• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Ultra Wide Band
3  * AES-128 CCM Encryption
4  *
5  * Copyright (C) 2007 Intel Corporation
6  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA.
21  *
22  *
23  * We don't do any encryption here; we use the Linux Kernel's AES-128
24  * crypto modules to construct keys and payload blocks in a way
25  * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26  * there.
27  *
28  * Thanks a zillion to John Keys for his help and clarifications over
29  * the designed-by-a-committee text.
30  *
31  * So the idea is that there is this basic Pseudo-Random-Function
32  * defined in WUSB1.0[6.5] which is the core of everything. It works
33  * by tweaking some blocks, AES crypting them and then xoring
34  * something else with them (this seems to be called CBC(AES) -- can
35  * you tell I know jack about crypto?). So we just funnel it into the
36  * Linux Crypto API.
37  *
38  * We leave a crypto test module so we can verify that vectors match,
39  * every now and then.
40  *
41  * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42  *             am learning a lot...
43  *
44  *             Conveniently, some data structures that need to be
45  *             funneled through AES are...16 bytes in size!
46  */
47 
48 #include <linux/crypto.h>
49 #include <linux/module.h>
50 #include <linux/err.h>
51 #include <linux/uwb.h>
52 #include <linux/usb/wusb.h>
53 #include <linux/scatterlist.h>
54 
55 static int debug_crypto_verify = 0;
56 
57 module_param(debug_crypto_verify, int, 0);
58 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
59 
wusb_key_dump(const void * buf,size_t len)60 static void wusb_key_dump(const void *buf, size_t len)
61 {
62 	print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
63 		       buf, len, 0);
64 }
65 
66 /*
67  * Block of data, as understood by AES-CCM
68  *
69  * The code assumes this structure is nothing but a 16 byte array
70  * (packed in a struct to avoid common mess ups that I usually do with
71  * arrays and enforcing type checking).
72  */
73 struct aes_ccm_block {
74 	u8 data[16];
75 } __attribute__((packed));
76 
77 /*
78  * Counter-mode Blocks (WUSB1.0[6.4])
79  *
80  * According to CCM (or so it seems), for the purpose of calculating
81  * the MIC, the message is broken in N counter-mode blocks, B0, B1,
82  * ... BN.
83  *
84  * B0 contains flags, the CCM nonce and l(m).
85  *
86  * B1 contains l(a), the MAC header, the encryption offset and padding.
87  *
88  * If EO is nonzero, additional blocks are built from payload bytes
89  * until EO is exahusted (FIXME: padding to 16 bytes, I guess). The
90  * padding is not xmitted.
91  */
92 
93 /* WUSB1.0[T6.4] */
94 struct aes_ccm_b0 {
95 	u8 flags;	/* 0x59, per CCM spec */
96 	struct aes_ccm_nonce ccm_nonce;
97 	__be16 lm;
98 } __attribute__((packed));
99 
100 /* WUSB1.0[T6.5] */
101 struct aes_ccm_b1 {
102 	__be16 la;
103 	u8 mac_header[10];
104 	__le16 eo;
105 	u8 security_reserved;	/* This is always zero */
106 	u8 padding;		/* 0 */
107 } __attribute__((packed));
108 
109 /*
110  * Encryption Blocks (WUSB1.0[6.4.4])
111  *
112  * CCM uses Ax blocks to generate a keystream with which the MIC and
113  * the message's payload are encoded. A0 always encrypts/decrypts the
114  * MIC. Ax (x>0) are used for the sucesive payload blocks.
115  *
116  * The x is the counter, and is increased for each block.
117  */
118 struct aes_ccm_a {
119 	u8 flags;	/* 0x01, per CCM spec */
120 	struct aes_ccm_nonce ccm_nonce;
121 	__be16 counter;	/* Value of x */
122 } __attribute__((packed));
123 
bytewise_xor(void * _bo,const void * _bi1,const void * _bi2,size_t size)124 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
125 			 size_t size)
126 {
127 	u8 *bo = _bo;
128 	const u8 *bi1 = _bi1, *bi2 = _bi2;
129 	size_t itr;
130 	for (itr = 0; itr < size; itr++)
131 		bo[itr] = bi1[itr] ^ bi2[itr];
132 }
133 
134 /*
135  * CC-MAC function WUSB1.0[6.5]
136  *
137  * Take a data string and produce the encrypted CBC Counter-mode MIC
138  *
139  * Note the names for most function arguments are made to (more or
140  * less) match those used in the pseudo-function definition given in
141  * WUSB1.0[6.5].
142  *
143  * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
144  *
145  * @tfm_aes: AES cipher handle (initialized)
146  *
147  * @mic: buffer for placing the computed MIC (Message Integrity
148  *       Code). This is exactly 8 bytes, and we expect the buffer to
149  *       be at least eight bytes in length.
150  *
151  * @key: 128 bit symmetric key
152  *
153  * @n: CCM nonce
154  *
155  * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
156  *     we use exactly 14 bytes).
157  *
158  * @b: data stream to be processed; cannot be a global or const local
159  *     (will confuse the scatterlists)
160  *
161  * @blen: size of b...
162  *
163  * Still not very clear how this is done, but looks like this: we
164  * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
165  * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
166  * take the payload and divide it in blocks (16 bytes), xor them with
167  * the previous crypto result (16 bytes) and crypt it, repeat the next
168  * block with the output of the previous one, rinse wash (I guess this
169  * is what AES CBC mode means...but I truly have no idea). So we use
170  * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
171  * Vector) is 16 bytes and is set to zero, so
172  *
173  * See rfc3610. Linux crypto has a CBC implementation, but the
174  * documentation is scarce, to say the least, and the example code is
175  * so intricated that is difficult to understand how things work. Most
176  * of this is guess work -- bite me.
177  *
178  * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
179  *     using the 14 bytes of @a to fill up
180  *     b1.{mac_header,e0,security_reserved,padding}.
181  *
182  * NOTE: The definiton of l(a) in WUSB1.0[6.5] vs the definition of
183  *       l(m) is orthogonal, they bear no relationship, so it is not
184  *       in conflict with the parameter's relation that
185  *       WUSB1.0[6.4.2]) defines.
186  *
187  * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
188  *       first errata released on 2005/07.
189  *
190  * NOTE: we need to clean IV to zero at each invocation to make sure
191  *       we start with a fresh empty Initial Vector, so that the CBC
192  *       works ok.
193  *
194  * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
195  *       what sg[4] is for. Maybe there is a smarter way to do this.
196  */
wusb_ccm_mac(struct crypto_blkcipher * tfm_cbc,struct crypto_cipher * tfm_aes,void * mic,const struct aes_ccm_nonce * n,const struct aes_ccm_label * a,const void * b,size_t blen)197 static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
198 			struct crypto_cipher *tfm_aes, void *mic,
199 			const struct aes_ccm_nonce *n,
200 			const struct aes_ccm_label *a, const void *b,
201 			size_t blen)
202 {
203 	int result = 0;
204 	struct blkcipher_desc desc;
205 	struct aes_ccm_b0 b0;
206 	struct aes_ccm_b1 b1;
207 	struct aes_ccm_a ax;
208 	struct scatterlist sg[4], sg_dst;
209 	void *iv, *dst_buf;
210 	size_t ivsize, dst_size;
211 	const u8 bzero[16] = { 0 };
212 	size_t zero_padding;
213 
214 	/*
215 	 * These checks should be compile time optimized out
216 	 * ensure @a fills b1's mac_header and following fields
217 	 */
218 	WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
219 	WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
220 	WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
221 	WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
222 
223 	result = -ENOMEM;
224 	zero_padding = sizeof(struct aes_ccm_block)
225 		- blen % sizeof(struct aes_ccm_block);
226 	zero_padding = blen % sizeof(struct aes_ccm_block);
227 	if (zero_padding)
228 		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
229 	dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
230 	dst_buf = kzalloc(dst_size, GFP_KERNEL);
231 	if (dst_buf == NULL) {
232 		printk(KERN_ERR "E: can't alloc destination buffer\n");
233 		goto error_dst_buf;
234 	}
235 
236 	iv = crypto_blkcipher_crt(tfm_cbc)->iv;
237 	ivsize = crypto_blkcipher_ivsize(tfm_cbc);
238 	memset(iv, 0, ivsize);
239 
240 	/* Setup B0 */
241 	b0.flags = 0x59;	/* Format B0 */
242 	b0.ccm_nonce = *n;
243 	b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */
244 
245 	/* Setup B1
246 	 *
247 	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
248 	 * says that to initialize B1 from A with 'l(a) = blen +
249 	 * 14'--after clarification, it means to use A's contents
250 	 * for MAC Header, EO, sec reserved and padding.
251 	 */
252 	b1.la = cpu_to_be16(blen + 14);
253 	memcpy(&b1.mac_header, a, sizeof(*a));
254 
255 	sg_init_table(sg, ARRAY_SIZE(sg));
256 	sg_set_buf(&sg[0], &b0, sizeof(b0));
257 	sg_set_buf(&sg[1], &b1, sizeof(b1));
258 	sg_set_buf(&sg[2], b, blen);
259 	/* 0 if well behaved :) */
260 	sg_set_buf(&sg[3], bzero, zero_padding);
261 	sg_init_one(&sg_dst, dst_buf, dst_size);
262 
263 	desc.tfm = tfm_cbc;
264 	desc.flags = 0;
265 	result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
266 	if (result < 0) {
267 		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
268 		       result);
269 		goto error_cbc_crypt;
270 	}
271 
272 	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
273 	 * The procedure is to AES crypt the A0 block and XOR the MIC
274 	 * Tag agains it; we only do the first 8 bytes and place it
275 	 * directly in the destination buffer.
276 	 *
277 	 * POS Crypto API: size is assumed to be AES's block size.
278 	 * Thanks for documenting it -- tip taken from airo.c
279 	 */
280 	ax.flags = 0x01;		/* as per WUSB 1.0 spec */
281 	ax.ccm_nonce = *n;
282 	ax.counter = 0;
283 	crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
284 	bytewise_xor(mic, &ax, iv, 8);
285 	result = 8;
286 error_cbc_crypt:
287 	kfree(dst_buf);
288 error_dst_buf:
289 	return result;
290 }
291 
292 /*
293  * WUSB Pseudo Random Function (WUSB1.0[6.5])
294  *
295  * @b: buffer to the source data; cannot be a global or const local
296  *     (will confuse the scatterlists)
297  */
wusb_prf(void * out,size_t out_size,const u8 key[16],const struct aes_ccm_nonce * _n,const struct aes_ccm_label * a,const void * b,size_t blen,size_t len)298 ssize_t wusb_prf(void *out, size_t out_size,
299 		 const u8 key[16], const struct aes_ccm_nonce *_n,
300 		 const struct aes_ccm_label *a,
301 		 const void *b, size_t blen, size_t len)
302 {
303 	ssize_t result, bytes = 0, bitr;
304 	struct aes_ccm_nonce n = *_n;
305 	struct crypto_blkcipher *tfm_cbc;
306 	struct crypto_cipher *tfm_aes;
307 	u64 sfn = 0;
308 	__le64 sfn_le;
309 
310 	tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
311 	if (IS_ERR(tfm_cbc)) {
312 		result = PTR_ERR(tfm_cbc);
313 		printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
314 		goto error_alloc_cbc;
315 	}
316 	result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
317 	if (result < 0) {
318 		printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
319 		goto error_setkey_cbc;
320 	}
321 
322 	tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
323 	if (IS_ERR(tfm_aes)) {
324 		result = PTR_ERR(tfm_aes);
325 		printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
326 		goto error_alloc_aes;
327 	}
328 	result = crypto_cipher_setkey(tfm_aes, key, 16);
329 	if (result < 0) {
330 		printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
331 		goto error_setkey_aes;
332 	}
333 
334 	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
335 		sfn_le = cpu_to_le64(sfn++);
336 		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
337 		result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
338 				      &n, a, b, blen);
339 		if (result < 0)
340 			goto error_ccm_mac;
341 		bytes += result;
342 	}
343 	result = bytes;
344 error_ccm_mac:
345 error_setkey_aes:
346 	crypto_free_cipher(tfm_aes);
347 error_alloc_aes:
348 error_setkey_cbc:
349 	crypto_free_blkcipher(tfm_cbc);
350 error_alloc_cbc:
351 	return result;
352 }
353 
354 /* WUSB1.0[A.2] test vectors */
355 static const u8 stv_hsmic_key[16] = {
356 	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
357 	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
358 };
359 
360 static const struct aes_ccm_nonce stv_hsmic_n = {
361 	.sfn = { 0 },
362 	.tkid = { 0x76, 0x98, 0x01,  },
363 	.dest_addr = { .data = { 0xbe, 0x00 } },
364 		.src_addr = { .data = { 0x76, 0x98 } },
365 };
366 
367 /*
368  * Out-of-band MIC Generation verification code
369  *
370  */
wusb_oob_mic_verify(void)371 static int wusb_oob_mic_verify(void)
372 {
373 	int result;
374 	u8 mic[8];
375 	/* WUSB1.0[A.2] test vectors
376 	 *
377 	 * Need to keep it in the local stack as GCC 4.1.3something
378 	 * messes up and generates noise.
379 	 */
380 	struct usb_handshake stv_hsmic_hs = {
381 		.bMessageNumber = 2,
382 		.bStatus 	= 00,
383 		.tTKID 		= { 0x76, 0x98, 0x01 },
384 		.bReserved 	= 00,
385 		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
386 				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
387 				    0x3c, 0x3d, 0x3e, 0x3f },
388 		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
389 				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
390 				    0x2c, 0x2d, 0x2e, 0x2f },
391 		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
392 				    0x14, 0x7b } ,
393 	};
394 	size_t hs_size;
395 
396 	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
397 	if (result < 0)
398 		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
399 	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
400 		printk(KERN_ERR "E: OOB MIC test: "
401 		       "mismatch between MIC result and WUSB1.0[A2]\n");
402 		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
403 		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
404 		wusb_key_dump(&stv_hsmic_hs, hs_size);
405 		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
406 		       sizeof(stv_hsmic_n));
407 		wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
408 		printk(KERN_ERR "E: MIC out:\n");
409 		wusb_key_dump(mic, sizeof(mic));
410 		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
411 		wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
412 		result = -EINVAL;
413 	} else
414 		result = 0;
415 	return result;
416 }
417 
418 /*
419  * Test vectors for Key derivation
420  *
421  * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
422  * (errata corrected in 2005/07).
423  */
424 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
425 	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
426 	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
427 };
428 
429 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
430 	.sfn = { 0 },
431 	.tkid = { 0x76, 0x98, 0x01,  },
432 	.dest_addr = { .data = { 0xbe, 0x00 } },
433 	.src_addr = { .data = { 0x76, 0x98 } },
434 };
435 
436 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
437 	.kck = {
438 		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
439 		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
440 	},
441 	.ptk = {
442 		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
443 		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
444 	}
445 };
446 
447 /*
448  * Performa a test to make sure we match the vectors defined in
449  * WUSB1.0[A.1](Errata2006/12)
450  */
wusb_key_derive_verify(void)451 static int wusb_key_derive_verify(void)
452 {
453 	int result = 0;
454 	struct wusb_keydvt_out keydvt_out;
455 	/* These come from WUSB1.0[A.1] + 2006/12 errata
456 	 * NOTE: can't make this const or global -- somehow it seems
457 	 *       the scatterlists for crypto get confused and we get
458 	 *       bad data. There is no doc on this... */
459 	struct wusb_keydvt_in stv_keydvt_in_a1 = {
460 		.hnonce = {
461 			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
462 			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
463 		},
464 		.dnonce = {
465 			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
466 			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
467 		}
468 	};
469 
470 	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
471 				 &stv_keydvt_in_a1);
472 	if (result < 0)
473 		printk(KERN_ERR "E: WUSB key derivation test: "
474 		       "derivation failed: %d\n", result);
475 	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
476 		printk(KERN_ERR "E: WUSB key derivation test: "
477 		       "mismatch between key derivation result "
478 		       "and WUSB1.0[A1] Errata 2006/12\n");
479 		printk(KERN_ERR "E: keydvt in: key\n");
480 		wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
481 		printk(KERN_ERR "E: keydvt in: nonce\n");
482 		wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
483 		printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
484 		wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
485 		printk(KERN_ERR "E: keydvt out: KCK\n");
486 		wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
487 		printk(KERN_ERR "E: keydvt out: PTK\n");
488 		wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
489 		result = -EINVAL;
490 	} else
491 		result = 0;
492 	return result;
493 }
494 
495 /*
496  * Initialize crypto system
497  *
498  * FIXME: we do nothing now, other than verifying. Later on we'll
499  * cache the encryption stuff, so that's why we have a separate init.
500  */
wusb_crypto_init(void)501 int wusb_crypto_init(void)
502 {
503 	int result;
504 
505 	if (debug_crypto_verify) {
506 		result = wusb_key_derive_verify();
507 		if (result < 0)
508 			return result;
509 		return wusb_oob_mic_verify();
510 	}
511 	return 0;
512 }
513 
wusb_crypto_exit(void)514 void wusb_crypto_exit(void)
515 {
516 	/* FIXME: free cached crypto transforms */
517 }
518