1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 *
9 * See ../COPYING for licensing terms.
10 */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19
20 #define DEBUG 0
21
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38
39 #if DEBUG > 1
40 #define dprintk printk
41 #else
42 #define dprintk(x...) do { ; } while (0)
43 #endif
44
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr; /* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50
51 static struct kmem_cache *kiocb_cachep;
52 static struct kmem_cache *kioctx_cachep;
53
54 static struct workqueue_struct *aio_wq;
55
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65
66 /* aio_setup
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
69 */
aio_setup(void)70 static int __init aio_setup(void)
71 {
72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74
75 aio_wq = create_workqueue("aio");
76
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78
79 return 0;
80 }
81
aio_free_ring(struct kioctx * ctx)82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 struct aio_ring_info *info = &ctx->ring_info;
85 long i;
86
87 for (i=0; i<info->nr_pages; i++)
88 put_page(info->ring_pages[i]);
89
90 if (info->mmap_size) {
91 down_write(&ctx->mm->mmap_sem);
92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 up_write(&ctx->mm->mmap_sem);
94 }
95
96 if (info->ring_pages && info->ring_pages != info->internal_pages)
97 kfree(info->ring_pages);
98 info->ring_pages = NULL;
99 info->nr = 0;
100 }
101
aio_setup_ring(struct kioctx * ctx)102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 struct aio_ring *ring;
105 struct aio_ring_info *info = &ctx->ring_info;
106 unsigned nr_events = ctx->max_reqs;
107 unsigned long size;
108 int nr_pages;
109
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events += 2; /* 1 is required, 2 for good luck */
112
113 size = sizeof(struct aio_ring);
114 size += sizeof(struct io_event) * nr_events;
115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116
117 if (nr_pages < 0)
118 return -EINVAL;
119
120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121
122 info->nr = 0;
123 info->ring_pages = info->internal_pages;
124 if (nr_pages > AIO_RING_PAGES) {
125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 if (!info->ring_pages)
127 return -ENOMEM;
128 }
129
130 info->mmap_size = nr_pages * PAGE_SIZE;
131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 down_write(&ctx->mm->mmap_sem);
133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 0);
136 if (IS_ERR((void *)info->mmap_base)) {
137 up_write(&ctx->mm->mmap_sem);
138 info->mmap_size = 0;
139 aio_free_ring(ctx);
140 return -EAGAIN;
141 }
142
143 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 info->nr_pages = get_user_pages(current, ctx->mm,
145 info->mmap_base, nr_pages,
146 1, 0, info->ring_pages, NULL);
147 up_write(&ctx->mm->mmap_sem);
148
149 if (unlikely(info->nr_pages != nr_pages)) {
150 aio_free_ring(ctx);
151 return -EAGAIN;
152 }
153
154 ctx->user_id = info->mmap_base;
155
156 info->nr = nr_events; /* trusted copy */
157
158 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 ring->nr = nr_events; /* user copy */
160 ring->id = ctx->user_id;
161 ring->head = ring->tail = 0;
162 ring->magic = AIO_RING_MAGIC;
163 ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 ring->header_length = sizeof(struct aio_ring);
166 kunmap_atomic(ring, KM_USER0);
167
168 return 0;
169 }
170
171
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
174 */
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
185 __event; \
186 })
187
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
190 (void)__event; \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193
ctx_rcu_free(struct rcu_head * head)194 static void ctx_rcu_free(struct rcu_head *head)
195 {
196 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
197 unsigned nr_events = ctx->max_reqs;
198
199 kmem_cache_free(kioctx_cachep, ctx);
200
201 if (nr_events) {
202 spin_lock(&aio_nr_lock);
203 BUG_ON(aio_nr - nr_events > aio_nr);
204 aio_nr -= nr_events;
205 spin_unlock(&aio_nr_lock);
206 }
207 }
208
209 /* __put_ioctx
210 * Called when the last user of an aio context has gone away,
211 * and the struct needs to be freed.
212 */
__put_ioctx(struct kioctx * ctx)213 static void __put_ioctx(struct kioctx *ctx)
214 {
215 BUG_ON(ctx->reqs_active);
216
217 cancel_delayed_work(&ctx->wq);
218 cancel_work_sync(&ctx->wq.work);
219 aio_free_ring(ctx);
220 mmdrop(ctx->mm);
221 ctx->mm = NULL;
222 pr_debug("__put_ioctx: freeing %p\n", ctx);
223 call_rcu(&ctx->rcu_head, ctx_rcu_free);
224 }
225
226 #define get_ioctx(kioctx) do { \
227 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
228 atomic_inc(&(kioctx)->users); \
229 } while (0)
230 #define put_ioctx(kioctx) do { \
231 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
232 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
233 __put_ioctx(kioctx); \
234 } while (0)
235
236 /* ioctx_alloc
237 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
238 */
ioctx_alloc(unsigned nr_events)239 static struct kioctx *ioctx_alloc(unsigned nr_events)
240 {
241 struct mm_struct *mm;
242 struct kioctx *ctx;
243 int did_sync = 0;
244
245 /* Prevent overflows */
246 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
247 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
248 pr_debug("ENOMEM: nr_events too high\n");
249 return ERR_PTR(-EINVAL);
250 }
251
252 if ((unsigned long)nr_events > aio_max_nr)
253 return ERR_PTR(-EAGAIN);
254
255 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
256 if (!ctx)
257 return ERR_PTR(-ENOMEM);
258
259 ctx->max_reqs = nr_events;
260 mm = ctx->mm = current->mm;
261 atomic_inc(&mm->mm_count);
262
263 atomic_set(&ctx->users, 1);
264 spin_lock_init(&ctx->ctx_lock);
265 spin_lock_init(&ctx->ring_info.ring_lock);
266 init_waitqueue_head(&ctx->wait);
267
268 INIT_LIST_HEAD(&ctx->active_reqs);
269 INIT_LIST_HEAD(&ctx->run_list);
270 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
271
272 if (aio_setup_ring(ctx) < 0)
273 goto out_freectx;
274
275 /* limit the number of system wide aios */
276 do {
277 spin_lock_bh(&aio_nr_lock);
278 if (aio_nr + nr_events > aio_max_nr ||
279 aio_nr + nr_events < aio_nr)
280 ctx->max_reqs = 0;
281 else
282 aio_nr += ctx->max_reqs;
283 spin_unlock_bh(&aio_nr_lock);
284 if (ctx->max_reqs || did_sync)
285 break;
286
287 /* wait for rcu callbacks to have completed before giving up */
288 synchronize_rcu();
289 did_sync = 1;
290 ctx->max_reqs = nr_events;
291 } while (1);
292
293 if (ctx->max_reqs == 0)
294 goto out_cleanup;
295
296 /* now link into global list. */
297 spin_lock(&mm->ioctx_lock);
298 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
299 spin_unlock(&mm->ioctx_lock);
300
301 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
302 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
303 return ctx;
304
305 out_cleanup:
306 __put_ioctx(ctx);
307 return ERR_PTR(-EAGAIN);
308
309 out_freectx:
310 mmdrop(mm);
311 kmem_cache_free(kioctx_cachep, ctx);
312 ctx = ERR_PTR(-ENOMEM);
313
314 dprintk("aio: error allocating ioctx %p\n", ctx);
315 return ctx;
316 }
317
318 /* aio_cancel_all
319 * Cancels all outstanding aio requests on an aio context. Used
320 * when the processes owning a context have all exited to encourage
321 * the rapid destruction of the kioctx.
322 */
aio_cancel_all(struct kioctx * ctx)323 static void aio_cancel_all(struct kioctx *ctx)
324 {
325 int (*cancel)(struct kiocb *, struct io_event *);
326 struct io_event res;
327 spin_lock_irq(&ctx->ctx_lock);
328 ctx->dead = 1;
329 while (!list_empty(&ctx->active_reqs)) {
330 struct list_head *pos = ctx->active_reqs.next;
331 struct kiocb *iocb = list_kiocb(pos);
332 list_del_init(&iocb->ki_list);
333 cancel = iocb->ki_cancel;
334 kiocbSetCancelled(iocb);
335 if (cancel) {
336 iocb->ki_users++;
337 spin_unlock_irq(&ctx->ctx_lock);
338 cancel(iocb, &res);
339 spin_lock_irq(&ctx->ctx_lock);
340 }
341 }
342 spin_unlock_irq(&ctx->ctx_lock);
343 }
344
wait_for_all_aios(struct kioctx * ctx)345 static void wait_for_all_aios(struct kioctx *ctx)
346 {
347 struct task_struct *tsk = current;
348 DECLARE_WAITQUEUE(wait, tsk);
349
350 spin_lock_irq(&ctx->ctx_lock);
351 if (!ctx->reqs_active)
352 goto out;
353
354 add_wait_queue(&ctx->wait, &wait);
355 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
356 while (ctx->reqs_active) {
357 spin_unlock_irq(&ctx->ctx_lock);
358 io_schedule();
359 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
360 spin_lock_irq(&ctx->ctx_lock);
361 }
362 __set_task_state(tsk, TASK_RUNNING);
363 remove_wait_queue(&ctx->wait, &wait);
364
365 out:
366 spin_unlock_irq(&ctx->ctx_lock);
367 }
368
369 /* wait_on_sync_kiocb:
370 * Waits on the given sync kiocb to complete.
371 */
wait_on_sync_kiocb(struct kiocb * iocb)372 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
373 {
374 while (iocb->ki_users) {
375 set_current_state(TASK_UNINTERRUPTIBLE);
376 if (!iocb->ki_users)
377 break;
378 io_schedule();
379 }
380 __set_current_state(TASK_RUNNING);
381 return iocb->ki_user_data;
382 }
383
384 /* exit_aio: called when the last user of mm goes away. At this point,
385 * there is no way for any new requests to be submited or any of the
386 * io_* syscalls to be called on the context. However, there may be
387 * outstanding requests which hold references to the context; as they
388 * go away, they will call put_ioctx and release any pinned memory
389 * associated with the request (held via struct page * references).
390 */
exit_aio(struct mm_struct * mm)391 void exit_aio(struct mm_struct *mm)
392 {
393 struct kioctx *ctx;
394
395 while (!hlist_empty(&mm->ioctx_list)) {
396 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
397 hlist_del_rcu(&ctx->list);
398
399 aio_cancel_all(ctx);
400
401 wait_for_all_aios(ctx);
402 /*
403 * Ensure we don't leave the ctx on the aio_wq
404 */
405 cancel_work_sync(&ctx->wq.work);
406
407 if (1 != atomic_read(&ctx->users))
408 printk(KERN_DEBUG
409 "exit_aio:ioctx still alive: %d %d %d\n",
410 atomic_read(&ctx->users), ctx->dead,
411 ctx->reqs_active);
412 put_ioctx(ctx);
413 }
414 }
415
416 /* aio_get_req
417 * Allocate a slot for an aio request. Increments the users count
418 * of the kioctx so that the kioctx stays around until all requests are
419 * complete. Returns NULL if no requests are free.
420 *
421 * Returns with kiocb->users set to 2. The io submit code path holds
422 * an extra reference while submitting the i/o.
423 * This prevents races between the aio code path referencing the
424 * req (after submitting it) and aio_complete() freeing the req.
425 */
__aio_get_req(struct kioctx * ctx)426 static struct kiocb *__aio_get_req(struct kioctx *ctx)
427 {
428 struct kiocb *req = NULL;
429 struct aio_ring *ring;
430 int okay = 0;
431
432 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
433 if (unlikely(!req))
434 return NULL;
435
436 req->ki_flags = 0;
437 req->ki_users = 2;
438 req->ki_key = 0;
439 req->ki_ctx = ctx;
440 req->ki_cancel = NULL;
441 req->ki_retry = NULL;
442 req->ki_dtor = NULL;
443 req->private = NULL;
444 req->ki_iovec = NULL;
445 INIT_LIST_HEAD(&req->ki_run_list);
446 req->ki_eventfd = NULL;
447
448 /* Check if the completion queue has enough free space to
449 * accept an event from this io.
450 */
451 spin_lock_irq(&ctx->ctx_lock);
452 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
453 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
454 list_add(&req->ki_list, &ctx->active_reqs);
455 ctx->reqs_active++;
456 okay = 1;
457 }
458 kunmap_atomic(ring, KM_USER0);
459 spin_unlock_irq(&ctx->ctx_lock);
460
461 if (!okay) {
462 kmem_cache_free(kiocb_cachep, req);
463 req = NULL;
464 }
465
466 return req;
467 }
468
aio_get_req(struct kioctx * ctx)469 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
470 {
471 struct kiocb *req;
472 /* Handle a potential starvation case -- should be exceedingly rare as
473 * requests will be stuck on fput_head only if the aio_fput_routine is
474 * delayed and the requests were the last user of the struct file.
475 */
476 req = __aio_get_req(ctx);
477 if (unlikely(NULL == req)) {
478 aio_fput_routine(NULL);
479 req = __aio_get_req(ctx);
480 }
481 return req;
482 }
483
really_put_req(struct kioctx * ctx,struct kiocb * req)484 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
485 {
486 assert_spin_locked(&ctx->ctx_lock);
487
488 if (req->ki_dtor)
489 req->ki_dtor(req);
490 if (req->ki_iovec != &req->ki_inline_vec)
491 kfree(req->ki_iovec);
492 kmem_cache_free(kiocb_cachep, req);
493 ctx->reqs_active--;
494
495 if (unlikely(!ctx->reqs_active && ctx->dead))
496 wake_up(&ctx->wait);
497 }
498
aio_fput_routine(struct work_struct * data)499 static void aio_fput_routine(struct work_struct *data)
500 {
501 spin_lock_irq(&fput_lock);
502 while (likely(!list_empty(&fput_head))) {
503 struct kiocb *req = list_kiocb(fput_head.next);
504 struct kioctx *ctx = req->ki_ctx;
505
506 list_del(&req->ki_list);
507 spin_unlock_irq(&fput_lock);
508
509 /* Complete the fput(s) */
510 if (req->ki_filp != NULL)
511 __fput(req->ki_filp);
512 if (req->ki_eventfd != NULL)
513 __fput(req->ki_eventfd);
514
515 /* Link the iocb into the context's free list */
516 spin_lock_irq(&ctx->ctx_lock);
517 really_put_req(ctx, req);
518 spin_unlock_irq(&ctx->ctx_lock);
519
520 put_ioctx(ctx);
521 spin_lock_irq(&fput_lock);
522 }
523 spin_unlock_irq(&fput_lock);
524 }
525
526 /* __aio_put_req
527 * Returns true if this put was the last user of the request.
528 */
__aio_put_req(struct kioctx * ctx,struct kiocb * req)529 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
530 {
531 int schedule_putreq = 0;
532
533 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
534 req, atomic_long_read(&req->ki_filp->f_count));
535
536 assert_spin_locked(&ctx->ctx_lock);
537
538 req->ki_users--;
539 BUG_ON(req->ki_users < 0);
540 if (likely(req->ki_users))
541 return 0;
542 list_del(&req->ki_list); /* remove from active_reqs */
543 req->ki_cancel = NULL;
544 req->ki_retry = NULL;
545
546 /*
547 * Try to optimize the aio and eventfd file* puts, by avoiding to
548 * schedule work in case it is not __fput() time. In normal cases,
549 * we would not be holding the last reference to the file*, so
550 * this function will be executed w/out any aio kthread wakeup.
551 */
552 if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count)))
553 schedule_putreq++;
554 else
555 req->ki_filp = NULL;
556 if (req->ki_eventfd != NULL) {
557 if (unlikely(atomic_long_dec_and_test(&req->ki_eventfd->f_count)))
558 schedule_putreq++;
559 else
560 req->ki_eventfd = NULL;
561 }
562 if (unlikely(schedule_putreq)) {
563 get_ioctx(ctx);
564 spin_lock(&fput_lock);
565 list_add(&req->ki_list, &fput_head);
566 spin_unlock(&fput_lock);
567 queue_work(aio_wq, &fput_work);
568 } else
569 really_put_req(ctx, req);
570 return 1;
571 }
572
573 /* aio_put_req
574 * Returns true if this put was the last user of the kiocb,
575 * false if the request is still in use.
576 */
aio_put_req(struct kiocb * req)577 int aio_put_req(struct kiocb *req)
578 {
579 struct kioctx *ctx = req->ki_ctx;
580 int ret;
581 spin_lock_irq(&ctx->ctx_lock);
582 ret = __aio_put_req(ctx, req);
583 spin_unlock_irq(&ctx->ctx_lock);
584 return ret;
585 }
586
lookup_ioctx(unsigned long ctx_id)587 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
588 {
589 struct mm_struct *mm = current->mm;
590 struct kioctx *ctx, *ret = NULL;
591 struct hlist_node *n;
592
593 rcu_read_lock();
594
595 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
596 if (ctx->user_id == ctx_id && !ctx->dead) {
597 get_ioctx(ctx);
598 ret = ctx;
599 break;
600 }
601 }
602
603 rcu_read_unlock();
604 return ret;
605 }
606
607 /*
608 * use_mm
609 * Makes the calling kernel thread take on the specified
610 * mm context.
611 * Called by the retry thread execute retries within the
612 * iocb issuer's mm context, so that copy_from/to_user
613 * operations work seamlessly for aio.
614 * (Note: this routine is intended to be called only
615 * from a kernel thread context)
616 */
use_mm(struct mm_struct * mm)617 static void use_mm(struct mm_struct *mm)
618 {
619 struct mm_struct *active_mm;
620 struct task_struct *tsk = current;
621
622 task_lock(tsk);
623 active_mm = tsk->active_mm;
624 atomic_inc(&mm->mm_count);
625 tsk->mm = mm;
626 tsk->active_mm = mm;
627 switch_mm(active_mm, mm, tsk);
628 task_unlock(tsk);
629
630 mmdrop(active_mm);
631 }
632
633 /*
634 * unuse_mm
635 * Reverses the effect of use_mm, i.e. releases the
636 * specified mm context which was earlier taken on
637 * by the calling kernel thread
638 * (Note: this routine is intended to be called only
639 * from a kernel thread context)
640 */
unuse_mm(struct mm_struct * mm)641 static void unuse_mm(struct mm_struct *mm)
642 {
643 struct task_struct *tsk = current;
644
645 task_lock(tsk);
646 tsk->mm = NULL;
647 /* active_mm is still 'mm' */
648 enter_lazy_tlb(mm, tsk);
649 task_unlock(tsk);
650 }
651
652 /*
653 * Queue up a kiocb to be retried. Assumes that the kiocb
654 * has already been marked as kicked, and places it on
655 * the retry run list for the corresponding ioctx, if it
656 * isn't already queued. Returns 1 if it actually queued
657 * the kiocb (to tell the caller to activate the work
658 * queue to process it), or 0, if it found that it was
659 * already queued.
660 */
__queue_kicked_iocb(struct kiocb * iocb)661 static inline int __queue_kicked_iocb(struct kiocb *iocb)
662 {
663 struct kioctx *ctx = iocb->ki_ctx;
664
665 assert_spin_locked(&ctx->ctx_lock);
666
667 if (list_empty(&iocb->ki_run_list)) {
668 list_add_tail(&iocb->ki_run_list,
669 &ctx->run_list);
670 return 1;
671 }
672 return 0;
673 }
674
675 /* aio_run_iocb
676 * This is the core aio execution routine. It is
677 * invoked both for initial i/o submission and
678 * subsequent retries via the aio_kick_handler.
679 * Expects to be invoked with iocb->ki_ctx->lock
680 * already held. The lock is released and reacquired
681 * as needed during processing.
682 *
683 * Calls the iocb retry method (already setup for the
684 * iocb on initial submission) for operation specific
685 * handling, but takes care of most of common retry
686 * execution details for a given iocb. The retry method
687 * needs to be non-blocking as far as possible, to avoid
688 * holding up other iocbs waiting to be serviced by the
689 * retry kernel thread.
690 *
691 * The trickier parts in this code have to do with
692 * ensuring that only one retry instance is in progress
693 * for a given iocb at any time. Providing that guarantee
694 * simplifies the coding of individual aio operations as
695 * it avoids various potential races.
696 */
aio_run_iocb(struct kiocb * iocb)697 static ssize_t aio_run_iocb(struct kiocb *iocb)
698 {
699 struct kioctx *ctx = iocb->ki_ctx;
700 ssize_t (*retry)(struct kiocb *);
701 ssize_t ret;
702
703 if (!(retry = iocb->ki_retry)) {
704 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
705 return 0;
706 }
707
708 /*
709 * We don't want the next retry iteration for this
710 * operation to start until this one has returned and
711 * updated the iocb state. However, wait_queue functions
712 * can trigger a kick_iocb from interrupt context in the
713 * meantime, indicating that data is available for the next
714 * iteration. We want to remember that and enable the
715 * next retry iteration _after_ we are through with
716 * this one.
717 *
718 * So, in order to be able to register a "kick", but
719 * prevent it from being queued now, we clear the kick
720 * flag, but make the kick code *think* that the iocb is
721 * still on the run list until we are actually done.
722 * When we are done with this iteration, we check if
723 * the iocb was kicked in the meantime and if so, queue
724 * it up afresh.
725 */
726
727 kiocbClearKicked(iocb);
728
729 /*
730 * This is so that aio_complete knows it doesn't need to
731 * pull the iocb off the run list (We can't just call
732 * INIT_LIST_HEAD because we don't want a kick_iocb to
733 * queue this on the run list yet)
734 */
735 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
736 spin_unlock_irq(&ctx->ctx_lock);
737
738 /* Quit retrying if the i/o has been cancelled */
739 if (kiocbIsCancelled(iocb)) {
740 ret = -EINTR;
741 aio_complete(iocb, ret, 0);
742 /* must not access the iocb after this */
743 goto out;
744 }
745
746 /*
747 * Now we are all set to call the retry method in async
748 * context.
749 */
750 ret = retry(iocb);
751
752 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
753 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
754 aio_complete(iocb, ret, 0);
755 }
756 out:
757 spin_lock_irq(&ctx->ctx_lock);
758
759 if (-EIOCBRETRY == ret) {
760 /*
761 * OK, now that we are done with this iteration
762 * and know that there is more left to go,
763 * this is where we let go so that a subsequent
764 * "kick" can start the next iteration
765 */
766
767 /* will make __queue_kicked_iocb succeed from here on */
768 INIT_LIST_HEAD(&iocb->ki_run_list);
769 /* we must queue the next iteration ourselves, if it
770 * has already been kicked */
771 if (kiocbIsKicked(iocb)) {
772 __queue_kicked_iocb(iocb);
773
774 /*
775 * __queue_kicked_iocb will always return 1 here, because
776 * iocb->ki_run_list is empty at this point so it should
777 * be safe to unconditionally queue the context into the
778 * work queue.
779 */
780 aio_queue_work(ctx);
781 }
782 }
783 return ret;
784 }
785
786 /*
787 * __aio_run_iocbs:
788 * Process all pending retries queued on the ioctx
789 * run list.
790 * Assumes it is operating within the aio issuer's mm
791 * context.
792 */
__aio_run_iocbs(struct kioctx * ctx)793 static int __aio_run_iocbs(struct kioctx *ctx)
794 {
795 struct kiocb *iocb;
796 struct list_head run_list;
797
798 assert_spin_locked(&ctx->ctx_lock);
799
800 list_replace_init(&ctx->run_list, &run_list);
801 while (!list_empty(&run_list)) {
802 iocb = list_entry(run_list.next, struct kiocb,
803 ki_run_list);
804 list_del(&iocb->ki_run_list);
805 /*
806 * Hold an extra reference while retrying i/o.
807 */
808 iocb->ki_users++; /* grab extra reference */
809 aio_run_iocb(iocb);
810 __aio_put_req(ctx, iocb);
811 }
812 if (!list_empty(&ctx->run_list))
813 return 1;
814 return 0;
815 }
816
aio_queue_work(struct kioctx * ctx)817 static void aio_queue_work(struct kioctx * ctx)
818 {
819 unsigned long timeout;
820 /*
821 * if someone is waiting, get the work started right
822 * away, otherwise, use a longer delay
823 */
824 smp_mb();
825 if (waitqueue_active(&ctx->wait))
826 timeout = 1;
827 else
828 timeout = HZ/10;
829 queue_delayed_work(aio_wq, &ctx->wq, timeout);
830 }
831
832
833 /*
834 * aio_run_iocbs:
835 * Process all pending retries queued on the ioctx
836 * run list.
837 * Assumes it is operating within the aio issuer's mm
838 * context.
839 */
aio_run_iocbs(struct kioctx * ctx)840 static inline void aio_run_iocbs(struct kioctx *ctx)
841 {
842 int requeue;
843
844 spin_lock_irq(&ctx->ctx_lock);
845
846 requeue = __aio_run_iocbs(ctx);
847 spin_unlock_irq(&ctx->ctx_lock);
848 if (requeue)
849 aio_queue_work(ctx);
850 }
851
852 /*
853 * just like aio_run_iocbs, but keeps running them until
854 * the list stays empty
855 */
aio_run_all_iocbs(struct kioctx * ctx)856 static inline void aio_run_all_iocbs(struct kioctx *ctx)
857 {
858 spin_lock_irq(&ctx->ctx_lock);
859 while (__aio_run_iocbs(ctx))
860 ;
861 spin_unlock_irq(&ctx->ctx_lock);
862 }
863
864 /*
865 * aio_kick_handler:
866 * Work queue handler triggered to process pending
867 * retries on an ioctx. Takes on the aio issuer's
868 * mm context before running the iocbs, so that
869 * copy_xxx_user operates on the issuer's address
870 * space.
871 * Run on aiod's context.
872 */
aio_kick_handler(struct work_struct * work)873 static void aio_kick_handler(struct work_struct *work)
874 {
875 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
876 mm_segment_t oldfs = get_fs();
877 struct mm_struct *mm;
878 int requeue;
879
880 set_fs(USER_DS);
881 use_mm(ctx->mm);
882 spin_lock_irq(&ctx->ctx_lock);
883 requeue =__aio_run_iocbs(ctx);
884 mm = ctx->mm;
885 spin_unlock_irq(&ctx->ctx_lock);
886 unuse_mm(mm);
887 set_fs(oldfs);
888 /*
889 * we're in a worker thread already, don't use queue_delayed_work,
890 */
891 if (requeue)
892 queue_delayed_work(aio_wq, &ctx->wq, 0);
893 }
894
895
896 /*
897 * Called by kick_iocb to queue the kiocb for retry
898 * and if required activate the aio work queue to process
899 * it
900 */
try_queue_kicked_iocb(struct kiocb * iocb)901 static void try_queue_kicked_iocb(struct kiocb *iocb)
902 {
903 struct kioctx *ctx = iocb->ki_ctx;
904 unsigned long flags;
905 int run = 0;
906
907 /* We're supposed to be the only path putting the iocb back on the run
908 * list. If we find that the iocb is *back* on a wait queue already
909 * than retry has happened before we could queue the iocb. This also
910 * means that the retry could have completed and freed our iocb, no
911 * good. */
912 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
913
914 spin_lock_irqsave(&ctx->ctx_lock, flags);
915 /* set this inside the lock so that we can't race with aio_run_iocb()
916 * testing it and putting the iocb on the run list under the lock */
917 if (!kiocbTryKick(iocb))
918 run = __queue_kicked_iocb(iocb);
919 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
920 if (run)
921 aio_queue_work(ctx);
922 }
923
924 /*
925 * kick_iocb:
926 * Called typically from a wait queue callback context
927 * (aio_wake_function) to trigger a retry of the iocb.
928 * The retry is usually executed by aio workqueue
929 * threads (See aio_kick_handler).
930 */
kick_iocb(struct kiocb * iocb)931 void kick_iocb(struct kiocb *iocb)
932 {
933 /* sync iocbs are easy: they can only ever be executing from a
934 * single context. */
935 if (is_sync_kiocb(iocb)) {
936 kiocbSetKicked(iocb);
937 wake_up_process(iocb->ki_obj.tsk);
938 return;
939 }
940
941 try_queue_kicked_iocb(iocb);
942 }
943 EXPORT_SYMBOL(kick_iocb);
944
945 /* aio_complete
946 * Called when the io request on the given iocb is complete.
947 * Returns true if this is the last user of the request. The
948 * only other user of the request can be the cancellation code.
949 */
aio_complete(struct kiocb * iocb,long res,long res2)950 int aio_complete(struct kiocb *iocb, long res, long res2)
951 {
952 struct kioctx *ctx = iocb->ki_ctx;
953 struct aio_ring_info *info;
954 struct aio_ring *ring;
955 struct io_event *event;
956 unsigned long flags;
957 unsigned long tail;
958 int ret;
959
960 /*
961 * Special case handling for sync iocbs:
962 * - events go directly into the iocb for fast handling
963 * - the sync task with the iocb in its stack holds the single iocb
964 * ref, no other paths have a way to get another ref
965 * - the sync task helpfully left a reference to itself in the iocb
966 */
967 if (is_sync_kiocb(iocb)) {
968 BUG_ON(iocb->ki_users != 1);
969 iocb->ki_user_data = res;
970 iocb->ki_users = 0;
971 wake_up_process(iocb->ki_obj.tsk);
972 return 1;
973 }
974
975 info = &ctx->ring_info;
976
977 /* add a completion event to the ring buffer.
978 * must be done holding ctx->ctx_lock to prevent
979 * other code from messing with the tail
980 * pointer since we might be called from irq
981 * context.
982 */
983 spin_lock_irqsave(&ctx->ctx_lock, flags);
984
985 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
986 list_del_init(&iocb->ki_run_list);
987
988 /*
989 * cancelled requests don't get events, userland was given one
990 * when the event got cancelled.
991 */
992 if (kiocbIsCancelled(iocb))
993 goto put_rq;
994
995 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
996
997 tail = info->tail;
998 event = aio_ring_event(info, tail, KM_IRQ0);
999 if (++tail >= info->nr)
1000 tail = 0;
1001
1002 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1003 event->data = iocb->ki_user_data;
1004 event->res = res;
1005 event->res2 = res2;
1006
1007 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1008 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1009 res, res2);
1010
1011 /* after flagging the request as done, we
1012 * must never even look at it again
1013 */
1014 smp_wmb(); /* make event visible before updating tail */
1015
1016 info->tail = tail;
1017 ring->tail = tail;
1018
1019 put_aio_ring_event(event, KM_IRQ0);
1020 kunmap_atomic(ring, KM_IRQ1);
1021
1022 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1023
1024 /*
1025 * Check if the user asked us to deliver the result through an
1026 * eventfd. The eventfd_signal() function is safe to be called
1027 * from IRQ context.
1028 */
1029 if (iocb->ki_eventfd != NULL)
1030 eventfd_signal(iocb->ki_eventfd, 1);
1031
1032 put_rq:
1033 /* everything turned out well, dispose of the aiocb. */
1034 ret = __aio_put_req(ctx, iocb);
1035
1036 /*
1037 * We have to order our ring_info tail store above and test
1038 * of the wait list below outside the wait lock. This is
1039 * like in wake_up_bit() where clearing a bit has to be
1040 * ordered with the unlocked test.
1041 */
1042 smp_mb();
1043
1044 if (waitqueue_active(&ctx->wait))
1045 wake_up(&ctx->wait);
1046
1047 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1048 return ret;
1049 }
1050
1051 /* aio_read_evt
1052 * Pull an event off of the ioctx's event ring. Returns the number of
1053 * events fetched (0 or 1 ;-)
1054 * FIXME: make this use cmpxchg.
1055 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1056 */
aio_read_evt(struct kioctx * ioctx,struct io_event * ent)1057 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1058 {
1059 struct aio_ring_info *info = &ioctx->ring_info;
1060 struct aio_ring *ring;
1061 unsigned long head;
1062 int ret = 0;
1063
1064 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1065 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1066 (unsigned long)ring->head, (unsigned long)ring->tail,
1067 (unsigned long)ring->nr);
1068
1069 if (ring->head == ring->tail)
1070 goto out;
1071
1072 spin_lock(&info->ring_lock);
1073
1074 head = ring->head % info->nr;
1075 if (head != ring->tail) {
1076 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1077 *ent = *evp;
1078 head = (head + 1) % info->nr;
1079 smp_mb(); /* finish reading the event before updatng the head */
1080 ring->head = head;
1081 ret = 1;
1082 put_aio_ring_event(evp, KM_USER1);
1083 }
1084 spin_unlock(&info->ring_lock);
1085
1086 out:
1087 kunmap_atomic(ring, KM_USER0);
1088 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1089 (unsigned long)ring->head, (unsigned long)ring->tail);
1090 return ret;
1091 }
1092
1093 struct aio_timeout {
1094 struct timer_list timer;
1095 int timed_out;
1096 struct task_struct *p;
1097 };
1098
timeout_func(unsigned long data)1099 static void timeout_func(unsigned long data)
1100 {
1101 struct aio_timeout *to = (struct aio_timeout *)data;
1102
1103 to->timed_out = 1;
1104 wake_up_process(to->p);
1105 }
1106
init_timeout(struct aio_timeout * to)1107 static inline void init_timeout(struct aio_timeout *to)
1108 {
1109 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1110 to->timed_out = 0;
1111 to->p = current;
1112 }
1113
set_timeout(long start_jiffies,struct aio_timeout * to,const struct timespec * ts)1114 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1115 const struct timespec *ts)
1116 {
1117 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1118 if (time_after(to->timer.expires, jiffies))
1119 add_timer(&to->timer);
1120 else
1121 to->timed_out = 1;
1122 }
1123
clear_timeout(struct aio_timeout * to)1124 static inline void clear_timeout(struct aio_timeout *to)
1125 {
1126 del_singleshot_timer_sync(&to->timer);
1127 }
1128
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,struct timespec __user * timeout)1129 static int read_events(struct kioctx *ctx,
1130 long min_nr, long nr,
1131 struct io_event __user *event,
1132 struct timespec __user *timeout)
1133 {
1134 long start_jiffies = jiffies;
1135 struct task_struct *tsk = current;
1136 DECLARE_WAITQUEUE(wait, tsk);
1137 int ret;
1138 int i = 0;
1139 struct io_event ent;
1140 struct aio_timeout to;
1141 int retry = 0;
1142
1143 /* needed to zero any padding within an entry (there shouldn't be
1144 * any, but C is fun!
1145 */
1146 memset(&ent, 0, sizeof(ent));
1147 retry:
1148 ret = 0;
1149 while (likely(i < nr)) {
1150 ret = aio_read_evt(ctx, &ent);
1151 if (unlikely(ret <= 0))
1152 break;
1153
1154 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1155 ent.data, ent.obj, ent.res, ent.res2);
1156
1157 /* Could we split the check in two? */
1158 ret = -EFAULT;
1159 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1160 dprintk("aio: lost an event due to EFAULT.\n");
1161 break;
1162 }
1163 ret = 0;
1164
1165 /* Good, event copied to userland, update counts. */
1166 event ++;
1167 i ++;
1168 }
1169
1170 if (min_nr <= i)
1171 return i;
1172 if (ret)
1173 return ret;
1174
1175 /* End fast path */
1176
1177 /* racey check, but it gets redone */
1178 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1179 retry = 1;
1180 aio_run_all_iocbs(ctx);
1181 goto retry;
1182 }
1183
1184 init_timeout(&to);
1185 if (timeout) {
1186 struct timespec ts;
1187 ret = -EFAULT;
1188 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1189 goto out;
1190
1191 set_timeout(start_jiffies, &to, &ts);
1192 }
1193
1194 while (likely(i < nr)) {
1195 add_wait_queue_exclusive(&ctx->wait, &wait);
1196 do {
1197 set_task_state(tsk, TASK_INTERRUPTIBLE);
1198 ret = aio_read_evt(ctx, &ent);
1199 if (ret)
1200 break;
1201 if (min_nr <= i)
1202 break;
1203 if (unlikely(ctx->dead)) {
1204 ret = -EINVAL;
1205 break;
1206 }
1207 if (to.timed_out) /* Only check after read evt */
1208 break;
1209 /* Try to only show up in io wait if there are ops
1210 * in flight */
1211 if (ctx->reqs_active)
1212 io_schedule();
1213 else
1214 schedule();
1215 if (signal_pending(tsk)) {
1216 ret = -EINTR;
1217 break;
1218 }
1219 /*ret = aio_read_evt(ctx, &ent);*/
1220 } while (1) ;
1221
1222 set_task_state(tsk, TASK_RUNNING);
1223 remove_wait_queue(&ctx->wait, &wait);
1224
1225 if (unlikely(ret <= 0))
1226 break;
1227
1228 ret = -EFAULT;
1229 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1230 dprintk("aio: lost an event due to EFAULT.\n");
1231 break;
1232 }
1233
1234 /* Good, event copied to userland, update counts. */
1235 event ++;
1236 i ++;
1237 }
1238
1239 if (timeout)
1240 clear_timeout(&to);
1241 out:
1242 destroy_timer_on_stack(&to.timer);
1243 return i ? i : ret;
1244 }
1245
1246 /* Take an ioctx and remove it from the list of ioctx's. Protects
1247 * against races with itself via ->dead.
1248 */
io_destroy(struct kioctx * ioctx)1249 static void io_destroy(struct kioctx *ioctx)
1250 {
1251 struct mm_struct *mm = current->mm;
1252 int was_dead;
1253
1254 /* delete the entry from the list is someone else hasn't already */
1255 spin_lock(&mm->ioctx_lock);
1256 was_dead = ioctx->dead;
1257 ioctx->dead = 1;
1258 hlist_del_rcu(&ioctx->list);
1259 spin_unlock(&mm->ioctx_lock);
1260
1261 dprintk("aio_release(%p)\n", ioctx);
1262 if (likely(!was_dead))
1263 put_ioctx(ioctx); /* twice for the list */
1264
1265 aio_cancel_all(ioctx);
1266 wait_for_all_aios(ioctx);
1267
1268 /*
1269 * Wake up any waiters. The setting of ctx->dead must be seen
1270 * by other CPUs at this point. Right now, we rely on the
1271 * locking done by the above calls to ensure this consistency.
1272 */
1273 wake_up(&ioctx->wait);
1274 put_ioctx(ioctx); /* once for the lookup */
1275 }
1276
1277 /* sys_io_setup:
1278 * Create an aio_context capable of receiving at least nr_events.
1279 * ctxp must not point to an aio_context that already exists, and
1280 * must be initialized to 0 prior to the call. On successful
1281 * creation of the aio_context, *ctxp is filled in with the resulting
1282 * handle. May fail with -EINVAL if *ctxp is not initialized,
1283 * if the specified nr_events exceeds internal limits. May fail
1284 * with -EAGAIN if the specified nr_events exceeds the user's limit
1285 * of available events. May fail with -ENOMEM if insufficient kernel
1286 * resources are available. May fail with -EFAULT if an invalid
1287 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1288 * implemented.
1289 */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1290 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1291 {
1292 struct kioctx *ioctx = NULL;
1293 unsigned long ctx;
1294 long ret;
1295
1296 ret = get_user(ctx, ctxp);
1297 if (unlikely(ret))
1298 goto out;
1299
1300 ret = -EINVAL;
1301 if (unlikely(ctx || nr_events == 0)) {
1302 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1303 ctx, nr_events);
1304 goto out;
1305 }
1306
1307 ioctx = ioctx_alloc(nr_events);
1308 ret = PTR_ERR(ioctx);
1309 if (!IS_ERR(ioctx)) {
1310 ret = put_user(ioctx->user_id, ctxp);
1311 if (!ret)
1312 return 0;
1313
1314 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1315 io_destroy(ioctx);
1316 }
1317
1318 out:
1319 return ret;
1320 }
1321
1322 /* sys_io_destroy:
1323 * Destroy the aio_context specified. May cancel any outstanding
1324 * AIOs and block on completion. Will fail with -ENOSYS if not
1325 * implemented. May fail with -EFAULT if the context pointed to
1326 * is invalid.
1327 */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1328 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1329 {
1330 struct kioctx *ioctx = lookup_ioctx(ctx);
1331 if (likely(NULL != ioctx)) {
1332 io_destroy(ioctx);
1333 return 0;
1334 }
1335 pr_debug("EINVAL: io_destroy: invalid context id\n");
1336 return -EINVAL;
1337 }
1338
aio_advance_iovec(struct kiocb * iocb,ssize_t ret)1339 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1340 {
1341 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1342
1343 BUG_ON(ret <= 0);
1344
1345 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1346 ssize_t this = min((ssize_t)iov->iov_len, ret);
1347 iov->iov_base += this;
1348 iov->iov_len -= this;
1349 iocb->ki_left -= this;
1350 ret -= this;
1351 if (iov->iov_len == 0) {
1352 iocb->ki_cur_seg++;
1353 iov++;
1354 }
1355 }
1356
1357 /* the caller should not have done more io than what fit in
1358 * the remaining iovecs */
1359 BUG_ON(ret > 0 && iocb->ki_left == 0);
1360 }
1361
aio_rw_vect_retry(struct kiocb * iocb)1362 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1363 {
1364 struct file *file = iocb->ki_filp;
1365 struct address_space *mapping = file->f_mapping;
1366 struct inode *inode = mapping->host;
1367 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1368 unsigned long, loff_t);
1369 ssize_t ret = 0;
1370 unsigned short opcode;
1371
1372 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1373 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1374 rw_op = file->f_op->aio_read;
1375 opcode = IOCB_CMD_PREADV;
1376 } else {
1377 rw_op = file->f_op->aio_write;
1378 opcode = IOCB_CMD_PWRITEV;
1379 }
1380
1381 /* This matches the pread()/pwrite() logic */
1382 if (iocb->ki_pos < 0)
1383 return -EINVAL;
1384
1385 do {
1386 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1387 iocb->ki_nr_segs - iocb->ki_cur_seg,
1388 iocb->ki_pos);
1389 if (ret > 0)
1390 aio_advance_iovec(iocb, ret);
1391
1392 /* retry all partial writes. retry partial reads as long as its a
1393 * regular file. */
1394 } while (ret > 0 && iocb->ki_left > 0 &&
1395 (opcode == IOCB_CMD_PWRITEV ||
1396 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1397
1398 /* This means we must have transferred all that we could */
1399 /* No need to retry anymore */
1400 if ((ret == 0) || (iocb->ki_left == 0))
1401 ret = iocb->ki_nbytes - iocb->ki_left;
1402
1403 /* If we managed to write some out we return that, rather than
1404 * the eventual error. */
1405 if (opcode == IOCB_CMD_PWRITEV
1406 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1407 && iocb->ki_nbytes - iocb->ki_left)
1408 ret = iocb->ki_nbytes - iocb->ki_left;
1409
1410 return ret;
1411 }
1412
aio_fdsync(struct kiocb * iocb)1413 static ssize_t aio_fdsync(struct kiocb *iocb)
1414 {
1415 struct file *file = iocb->ki_filp;
1416 ssize_t ret = -EINVAL;
1417
1418 if (file->f_op->aio_fsync)
1419 ret = file->f_op->aio_fsync(iocb, 1);
1420 return ret;
1421 }
1422
aio_fsync(struct kiocb * iocb)1423 static ssize_t aio_fsync(struct kiocb *iocb)
1424 {
1425 struct file *file = iocb->ki_filp;
1426 ssize_t ret = -EINVAL;
1427
1428 if (file->f_op->aio_fsync)
1429 ret = file->f_op->aio_fsync(iocb, 0);
1430 return ret;
1431 }
1432
aio_setup_vectored_rw(int type,struct kiocb * kiocb)1433 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1434 {
1435 ssize_t ret;
1436
1437 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1438 kiocb->ki_nbytes, 1,
1439 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1440 if (ret < 0)
1441 goto out;
1442
1443 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1444 kiocb->ki_cur_seg = 0;
1445 /* ki_nbytes/left now reflect bytes instead of segs */
1446 kiocb->ki_nbytes = ret;
1447 kiocb->ki_left = ret;
1448
1449 ret = 0;
1450 out:
1451 return ret;
1452 }
1453
aio_setup_single_vector(struct kiocb * kiocb)1454 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1455 {
1456 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1457 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1458 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1459 kiocb->ki_nr_segs = 1;
1460 kiocb->ki_cur_seg = 0;
1461 return 0;
1462 }
1463
1464 /*
1465 * aio_setup_iocb:
1466 * Performs the initial checks and aio retry method
1467 * setup for the kiocb at the time of io submission.
1468 */
aio_setup_iocb(struct kiocb * kiocb)1469 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1470 {
1471 struct file *file = kiocb->ki_filp;
1472 ssize_t ret = 0;
1473
1474 switch (kiocb->ki_opcode) {
1475 case IOCB_CMD_PREAD:
1476 ret = -EBADF;
1477 if (unlikely(!(file->f_mode & FMODE_READ)))
1478 break;
1479 ret = -EFAULT;
1480 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1481 kiocb->ki_left)))
1482 break;
1483 ret = security_file_permission(file, MAY_READ);
1484 if (unlikely(ret))
1485 break;
1486 ret = aio_setup_single_vector(kiocb);
1487 if (ret)
1488 break;
1489 ret = -EINVAL;
1490 if (file->f_op->aio_read)
1491 kiocb->ki_retry = aio_rw_vect_retry;
1492 break;
1493 case IOCB_CMD_PWRITE:
1494 ret = -EBADF;
1495 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1496 break;
1497 ret = -EFAULT;
1498 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1499 kiocb->ki_left)))
1500 break;
1501 ret = security_file_permission(file, MAY_WRITE);
1502 if (unlikely(ret))
1503 break;
1504 ret = aio_setup_single_vector(kiocb);
1505 if (ret)
1506 break;
1507 ret = -EINVAL;
1508 if (file->f_op->aio_write)
1509 kiocb->ki_retry = aio_rw_vect_retry;
1510 break;
1511 case IOCB_CMD_PREADV:
1512 ret = -EBADF;
1513 if (unlikely(!(file->f_mode & FMODE_READ)))
1514 break;
1515 ret = security_file_permission(file, MAY_READ);
1516 if (unlikely(ret))
1517 break;
1518 ret = aio_setup_vectored_rw(READ, kiocb);
1519 if (ret)
1520 break;
1521 ret = -EINVAL;
1522 if (file->f_op->aio_read)
1523 kiocb->ki_retry = aio_rw_vect_retry;
1524 break;
1525 case IOCB_CMD_PWRITEV:
1526 ret = -EBADF;
1527 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1528 break;
1529 ret = security_file_permission(file, MAY_WRITE);
1530 if (unlikely(ret))
1531 break;
1532 ret = aio_setup_vectored_rw(WRITE, kiocb);
1533 if (ret)
1534 break;
1535 ret = -EINVAL;
1536 if (file->f_op->aio_write)
1537 kiocb->ki_retry = aio_rw_vect_retry;
1538 break;
1539 case IOCB_CMD_FDSYNC:
1540 ret = -EINVAL;
1541 if (file->f_op->aio_fsync)
1542 kiocb->ki_retry = aio_fdsync;
1543 break;
1544 case IOCB_CMD_FSYNC:
1545 ret = -EINVAL;
1546 if (file->f_op->aio_fsync)
1547 kiocb->ki_retry = aio_fsync;
1548 break;
1549 default:
1550 dprintk("EINVAL: io_submit: no operation provided\n");
1551 ret = -EINVAL;
1552 }
1553
1554 if (!kiocb->ki_retry)
1555 return ret;
1556
1557 return 0;
1558 }
1559
1560 /*
1561 * aio_wake_function:
1562 * wait queue callback function for aio notification,
1563 * Simply triggers a retry of the operation via kick_iocb.
1564 *
1565 * This callback is specified in the wait queue entry in
1566 * a kiocb.
1567 *
1568 * Note:
1569 * This routine is executed with the wait queue lock held.
1570 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1571 * the ioctx lock inside the wait queue lock. This is safe
1572 * because this callback isn't used for wait queues which
1573 * are nested inside ioctx lock (i.e. ctx->wait)
1574 */
aio_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * key)1575 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1576 int sync, void *key)
1577 {
1578 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1579
1580 list_del_init(&wait->task_list);
1581 kick_iocb(iocb);
1582 return 1;
1583 }
1584
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,struct iocb * iocb)1585 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1586 struct iocb *iocb)
1587 {
1588 struct kiocb *req;
1589 struct file *file;
1590 ssize_t ret;
1591
1592 /* enforce forwards compatibility on users */
1593 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1594 pr_debug("EINVAL: io_submit: reserve field set\n");
1595 return -EINVAL;
1596 }
1597
1598 /* prevent overflows */
1599 if (unlikely(
1600 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1601 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1602 ((ssize_t)iocb->aio_nbytes < 0)
1603 )) {
1604 pr_debug("EINVAL: io_submit: overflow check\n");
1605 return -EINVAL;
1606 }
1607
1608 file = fget(iocb->aio_fildes);
1609 if (unlikely(!file))
1610 return -EBADF;
1611
1612 req = aio_get_req(ctx); /* returns with 2 references to req */
1613 if (unlikely(!req)) {
1614 fput(file);
1615 return -EAGAIN;
1616 }
1617 req->ki_filp = file;
1618 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1619 /*
1620 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1621 * instance of the file* now. The file descriptor must be
1622 * an eventfd() fd, and will be signaled for each completed
1623 * event using the eventfd_signal() function.
1624 */
1625 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1626 if (IS_ERR(req->ki_eventfd)) {
1627 ret = PTR_ERR(req->ki_eventfd);
1628 req->ki_eventfd = NULL;
1629 goto out_put_req;
1630 }
1631 }
1632
1633 ret = put_user(req->ki_key, &user_iocb->aio_key);
1634 if (unlikely(ret)) {
1635 dprintk("EFAULT: aio_key\n");
1636 goto out_put_req;
1637 }
1638
1639 req->ki_obj.user = user_iocb;
1640 req->ki_user_data = iocb->aio_data;
1641 req->ki_pos = iocb->aio_offset;
1642
1643 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1644 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1645 req->ki_opcode = iocb->aio_lio_opcode;
1646 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1647 INIT_LIST_HEAD(&req->ki_wait.task_list);
1648
1649 ret = aio_setup_iocb(req);
1650
1651 if (ret)
1652 goto out_put_req;
1653
1654 spin_lock_irq(&ctx->ctx_lock);
1655 aio_run_iocb(req);
1656 if (!list_empty(&ctx->run_list)) {
1657 /* drain the run list */
1658 while (__aio_run_iocbs(ctx))
1659 ;
1660 }
1661 spin_unlock_irq(&ctx->ctx_lock);
1662 aio_put_req(req); /* drop extra ref to req */
1663 return 0;
1664
1665 out_put_req:
1666 aio_put_req(req); /* drop extra ref to req */
1667 aio_put_req(req); /* drop i/o ref to req */
1668 return ret;
1669 }
1670
1671 /* sys_io_submit:
1672 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1673 * the number of iocbs queued. May return -EINVAL if the aio_context
1674 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1675 * *iocbpp[0] is not properly initialized, if the operation specified
1676 * is invalid for the file descriptor in the iocb. May fail with
1677 * -EFAULT if any of the data structures point to invalid data. May
1678 * fail with -EBADF if the file descriptor specified in the first
1679 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1680 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1681 * fail with -ENOSYS if not implemented.
1682 */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)1683 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1684 struct iocb __user * __user *, iocbpp)
1685 {
1686 struct kioctx *ctx;
1687 long ret = 0;
1688 int i;
1689
1690 if (unlikely(nr < 0))
1691 return -EINVAL;
1692
1693 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1694 return -EFAULT;
1695
1696 ctx = lookup_ioctx(ctx_id);
1697 if (unlikely(!ctx)) {
1698 pr_debug("EINVAL: io_submit: invalid context id\n");
1699 return -EINVAL;
1700 }
1701
1702 /*
1703 * AKPM: should this return a partial result if some of the IOs were
1704 * successfully submitted?
1705 */
1706 for (i=0; i<nr; i++) {
1707 struct iocb __user *user_iocb;
1708 struct iocb tmp;
1709
1710 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1711 ret = -EFAULT;
1712 break;
1713 }
1714
1715 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1716 ret = -EFAULT;
1717 break;
1718 }
1719
1720 ret = io_submit_one(ctx, user_iocb, &tmp);
1721 if (ret)
1722 break;
1723 }
1724
1725 put_ioctx(ctx);
1726 return i ? i : ret;
1727 }
1728
1729 /* lookup_kiocb
1730 * Finds a given iocb for cancellation.
1731 */
lookup_kiocb(struct kioctx * ctx,struct iocb __user * iocb,u32 key)1732 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1733 u32 key)
1734 {
1735 struct list_head *pos;
1736
1737 assert_spin_locked(&ctx->ctx_lock);
1738
1739 /* TODO: use a hash or array, this sucks. */
1740 list_for_each(pos, &ctx->active_reqs) {
1741 struct kiocb *kiocb = list_kiocb(pos);
1742 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1743 return kiocb;
1744 }
1745 return NULL;
1746 }
1747
1748 /* sys_io_cancel:
1749 * Attempts to cancel an iocb previously passed to io_submit. If
1750 * the operation is successfully cancelled, the resulting event is
1751 * copied into the memory pointed to by result without being placed
1752 * into the completion queue and 0 is returned. May fail with
1753 * -EFAULT if any of the data structures pointed to are invalid.
1754 * May fail with -EINVAL if aio_context specified by ctx_id is
1755 * invalid. May fail with -EAGAIN if the iocb specified was not
1756 * cancelled. Will fail with -ENOSYS if not implemented.
1757 */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)1758 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1759 struct io_event __user *, result)
1760 {
1761 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1762 struct kioctx *ctx;
1763 struct kiocb *kiocb;
1764 u32 key;
1765 int ret;
1766
1767 ret = get_user(key, &iocb->aio_key);
1768 if (unlikely(ret))
1769 return -EFAULT;
1770
1771 ctx = lookup_ioctx(ctx_id);
1772 if (unlikely(!ctx))
1773 return -EINVAL;
1774
1775 spin_lock_irq(&ctx->ctx_lock);
1776 ret = -EAGAIN;
1777 kiocb = lookup_kiocb(ctx, iocb, key);
1778 if (kiocb && kiocb->ki_cancel) {
1779 cancel = kiocb->ki_cancel;
1780 kiocb->ki_users ++;
1781 kiocbSetCancelled(kiocb);
1782 } else
1783 cancel = NULL;
1784 spin_unlock_irq(&ctx->ctx_lock);
1785
1786 if (NULL != cancel) {
1787 struct io_event tmp;
1788 pr_debug("calling cancel\n");
1789 memset(&tmp, 0, sizeof(tmp));
1790 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1791 tmp.data = kiocb->ki_user_data;
1792 ret = cancel(kiocb, &tmp);
1793 if (!ret) {
1794 /* Cancellation succeeded -- copy the result
1795 * into the user's buffer.
1796 */
1797 if (copy_to_user(result, &tmp, sizeof(tmp)))
1798 ret = -EFAULT;
1799 }
1800 } else
1801 ret = -EINVAL;
1802
1803 put_ioctx(ctx);
1804
1805 return ret;
1806 }
1807
1808 /* io_getevents:
1809 * Attempts to read at least min_nr events and up to nr events from
1810 * the completion queue for the aio_context specified by ctx_id. May
1811 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1812 * if nr is out of range, if when is out of range. May fail with
1813 * -EFAULT if any of the memory specified to is invalid. May return
1814 * 0 or < min_nr if no events are available and the timeout specified
1815 * by when has elapsed, where when == NULL specifies an infinite
1816 * timeout. Note that the timeout pointed to by when is relative and
1817 * will be updated if not NULL and the operation blocks. Will fail
1818 * with -ENOSYS if not implemented.
1819 */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)1820 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1821 long, min_nr,
1822 long, nr,
1823 struct io_event __user *, events,
1824 struct timespec __user *, timeout)
1825 {
1826 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1827 long ret = -EINVAL;
1828
1829 if (likely(ioctx)) {
1830 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1831 ret = read_events(ioctx, min_nr, nr, events, timeout);
1832 put_ioctx(ioctx);
1833 }
1834
1835 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1836 return ret;
1837 }
1838
1839 __initcall(aio_setup);
1840
1841 EXPORT_SYMBOL(aio_complete);
1842 EXPORT_SYMBOL(aio_put_req);
1843 EXPORT_SYMBOL(wait_on_sync_kiocb);
1844