• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/video/pxafb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas.
5  *  Copyright (C) 2004 Jean-Frederic Clere.
6  *  Copyright (C) 2004 Ian Campbell.
7  *  Copyright (C) 2004 Jeff Lackey.
8  *   Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
9  *  which in turn is
10  *   Based on acornfb.c Copyright (C) Russell King.
11  *
12  * This file is subject to the terms and conditions of the GNU General Public
13  * License.  See the file COPYING in the main directory of this archive for
14  * more details.
15  *
16  *	        Intel PXA250/210 LCD Controller Frame Buffer Driver
17  *
18  * Please direct your questions and comments on this driver to the following
19  * email address:
20  *
21  *	linux-arm-kernel@lists.arm.linux.org.uk
22  *
23  * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
24  *
25  *   Copyright (C) 2004, Intel Corporation
26  *
27  *     2003/08/27: <yu.tang@intel.com>
28  *     2004/03/10: <stanley.cai@intel.com>
29  *     2004/10/28: <yan.yin@intel.com>
30  *
31  *   Copyright (C) 2006-2008 Marvell International Ltd.
32  *   All Rights Reserved
33  */
34 
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
43 #include <linux/mm.h>
44 #include <linux/fb.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 
58 #include <mach/hardware.h>
59 #include <asm/io.h>
60 #include <asm/irq.h>
61 #include <asm/div64.h>
62 #include <mach/pxa-regs.h>
63 #include <mach/bitfield.h>
64 #include <mach/pxafb.h>
65 
66 /*
67  * Complain if VAR is out of range.
68  */
69 #define DEBUG_VAR 1
70 
71 #include "pxafb.h"
72 
73 /* Bits which should not be set in machine configuration structures */
74 #define LCCR0_INVALID_CONFIG_MASK	(LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
75 					 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
76 					 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
77 
78 #define LCCR3_INVALID_CONFIG_MASK	(LCCR3_HSP | LCCR3_VSP |\
79 					 LCCR3_PCD | LCCR3_BPP(0xf))
80 
81 static int pxafb_activate_var(struct fb_var_screeninfo *var,
82 				struct pxafb_info *);
83 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
84 static void setup_base_frame(struct pxafb_info *fbi, int branch);
85 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
86 			   unsigned long offset, size_t size);
87 
88 static unsigned long video_mem_size = 0;
89 
90 static inline unsigned long
lcd_readl(struct pxafb_info * fbi,unsigned int off)91 lcd_readl(struct pxafb_info *fbi, unsigned int off)
92 {
93 	return __raw_readl(fbi->mmio_base + off);
94 }
95 
96 static inline void
lcd_writel(struct pxafb_info * fbi,unsigned int off,unsigned long val)97 lcd_writel(struct pxafb_info *fbi, unsigned int off, unsigned long val)
98 {
99 	__raw_writel(val, fbi->mmio_base + off);
100 }
101 
pxafb_schedule_work(struct pxafb_info * fbi,u_int state)102 static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
103 {
104 	unsigned long flags;
105 
106 	local_irq_save(flags);
107 	/*
108 	 * We need to handle two requests being made at the same time.
109 	 * There are two important cases:
110 	 *  1. When we are changing VT (C_REENABLE) while unblanking
111 	 *     (C_ENABLE) We must perform the unblanking, which will
112 	 *     do our REENABLE for us.
113 	 *  2. When we are blanking, but immediately unblank before
114 	 *     we have blanked.  We do the "REENABLE" thing here as
115 	 *     well, just to be sure.
116 	 */
117 	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
118 		state = (u_int) -1;
119 	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
120 		state = C_REENABLE;
121 
122 	if (state != (u_int)-1) {
123 		fbi->task_state = state;
124 		schedule_work(&fbi->task);
125 	}
126 	local_irq_restore(flags);
127 }
128 
chan_to_field(u_int chan,struct fb_bitfield * bf)129 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
130 {
131 	chan &= 0xffff;
132 	chan >>= 16 - bf->length;
133 	return chan << bf->offset;
134 }
135 
136 static int
pxafb_setpalettereg(u_int regno,u_int red,u_int green,u_int blue,u_int trans,struct fb_info * info)137 pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
138 		       u_int trans, struct fb_info *info)
139 {
140 	struct pxafb_info *fbi = (struct pxafb_info *)info;
141 	u_int val;
142 
143 	if (regno >= fbi->palette_size)
144 		return 1;
145 
146 	if (fbi->fb.var.grayscale) {
147 		fbi->palette_cpu[regno] = ((blue >> 8) & 0x00ff);
148 		return 0;
149 	}
150 
151 	switch (fbi->lccr4 & LCCR4_PAL_FOR_MASK) {
152 	case LCCR4_PAL_FOR_0:
153 		val  = ((red   >>  0) & 0xf800);
154 		val |= ((green >>  5) & 0x07e0);
155 		val |= ((blue  >> 11) & 0x001f);
156 		fbi->palette_cpu[regno] = val;
157 		break;
158 	case LCCR4_PAL_FOR_1:
159 		val  = ((red   << 8) & 0x00f80000);
160 		val |= ((green >> 0) & 0x0000fc00);
161 		val |= ((blue  >> 8) & 0x000000f8);
162 		((u32 *)(fbi->palette_cpu))[regno] = val;
163 		break;
164 	case LCCR4_PAL_FOR_2:
165 		val  = ((red   << 8) & 0x00fc0000);
166 		val |= ((green >> 0) & 0x0000fc00);
167 		val |= ((blue  >> 8) & 0x000000fc);
168 		((u32 *)(fbi->palette_cpu))[regno] = val;
169 		break;
170 	case LCCR4_PAL_FOR_3:
171 		val  = ((red   << 8) & 0x00ff0000);
172 		val |= ((green >> 0) & 0x0000ff00);
173 		val |= ((blue  >> 8) & 0x000000ff);
174 		((u32 *)(fbi->palette_cpu))[regno] = val;
175 		break;
176 	}
177 
178 	return 0;
179 }
180 
181 static int
pxafb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int trans,struct fb_info * info)182 pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
183 		   u_int trans, struct fb_info *info)
184 {
185 	struct pxafb_info *fbi = (struct pxafb_info *)info;
186 	unsigned int val;
187 	int ret = 1;
188 
189 	/*
190 	 * If inverse mode was selected, invert all the colours
191 	 * rather than the register number.  The register number
192 	 * is what you poke into the framebuffer to produce the
193 	 * colour you requested.
194 	 */
195 	if (fbi->cmap_inverse) {
196 		red   = 0xffff - red;
197 		green = 0xffff - green;
198 		blue  = 0xffff - blue;
199 	}
200 
201 	/*
202 	 * If greyscale is true, then we convert the RGB value
203 	 * to greyscale no matter what visual we are using.
204 	 */
205 	if (fbi->fb.var.grayscale)
206 		red = green = blue = (19595 * red + 38470 * green +
207 					7471 * blue) >> 16;
208 
209 	switch (fbi->fb.fix.visual) {
210 	case FB_VISUAL_TRUECOLOR:
211 		/*
212 		 * 16-bit True Colour.  We encode the RGB value
213 		 * according to the RGB bitfield information.
214 		 */
215 		if (regno < 16) {
216 			u32 *pal = fbi->fb.pseudo_palette;
217 
218 			val  = chan_to_field(red, &fbi->fb.var.red);
219 			val |= chan_to_field(green, &fbi->fb.var.green);
220 			val |= chan_to_field(blue, &fbi->fb.var.blue);
221 
222 			pal[regno] = val;
223 			ret = 0;
224 		}
225 		break;
226 
227 	case FB_VISUAL_STATIC_PSEUDOCOLOR:
228 	case FB_VISUAL_PSEUDOCOLOR:
229 		ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
230 		break;
231 	}
232 
233 	return ret;
234 }
235 
236 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
var_to_depth(struct fb_var_screeninfo * var)237 static inline int var_to_depth(struct fb_var_screeninfo *var)
238 {
239 	return var->red.length + var->green.length +
240 		var->blue.length + var->transp.length;
241 }
242 
243 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
pxafb_var_to_bpp(struct fb_var_screeninfo * var)244 static int pxafb_var_to_bpp(struct fb_var_screeninfo *var)
245 {
246 	int bpp = -EINVAL;
247 
248 	switch (var->bits_per_pixel) {
249 	case 1:  bpp = 0; break;
250 	case 2:  bpp = 1; break;
251 	case 4:  bpp = 2; break;
252 	case 8:  bpp = 3; break;
253 	case 16: bpp = 4; break;
254 	case 24:
255 		switch (var_to_depth(var)) {
256 		case 18: bpp = 6; break; /* 18-bits/pixel packed */
257 		case 19: bpp = 8; break; /* 19-bits/pixel packed */
258 		case 24: bpp = 9; break;
259 		}
260 		break;
261 	case 32:
262 		switch (var_to_depth(var)) {
263 		case 18: bpp = 5; break; /* 18-bits/pixel unpacked */
264 		case 19: bpp = 7; break; /* 19-bits/pixel unpacked */
265 		case 25: bpp = 10; break;
266 		}
267 		break;
268 	}
269 	return bpp;
270 }
271 
272 /*
273  *  pxafb_var_to_lccr3():
274  *    Convert a bits per pixel value to the correct bit pattern for LCCR3
275  *
276  *  NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
277  *  implication of the acutal use of transparency bit,  which we handle it
278  *  here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
279  *  Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
280  *
281  *  Transparency for palette pixel formats is not supported at the moment.
282  */
pxafb_var_to_lccr3(struct fb_var_screeninfo * var)283 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo *var)
284 {
285 	int bpp = pxafb_var_to_bpp(var);
286 	uint32_t lccr3;
287 
288 	if (bpp < 0)
289 		return 0;
290 
291 	lccr3 = LCCR3_BPP(bpp);
292 
293 	switch (var_to_depth(var)) {
294 	case 16: lccr3 |= var->transp.length ? LCCR3_PDFOR_3 : 0; break;
295 	case 18: lccr3 |= LCCR3_PDFOR_3; break;
296 	case 24: lccr3 |= var->transp.length ? LCCR3_PDFOR_2 : LCCR3_PDFOR_3;
297 		 break;
298 	case 19:
299 	case 25: lccr3 |= LCCR3_PDFOR_0; break;
300 	}
301 	return lccr3;
302 }
303 
304 #define SET_PIXFMT(v, r, g, b, t)				\
305 ({								\
306 	(v)->transp.offset = (t) ? (r) + (g) + (b) : 0;		\
307 	(v)->transp.length = (t) ? (t) : 0;			\
308 	(v)->blue.length   = (b); (v)->blue.offset = 0;		\
309 	(v)->green.length  = (g); (v)->green.offset = (b);	\
310 	(v)->red.length    = (r); (v)->red.offset = (b) + (g);	\
311 })
312 
313 /* set the RGBT bitfields of fb_var_screeninf according to
314  * var->bits_per_pixel and given depth
315  */
pxafb_set_pixfmt(struct fb_var_screeninfo * var,int depth)316 static void pxafb_set_pixfmt(struct fb_var_screeninfo *var, int depth)
317 {
318 	if (depth == 0)
319 		depth = var->bits_per_pixel;
320 
321 	if (var->bits_per_pixel < 16) {
322 		/* indexed pixel formats */
323 		var->red.offset    = 0; var->red.length    = 8;
324 		var->green.offset  = 0; var->green.length  = 8;
325 		var->blue.offset   = 0; var->blue.length   = 8;
326 		var->transp.offset = 0; var->transp.length = 8;
327 	}
328 
329 	switch (depth) {
330 	case 16: var->transp.length ?
331 		 SET_PIXFMT(var, 5, 5, 5, 1) :		/* RGBT555 */
332 		 SET_PIXFMT(var, 5, 6, 5, 0); break;	/* RGB565 */
333 	case 18: SET_PIXFMT(var, 6, 6, 6, 0); break;	/* RGB666 */
334 	case 19: SET_PIXFMT(var, 6, 6, 6, 1); break;	/* RGBT666 */
335 	case 24: var->transp.length ?
336 		 SET_PIXFMT(var, 8, 8, 7, 1) :		/* RGBT887 */
337 		 SET_PIXFMT(var, 8, 8, 8, 0); break;	/* RGB888 */
338 	case 25: SET_PIXFMT(var, 8, 8, 8, 1); break;	/* RGBT888 */
339 	}
340 }
341 
342 #ifdef CONFIG_CPU_FREQ
343 /*
344  *  pxafb_display_dma_period()
345  *    Calculate the minimum period (in picoseconds) between two DMA
346  *    requests for the LCD controller.  If we hit this, it means we're
347  *    doing nothing but LCD DMA.
348  */
pxafb_display_dma_period(struct fb_var_screeninfo * var)349 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
350 {
351 	/*
352 	 * Period = pixclock * bits_per_byte * bytes_per_transfer
353 	 *              / memory_bits_per_pixel;
354 	 */
355 	return var->pixclock * 8 * 16 / var->bits_per_pixel;
356 }
357 #endif
358 
359 /*
360  * Select the smallest mode that allows the desired resolution to be
361  * displayed. If desired parameters can be rounded up.
362  */
pxafb_getmode(struct pxafb_mach_info * mach,struct fb_var_screeninfo * var)363 static struct pxafb_mode_info *pxafb_getmode(struct pxafb_mach_info *mach,
364 					     struct fb_var_screeninfo *var)
365 {
366 	struct pxafb_mode_info *mode = NULL;
367 	struct pxafb_mode_info *modelist = mach->modes;
368 	unsigned int best_x = 0xffffffff, best_y = 0xffffffff;
369 	unsigned int i;
370 
371 	for (i = 0; i < mach->num_modes; i++) {
372 		if (modelist[i].xres >= var->xres &&
373 		    modelist[i].yres >= var->yres &&
374 		    modelist[i].xres < best_x &&
375 		    modelist[i].yres < best_y &&
376 		    modelist[i].bpp >= var->bits_per_pixel) {
377 			best_x = modelist[i].xres;
378 			best_y = modelist[i].yres;
379 			mode = &modelist[i];
380 		}
381 	}
382 
383 	return mode;
384 }
385 
pxafb_setmode(struct fb_var_screeninfo * var,struct pxafb_mode_info * mode)386 static void pxafb_setmode(struct fb_var_screeninfo *var,
387 			  struct pxafb_mode_info *mode)
388 {
389 	var->xres		= mode->xres;
390 	var->yres		= mode->yres;
391 	var->bits_per_pixel	= mode->bpp;
392 	var->pixclock		= mode->pixclock;
393 	var->hsync_len		= mode->hsync_len;
394 	var->left_margin	= mode->left_margin;
395 	var->right_margin	= mode->right_margin;
396 	var->vsync_len		= mode->vsync_len;
397 	var->upper_margin	= mode->upper_margin;
398 	var->lower_margin	= mode->lower_margin;
399 	var->sync		= mode->sync;
400 	var->grayscale		= mode->cmap_greyscale;
401 
402 	/* set the initial RGBA bitfields */
403 	pxafb_set_pixfmt(var, mode->depth);
404 }
405 
pxafb_adjust_timing(struct pxafb_info * fbi,struct fb_var_screeninfo * var)406 static int pxafb_adjust_timing(struct pxafb_info *fbi,
407 			       struct fb_var_screeninfo *var)
408 {
409 	int line_length;
410 
411 	var->xres = max_t(int, var->xres, MIN_XRES);
412 	var->yres = max_t(int, var->yres, MIN_YRES);
413 
414 	if (!(fbi->lccr0 & LCCR0_LCDT)) {
415 		clamp_val(var->hsync_len, 1, 64);
416 		clamp_val(var->vsync_len, 1, 64);
417 		clamp_val(var->left_margin,  1, 255);
418 		clamp_val(var->right_margin, 1, 255);
419 		clamp_val(var->upper_margin, 1, 255);
420 		clamp_val(var->lower_margin, 1, 255);
421 	}
422 
423 	/* make sure each line is aligned on word boundary */
424 	line_length = var->xres * var->bits_per_pixel / 8;
425 	line_length = ALIGN(line_length, 4);
426 	var->xres = line_length * 8 / var->bits_per_pixel;
427 
428 	/* we don't support xpan, force xres_virtual to be equal to xres */
429 	var->xres_virtual = var->xres;
430 
431 	if (var->accel_flags & FB_ACCELF_TEXT)
432 		var->yres_virtual = fbi->fb.fix.smem_len / line_length;
433 	else
434 		var->yres_virtual = max(var->yres_virtual, var->yres);
435 
436 	/* check for limits */
437 	if (var->xres > MAX_XRES || var->yres > MAX_YRES)
438 		return -EINVAL;
439 
440 	if (var->yres > var->yres_virtual)
441 		return -EINVAL;
442 
443 	return 0;
444 }
445 
446 /*
447  *  pxafb_check_var():
448  *    Get the video params out of 'var'. If a value doesn't fit, round it up,
449  *    if it's too big, return -EINVAL.
450  *
451  *    Round up in the following order: bits_per_pixel, xres,
452  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
453  *    bitfields, horizontal timing, vertical timing.
454  */
pxafb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)455 static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
456 {
457 	struct pxafb_info *fbi = (struct pxafb_info *)info;
458 	struct pxafb_mach_info *inf = fbi->dev->platform_data;
459 	int err;
460 
461 	if (inf->fixed_modes) {
462 		struct pxafb_mode_info *mode;
463 
464 		mode = pxafb_getmode(inf, var);
465 		if (!mode)
466 			return -EINVAL;
467 		pxafb_setmode(var, mode);
468 	}
469 
470 	/* do a test conversion to BPP fields to check the color formats */
471 	err = pxafb_var_to_bpp(var);
472 	if (err < 0)
473 		return err;
474 
475 	pxafb_set_pixfmt(var, var_to_depth(var));
476 
477 	err = pxafb_adjust_timing(fbi, var);
478 	if (err)
479 		return err;
480 
481 #ifdef CONFIG_CPU_FREQ
482 	pr_debug("pxafb: dma period = %d ps\n",
483 		 pxafb_display_dma_period(var));
484 #endif
485 
486 	return 0;
487 }
488 
489 /*
490  * pxafb_set_par():
491  *	Set the user defined part of the display for the specified console
492  */
pxafb_set_par(struct fb_info * info)493 static int pxafb_set_par(struct fb_info *info)
494 {
495 	struct pxafb_info *fbi = (struct pxafb_info *)info;
496 	struct fb_var_screeninfo *var = &info->var;
497 
498 	if (var->bits_per_pixel >= 16)
499 		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
500 	else if (!fbi->cmap_static)
501 		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
502 	else {
503 		/*
504 		 * Some people have weird ideas about wanting static
505 		 * pseudocolor maps.  I suspect their user space
506 		 * applications are broken.
507 		 */
508 		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
509 	}
510 
511 	fbi->fb.fix.line_length = var->xres_virtual *
512 				  var->bits_per_pixel / 8;
513 	if (var->bits_per_pixel >= 16)
514 		fbi->palette_size = 0;
515 	else
516 		fbi->palette_size = var->bits_per_pixel == 1 ?
517 					4 : 1 << var->bits_per_pixel;
518 
519 	fbi->palette_cpu = (u16 *)&fbi->dma_buff->palette[0];
520 
521 	if (fbi->fb.var.bits_per_pixel >= 16)
522 		fb_dealloc_cmap(&fbi->fb.cmap);
523 	else
524 		fb_alloc_cmap(&fbi->fb.cmap, 1<<fbi->fb.var.bits_per_pixel, 0);
525 
526 	pxafb_activate_var(var, fbi);
527 
528 	return 0;
529 }
530 
pxafb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)531 static int pxafb_pan_display(struct fb_var_screeninfo *var,
532 			     struct fb_info *info)
533 {
534 	struct pxafb_info *fbi = (struct pxafb_info *)info;
535 	int dma = DMA_MAX + DMA_BASE;
536 
537 	if (fbi->state != C_ENABLE)
538 		return 0;
539 
540 	setup_base_frame(fbi, 1);
541 
542 	if (fbi->lccr0 & LCCR0_SDS)
543 		lcd_writel(fbi, FBR1, fbi->fdadr[dma + 1] | 0x1);
544 
545 	lcd_writel(fbi, FBR0, fbi->fdadr[dma] | 0x1);
546 	return 0;
547 }
548 
549 /*
550  * pxafb_blank():
551  *	Blank the display by setting all palette values to zero.  Note, the
552  * 	16 bpp mode does not really use the palette, so this will not
553  *      blank the display in all modes.
554  */
pxafb_blank(int blank,struct fb_info * info)555 static int pxafb_blank(int blank, struct fb_info *info)
556 {
557 	struct pxafb_info *fbi = (struct pxafb_info *)info;
558 	int i;
559 
560 	switch (blank) {
561 	case FB_BLANK_POWERDOWN:
562 	case FB_BLANK_VSYNC_SUSPEND:
563 	case FB_BLANK_HSYNC_SUSPEND:
564 	case FB_BLANK_NORMAL:
565 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
566 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
567 			for (i = 0; i < fbi->palette_size; i++)
568 				pxafb_setpalettereg(i, 0, 0, 0, 0, info);
569 
570 		pxafb_schedule_work(fbi, C_DISABLE);
571 		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
572 		break;
573 
574 	case FB_BLANK_UNBLANK:
575 		/* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
576 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
577 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
578 			fb_set_cmap(&fbi->fb.cmap, info);
579 		pxafb_schedule_work(fbi, C_ENABLE);
580 	}
581 	return 0;
582 }
583 
584 static struct fb_ops pxafb_ops = {
585 	.owner		= THIS_MODULE,
586 	.fb_check_var	= pxafb_check_var,
587 	.fb_set_par	= pxafb_set_par,
588 	.fb_pan_display	= pxafb_pan_display,
589 	.fb_setcolreg	= pxafb_setcolreg,
590 	.fb_fillrect	= cfb_fillrect,
591 	.fb_copyarea	= cfb_copyarea,
592 	.fb_imageblit	= cfb_imageblit,
593 	.fb_blank	= pxafb_blank,
594 };
595 
596 #ifdef CONFIG_FB_PXA_OVERLAY
overlay1fb_setup(struct pxafb_layer * ofb)597 static void overlay1fb_setup(struct pxafb_layer *ofb)
598 {
599 	int size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
600 	unsigned long start = ofb->video_mem_phys;
601 	setup_frame_dma(ofb->fbi, DMA_OV1, PAL_NONE, start, size);
602 }
603 
604 /* Depending on the enable status of overlay1/2, the DMA should be
605  * updated from FDADRx (when disabled) or FBRx (when enabled).
606  */
overlay1fb_enable(struct pxafb_layer * ofb)607 static void overlay1fb_enable(struct pxafb_layer *ofb)
608 {
609 	int enabled = lcd_readl(ofb->fbi, OVL1C1) & OVLxC1_OEN;
610 	uint32_t fdadr1 = ofb->fbi->fdadr[DMA_OV1] | (enabled ? 0x1 : 0);
611 
612 	lcd_writel(ofb->fbi, enabled ? FBR1 : FDADR1, fdadr1);
613 	lcd_writel(ofb->fbi, OVL1C2, ofb->control[1]);
614 	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] | OVLxC1_OEN);
615 }
616 
overlay1fb_disable(struct pxafb_layer * ofb)617 static void overlay1fb_disable(struct pxafb_layer *ofb)
618 {
619 	uint32_t lccr5 = lcd_readl(ofb->fbi, LCCR5);
620 
621 	lcd_writel(ofb->fbi, OVL1C1, ofb->control[0] & ~OVLxC1_OEN);
622 
623 	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(1));
624 	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(1));
625 	lcd_writel(ofb->fbi, FBR1, ofb->fbi->fdadr[DMA_OV1] | 0x3);
626 
627 	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
628 		pr_warning("%s: timeout disabling overlay1\n", __func__);
629 
630 	lcd_writel(ofb->fbi, LCCR5, lccr5);
631 }
632 
overlay2fb_setup(struct pxafb_layer * ofb)633 static void overlay2fb_setup(struct pxafb_layer *ofb)
634 {
635 	int size, div = 1, pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
636 	unsigned long start[3] = { ofb->video_mem_phys, 0, 0 };
637 
638 	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED) {
639 		size = ofb->fb.fix.line_length * ofb->fb.var.yres_virtual;
640 		setup_frame_dma(ofb->fbi, DMA_OV2_Y, -1, start[0], size);
641 	} else {
642 		size = ofb->fb.var.xres_virtual * ofb->fb.var.yres_virtual;
643 		switch (pfor) {
644 		case OVERLAY_FORMAT_YUV444_PLANAR: div = 1; break;
645 		case OVERLAY_FORMAT_YUV422_PLANAR: div = 2; break;
646 		case OVERLAY_FORMAT_YUV420_PLANAR: div = 4; break;
647 		}
648 		start[1] = start[0] + size;
649 		start[2] = start[1] + size / div;
650 		setup_frame_dma(ofb->fbi, DMA_OV2_Y,  -1, start[0], size);
651 		setup_frame_dma(ofb->fbi, DMA_OV2_Cb, -1, start[1], size / div);
652 		setup_frame_dma(ofb->fbi, DMA_OV2_Cr, -1, start[2], size / div);
653 	}
654 }
655 
overlay2fb_enable(struct pxafb_layer * ofb)656 static void overlay2fb_enable(struct pxafb_layer *ofb)
657 {
658 	int pfor = NONSTD_TO_PFOR(ofb->fb.var.nonstd);
659 	int enabled = lcd_readl(ofb->fbi, OVL2C1) & OVLxC1_OEN;
660 	uint32_t fdadr2 = ofb->fbi->fdadr[DMA_OV2_Y]  | (enabled ? 0x1 : 0);
661 	uint32_t fdadr3 = ofb->fbi->fdadr[DMA_OV2_Cb] | (enabled ? 0x1 : 0);
662 	uint32_t fdadr4 = ofb->fbi->fdadr[DMA_OV2_Cr] | (enabled ? 0x1 : 0);
663 
664 	if (pfor == OVERLAY_FORMAT_RGB || pfor == OVERLAY_FORMAT_YUV444_PACKED)
665 		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
666 	else {
667 		lcd_writel(ofb->fbi, enabled ? FBR2 : FDADR2, fdadr2);
668 		lcd_writel(ofb->fbi, enabled ? FBR3 : FDADR3, fdadr3);
669 		lcd_writel(ofb->fbi, enabled ? FBR4 : FDADR4, fdadr4);
670 	}
671 	lcd_writel(ofb->fbi, OVL2C2, ofb->control[1]);
672 	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] | OVLxC1_OEN);
673 }
674 
overlay2fb_disable(struct pxafb_layer * ofb)675 static void overlay2fb_disable(struct pxafb_layer *ofb)
676 {
677 	uint32_t lccr5 = lcd_readl(ofb->fbi, LCCR5);
678 
679 	lcd_writel(ofb->fbi, OVL2C1, ofb->control[0] & ~OVLxC1_OEN);
680 
681 	lcd_writel(ofb->fbi, LCSR1, LCSR1_BS(2));
682 	lcd_writel(ofb->fbi, LCCR5, lccr5 & ~LCSR1_BS(2));
683 	lcd_writel(ofb->fbi, FBR2, ofb->fbi->fdadr[DMA_OV2_Y]  | 0x3);
684 	lcd_writel(ofb->fbi, FBR3, ofb->fbi->fdadr[DMA_OV2_Cb] | 0x3);
685 	lcd_writel(ofb->fbi, FBR4, ofb->fbi->fdadr[DMA_OV2_Cr] | 0x3);
686 
687 	if (wait_for_completion_timeout(&ofb->branch_done, 1 * HZ) == 0)
688 		pr_warning("%s: timeout disabling overlay2\n", __func__);
689 }
690 
691 static struct pxafb_layer_ops ofb_ops[] = {
692 	[0] = {
693 		.enable		= overlay1fb_enable,
694 		.disable	= overlay1fb_disable,
695 		.setup		= overlay1fb_setup,
696 	},
697 	[1] = {
698 		.enable		= overlay2fb_enable,
699 		.disable	= overlay2fb_disable,
700 		.setup		= overlay2fb_setup,
701 	},
702 };
703 
overlayfb_open(struct fb_info * info,int user)704 static int overlayfb_open(struct fb_info *info, int user)
705 {
706 	struct pxafb_layer *ofb = (struct pxafb_layer *)info;
707 
708 	/* no support for framebuffer console on overlay */
709 	if (user == 0)
710 		return -ENODEV;
711 
712 	/* allow only one user at a time */
713 	if (atomic_inc_and_test(&ofb->usage))
714 		return -EBUSY;
715 
716 	/* unblank the base framebuffer */
717 	fb_blank(&ofb->fbi->fb, FB_BLANK_UNBLANK);
718 	return 0;
719 }
720 
overlayfb_release(struct fb_info * info,int user)721 static int overlayfb_release(struct fb_info *info, int user)
722 {
723 	struct pxafb_layer *ofb = (struct pxafb_layer*) info;
724 
725 	atomic_dec(&ofb->usage);
726 	ofb->ops->disable(ofb);
727 
728 	free_pages_exact(ofb->video_mem, ofb->video_mem_size);
729 	ofb->video_mem = NULL;
730 	ofb->video_mem_size = 0;
731 	return 0;
732 }
733 
overlayfb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)734 static int overlayfb_check_var(struct fb_var_screeninfo *var,
735 			       struct fb_info *info)
736 {
737 	struct pxafb_layer *ofb = (struct pxafb_layer *)info;
738 	struct fb_var_screeninfo *base_var = &ofb->fbi->fb.var;
739 	int xpos, ypos, pfor, bpp;
740 
741 	xpos = NONSTD_TO_XPOS(var->nonstd);
742 	ypos = NONSTD_TO_XPOS(var->nonstd);
743 	pfor = NONSTD_TO_PFOR(var->nonstd);
744 
745 	bpp = pxafb_var_to_bpp(var);
746 	if (bpp < 0)
747 		return -EINVAL;
748 
749 	/* no support for YUV format on overlay1 */
750 	if (ofb->id == OVERLAY1 && pfor != 0)
751 		return -EINVAL;
752 
753 	/* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
754 	switch (pfor) {
755 	case OVERLAY_FORMAT_RGB:
756 		bpp = pxafb_var_to_bpp(var);
757 		if (bpp < 0)
758 			return -EINVAL;
759 
760 		pxafb_set_pixfmt(var, var_to_depth(var));
761 		break;
762 	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
763 	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 8; break;
764 	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 4; break;
765 	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 2; break;
766 	default:
767 		return -EINVAL;
768 	}
769 
770 	/* each line must start at a 32-bit word boundary */
771 	if ((xpos * bpp) % 32)
772 		return -EINVAL;
773 
774 	/* xres must align on 32-bit word boundary */
775 	var->xres = roundup(var->xres * bpp, 32) / bpp;
776 
777 	if ((xpos + var->xres > base_var->xres) ||
778 	    (ypos + var->yres > base_var->yres))
779 		return -EINVAL;
780 
781 	var->xres_virtual = var->xres;
782 	var->yres_virtual = max(var->yres, var->yres_virtual);
783 	return 0;
784 }
785 
overlayfb_map_video_memory(struct pxafb_layer * ofb)786 static int overlayfb_map_video_memory(struct pxafb_layer *ofb)
787 {
788 	struct fb_var_screeninfo *var = &ofb->fb.var;
789 	int pfor = NONSTD_TO_PFOR(var->nonstd);
790 	int size, bpp = 0;
791 
792 	switch (pfor) {
793 	case OVERLAY_FORMAT_RGB: bpp = var->bits_per_pixel; break;
794 	case OVERLAY_FORMAT_YUV444_PACKED: bpp = 24; break;
795 	case OVERLAY_FORMAT_YUV444_PLANAR: bpp = 24; break;
796 	case OVERLAY_FORMAT_YUV422_PLANAR: bpp = 16; break;
797 	case OVERLAY_FORMAT_YUV420_PLANAR: bpp = 12; break;
798 	}
799 
800 	ofb->fb.fix.line_length = var->xres_virtual * bpp / 8;
801 
802 	size = PAGE_ALIGN(ofb->fb.fix.line_length * var->yres_virtual);
803 
804 	/* don't re-allocate if the original video memory is enough */
805 	if (ofb->video_mem) {
806 		if (ofb->video_mem_size >= size)
807 			return 0;
808 
809 		free_pages_exact(ofb->video_mem, ofb->video_mem_size);
810 	}
811 
812 	ofb->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
813 	if (ofb->video_mem == NULL)
814 		return -ENOMEM;
815 
816 	ofb->video_mem_phys = virt_to_phys(ofb->video_mem);
817 	ofb->video_mem_size = size;
818 
819 	ofb->fb.fix.smem_start	= ofb->video_mem_phys;
820 	ofb->fb.fix.smem_len	= ofb->fb.fix.line_length * var->yres_virtual;
821 	ofb->fb.screen_base	= ofb->video_mem;
822 	return 0;
823 }
824 
overlayfb_set_par(struct fb_info * info)825 static int overlayfb_set_par(struct fb_info *info)
826 {
827 	struct pxafb_layer *ofb = (struct pxafb_layer *)info;
828 	struct fb_var_screeninfo *var = &info->var;
829 	int xpos, ypos, pfor, bpp, ret;
830 
831 	ret = overlayfb_map_video_memory(ofb);
832 	if (ret)
833 		return ret;
834 
835 	bpp  = pxafb_var_to_bpp(var);
836 	xpos = NONSTD_TO_XPOS(var->nonstd);
837 	ypos = NONSTD_TO_XPOS(var->nonstd);
838 	pfor = NONSTD_TO_PFOR(var->nonstd);
839 
840 	ofb->control[0] = OVLxC1_PPL(var->xres) | OVLxC1_LPO(var->yres) |
841 			  OVLxC1_BPP(bpp);
842 	ofb->control[1] = OVLxC2_XPOS(xpos) | OVLxC2_YPOS(ypos);
843 
844 	if (ofb->id == OVERLAY2)
845 		ofb->control[1] |= OVL2C2_PFOR(pfor);
846 
847 	ofb->ops->setup(ofb);
848 	ofb->ops->enable(ofb);
849 	return 0;
850 }
851 
852 static struct fb_ops overlay_fb_ops = {
853 	.owner			= THIS_MODULE,
854 	.fb_open		= overlayfb_open,
855 	.fb_release		= overlayfb_release,
856 	.fb_check_var 		= overlayfb_check_var,
857 	.fb_set_par		= overlayfb_set_par,
858 };
859 
init_pxafb_overlay(struct pxafb_info * fbi,struct pxafb_layer * ofb,int id)860 static void __devinit init_pxafb_overlay(struct pxafb_info *fbi,
861 					 struct pxafb_layer *ofb, int id)
862 {
863 	sprintf(ofb->fb.fix.id, "overlay%d", id + 1);
864 
865 	ofb->fb.fix.type		= FB_TYPE_PACKED_PIXELS;
866 	ofb->fb.fix.xpanstep		= 0;
867 	ofb->fb.fix.ypanstep		= 1;
868 
869 	ofb->fb.var.activate		= FB_ACTIVATE_NOW;
870 	ofb->fb.var.height		= -1;
871 	ofb->fb.var.width		= -1;
872 	ofb->fb.var.vmode		= FB_VMODE_NONINTERLACED;
873 
874 	ofb->fb.fbops			= &overlay_fb_ops;
875 	ofb->fb.flags			= FBINFO_FLAG_DEFAULT;
876 	ofb->fb.node			= -1;
877 	ofb->fb.pseudo_palette		= NULL;
878 
879 	ofb->id = id;
880 	ofb->ops = &ofb_ops[id];
881 	atomic_set(&ofb->usage, 0);
882 	ofb->fbi = fbi;
883 	init_completion(&ofb->branch_done);
884 }
885 
pxafb_overlay_init(struct pxafb_info * fbi)886 static int __devinit pxafb_overlay_init(struct pxafb_info *fbi)
887 {
888 	int i, ret;
889 
890 	for (i = 0; i < 2; i++) {
891 		init_pxafb_overlay(fbi, &fbi->overlay[i], i);
892 		ret = register_framebuffer(&fbi->overlay[i].fb);
893 		if (ret) {
894 			dev_err(fbi->dev, "failed to register overlay %d\n", i);
895 			return ret;
896 		}
897 	}
898 
899 	/* mask all IU/BS/EOF/SOF interrupts */
900 	lcd_writel(fbi, LCCR5, ~0);
901 
902 	/* place overlay(s) on top of base */
903 	fbi->lccr0 |= LCCR0_OUC;
904 	pr_info("PXA Overlay driver loaded successfully!\n");
905 	return 0;
906 }
907 
pxafb_overlay_exit(struct pxafb_info * fbi)908 static void __devexit pxafb_overlay_exit(struct pxafb_info *fbi)
909 {
910 	int i;
911 
912 	for (i = 0; i < 2; i++)
913 		unregister_framebuffer(&fbi->overlay[i].fb);
914 }
915 #else
pxafb_overlay_init(struct pxafb_info * fbi)916 static inline void pxafb_overlay_init(struct pxafb_info *fbi) {}
pxafb_overlay_exit(struct pxafb_info * fbi)917 static inline void pxafb_overlay_exit(struct pxafb_info *fbi) {}
918 #endif /* CONFIG_FB_PXA_OVERLAY */
919 
920 /*
921  * Calculate the PCD value from the clock rate (in picoseconds).
922  * We take account of the PPCR clock setting.
923  * From PXA Developer's Manual:
924  *
925  *   PixelClock =      LCLK
926  *                -------------
927  *                2 ( PCD + 1 )
928  *
929  *   PCD =      LCLK
930  *         ------------- - 1
931  *         2(PixelClock)
932  *
933  * Where:
934  *   LCLK = LCD/Memory Clock
935  *   PCD = LCCR3[7:0]
936  *
937  * PixelClock here is in Hz while the pixclock argument given is the
938  * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
939  *
940  * The function get_lclk_frequency_10khz returns LCLK in units of
941  * 10khz. Calling the result of this function lclk gives us the
942  * following
943  *
944  *    PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
945  *          -------------------------------------- - 1
946  *                          2
947  *
948  * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
949  */
get_pcd(struct pxafb_info * fbi,unsigned int pixclock)950 static inline unsigned int get_pcd(struct pxafb_info *fbi,
951 				   unsigned int pixclock)
952 {
953 	unsigned long long pcd;
954 
955 	/* FIXME: Need to take into account Double Pixel Clock mode
956 	 * (DPC) bit? or perhaps set it based on the various clock
957 	 * speeds */
958 	pcd = (unsigned long long)(clk_get_rate(fbi->clk) / 10000);
959 	pcd *= pixclock;
960 	do_div(pcd, 100000000 * 2);
961 	/* no need for this, since we should subtract 1 anyway. they cancel */
962 	/* pcd += 1; */ /* make up for integer math truncations */
963 	return (unsigned int)pcd;
964 }
965 
966 /*
967  * Some touchscreens need hsync information from the video driver to
968  * function correctly. We export it here.  Note that 'hsync_time' and
969  * the value returned from pxafb_get_hsync_time() is the *reciprocal*
970  * of the hsync period in seconds.
971  */
set_hsync_time(struct pxafb_info * fbi,unsigned int pcd)972 static inline void set_hsync_time(struct pxafb_info *fbi, unsigned int pcd)
973 {
974 	unsigned long htime;
975 
976 	if ((pcd == 0) || (fbi->fb.var.hsync_len == 0)) {
977 		fbi->hsync_time = 0;
978 		return;
979 	}
980 
981 	htime = clk_get_rate(fbi->clk) / (pcd * fbi->fb.var.hsync_len);
982 
983 	fbi->hsync_time = htime;
984 }
985 
pxafb_get_hsync_time(struct device * dev)986 unsigned long pxafb_get_hsync_time(struct device *dev)
987 {
988 	struct pxafb_info *fbi = dev_get_drvdata(dev);
989 
990 	/* If display is blanked/suspended, hsync isn't active */
991 	if (!fbi || (fbi->state != C_ENABLE))
992 		return 0;
993 
994 	return fbi->hsync_time;
995 }
996 EXPORT_SYMBOL(pxafb_get_hsync_time);
997 
setup_frame_dma(struct pxafb_info * fbi,int dma,int pal,unsigned long start,size_t size)998 static int setup_frame_dma(struct pxafb_info *fbi, int dma, int pal,
999 			   unsigned long start, size_t size)
1000 {
1001 	struct pxafb_dma_descriptor *dma_desc, *pal_desc;
1002 	unsigned int dma_desc_off, pal_desc_off;
1003 
1004 	if (dma < 0 || dma >= DMA_MAX * 2)
1005 		return -EINVAL;
1006 
1007 	dma_desc = &fbi->dma_buff->dma_desc[dma];
1008 	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[dma]);
1009 
1010 	dma_desc->fsadr = start;
1011 	dma_desc->fidr  = 0;
1012 	dma_desc->ldcmd = size;
1013 
1014 	if (pal < 0 || pal >= PAL_MAX * 2) {
1015 		dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1016 		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1017 	} else {
1018 		pal_desc = &fbi->dma_buff->pal_desc[pal];
1019 		pal_desc_off = offsetof(struct pxafb_dma_buff, pal_desc[pal]);
1020 
1021 		pal_desc->fsadr = fbi->dma_buff_phys + pal * PALETTE_SIZE;
1022 		pal_desc->fidr  = 0;
1023 
1024 		if ((fbi->lccr4 & LCCR4_PAL_FOR_MASK) == LCCR4_PAL_FOR_0)
1025 			pal_desc->ldcmd = fbi->palette_size * sizeof(u16);
1026 		else
1027 			pal_desc->ldcmd = fbi->palette_size * sizeof(u32);
1028 
1029 		pal_desc->ldcmd |= LDCMD_PAL;
1030 
1031 		/* flip back and forth between palette and frame buffer */
1032 		pal_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1033 		dma_desc->fdadr = fbi->dma_buff_phys + pal_desc_off;
1034 		fbi->fdadr[dma] = fbi->dma_buff_phys + dma_desc_off;
1035 	}
1036 
1037 	return 0;
1038 }
1039 
setup_base_frame(struct pxafb_info * fbi,int branch)1040 static void setup_base_frame(struct pxafb_info *fbi, int branch)
1041 {
1042 	struct fb_var_screeninfo *var = &fbi->fb.var;
1043 	struct fb_fix_screeninfo *fix = &fbi->fb.fix;
1044 	int nbytes, dma, pal, bpp = var->bits_per_pixel;
1045 	unsigned long offset;
1046 
1047 	dma = DMA_BASE + (branch ? DMA_MAX : 0);
1048 	pal = (bpp >= 16) ? PAL_NONE : PAL_BASE + (branch ? PAL_MAX : 0);
1049 
1050 	nbytes = fix->line_length * var->yres;
1051 	offset = fix->line_length * var->yoffset + fbi->video_mem_phys;
1052 
1053 	if (fbi->lccr0 & LCCR0_SDS) {
1054 		nbytes = nbytes / 2;
1055 		setup_frame_dma(fbi, dma + 1, PAL_NONE, offset + nbytes, nbytes);
1056 	}
1057 
1058 	setup_frame_dma(fbi, dma, pal, offset, nbytes);
1059 }
1060 
1061 #ifdef CONFIG_FB_PXA_SMARTPANEL
setup_smart_dma(struct pxafb_info * fbi)1062 static int setup_smart_dma(struct pxafb_info *fbi)
1063 {
1064 	struct pxafb_dma_descriptor *dma_desc;
1065 	unsigned long dma_desc_off, cmd_buff_off;
1066 
1067 	dma_desc = &fbi->dma_buff->dma_desc[DMA_CMD];
1068 	dma_desc_off = offsetof(struct pxafb_dma_buff, dma_desc[DMA_CMD]);
1069 	cmd_buff_off = offsetof(struct pxafb_dma_buff, cmd_buff);
1070 
1071 	dma_desc->fdadr = fbi->dma_buff_phys + dma_desc_off;
1072 	dma_desc->fsadr = fbi->dma_buff_phys + cmd_buff_off;
1073 	dma_desc->fidr  = 0;
1074 	dma_desc->ldcmd = fbi->n_smart_cmds * sizeof(uint16_t);
1075 
1076 	fbi->fdadr[DMA_CMD] = dma_desc->fdadr;
1077 	return 0;
1078 }
1079 
pxafb_smart_flush(struct fb_info * info)1080 int pxafb_smart_flush(struct fb_info *info)
1081 {
1082 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1083 	uint32_t prsr;
1084 	int ret = 0;
1085 
1086 	/* disable controller until all registers are set up */
1087 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1088 
1089 	/* 1. make it an even number of commands to align on 32-bit boundary
1090 	 * 2. add the interrupt command to the end of the chain so we can
1091 	 *    keep track of the end of the transfer
1092 	 */
1093 
1094 	while (fbi->n_smart_cmds & 1)
1095 		fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_NOOP;
1096 
1097 	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_INTERRUPT;
1098 	fbi->smart_cmds[fbi->n_smart_cmds++] = SMART_CMD_WAIT_FOR_VSYNC;
1099 	setup_smart_dma(fbi);
1100 
1101 	/* continue to execute next command */
1102 	prsr = lcd_readl(fbi, PRSR) | PRSR_ST_OK | PRSR_CON_NT;
1103 	lcd_writel(fbi, PRSR, prsr);
1104 
1105 	/* stop the processor in case it executed "wait for sync" cmd */
1106 	lcd_writel(fbi, CMDCR, 0x0001);
1107 
1108 	/* don't send interrupts for fifo underruns on channel 6 */
1109 	lcd_writel(fbi, LCCR5, LCCR5_IUM(6));
1110 
1111 	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1112 	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1113 	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1114 	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1115 	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1116 	lcd_writel(fbi, FDADR6, fbi->fdadr[6]);
1117 
1118 	/* begin sending */
1119 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1120 
1121 	if (wait_for_completion_timeout(&fbi->command_done, HZ/2) == 0) {
1122 		pr_warning("%s: timeout waiting for command done\n",
1123 				__func__);
1124 		ret = -ETIMEDOUT;
1125 	}
1126 
1127 	/* quick disable */
1128 	prsr = lcd_readl(fbi, PRSR) & ~(PRSR_ST_OK | PRSR_CON_NT);
1129 	lcd_writel(fbi, PRSR, prsr);
1130 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1131 	lcd_writel(fbi, FDADR6, 0);
1132 	fbi->n_smart_cmds = 0;
1133 	return ret;
1134 }
1135 
pxafb_smart_queue(struct fb_info * info,uint16_t * cmds,int n_cmds)1136 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1137 {
1138 	int i;
1139 	struct pxafb_info *fbi = container_of(info, struct pxafb_info, fb);
1140 
1141 	for (i = 0; i < n_cmds; i++, cmds++) {
1142 		/* if it is a software delay, flush and delay */
1143 		if ((*cmds & 0xff00) == SMART_CMD_DELAY) {
1144 			pxafb_smart_flush(info);
1145 			mdelay(*cmds & 0xff);
1146 			continue;
1147 		}
1148 
1149 		/* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1150 		if (fbi->n_smart_cmds == CMD_BUFF_SIZE - 8)
1151 			pxafb_smart_flush(info);
1152 
1153 		fbi->smart_cmds[fbi->n_smart_cmds++] = *cmds;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
__smart_timing(unsigned time_ns,unsigned long lcd_clk)1159 static unsigned int __smart_timing(unsigned time_ns, unsigned long lcd_clk)
1160 {
1161 	unsigned int t = (time_ns * (lcd_clk / 1000000) / 1000);
1162 	return (t == 0) ? 1 : t;
1163 }
1164 
setup_smart_timing(struct pxafb_info * fbi,struct fb_var_screeninfo * var)1165 static void setup_smart_timing(struct pxafb_info *fbi,
1166 				struct fb_var_screeninfo *var)
1167 {
1168 	struct pxafb_mach_info *inf = fbi->dev->platform_data;
1169 	struct pxafb_mode_info *mode = &inf->modes[0];
1170 	unsigned long lclk = clk_get_rate(fbi->clk);
1171 	unsigned t1, t2, t3, t4;
1172 
1173 	t1 = max(mode->a0csrd_set_hld, mode->a0cswr_set_hld);
1174 	t2 = max(mode->rd_pulse_width, mode->wr_pulse_width);
1175 	t3 = mode->op_hold_time;
1176 	t4 = mode->cmd_inh_time;
1177 
1178 	fbi->reg_lccr1 =
1179 		LCCR1_DisWdth(var->xres) |
1180 		LCCR1_BegLnDel(__smart_timing(t1, lclk)) |
1181 		LCCR1_EndLnDel(__smart_timing(t2, lclk)) |
1182 		LCCR1_HorSnchWdth(__smart_timing(t3, lclk));
1183 
1184 	fbi->reg_lccr2 = LCCR2_DisHght(var->yres);
1185 	fbi->reg_lccr3 = fbi->lccr3 | LCCR3_PixClkDiv(__smart_timing(t4, lclk));
1186 	fbi->reg_lccr3 |= (var->sync & FB_SYNC_HOR_HIGH_ACT) ? LCCR3_HSP : 0;
1187 	fbi->reg_lccr3 |= (var->sync & FB_SYNC_VERT_HIGH_ACT) ? LCCR3_VSP : 0;
1188 
1189 	/* FIXME: make this configurable */
1190 	fbi->reg_cmdcr = 1;
1191 }
1192 
pxafb_smart_thread(void * arg)1193 static int pxafb_smart_thread(void *arg)
1194 {
1195 	struct pxafb_info *fbi = arg;
1196 	struct pxafb_mach_info *inf = fbi->dev->platform_data;
1197 
1198 	if (!fbi || !inf->smart_update) {
1199 		pr_err("%s: not properly initialized, thread terminated\n",
1200 				__func__);
1201 		return -EINVAL;
1202 	}
1203 
1204 	pr_debug("%s(): task starting\n", __func__);
1205 
1206 	set_freezable();
1207 	while (!kthread_should_stop()) {
1208 
1209 		if (try_to_freeze())
1210 			continue;
1211 
1212 		mutex_lock(&fbi->ctrlr_lock);
1213 
1214 		if (fbi->state == C_ENABLE) {
1215 			inf->smart_update(&fbi->fb);
1216 			complete(&fbi->refresh_done);
1217 		}
1218 
1219 		mutex_unlock(&fbi->ctrlr_lock);
1220 
1221 		set_current_state(TASK_INTERRUPTIBLE);
1222 		schedule_timeout(30 * HZ / 1000);
1223 	}
1224 
1225 	pr_debug("%s(): task ending\n", __func__);
1226 	return 0;
1227 }
1228 
pxafb_smart_init(struct pxafb_info * fbi)1229 static int pxafb_smart_init(struct pxafb_info *fbi)
1230 {
1231 	if (!(fbi->lccr0 & LCCR0_LCDT))
1232 		return 0;
1233 
1234 	fbi->smart_cmds = (uint16_t *) fbi->dma_buff->cmd_buff;
1235 	fbi->n_smart_cmds = 0;
1236 
1237 	init_completion(&fbi->command_done);
1238 	init_completion(&fbi->refresh_done);
1239 
1240 	fbi->smart_thread = kthread_run(pxafb_smart_thread, fbi,
1241 					"lcd_refresh");
1242 	if (IS_ERR(fbi->smart_thread)) {
1243 		pr_err("%s: unable to create kernel thread\n", __func__);
1244 		return PTR_ERR(fbi->smart_thread);
1245 	}
1246 
1247 	return 0;
1248 }
1249 #else
pxafb_smart_queue(struct fb_info * info,uint16_t * cmds,int n_cmds)1250 int pxafb_smart_queue(struct fb_info *info, uint16_t *cmds, int n_cmds)
1251 {
1252 	return 0;
1253 }
1254 
pxafb_smart_flush(struct fb_info * info)1255 int pxafb_smart_flush(struct fb_info *info)
1256 {
1257 	return 0;
1258 }
1259 
pxafb_smart_init(struct pxafb_info * fbi)1260 static inline int pxafb_smart_init(struct pxafb_info *fbi) { return 0; }
1261 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1262 
setup_parallel_timing(struct pxafb_info * fbi,struct fb_var_screeninfo * var)1263 static void setup_parallel_timing(struct pxafb_info *fbi,
1264 				  struct fb_var_screeninfo *var)
1265 {
1266 	unsigned int lines_per_panel, pcd = get_pcd(fbi, var->pixclock);
1267 
1268 	fbi->reg_lccr1 =
1269 		LCCR1_DisWdth(var->xres) +
1270 		LCCR1_HorSnchWdth(var->hsync_len) +
1271 		LCCR1_BegLnDel(var->left_margin) +
1272 		LCCR1_EndLnDel(var->right_margin);
1273 
1274 	/*
1275 	 * If we have a dual scan LCD, we need to halve
1276 	 * the YRES parameter.
1277 	 */
1278 	lines_per_panel = var->yres;
1279 	if ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual)
1280 		lines_per_panel /= 2;
1281 
1282 	fbi->reg_lccr2 =
1283 		LCCR2_DisHght(lines_per_panel) +
1284 		LCCR2_VrtSnchWdth(var->vsync_len) +
1285 		LCCR2_BegFrmDel(var->upper_margin) +
1286 		LCCR2_EndFrmDel(var->lower_margin);
1287 
1288 	fbi->reg_lccr3 = fbi->lccr3 |
1289 		(var->sync & FB_SYNC_HOR_HIGH_ACT ?
1290 		 LCCR3_HorSnchH : LCCR3_HorSnchL) |
1291 		(var->sync & FB_SYNC_VERT_HIGH_ACT ?
1292 		 LCCR3_VrtSnchH : LCCR3_VrtSnchL);
1293 
1294 	if (pcd) {
1295 		fbi->reg_lccr3 |= LCCR3_PixClkDiv(pcd);
1296 		set_hsync_time(fbi, pcd);
1297 	}
1298 }
1299 
1300 /*
1301  * pxafb_activate_var():
1302  *	Configures LCD Controller based on entries in var parameter.
1303  *	Settings are only written to the controller if changes were made.
1304  */
pxafb_activate_var(struct fb_var_screeninfo * var,struct pxafb_info * fbi)1305 static int pxafb_activate_var(struct fb_var_screeninfo *var,
1306 			      struct pxafb_info *fbi)
1307 {
1308 	u_long flags;
1309 
1310 	/* Update shadow copy atomically */
1311 	local_irq_save(flags);
1312 
1313 #ifdef CONFIG_FB_PXA_SMARTPANEL
1314 	if (fbi->lccr0 & LCCR0_LCDT)
1315 		setup_smart_timing(fbi, var);
1316 	else
1317 #endif
1318 		setup_parallel_timing(fbi, var);
1319 
1320 	setup_base_frame(fbi, 0);
1321 
1322 	fbi->reg_lccr0 = fbi->lccr0 |
1323 		(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
1324 		 LCCR0_QDM | LCCR0_BM  | LCCR0_OUM);
1325 
1326 	fbi->reg_lccr3 |= pxafb_var_to_lccr3(var);
1327 
1328 	fbi->reg_lccr4 = lcd_readl(fbi, LCCR4) & ~LCCR4_PAL_FOR_MASK;
1329 	fbi->reg_lccr4 |= (fbi->lccr4 & LCCR4_PAL_FOR_MASK);
1330 	local_irq_restore(flags);
1331 
1332 	/*
1333 	 * Only update the registers if the controller is enabled
1334 	 * and something has changed.
1335 	 */
1336 	if ((lcd_readl(fbi, LCCR0) != fbi->reg_lccr0) ||
1337 	    (lcd_readl(fbi, LCCR1) != fbi->reg_lccr1) ||
1338 	    (lcd_readl(fbi, LCCR2) != fbi->reg_lccr2) ||
1339 	    (lcd_readl(fbi, LCCR3) != fbi->reg_lccr3) ||
1340 	    (lcd_readl(fbi, LCCR4) != fbi->reg_lccr4) ||
1341 	    (lcd_readl(fbi, FDADR0) != fbi->fdadr[0]) ||
1342 	    (lcd_readl(fbi, FDADR1) != fbi->fdadr[1]))
1343 		pxafb_schedule_work(fbi, C_REENABLE);
1344 
1345 	return 0;
1346 }
1347 
1348 /*
1349  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
1350  * Do not call them directly; set_ctrlr_state does the correct serialisation
1351  * to ensure that things happen in the right way 100% of time time.
1352  *	-- rmk
1353  */
__pxafb_backlight_power(struct pxafb_info * fbi,int on)1354 static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
1355 {
1356 	pr_debug("pxafb: backlight o%s\n", on ? "n" : "ff");
1357 
1358 	if (fbi->backlight_power)
1359 		fbi->backlight_power(on);
1360 }
1361 
__pxafb_lcd_power(struct pxafb_info * fbi,int on)1362 static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
1363 {
1364 	pr_debug("pxafb: LCD power o%s\n", on ? "n" : "ff");
1365 
1366 	if (fbi->lcd_power)
1367 		fbi->lcd_power(on, &fbi->fb.var);
1368 }
1369 
pxafb_enable_controller(struct pxafb_info * fbi)1370 static void pxafb_enable_controller(struct pxafb_info *fbi)
1371 {
1372 	pr_debug("pxafb: Enabling LCD controller\n");
1373 	pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr[0]);
1374 	pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr[1]);
1375 	pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
1376 	pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
1377 	pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
1378 	pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
1379 
1380 	/* enable LCD controller clock */
1381 	clk_enable(fbi->clk);
1382 
1383 	if (fbi->lccr0 & LCCR0_LCDT)
1384 		return;
1385 
1386 	/* Sequence from 11.7.10 */
1387 	lcd_writel(fbi, LCCR4, fbi->reg_lccr4);
1388 	lcd_writel(fbi, LCCR3, fbi->reg_lccr3);
1389 	lcd_writel(fbi, LCCR2, fbi->reg_lccr2);
1390 	lcd_writel(fbi, LCCR1, fbi->reg_lccr1);
1391 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 & ~LCCR0_ENB);
1392 
1393 	lcd_writel(fbi, FDADR0, fbi->fdadr[0]);
1394 	lcd_writel(fbi, FDADR1, fbi->fdadr[1]);
1395 	lcd_writel(fbi, LCCR0, fbi->reg_lccr0 | LCCR0_ENB);
1396 }
1397 
pxafb_disable_controller(struct pxafb_info * fbi)1398 static void pxafb_disable_controller(struct pxafb_info *fbi)
1399 {
1400 	uint32_t lccr0;
1401 
1402 #ifdef CONFIG_FB_PXA_SMARTPANEL
1403 	if (fbi->lccr0 & LCCR0_LCDT) {
1404 		wait_for_completion_timeout(&fbi->refresh_done,
1405 				200 * HZ / 1000);
1406 		return;
1407 	}
1408 #endif
1409 
1410 	/* Clear LCD Status Register */
1411 	lcd_writel(fbi, LCSR, 0xffffffff);
1412 
1413 	lccr0 = lcd_readl(fbi, LCCR0) & ~LCCR0_LDM;
1414 	lcd_writel(fbi, LCCR0, lccr0);
1415 	lcd_writel(fbi, LCCR0, lccr0 | LCCR0_DIS);
1416 
1417 	wait_for_completion_timeout(&fbi->disable_done, 200 * HZ / 1000);
1418 
1419 	/* disable LCD controller clock */
1420 	clk_disable(fbi->clk);
1421 }
1422 
1423 /*
1424  *  pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1425  */
pxafb_handle_irq(int irq,void * dev_id)1426 static irqreturn_t pxafb_handle_irq(int irq, void *dev_id)
1427 {
1428 	struct pxafb_info *fbi = dev_id;
1429 	unsigned int lccr0, lcsr, lcsr1;
1430 
1431 	lcsr = lcd_readl(fbi, LCSR);
1432 	if (lcsr & LCSR_LDD) {
1433 		lccr0 = lcd_readl(fbi, LCCR0);
1434 		lcd_writel(fbi, LCCR0, lccr0 | LCCR0_LDM);
1435 		complete(&fbi->disable_done);
1436 	}
1437 
1438 #ifdef CONFIG_FB_PXA_SMARTPANEL
1439 	if (lcsr & LCSR_CMD_INT)
1440 		complete(&fbi->command_done);
1441 #endif
1442 	lcd_writel(fbi, LCSR, lcsr);
1443 
1444 #ifdef CONFIG_FB_PXA_OVERLAY
1445 	lcsr1 = lcd_readl(fbi, LCSR1);
1446 	if (lcsr1 & LCSR1_BS(1))
1447 		complete(&fbi->overlay[0].branch_done);
1448 
1449 	if (lcsr1 & LCSR1_BS(2))
1450 		complete(&fbi->overlay[1].branch_done);
1451 
1452 	lcd_writel(fbi, LCSR1, lcsr1);
1453 #endif
1454 	return IRQ_HANDLED;
1455 }
1456 
1457 /*
1458  * This function must be called from task context only, since it will
1459  * sleep when disabling the LCD controller, or if we get two contending
1460  * processes trying to alter state.
1461  */
set_ctrlr_state(struct pxafb_info * fbi,u_int state)1462 static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
1463 {
1464 	u_int old_state;
1465 
1466 	mutex_lock(&fbi->ctrlr_lock);
1467 
1468 	old_state = fbi->state;
1469 
1470 	/*
1471 	 * Hack around fbcon initialisation.
1472 	 */
1473 	if (old_state == C_STARTUP && state == C_REENABLE)
1474 		state = C_ENABLE;
1475 
1476 	switch (state) {
1477 	case C_DISABLE_CLKCHANGE:
1478 		/*
1479 		 * Disable controller for clock change.  If the
1480 		 * controller is already disabled, then do nothing.
1481 		 */
1482 		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
1483 			fbi->state = state;
1484 			/* TODO __pxafb_lcd_power(fbi, 0); */
1485 			pxafb_disable_controller(fbi);
1486 		}
1487 		break;
1488 
1489 	case C_DISABLE_PM:
1490 	case C_DISABLE:
1491 		/*
1492 		 * Disable controller
1493 		 */
1494 		if (old_state != C_DISABLE) {
1495 			fbi->state = state;
1496 			__pxafb_backlight_power(fbi, 0);
1497 			__pxafb_lcd_power(fbi, 0);
1498 			if (old_state != C_DISABLE_CLKCHANGE)
1499 				pxafb_disable_controller(fbi);
1500 		}
1501 		break;
1502 
1503 	case C_ENABLE_CLKCHANGE:
1504 		/*
1505 		 * Enable the controller after clock change.  Only
1506 		 * do this if we were disabled for the clock change.
1507 		 */
1508 		if (old_state == C_DISABLE_CLKCHANGE) {
1509 			fbi->state = C_ENABLE;
1510 			pxafb_enable_controller(fbi);
1511 			/* TODO __pxafb_lcd_power(fbi, 1); */
1512 		}
1513 		break;
1514 
1515 	case C_REENABLE:
1516 		/*
1517 		 * Re-enable the controller only if it was already
1518 		 * enabled.  This is so we reprogram the control
1519 		 * registers.
1520 		 */
1521 		if (old_state == C_ENABLE) {
1522 			__pxafb_lcd_power(fbi, 0);
1523 			pxafb_disable_controller(fbi);
1524 			pxafb_enable_controller(fbi);
1525 			__pxafb_lcd_power(fbi, 1);
1526 		}
1527 		break;
1528 
1529 	case C_ENABLE_PM:
1530 		/*
1531 		 * Re-enable the controller after PM.  This is not
1532 		 * perfect - think about the case where we were doing
1533 		 * a clock change, and we suspended half-way through.
1534 		 */
1535 		if (old_state != C_DISABLE_PM)
1536 			break;
1537 		/* fall through */
1538 
1539 	case C_ENABLE:
1540 		/*
1541 		 * Power up the LCD screen, enable controller, and
1542 		 * turn on the backlight.
1543 		 */
1544 		if (old_state != C_ENABLE) {
1545 			fbi->state = C_ENABLE;
1546 			pxafb_enable_controller(fbi);
1547 			__pxafb_lcd_power(fbi, 1);
1548 			__pxafb_backlight_power(fbi, 1);
1549 		}
1550 		break;
1551 	}
1552 	mutex_unlock(&fbi->ctrlr_lock);
1553 }
1554 
1555 /*
1556  * Our LCD controller task (which is called when we blank or unblank)
1557  * via keventd.
1558  */
pxafb_task(struct work_struct * work)1559 static void pxafb_task(struct work_struct *work)
1560 {
1561 	struct pxafb_info *fbi =
1562 		container_of(work, struct pxafb_info, task);
1563 	u_int state = xchg(&fbi->task_state, -1);
1564 
1565 	set_ctrlr_state(fbi, state);
1566 }
1567 
1568 #ifdef CONFIG_CPU_FREQ
1569 /*
1570  * CPU clock speed change handler.  We need to adjust the LCD timing
1571  * parameters when the CPU clock is adjusted by the power management
1572  * subsystem.
1573  *
1574  * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1575  */
1576 static int
pxafb_freq_transition(struct notifier_block * nb,unsigned long val,void * data)1577 pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
1578 {
1579 	struct pxafb_info *fbi = TO_INF(nb, freq_transition);
1580 	/* TODO struct cpufreq_freqs *f = data; */
1581 	u_int pcd;
1582 
1583 	switch (val) {
1584 	case CPUFREQ_PRECHANGE:
1585 		set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1586 		break;
1587 
1588 	case CPUFREQ_POSTCHANGE:
1589 		pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1590 		set_hsync_time(fbi, pcd);
1591 		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) |
1592 				  LCCR3_PixClkDiv(pcd);
1593 		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1594 		break;
1595 	}
1596 	return 0;
1597 }
1598 
1599 static int
pxafb_freq_policy(struct notifier_block * nb,unsigned long val,void * data)1600 pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
1601 {
1602 	struct pxafb_info *fbi = TO_INF(nb, freq_policy);
1603 	struct fb_var_screeninfo *var = &fbi->fb.var;
1604 	struct cpufreq_policy *policy = data;
1605 
1606 	switch (val) {
1607 	case CPUFREQ_ADJUST:
1608 	case CPUFREQ_INCOMPATIBLE:
1609 		pr_debug("min dma period: %d ps, "
1610 			"new clock %d kHz\n", pxafb_display_dma_period(var),
1611 			policy->max);
1612 		/* TODO: fill in min/max values */
1613 		break;
1614 	}
1615 	return 0;
1616 }
1617 #endif
1618 
1619 #ifdef CONFIG_PM
1620 /*
1621  * Power management hooks.  Note that we won't be called from IRQ context,
1622  * unlike the blank functions above, so we may sleep.
1623  */
pxafb_suspend(struct platform_device * dev,pm_message_t state)1624 static int pxafb_suspend(struct platform_device *dev, pm_message_t state)
1625 {
1626 	struct pxafb_info *fbi = platform_get_drvdata(dev);
1627 
1628 	set_ctrlr_state(fbi, C_DISABLE_PM);
1629 	return 0;
1630 }
1631 
pxafb_resume(struct platform_device * dev)1632 static int pxafb_resume(struct platform_device *dev)
1633 {
1634 	struct pxafb_info *fbi = platform_get_drvdata(dev);
1635 
1636 	set_ctrlr_state(fbi, C_ENABLE_PM);
1637 	return 0;
1638 }
1639 #else
1640 #define pxafb_suspend	NULL
1641 #define pxafb_resume	NULL
1642 #endif
1643 
pxafb_init_video_memory(struct pxafb_info * fbi)1644 static int __devinit pxafb_init_video_memory(struct pxafb_info *fbi)
1645 {
1646 	int size = PAGE_ALIGN(fbi->video_mem_size);
1647 
1648 	fbi->video_mem = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
1649 	if (fbi->video_mem == NULL)
1650 		return -ENOMEM;
1651 
1652 	fbi->video_mem_phys = virt_to_phys(fbi->video_mem);
1653 	fbi->video_mem_size = size;
1654 
1655 	fbi->fb.fix.smem_start	= fbi->video_mem_phys;
1656 	fbi->fb.fix.smem_len	= fbi->video_mem_size;
1657 	fbi->fb.screen_base	= fbi->video_mem;
1658 
1659 	return fbi->video_mem ? 0 : -ENOMEM;
1660 }
1661 
pxafb_decode_mach_info(struct pxafb_info * fbi,struct pxafb_mach_info * inf)1662 static void pxafb_decode_mach_info(struct pxafb_info *fbi,
1663 				   struct pxafb_mach_info *inf)
1664 {
1665 	unsigned int lcd_conn = inf->lcd_conn;
1666 	struct pxafb_mode_info *m;
1667 	int i;
1668 
1669 	fbi->cmap_inverse	= inf->cmap_inverse;
1670 	fbi->cmap_static	= inf->cmap_static;
1671 	fbi->lccr4 		= inf->lccr4;
1672 
1673 	switch (lcd_conn & LCD_TYPE_MASK) {
1674 	case LCD_TYPE_MONO_STN:
1675 		fbi->lccr0 = LCCR0_CMS;
1676 		break;
1677 	case LCD_TYPE_MONO_DSTN:
1678 		fbi->lccr0 = LCCR0_CMS | LCCR0_SDS;
1679 		break;
1680 	case LCD_TYPE_COLOR_STN:
1681 		fbi->lccr0 = 0;
1682 		break;
1683 	case LCD_TYPE_COLOR_DSTN:
1684 		fbi->lccr0 = LCCR0_SDS;
1685 		break;
1686 	case LCD_TYPE_COLOR_TFT:
1687 		fbi->lccr0 = LCCR0_PAS;
1688 		break;
1689 	case LCD_TYPE_SMART_PANEL:
1690 		fbi->lccr0 = LCCR0_LCDT | LCCR0_PAS;
1691 		break;
1692 	default:
1693 		/* fall back to backward compatibility way */
1694 		fbi->lccr0 = inf->lccr0;
1695 		fbi->lccr3 = inf->lccr3;
1696 		goto decode_mode;
1697 	}
1698 
1699 	if (lcd_conn == LCD_MONO_STN_8BPP)
1700 		fbi->lccr0 |= LCCR0_DPD;
1701 
1702 	fbi->lccr0 |= (lcd_conn & LCD_ALTERNATE_MAPPING) ? LCCR0_LDDALT : 0;
1703 
1704 	fbi->lccr3 = LCCR3_Acb((inf->lcd_conn >> 10) & 0xff);
1705 	fbi->lccr3 |= (lcd_conn & LCD_BIAS_ACTIVE_LOW) ? LCCR3_OEP : 0;
1706 	fbi->lccr3 |= (lcd_conn & LCD_PCLK_EDGE_FALL)  ? LCCR3_PCP : 0;
1707 
1708 decode_mode:
1709 	pxafb_setmode(&fbi->fb.var, &inf->modes[0]);
1710 
1711 	/* decide video memory size as follows:
1712 	 * 1. default to mode of maximum resolution
1713 	 * 2. allow platform to override
1714 	 * 3. allow module parameter to override
1715 	 */
1716 	for (i = 0, m = &inf->modes[0]; i < inf->num_modes; i++, m++)
1717 		fbi->video_mem_size = max_t(size_t, fbi->video_mem_size,
1718 				m->xres * m->yres * m->bpp / 8);
1719 
1720 	if (inf->video_mem_size > fbi->video_mem_size)
1721 		fbi->video_mem_size = inf->video_mem_size;
1722 
1723 	if (video_mem_size > fbi->video_mem_size)
1724 		fbi->video_mem_size = video_mem_size;
1725 }
1726 
pxafb_init_fbinfo(struct device * dev)1727 static struct pxafb_info * __devinit pxafb_init_fbinfo(struct device *dev)
1728 {
1729 	struct pxafb_info *fbi;
1730 	void *addr;
1731 	struct pxafb_mach_info *inf = dev->platform_data;
1732 
1733 	/* Alloc the pxafb_info and pseudo_palette in one step */
1734 	fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 16, GFP_KERNEL);
1735 	if (!fbi)
1736 		return NULL;
1737 
1738 	memset(fbi, 0, sizeof(struct pxafb_info));
1739 	fbi->dev = dev;
1740 
1741 	fbi->clk = clk_get(dev, NULL);
1742 	if (IS_ERR(fbi->clk)) {
1743 		kfree(fbi);
1744 		return NULL;
1745 	}
1746 
1747 	strcpy(fbi->fb.fix.id, PXA_NAME);
1748 
1749 	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1750 	fbi->fb.fix.type_aux	= 0;
1751 	fbi->fb.fix.xpanstep	= 0;
1752 	fbi->fb.fix.ypanstep	= 1;
1753 	fbi->fb.fix.ywrapstep	= 0;
1754 	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1755 
1756 	fbi->fb.var.nonstd	= 0;
1757 	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1758 	fbi->fb.var.height	= -1;
1759 	fbi->fb.var.width	= -1;
1760 	fbi->fb.var.accel_flags	= FB_ACCELF_TEXT;
1761 	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1762 
1763 	fbi->fb.fbops		= &pxafb_ops;
1764 	fbi->fb.flags		= FBINFO_DEFAULT;
1765 	fbi->fb.node		= -1;
1766 
1767 	addr = fbi;
1768 	addr = addr + sizeof(struct pxafb_info);
1769 	fbi->fb.pseudo_palette	= addr;
1770 
1771 	fbi->state		= C_STARTUP;
1772 	fbi->task_state		= (u_char)-1;
1773 
1774 	pxafb_decode_mach_info(fbi, inf);
1775 
1776 	init_waitqueue_head(&fbi->ctrlr_wait);
1777 	INIT_WORK(&fbi->task, pxafb_task);
1778 	mutex_init(&fbi->ctrlr_lock);
1779 	init_completion(&fbi->disable_done);
1780 
1781 	return fbi;
1782 }
1783 
1784 #ifdef CONFIG_FB_PXA_PARAMETERS
parse_opt_mode(struct device * dev,const char * this_opt)1785 static int __devinit parse_opt_mode(struct device *dev, const char *this_opt)
1786 {
1787 	struct pxafb_mach_info *inf = dev->platform_data;
1788 
1789 	const char *name = this_opt+5;
1790 	unsigned int namelen = strlen(name);
1791 	int res_specified = 0, bpp_specified = 0;
1792 	unsigned int xres = 0, yres = 0, bpp = 0;
1793 	int yres_specified = 0;
1794 	int i;
1795 	for (i = namelen-1; i >= 0; i--) {
1796 		switch (name[i]) {
1797 		case '-':
1798 			namelen = i;
1799 			if (!bpp_specified && !yres_specified) {
1800 				bpp = simple_strtoul(&name[i+1], NULL, 0);
1801 				bpp_specified = 1;
1802 			} else
1803 				goto done;
1804 			break;
1805 		case 'x':
1806 			if (!yres_specified) {
1807 				yres = simple_strtoul(&name[i+1], NULL, 0);
1808 				yres_specified = 1;
1809 			} else
1810 				goto done;
1811 			break;
1812 		case '0' ... '9':
1813 			break;
1814 		default:
1815 			goto done;
1816 		}
1817 	}
1818 	if (i < 0 && yres_specified) {
1819 		xres = simple_strtoul(name, NULL, 0);
1820 		res_specified = 1;
1821 	}
1822 done:
1823 	if (res_specified) {
1824 		dev_info(dev, "overriding resolution: %dx%d\n", xres, yres);
1825 		inf->modes[0].xres = xres; inf->modes[0].yres = yres;
1826 	}
1827 	if (bpp_specified)
1828 		switch (bpp) {
1829 		case 1:
1830 		case 2:
1831 		case 4:
1832 		case 8:
1833 		case 16:
1834 			inf->modes[0].bpp = bpp;
1835 			dev_info(dev, "overriding bit depth: %d\n", bpp);
1836 			break;
1837 		default:
1838 			dev_err(dev, "Depth %d is not valid\n", bpp);
1839 			return -EINVAL;
1840 		}
1841 	return 0;
1842 }
1843 
parse_opt(struct device * dev,char * this_opt)1844 static int __devinit parse_opt(struct device *dev, char *this_opt)
1845 {
1846 	struct pxafb_mach_info *inf = dev->platform_data;
1847 	struct pxafb_mode_info *mode = &inf->modes[0];
1848 	char s[64];
1849 
1850 	s[0] = '\0';
1851 
1852 	if (!strncmp(this_opt, "vmem:", 5)) {
1853 		video_mem_size = memparse(this_opt + 5, NULL);
1854 	} else if (!strncmp(this_opt, "mode:", 5)) {
1855 		return parse_opt_mode(dev, this_opt);
1856 	} else if (!strncmp(this_opt, "pixclock:", 9)) {
1857 		mode->pixclock = simple_strtoul(this_opt+9, NULL, 0);
1858 		sprintf(s, "pixclock: %ld\n", mode->pixclock);
1859 	} else if (!strncmp(this_opt, "left:", 5)) {
1860 		mode->left_margin = simple_strtoul(this_opt+5, NULL, 0);
1861 		sprintf(s, "left: %u\n", mode->left_margin);
1862 	} else if (!strncmp(this_opt, "right:", 6)) {
1863 		mode->right_margin = simple_strtoul(this_opt+6, NULL, 0);
1864 		sprintf(s, "right: %u\n", mode->right_margin);
1865 	} else if (!strncmp(this_opt, "upper:", 6)) {
1866 		mode->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
1867 		sprintf(s, "upper: %u\n", mode->upper_margin);
1868 	} else if (!strncmp(this_opt, "lower:", 6)) {
1869 		mode->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
1870 		sprintf(s, "lower: %u\n", mode->lower_margin);
1871 	} else if (!strncmp(this_opt, "hsynclen:", 9)) {
1872 		mode->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
1873 		sprintf(s, "hsynclen: %u\n", mode->hsync_len);
1874 	} else if (!strncmp(this_opt, "vsynclen:", 9)) {
1875 		mode->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
1876 		sprintf(s, "vsynclen: %u\n", mode->vsync_len);
1877 	} else if (!strncmp(this_opt, "hsync:", 6)) {
1878 		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1879 			sprintf(s, "hsync: Active Low\n");
1880 			mode->sync &= ~FB_SYNC_HOR_HIGH_ACT;
1881 		} else {
1882 			sprintf(s, "hsync: Active High\n");
1883 			mode->sync |= FB_SYNC_HOR_HIGH_ACT;
1884 		}
1885 	} else if (!strncmp(this_opt, "vsync:", 6)) {
1886 		if (simple_strtoul(this_opt+6, NULL, 0) == 0) {
1887 			sprintf(s, "vsync: Active Low\n");
1888 			mode->sync &= ~FB_SYNC_VERT_HIGH_ACT;
1889 		} else {
1890 			sprintf(s, "vsync: Active High\n");
1891 			mode->sync |= FB_SYNC_VERT_HIGH_ACT;
1892 		}
1893 	} else if (!strncmp(this_opt, "dpc:", 4)) {
1894 		if (simple_strtoul(this_opt+4, NULL, 0) == 0) {
1895 			sprintf(s, "double pixel clock: false\n");
1896 			inf->lccr3 &= ~LCCR3_DPC;
1897 		} else {
1898 			sprintf(s, "double pixel clock: true\n");
1899 			inf->lccr3 |= LCCR3_DPC;
1900 		}
1901 	} else if (!strncmp(this_opt, "outputen:", 9)) {
1902 		if (simple_strtoul(this_opt+9, NULL, 0) == 0) {
1903 			sprintf(s, "output enable: active low\n");
1904 			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnL;
1905 		} else {
1906 			sprintf(s, "output enable: active high\n");
1907 			inf->lccr3 = (inf->lccr3 & ~LCCR3_OEP) | LCCR3_OutEnH;
1908 		}
1909 	} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
1910 		if (simple_strtoul(this_opt+12, NULL, 0) == 0) {
1911 			sprintf(s, "pixel clock polarity: falling edge\n");
1912 			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixFlEdg;
1913 		} else {
1914 			sprintf(s, "pixel clock polarity: rising edge\n");
1915 			inf->lccr3 = (inf->lccr3 & ~LCCR3_PCP) | LCCR3_PixRsEdg;
1916 		}
1917 	} else if (!strncmp(this_opt, "color", 5)) {
1918 		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
1919 	} else if (!strncmp(this_opt, "mono", 4)) {
1920 		inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
1921 	} else if (!strncmp(this_opt, "active", 6)) {
1922 		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
1923 	} else if (!strncmp(this_opt, "passive", 7)) {
1924 		inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
1925 	} else if (!strncmp(this_opt, "single", 6)) {
1926 		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
1927 	} else if (!strncmp(this_opt, "dual", 4)) {
1928 		inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
1929 	} else if (!strncmp(this_opt, "4pix", 4)) {
1930 		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
1931 	} else if (!strncmp(this_opt, "8pix", 4)) {
1932 		inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
1933 	} else {
1934 		dev_err(dev, "unknown option: %s\n", this_opt);
1935 		return -EINVAL;
1936 	}
1937 
1938 	if (s[0] != '\0')
1939 		dev_info(dev, "override %s", s);
1940 
1941 	return 0;
1942 }
1943 
pxafb_parse_options(struct device * dev,char * options)1944 static int __devinit pxafb_parse_options(struct device *dev, char *options)
1945 {
1946 	char *this_opt;
1947 	int ret;
1948 
1949 	if (!options || !*options)
1950 		return 0;
1951 
1952 	dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
1953 
1954 	/* could be made table driven or similar?... */
1955 	while ((this_opt = strsep(&options, ",")) != NULL) {
1956 		ret = parse_opt(dev, this_opt);
1957 		if (ret)
1958 			return ret;
1959 	}
1960 	return 0;
1961 }
1962 
1963 static char g_options[256] __devinitdata = "";
1964 
1965 #ifndef MODULE
pxafb_setup_options(void)1966 static int __init pxafb_setup_options(void)
1967 {
1968 	char *options = NULL;
1969 
1970 	if (fb_get_options("pxafb", &options))
1971 		return -ENODEV;
1972 
1973 	if (options)
1974 		strlcpy(g_options, options, sizeof(g_options));
1975 
1976 	return 0;
1977 }
1978 #else
1979 #define pxafb_setup_options()		(0)
1980 
1981 module_param_string(options, g_options, sizeof(g_options), 0);
1982 MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
1983 #endif
1984 
1985 #else
1986 #define pxafb_parse_options(...)	(0)
1987 #define pxafb_setup_options()		(0)
1988 #endif
1989 
1990 #ifdef DEBUG_VAR
1991 /* Check for various illegal bit-combinations. Currently only
1992  * a warning is given. */
pxafb_check_options(struct device * dev,struct pxafb_mach_info * inf)1993 static void __devinit pxafb_check_options(struct device *dev,
1994 					  struct pxafb_mach_info *inf)
1995 {
1996 	if (inf->lcd_conn)
1997 		return;
1998 
1999 	if (inf->lccr0 & LCCR0_INVALID_CONFIG_MASK)
2000 		dev_warn(dev, "machine LCCR0 setting contains "
2001 				"illegal bits: %08x\n",
2002 			inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
2003 	if (inf->lccr3 & LCCR3_INVALID_CONFIG_MASK)
2004 		dev_warn(dev, "machine LCCR3 setting contains "
2005 				"illegal bits: %08x\n",
2006 			inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
2007 	if (inf->lccr0 & LCCR0_DPD &&
2008 	    ((inf->lccr0 & LCCR0_PAS) != LCCR0_Pas ||
2009 	     (inf->lccr0 & LCCR0_SDS) != LCCR0_Sngl ||
2010 	     (inf->lccr0 & LCCR0_CMS) != LCCR0_Mono))
2011 		dev_warn(dev, "Double Pixel Data (DPD) mode is "
2012 				"only valid in passive mono"
2013 				" single panel mode\n");
2014 	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
2015 	    (inf->lccr0 & LCCR0_SDS) == LCCR0_Dual)
2016 		dev_warn(dev, "Dual panel only valid in passive mode\n");
2017 	if ((inf->lccr0 & LCCR0_PAS) == LCCR0_Pas &&
2018 	     (inf->modes->upper_margin || inf->modes->lower_margin))
2019 		dev_warn(dev, "Upper and lower margins must be 0 in "
2020 				"passive mode\n");
2021 }
2022 #else
2023 #define pxafb_check_options(...)	do {} while (0)
2024 #endif
2025 
pxafb_probe(struct platform_device * dev)2026 static int __devinit pxafb_probe(struct platform_device *dev)
2027 {
2028 	struct pxafb_info *fbi;
2029 	struct pxafb_mach_info *inf;
2030 	struct resource *r;
2031 	int irq, ret;
2032 
2033 	dev_dbg(&dev->dev, "pxafb_probe\n");
2034 
2035 	inf = dev->dev.platform_data;
2036 	ret = -ENOMEM;
2037 	fbi = NULL;
2038 	if (!inf)
2039 		goto failed;
2040 
2041 	ret = pxafb_parse_options(&dev->dev, g_options);
2042 	if (ret < 0)
2043 		goto failed;
2044 
2045 	pxafb_check_options(&dev->dev, inf);
2046 
2047 	dev_dbg(&dev->dev, "got a %dx%dx%d LCD\n",
2048 			inf->modes->xres,
2049 			inf->modes->yres,
2050 			inf->modes->bpp);
2051 	if (inf->modes->xres == 0 ||
2052 	    inf->modes->yres == 0 ||
2053 	    inf->modes->bpp == 0) {
2054 		dev_err(&dev->dev, "Invalid resolution or bit depth\n");
2055 		ret = -EINVAL;
2056 		goto failed;
2057 	}
2058 
2059 	fbi = pxafb_init_fbinfo(&dev->dev);
2060 	if (!fbi) {
2061 		/* only reason for pxafb_init_fbinfo to fail is kmalloc */
2062 		dev_err(&dev->dev, "Failed to initialize framebuffer device\n");
2063 		ret = -ENOMEM;
2064 		goto failed;
2065 	}
2066 
2067 	fbi->backlight_power = inf->pxafb_backlight_power;
2068 	fbi->lcd_power = inf->pxafb_lcd_power;
2069 
2070 	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2071 	if (r == NULL) {
2072 		dev_err(&dev->dev, "no I/O memory resource defined\n");
2073 		ret = -ENODEV;
2074 		goto failed_fbi;
2075 	}
2076 
2077 	r = request_mem_region(r->start, r->end - r->start + 1, dev->name);
2078 	if (r == NULL) {
2079 		dev_err(&dev->dev, "failed to request I/O memory\n");
2080 		ret = -EBUSY;
2081 		goto failed_fbi;
2082 	}
2083 
2084 	fbi->mmio_base = ioremap(r->start, r->end - r->start + 1);
2085 	if (fbi->mmio_base == NULL) {
2086 		dev_err(&dev->dev, "failed to map I/O memory\n");
2087 		ret = -EBUSY;
2088 		goto failed_free_res;
2089 	}
2090 
2091 	fbi->dma_buff_size = PAGE_ALIGN(sizeof(struct pxafb_dma_buff));
2092 	fbi->dma_buff = dma_alloc_coherent(fbi->dev, fbi->dma_buff_size,
2093 				&fbi->dma_buff_phys, GFP_KERNEL);
2094 	if (fbi->dma_buff == NULL) {
2095 		dev_err(&dev->dev, "failed to allocate memory for DMA\n");
2096 		ret = -ENOMEM;
2097 		goto failed_free_io;
2098 	}
2099 
2100 	ret = pxafb_init_video_memory(fbi);
2101 	if (ret) {
2102 		dev_err(&dev->dev, "Failed to allocate video RAM: %d\n", ret);
2103 		ret = -ENOMEM;
2104 		goto failed_free_dma;
2105 	}
2106 
2107 	irq = platform_get_irq(dev, 0);
2108 	if (irq < 0) {
2109 		dev_err(&dev->dev, "no IRQ defined\n");
2110 		ret = -ENODEV;
2111 		goto failed_free_mem;
2112 	}
2113 
2114 	ret = request_irq(irq, pxafb_handle_irq, IRQF_DISABLED, "LCD", fbi);
2115 	if (ret) {
2116 		dev_err(&dev->dev, "request_irq failed: %d\n", ret);
2117 		ret = -EBUSY;
2118 		goto failed_free_mem;
2119 	}
2120 
2121 	ret = pxafb_smart_init(fbi);
2122 	if (ret) {
2123 		dev_err(&dev->dev, "failed to initialize smartpanel\n");
2124 		goto failed_free_irq;
2125 	}
2126 
2127 	/*
2128 	 * This makes sure that our colour bitfield
2129 	 * descriptors are correctly initialised.
2130 	 */
2131 	ret = pxafb_check_var(&fbi->fb.var, &fbi->fb);
2132 	if (ret) {
2133 		dev_err(&dev->dev, "failed to get suitable mode\n");
2134 		goto failed_free_irq;
2135 	}
2136 
2137 	ret = pxafb_set_par(&fbi->fb);
2138 	if (ret) {
2139 		dev_err(&dev->dev, "Failed to set parameters\n");
2140 		goto failed_free_irq;
2141 	}
2142 
2143 	platform_set_drvdata(dev, fbi);
2144 
2145 	ret = register_framebuffer(&fbi->fb);
2146 	if (ret < 0) {
2147 		dev_err(&dev->dev,
2148 			"Failed to register framebuffer device: %d\n", ret);
2149 		goto failed_free_cmap;
2150 	}
2151 
2152 	pxafb_overlay_init(fbi);
2153 
2154 #ifdef CONFIG_CPU_FREQ
2155 	fbi->freq_transition.notifier_call = pxafb_freq_transition;
2156 	fbi->freq_policy.notifier_call = pxafb_freq_policy;
2157 	cpufreq_register_notifier(&fbi->freq_transition,
2158 				CPUFREQ_TRANSITION_NOTIFIER);
2159 	cpufreq_register_notifier(&fbi->freq_policy,
2160 				CPUFREQ_POLICY_NOTIFIER);
2161 #endif
2162 
2163 	/*
2164 	 * Ok, now enable the LCD controller
2165 	 */
2166 	set_ctrlr_state(fbi, C_ENABLE);
2167 
2168 	return 0;
2169 
2170 failed_free_cmap:
2171 	if (fbi->fb.cmap.len)
2172 		fb_dealloc_cmap(&fbi->fb.cmap);
2173 failed_free_irq:
2174 	free_irq(irq, fbi);
2175 failed_free_mem:
2176 	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2177 failed_free_dma:
2178 	dma_free_coherent(&dev->dev, fbi->dma_buff_size,
2179 			fbi->dma_buff, fbi->dma_buff_phys);
2180 failed_free_io:
2181 	iounmap(fbi->mmio_base);
2182 failed_free_res:
2183 	release_mem_region(r->start, r->end - r->start + 1);
2184 failed_fbi:
2185 	clk_put(fbi->clk);
2186 	platform_set_drvdata(dev, NULL);
2187 	kfree(fbi);
2188 failed:
2189 	return ret;
2190 }
2191 
pxafb_remove(struct platform_device * dev)2192 static int __devexit pxafb_remove(struct platform_device *dev)
2193 {
2194 	struct pxafb_info *fbi = platform_get_drvdata(dev);
2195 	struct resource *r;
2196 	int irq;
2197 	struct fb_info *info;
2198 
2199 	if (!fbi)
2200 		return 0;
2201 
2202 	info = &fbi->fb;
2203 
2204 	pxafb_overlay_exit(fbi);
2205 	unregister_framebuffer(info);
2206 
2207 	pxafb_disable_controller(fbi);
2208 
2209 	if (fbi->fb.cmap.len)
2210 		fb_dealloc_cmap(&fbi->fb.cmap);
2211 
2212 	irq = platform_get_irq(dev, 0);
2213 	free_irq(irq, fbi);
2214 
2215 	free_pages_exact(fbi->video_mem, fbi->video_mem_size);
2216 
2217 	dma_free_writecombine(&dev->dev, fbi->dma_buff_size,
2218 			fbi->dma_buff, fbi->dma_buff_phys);
2219 
2220 	iounmap(fbi->mmio_base);
2221 
2222 	r = platform_get_resource(dev, IORESOURCE_MEM, 0);
2223 	release_mem_region(r->start, r->end - r->start + 1);
2224 
2225 	clk_put(fbi->clk);
2226 	kfree(fbi);
2227 
2228 	return 0;
2229 }
2230 
2231 static struct platform_driver pxafb_driver = {
2232 	.probe		= pxafb_probe,
2233 	.remove 	= __devexit_p(pxafb_remove),
2234 	.suspend	= pxafb_suspend,
2235 	.resume		= pxafb_resume,
2236 	.driver		= {
2237 		.owner	= THIS_MODULE,
2238 		.name	= "pxa2xx-fb",
2239 	},
2240 };
2241 
pxafb_init(void)2242 static int __init pxafb_init(void)
2243 {
2244 	if (pxafb_setup_options())
2245 		return -EINVAL;
2246 
2247 	return platform_driver_register(&pxafb_driver);
2248 }
2249 
pxafb_exit(void)2250 static void __exit pxafb_exit(void)
2251 {
2252 	platform_driver_unregister(&pxafb_driver);
2253 }
2254 
2255 module_init(pxafb_init);
2256 module_exit(pxafb_exit);
2257 
2258 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2259 MODULE_LICENSE("GPL");
2260