; /* Number of events to flush */
114 };
115
116 #ifdef CONFIG_COMPAT
117 struct mon_bin_get32 {
118 u32 hdr32;
119 u32 data32;
120 u32 alloc32;
121 };
122
123 struct mon_bin_mfetch32 {
124 u32 offvec32;
125 u32 nfetch32;
126 u32 nflush32;
127 };
128 #endif
129
130 /* Having these two values same prevents wrapping of the mon_bin_hdr */
131 #define PKT_ALIGN 64
132 #define PKT_SIZE 64
133
134 /* max number of USB bus supported */
135 #define MON_BIN_MAX_MINOR 128
136
137 /*
138 * The buffer: map of used pages.
139 */
140 struct mon_pgmap {
141 struct page *pg;
142 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
143 };
144
145 /*
146 * This gets associated with an open file struct.
147 */
148 struct mon_reader_bin {
149 /* The buffer: one per open. */
150 spinlock_t b_lock; /* Protect b_cnt, b_in */
151 unsigned int b_size; /* Current size of the buffer - bytes */
152 unsigned int b_cnt; /* Bytes used */
153 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
154 unsigned int b_read; /* Amount of read data in curr. pkt. */
155 struct mon_pgmap *b_vec; /* The map array */
156 wait_queue_head_t b_wait; /* Wait for data here */
157
158 struct mutex fetch_lock; /* Protect b_read, b_out */
159 int mmap_active;
160
161 /* A list of these is needed for "bus 0". Some time later. */
162 struct mon_reader r;
163
164 /* Stats */
165 unsigned int cnt_lost;
166 };
167
MON_OFF2HDR(const struct mon_reader_bin * rp,unsigned int offset)168 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
169 unsigned int offset)
170 {
171 return (struct mon_bin_hdr *)
172 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
173 }
174
175 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
176
177 static unsigned char xfer_to_pipe[4] = {
178 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
179 };
180
181 static struct class *mon_bin_class;
182 static dev_t mon_bin_dev0;
183 static struct cdev mon_bin_cdev;
184
185 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
186 unsigned int offset, unsigned int size);
187 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
188 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
189 static void mon_free_buff(struct mon_pgmap *map, int npages);
190
191 /*
192 * This is a "chunked memcpy". It does not manipulate any counters.
193 * But it returns the new offset for repeated application.
194 */
mon_copy_to_buff(const struct mon_reader_bin * this,unsigned int off,const unsigned char * from,unsigned int length)195 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
196 unsigned int off, const unsigned char *from, unsigned int length)
197 {
198 unsigned int step_len;
199 unsigned char *buf;
200 unsigned int in_page;
201
202 while (length) {
203 /*
204 * Determine step_len.
205 */
206 step_len = length;
207 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
208 if (in_page < step_len)
209 step_len = in_page;
210
211 /*
212 * Copy data and advance pointers.
213 */
214 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
215 memcpy(buf, from, step_len);
216 if ((off += step_len) >= this->b_size) off = 0;
217 from += step_len;
218 length -= step_len;
219 }
220 return off;
221 }
222
223 /*
224 * This is a little worse than the above because it's "chunked copy_to_user".
225 * The return value is an error code, not an offset.
226 */
copy_from_buf(const struct mon_reader_bin * this,unsigned int off,char __user * to,int length)227 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
228 char __user *to, int length)
229 {
230 unsigned int step_len;
231 unsigned char *buf;
232 unsigned int in_page;
233
234 while (length) {
235 /*
236 * Determine step_len.
237 */
238 step_len = length;
239 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
240 if (in_page < step_len)
241 step_len = in_page;
242
243 /*
244 * Copy data and advance pointers.
245 */
246 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
247 if (copy_to_user(to, buf, step_len))
248 return -EINVAL;
249 if ((off += step_len) >= this->b_size) off = 0;
250 to += step_len;
251 length -= step_len;
252 }
253 return 0;
254 }
255
256 /*
257 * Allocate an (aligned) area in the buffer.
258 * This is called under b_lock.
259 * Returns ~0 on failure.
260 */
mon_buff_area_alloc(struct mon_reader_bin * rp,unsigned int size)261 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
262 unsigned int size)
263 {
264 unsigned int offset;
265
266 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
267 if (rp->b_cnt + size > rp->b_size)
268 return ~0;
269 offset = rp->b_in;
270 rp->b_cnt += size;
271 if ((rp->b_in += size) >= rp->b_size)
272 rp->b_in -= rp->b_size;
273 return offset;
274 }
275
276 /*
277 * This is the same thing as mon_buff_area_alloc, only it does not allow
278 * buffers to wrap. This is needed by applications which pass references
279 * into mmap-ed buffers up their stacks (libpcap can do that).
280 *
281 * Currently, we always have the header stuck with the data, although
282 * it is not strictly speaking necessary.
283 *
284 * When a buffer would wrap, we place a filler packet to mark the space.
285 */
mon_buff_area_alloc_contiguous(struct mon_reader_bin * rp,unsigned int size)286 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
287 unsigned int size)
288 {
289 unsigned int offset;
290 unsigned int fill_size;
291
292 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
293 if (rp->b_cnt + size > rp->b_size)
294 return ~0;
295 if (rp->b_in + size > rp->b_size) {
296 /*
297 * This would wrap. Find if we still have space after
298 * skipping to the end of the buffer. If we do, place
299 * a filler packet and allocate a new packet.
300 */
301 fill_size = rp->b_size - rp->b_in;
302 if (rp->b_cnt + size + fill_size > rp->b_size)
303 return ~0;
304 mon_buff_area_fill(rp, rp->b_in, fill_size);
305
306 offset = 0;
307 rp->b_in = size;
308 rp->b_cnt += size + fill_size;
309 } else if (rp->b_in + size == rp->b_size) {
310 offset = rp->b_in;
311 rp->b_in = 0;
312 rp->b_cnt += size;
313 } else {
314 offset = rp->b_in;
315 rp->b_in += size;
316 rp->b_cnt += size;
317 }
318 return offset;
319 }
320
321 /*
322 * Return a few (kilo-)bytes to the head of the buffer.
323 * This is used if a DMA fetch fails.
324 */
mon_buff_area_shrink(struct mon_reader_bin * rp,unsigned int size)325 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
326 {
327
328 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
329 rp->b_cnt -= size;
330 if (rp->b_in < size)
331 rp->b_in += rp->b_size;
332 rp->b_in -= size;
333 }
334
335 /*
336 * This has to be called under both b_lock and fetch_lock, because
337 * it accesses both b_cnt and b_out.
338 */
mon_buff_area_free(struct mon_reader_bin * rp,unsigned int size)339 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
340 {
341
342 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
343 rp->b_cnt -= size;
344 if ((rp->b_out += size) >= rp->b_size)
345 rp->b_out -= rp->b_size;
346 }
347
mon_buff_area_fill(const struct mon_reader_bin * rp,unsigned int offset,unsigned int size)348 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
349 unsigned int offset, unsigned int size)
350 {
351 struct mon_bin_hdr *ep;
352
353 ep = MON_OFF2HDR(rp, offset);
354 memset(ep, 0, PKT_SIZE);
355 ep->type = '@';
356 ep->len_cap = size - PKT_SIZE;
357 }
358
mon_bin_get_setup(unsigned char * setupb,const struct urb * urb,char ev_type)359 static inline char mon_bin_get_setup(unsigned char *setupb,
360 const struct urb *urb, char ev_type)
361 {
362
363 if (!usb_endpoint_xfer_control(&urb->ep->desc) || ev_type != 'S')
364 return '-';
365
366 if (urb->setup_packet == NULL)
367 return 'Z';
368
369 memcpy(setupb, urb->setup_packet, SETUP_LEN);
370 return 0;
371 }
372
mon_bin_get_data(const struct mon_reader_bin * rp,unsigned int offset,struct urb * urb,unsigned int length)373 static char mon_bin_get_data(const struct mon_reader_bin *rp,
374 unsigned int offset, struct urb *urb, unsigned int length)
375 {
376
377 if (urb->dev->bus->uses_dma &&
378 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
379 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
380 return 0;
381 }
382
383 if (urb->transfer_buffer == NULL)
384 return 'Z';
385
386 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
387 return 0;
388 }
389
mon_bin_event(struct mon_reader_bin * rp,struct urb * urb,char ev_type,int status)390 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
391 char ev_type, int status)
392 {
393 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
394 unsigned long flags;
395 struct timeval ts;
396 unsigned int urb_length;
397 unsigned int offset;
398 unsigned int length;
399 unsigned char dir;
400 struct mon_bin_hdr *ep;
401 char data_tag = 0;
402
403 do_gettimeofday(&ts);
404
405 spin_lock_irqsave(&rp->b_lock, flags);
406
407 /*
408 * Find the maximum allowable length, then allocate space.
409 */
410 urb_length = (ev_type == 'S') ?
411 urb->transfer_buffer_length : urb->actual_length;
412 length = urb_length;
413
414 if (length >= rp->b_size/5)
415 length = rp->b_size/5;
416
417 if (usb_urb_dir_in(urb)) {
418 if (ev_type == 'S') {
419 length = 0;
420 data_tag = '<';
421 }
422 /* Cannot rely on endpoint number in case of control ep.0 */
423 dir = USB_DIR_IN;
424 } else {
425 if (ev_type == 'C') {
426 length = 0;
427 data_tag = '>';
428 }
429 dir = 0;
430 }
431
432 if (rp->mmap_active)
433 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
434 else
435 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
436 if (offset == ~0) {
437 rp->cnt_lost++;
438 spin_unlock_irqrestore(&rp->b_lock, flags);
439 return;
440 }
441
442 ep = MON_OFF2HDR(rp, offset);
443 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
444
445 /*
446 * Fill the allocated area.
447 */
448 memset(ep, 0, PKT_SIZE);
449 ep->type = ev_type;
450 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
451 ep->epnum = dir | usb_endpoint_num(epd);
452 ep->devnum = urb->dev->devnum;
453 ep->busnum = urb->dev->bus->busnum;
454 ep->id = (unsigned long) urb;
455 ep->ts_sec = ts.tv_sec;
456 ep->ts_usec = ts.tv_usec;
457 ep->status = status;
458 ep->len_urb = urb_length;
459 ep->len_cap = length;
460
461 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
462 if (length != 0) {
463 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
464 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
465 ep->len_cap = 0;
466 mon_buff_area_shrink(rp, length);
467 }
468 } else {
469 ep->flag_data = data_tag;
470 }
471
472 spin_unlock_irqrestore(&rp->b_lock, flags);
473
474 wake_up(&rp->b_wait);
475 }
476
mon_bin_submit(void * data,struct urb * urb)477 static void mon_bin_submit(void *data, struct urb *urb)
478 {
479 struct mon_reader_bin *rp = data;
480 mon_bin_event(rp, urb, 'S', -EINPROGRESS);
481 }
482
mon_bin_complete(void * data,struct urb * urb,int status)483 static void mon_bin_complete(void *data, struct urb *urb, int status)
484 {
485 struct mon_reader_bin *rp = data;
486 mon_bin_event(rp, urb, 'C', status);
487 }
488
mon_bin_error(void * data,struct urb * urb,int error)489 static void mon_bin_error(void *data, struct urb *urb, int error)
490 {
491 struct mon_reader_bin *rp = data;
492 unsigned long flags;
493 unsigned int offset;
494 struct mon_bin_hdr *ep;
495
496 spin_lock_irqsave(&rp->b_lock, flags);
497
498 offset = mon_buff_area_alloc(rp, PKT_SIZE);
499 if (offset == ~0) {
500 /* Not incrementing cnt_lost. Just because. */
501 spin_unlock_irqrestore(&rp->b_lock, flags);
502 return;
503 }
504
505 ep = MON_OFF2HDR(rp, offset);
506
507 memset(ep, 0, PKT_SIZE);
508 ep->type = 'E';
509 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
510 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
511 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
512 ep->devnum = urb->dev->devnum;
513 ep->busnum = urb->dev->bus->busnum;
514 ep->id = (unsigned long) urb;
515 ep->status = error;
516
517 ep->flag_setup = '-';
518 ep->flag_data = 'E';
519
520 spin_unlock_irqrestore(&rp->b_lock, flags);
521
522 wake_up(&rp->b_wait);
523 }
524
mon_bin_open(struct inode * inode,struct file * file)525 static int mon_bin_open(struct inode *inode, struct file *file)
526 {
527 struct mon_bus *mbus;
528 struct mon_reader_bin *rp;
529 size_t size;
530 int rc;
531
532 lock_kernel();
533 mutex_lock(&mon_lock);
534 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
535 mutex_unlock(&mon_lock);
536 unlock_kernel();
537 return -ENODEV;
538 }
539 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
540 printk(KERN_ERR TAG ": consistency error on open\n");
541 mutex_unlock(&mon_lock);
542 unlock_kernel();
543 return -ENODEV;
544 }
545
546 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
547 if (rp == NULL) {
548 rc = -ENOMEM;
549 goto err_alloc;
550 }
551 spin_lock_init(&rp->b_lock);
552 init_waitqueue_head(&rp->b_wait);
553 mutex_init(&rp->fetch_lock);
554
555 rp->b_size = BUFF_DFL;
556
557 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
558 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
559 rc = -ENOMEM;
560 goto err_allocvec;
561 }
562
563 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
564 goto err_allocbuff;
565
566 rp->r.m_bus = mbus;
567 rp->r.r_data = rp;
568 rp->r.rnf_submit = mon_bin_submit;
569 rp->r.rnf_error = mon_bin_error;
570 rp->r.rnf_complete = mon_bin_complete;
571
572 mon_reader_add(mbus, &rp->r);
573
574 file->private_data = rp;
575 mutex_unlock(&mon_lock);
576 unlock_kernel();
577 return 0;
578
579 err_allocbuff:
580 kfree(rp->b_vec);
581 err_allocvec:
582 kfree(rp);
583 err_alloc:
584 mutex_unlock(&mon_lock);
585 unlock_kernel();
586 return rc;
587 }
588
589 /*
590 * Extract an event from buffer and copy it to user space.
591 * Wait if there is no event ready.
592 * Returns zero or error.
593 */
mon_bin_get_event(struct file * file,struct mon_reader_bin * rp,struct mon_bin_hdr __user * hdr,void __user * data,unsigned int nbytes)594 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
595 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
596 {
597 unsigned long flags;
598 struct mon_bin_hdr *ep;
599 size_t step_len;
600 unsigned int offset;
601 int rc;
602
603 mutex_lock(&rp->fetch_lock);
604
605 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
606 mutex_unlock(&rp->fetch_lock);
607 return rc;
608 }
609
610 ep = MON_OFF2HDR(rp, rp->b_out);
611
612 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
613 mutex_unlock(&rp->fetch_lock);
614 return -EFAULT;
615 }
616
617 step_len = min(ep->len_cap, nbytes);
618 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
619
620 if (copy_from_buf(rp, offset, data, step_len)) {
621 mutex_unlock(&rp->fetch_lock);
622 return -EFAULT;
623 }
624
625 spin_lock_irqsave(&rp->b_lock, flags);
626 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
627 spin_unlock_irqrestore(&rp->b_lock, flags);
628 rp->b_read = 0;
629
630 mutex_unlock(&rp->fetch_lock);
631 return 0;
632 }
633
mon_bin_release(struct inode * inode,struct file * file)634 static int mon_bin_release(struct inode *inode, struct file *file)
635 {
636 struct mon_reader_bin *rp = file->private_data;
637 struct mon_bus* mbus = rp->r.m_bus;
638
639 mutex_lock(&mon_lock);
640
641 if (mbus->nreaders <= 0) {
642 printk(KERN_ERR TAG ": consistency error on close\n");
643 mutex_unlock(&mon_lock);
644 return 0;
645 }
646 mon_reader_del(mbus, &rp->r);
647
648 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
649 kfree(rp->b_vec);
650 kfree(rp);
651
652 mutex_unlock(&mon_lock);
653 return 0;
654 }
655
mon_bin_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)656 static ssize_t mon_bin_read(struct file *file, char __user *buf,
657 size_t nbytes, loff_t *ppos)
658 {
659 struct mon_reader_bin *rp = file->private_data;
660 unsigned long flags;
661 struct mon_bin_hdr *ep;
662 unsigned int offset;
663 size_t step_len;
664 char *ptr;
665 ssize_t done = 0;
666 int rc;
667
668 mutex_lock(&rp->fetch_lock);
669
670 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
671 mutex_unlock(&rp->fetch_lock);
672 return rc;
673 }
674
675 ep = MON_OFF2HDR(rp, rp->b_out);
676
677 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
678 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
679 ptr = ((char *)ep) + rp->b_read;
680 if (step_len && copy_to_user(buf, ptr, step_len)) {
681 mutex_unlock(&rp->fetch_lock);
682 return -EFAULT;
683 }
684 nbytes -= step_len;
685 buf += step_len;
686 rp->b_read += step_len;
687 done += step_len;
688 }
689
690 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
691 step_len = ep->len_cap;
692 step_len -= rp->b_read - sizeof(struct mon_bin_hdr);
693 if (step_len > nbytes)
694 step_len = nbytes;
695 offset = rp->b_out + PKT_SIZE;
696 offset += rp->b_read - sizeof(struct mon_bin_hdr);
697 if (offset >= rp->b_size)
698 offset -= rp->b_size;
699 if (copy_from_buf(rp, offset, buf, step_len)) {
700 mutex_unlock(&rp->fetch_lock);
701 return -EFAULT;
702 }
703 nbytes -= step_len;
704 buf += step_len;
705 rp->b_read += step_len;
706 done += step_len;
707 }
708
709 /*
710 * Check if whole packet was read, and if so, jump to the next one.
711 */
712 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
713 spin_lock_irqsave(&rp->b_lock, flags);
714 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
715 spin_unlock_irqrestore(&rp->b_lock, flags);
716 rp->b_read = 0;
717 }
718
719 mutex_unlock(&rp->fetch_lock);
720 return done;
721 }
722
723 /*
724 * Remove at most nevents from chunked buffer.
725 * Returns the number of removed events.
726 */
mon_bin_flush(struct mon_reader_bin * rp,unsigned nevents)727 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
728 {
729 unsigned long flags;
730 struct mon_bin_hdr *ep;
731 int i;
732
733 mutex_lock(&rp->fetch_lock);
734 spin_lock_irqsave(&rp->b_lock, flags);
735 for (i = 0; i < nevents; ++i) {
736 if (MON_RING_EMPTY(rp))
737 break;
738
739 ep = MON_OFF2HDR(rp, rp->b_out);
740 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
741 }
742 spin_unlock_irqrestore(&rp->b_lock, flags);
743 rp->b_read = 0;
744 mutex_unlock(&rp->fetch_lock);
745 return i;
746 }
747
748 /*
749 * Fetch at most max event offsets into the buffer and put them into vec.
750 * The events are usually freed later with mon_bin_flush.
751 * Return the effective number of events fetched.
752 */
mon_bin_fetch(struct file * file,struct mon_reader_bin * rp,u32 __user * vec,unsigned int max)753 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
754 u32 __user *vec, unsigned int max)
755 {
756 unsigned int cur_out;
757 unsigned int bytes, avail;
758 unsigned int size;
759 unsigned int nevents;
760 struct mon_bin_hdr *ep;
761 unsigned long flags;
762 int rc;
763
764 mutex_lock(&rp->fetch_lock);
765
766 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
767 mutex_unlock(&rp->fetch_lock);
768 return rc;
769 }
770
771 spin_lock_irqsave(&rp->b_lock, flags);
772 avail = rp->b_cnt;
773 spin_unlock_irqrestore(&rp->b_lock, flags);
774
775 cur_out = rp->b_out;
776 nevents = 0;
777 bytes = 0;
778 while (bytes < avail) {
779 if (nevents >= max)
780 break;
781
782 ep = MON_OFF2HDR(rp, cur_out);
783 if (put_user(cur_out, &vec[nevents])) {
784 mutex_unlock(&rp->fetch_lock);
785 return -EFAULT;
786 }
787
788 nevents++;
789 size = ep->len_cap + PKT_SIZE;
790 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
791 if ((cur_out += size) >= rp->b_size)
792 cur_out -= rp->b_size;
793 bytes += size;
794 }
795
796 mutex_unlock(&rp->fetch_lock);
797 return nevents;
798 }
799
800 /*
801 * Count events. This is almost the same as the above mon_bin_fetch,
802 * only we do not store offsets into user vector, and we have no limit.
803 */
mon_bin_queued(struct mon_reader_bin * rp)804 static int mon_bin_queued(struct mon_reader_bin *rp)
805 {
806 unsigned int cur_out;
807 unsigned int bytes, avail;
808 unsigned int size;
809 unsigned int nevents;
810 struct mon_bin_hdr *ep;
811 unsigned long flags;
812
813 mutex_lock(&rp->fetch_lock);
814
815 spin_lock_irqsave(&rp->b_lock, flags);
816 avail = rp->b_cnt;
817 spin_unlock_irqrestore(&rp->b_lock, flags);
818
819 cur_out = rp->b_out;
820 nevents = 0;
821 bytes = 0;
822 while (bytes < avail) {
823 ep = MON_OFF2HDR(rp, cur_out);
824
825 nevents++;
826 size = ep->len_cap + PKT_SIZE;
827 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
828 if ((cur_out += size) >= rp->b_size)
829 cur_out -= rp->b_size;
830 bytes += size;
831 }
832
833 mutex_unlock(&rp->fetch_lock);
834 return nevents;
835 }
836
837 /*
838 */
mon_bin_ioctl(struct inode * inode,struct file * file,unsigned int cmd,unsigned long arg)839 static int mon_bin_ioctl(struct inode *inode, struct file *file,
840 unsigned int cmd, unsigned long arg)
841 {
842 struct mon_reader_bin *rp = file->private_data;
843 // struct mon_bus* mbus = rp->r.m_bus;
844 int ret = 0;
845 struct mon_bin_hdr *ep;
846 unsigned long flags;
847
848 switch (cmd) {
849
850 case MON_IOCQ_URB_LEN:
851 /*
852 * N.B. This only returns the size of data, without the header.
853 */
854 spin_lock_irqsave(&rp->b_lock, flags);
855 if (!MON_RING_EMPTY(rp)) {
856 ep = MON_OFF2HDR(rp, rp->b_out);
857 ret = ep->len_cap;
858 }
859 spin_unlock_irqrestore(&rp->b_lock, flags);
860 break;
861
862 case MON_IOCQ_RING_SIZE:
863 ret = rp->b_size;
864 break;
865
866 case MON_IOCT_RING_SIZE:
867 /*
868 * Changing the buffer size will flush it's contents; the new
869 * buffer is allocated before releasing the old one to be sure
870 * the device will stay functional also in case of memory
871 * pressure.
872 */
873 {
874 int size;
875 struct mon_pgmap *vec;
876
877 if (arg < BUFF_MIN || arg > BUFF_MAX)
878 return -EINVAL;
879
880 size = CHUNK_ALIGN(arg);
881 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
882 GFP_KERNEL)) == NULL) {
883 ret = -ENOMEM;
884 break;
885 }
886
887 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
888 if (ret < 0) {
889 kfree(vec);
890 break;
891 }
892
893 mutex_lock(&rp->fetch_lock);
894 spin_lock_irqsave(&rp->b_lock, flags);
895 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
896 kfree(rp->b_vec);
897 rp->b_vec = vec;
898 rp->b_size = size;
899 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
900 rp->cnt_lost = 0;
901 spin_unlock_irqrestore(&rp->b_lock, flags);
902 mutex_unlock(&rp->fetch_lock);
903 }
904 break;
905
906 case MON_IOCH_MFLUSH:
907 ret = mon_bin_flush(rp, arg);
908 break;
909
910 case MON_IOCX_GET:
911 {
912 struct mon_bin_get getb;
913
914 if (copy_from_user(&getb, (void __user *)arg,
915 sizeof(struct mon_bin_get)))
916 return -EFAULT;
917
918 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
919 return -EINVAL;
920 ret = mon_bin_get_event(file, rp,
921 getb.hdr, getb.data, (unsigned int)getb.alloc);
922 }
923 break;
924
925 case MON_IOCX_MFETCH:
926 {
927 struct mon_bin_mfetch mfetch;
928 struct mon_bin_mfetch __user *uptr;
929
930 uptr = (struct mon_bin_mfetch __user *)arg;
931
932 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
933 return -EFAULT;
934
935 if (mfetch.nflush) {
936 ret = mon_bin_flush(rp, mfetch.nflush);
937 if (ret < 0)
938 return ret;
939 if (put_user(ret, &uptr->nflush))
940 return -EFAULT;
941 }
942 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
943 if (ret < 0)
944 return ret;
945 if (put_user(ret, &uptr->nfetch))
946 return -EFAULT;
947 ret = 0;
948 }
949 break;
950
951 case MON_IOCG_STATS: {
952 struct mon_bin_stats __user *sp;
953 unsigned int nevents;
954 unsigned int ndropped;
955
956 spin_lock_irqsave(&rp->b_lock, flags);
957 ndropped = rp->cnt_lost;
958 rp->cnt_lost = 0;
959 spin_unlock_irqrestore(&rp->b_lock, flags);
960 nevents = mon_bin_queued(rp);
961
962 sp = (struct mon_bin_stats __user *)arg;
963 if (put_user(rp->cnt_lost, &sp->dropped))
964 return -EFAULT;
965 if (put_user(nevents, &sp->queued))
966 return -EFAULT;
967
968 }
969 break;
970
971 default:
972 return -ENOTTY;
973 }
974
975 return ret;
976 }
977
978 #ifdef CONFIG_COMPAT
mon_bin_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)979 static long mon_bin_compat_ioctl(struct file *file,
980 unsigned int cmd, unsigned long arg)
981 {
982 struct mon_reader_bin *rp = file->private_data;
983 int ret;
984
985 switch (cmd) {
986
987 case MON_IOCX_GET32: {
988 struct mon_bin_get32 getb;
989
990 if (copy_from_user(&getb, (void __user *)arg,
991 sizeof(struct mon_bin_get32)))
992 return -EFAULT;
993
994 ret = mon_bin_get_event(file, rp,
995 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
996 getb.alloc32);
997 if (ret < 0)
998 return ret;
999 }
1000 return 0;
1001
1002 case MON_IOCX_MFETCH32:
1003 {
1004 struct mon_bin_mfetch32 mfetch;
1005 struct mon_bin_mfetch32 __user *uptr;
1006
1007 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1008
1009 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1010 return -EFAULT;
1011
1012 if (mfetch.nflush32) {
1013 ret = mon_bin_flush(rp, mfetch.nflush32);
1014 if (ret < 0)
1015 return ret;
1016 if (put_user(ret, &uptr->nflush32))
1017 return -EFAULT;
1018 }
1019 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1020 mfetch.nfetch32);
1021 if (ret < 0)
1022 return ret;
1023 if (put_user(ret, &uptr->nfetch32))
1024 return -EFAULT;
1025 }
1026 return 0;
1027
1028 case MON_IOCG_STATS:
1029 return mon_bin_ioctl(NULL, file, cmd,
1030 (unsigned long) compat_ptr(arg));
1031
1032 case MON_IOCQ_URB_LEN:
1033 case MON_IOCQ_RING_SIZE:
1034 case MON_IOCT_RING_SIZE:
1035 case MON_IOCH_MFLUSH:
1036 return mon_bin_ioctl(NULL, file, cmd, arg);
1037
1038 default:
1039 ;
1040 }
1041 return -ENOTTY;
1042 }
1043 #endif /* CONFIG_COMPAT */
1044
1045 static unsigned int
mon_bin_poll(struct file * file,struct poll_table_struct * wait)1046 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1047 {
1048 struct mon_reader_bin *rp = file->private_data;
1049 unsigned int mask = 0;
1050 unsigned long flags;
1051
1052 if (file->f_mode & FMODE_READ)
1053 poll_wait(file, &rp->b_wait, wait);
1054
1055 spin_lock_irqsave(&rp->b_lock, flags);
1056 if (!MON_RING_EMPTY(rp))
1057 mask |= POLLIN | POLLRDNORM; /* readable */
1058 spin_unlock_irqrestore(&rp->b_lock, flags);
1059 return mask;
1060 }
1061
1062 /*
1063 * open and close: just keep track of how many times the device is
1064 * mapped, to use the proper memory allocation function.
1065 */
mon_bin_vma_open(struct vm_area_struct * vma)1066 static void mon_bin_vma_open(struct vm_area_struct *vma)
1067 {
1068 struct mon_reader_bin *rp = vma->vm_private_data;
1069 rp->mmap_active++;
1070 }
1071
mon_bin_vma_close(struct vm_area_struct * vma)1072 static void mon_bin_vma_close(struct vm_area_struct *vma)
1073 {
1074 struct mon_reader_bin *rp = vma->vm_private_data;
1075 rp->mmap_active--;
1076 }
1077
1078 /*
1079 * Map ring pages to user space.
1080 */
mon_bin_vma_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1081 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1082 {
1083 struct mon_reader_bin *rp = vma->vm_private_data;
1084 unsigned long offset, chunk_idx;
1085 struct page *pageptr;
1086
1087 offset = vmf->pgoff << PAGE_SHIFT;
1088 if (offset >= rp->b_size)
1089 return VM_FAULT_SIGBUS;
1090 chunk_idx = offset / CHUNK_SIZE;
1091 pageptr = rp->b_vec[chunk_idx].pg;
1092 get_page(pageptr);
1093 vmf->page = pageptr;
1094 return 0;
1095 }
1096
1097 static struct vm_operations_struct mon_bin_vm_ops = {
1098 .open = mon_bin_vma_open,
1099 .close = mon_bin_vma_close,
1100 .fault = mon_bin_vma_fault,
1101 };
1102
mon_bin_mmap(struct file * filp,struct vm_area_struct * vma)1103 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1104 {
1105 /* don't do anything here: "fault" will set up page table entries */
1106 vma->vm_ops = &mon_bin_vm_ops;
1107 vma->vm_flags |= VM_RESERVED;
1108 vma->vm_private_data = filp->private_data;
1109 mon_bin_vma_open(vma);
1110 return 0;
1111 }
1112
1113 static const struct file_operations mon_fops_binary = {
1114 .owner = THIS_MODULE,
1115 .open = mon_bin_open,
1116 .llseek = no_llseek,
1117 .read = mon_bin_read,
1118 /* .write = mon_text_write, */
1119 .poll = mon_bin_poll,
1120 .ioctl = mon_bin_ioctl,
1121 #ifdef CONFIG_COMPAT
1122 .compat_ioctl = mon_bin_compat_ioctl,
1123 #endif
1124 .release = mon_bin_release,
1125 .mmap = mon_bin_mmap,
1126 };
1127
mon_bin_wait_event(struct file * file,struct mon_reader_bin * rp)1128 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1129 {
1130 DECLARE_WAITQUEUE(waita, current);
1131 unsigned long flags;
1132
1133 add_wait_queue(&rp->b_wait, &waita);
1134 set_current_state(TASK_INTERRUPTIBLE);
1135
1136 spin_lock_irqsave(&rp->b_lock, flags);
1137 while (MON_RING_EMPTY(rp)) {
1138 spin_unlock_irqrestore(&rp->b_lock, flags);
1139
1140 if (file->f_flags & O_NONBLOCK) {
1141 set_current_state(TASK_RUNNING);
1142 remove_wait_queue(&rp->b_wait, &waita);
1143 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1144 }
1145 schedule();
1146 if (signal_pending(current)) {
1147 remove_wait_queue(&rp->b_wait, &waita);
1148 return -EINTR;
1149 }
1150 set_current_state(TASK_INTERRUPTIBLE);
1151
1152 spin_lock_irqsave(&rp->b_lock, flags);
1153 }
1154 spin_unlock_irqrestore(&rp->b_lock, flags);
1155
1156 set_current_state(TASK_RUNNING);
1157 remove_wait_queue(&rp->b_wait, &waita);
1158 return 0;
1159 }
1160
mon_alloc_buff(struct mon_pgmap * map,int npages)1161 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1162 {
1163 int n;
1164 unsigned long vaddr;
1165
1166 for (n = 0; n < npages; n++) {
1167 vaddr = get_zeroed_page(GFP_KERNEL);
1168 if (vaddr == 0) {
1169 while (n-- != 0)
1170 free_page((unsigned long) map[n].ptr);
1171 return -ENOMEM;
1172 }
1173 map[n].ptr = (unsigned char *) vaddr;
1174 map[n].pg = virt_to_page(vaddr);
1175 }
1176 return 0;
1177 }
1178
mon_free_buff(struct mon_pgmap * map,int npages)1179 static void mon_free_buff(struct mon_pgmap *map, int npages)
1180 {
1181 int n;
1182
1183 for (n = 0; n < npages; n++)
1184 free_page((unsigned long) map[n].ptr);
1185 }
1186
mon_bin_add(struct mon_bus * mbus,const struct usb_bus * ubus)1187 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1188 {
1189 struct device *dev;
1190 unsigned minor = ubus? ubus->busnum: 0;
1191
1192 if (minor >= MON_BIN_MAX_MINOR)
1193 return 0;
1194
1195 dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1196 MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1197 "usbmon%d", minor);
1198 if (IS_ERR(dev))
1199 return 0;
1200
1201 mbus->classdev = dev;
1202 return 1;
1203 }
1204
mon_bin_del(struct mon_bus * mbus)1205 void mon_bin_del(struct mon_bus *mbus)
1206 {
1207 device_destroy(mon_bin_class, mbus->classdev->devt);
1208 }
1209
mon_bin_init(void)1210 int __init mon_bin_init(void)
1211 {
1212 int rc;
1213
1214 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1215 if (IS_ERR(mon_bin_class)) {
1216 rc = PTR_ERR(mon_bin_class);
1217 goto err_class;
1218 }
1219
1220 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1221 if (rc < 0)
1222 goto err_dev;
1223
1224 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1225 mon_bin_cdev.owner = THIS_MODULE;
1226
1227 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1228 if (rc < 0)
1229 goto err_add;
1230
1231 return 0;
1232
1233 err_add:
1234 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1235 err_dev:
1236 class_destroy(mon_bin_class);
1237 err_class:
1238 return rc;
1239 }
1240
mon_bin_exit(void)1241 void mon_bin_exit(void)
1242 {
1243 cdev_del(&mon_bin_cdev);
1244 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1245 class_destroy(mon_bin_class);
1246 }
1247