• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34 
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 
39 #if DEBUG > 1
40 #define dprintk		printk
41 #else
42 #define dprintk(x...)	do { ; } while (0)
43 #endif
44 
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;		/* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static struct kmem_cache	*kiocb_cachep;
52 static struct kmem_cache	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65 
66 /* aio_setup
67  *	Creates the slab caches used by the aio routines, panic on
68  *	failure as this is done early during the boot sequence.
69  */
aio_setup(void)70 static int __init aio_setup(void)
71 {
72 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
aio_free_ring(struct kioctx * ctx)82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
aio_setup_ring(struct kioctx * ctx)102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 	}
129 
130 	info->mmap_size = nr_pages * PAGE_SIZE;
131 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 	down_write(&ctx->mm->mmap_sem);
133 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 				  0);
136 	if (IS_ERR((void *)info->mmap_base)) {
137 		up_write(&ctx->mm->mmap_sem);
138 		info->mmap_size = 0;
139 		aio_free_ring(ctx);
140 		return -EAGAIN;
141 	}
142 
143 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 	info->nr_pages = get_user_pages(current, ctx->mm,
145 					info->mmap_base, nr_pages,
146 					1, 0, info->ring_pages, NULL);
147 	up_write(&ctx->mm->mmap_sem);
148 
149 	if (unlikely(info->nr_pages != nr_pages)) {
150 		aio_free_ring(ctx);
151 		return -EAGAIN;
152 	}
153 
154 	ctx->user_id = info->mmap_base;
155 
156 	info->nr = nr_events;		/* trusted copy */
157 
158 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 	ring->nr = nr_events;	/* user copy */
160 	ring->id = ctx->user_id;
161 	ring->head = ring->tail = 0;
162 	ring->magic = AIO_RING_MAGIC;
163 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 	ring->header_length = sizeof(struct aio_ring);
166 	kunmap_atomic(ring, KM_USER0);
167 
168 	return 0;
169 }
170 
171 
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 
179 #define aio_ring_event(info, nr, km) ({					\
180 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181 	struct io_event *__event;					\
182 	__event = kmap_atomic(						\
183 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 	__event += pos % AIO_EVENTS_PER_PAGE;				\
185 	__event;							\
186 })
187 
188 #define put_aio_ring_event(event, km) do {	\
189 	struct io_event *__event = (event);	\
190 	(void)__event;				\
191 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193 
ctx_rcu_free(struct rcu_head * head)194 static void ctx_rcu_free(struct rcu_head *head)
195 {
196 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
197 	unsigned nr_events = ctx->max_reqs;
198 
199 	kmem_cache_free(kioctx_cachep, ctx);
200 
201 	if (nr_events) {
202 		spin_lock(&aio_nr_lock);
203 		BUG_ON(aio_nr - nr_events > aio_nr);
204 		aio_nr -= nr_events;
205 		spin_unlock(&aio_nr_lock);
206 	}
207 }
208 
209 /* __put_ioctx
210  *	Called when the last user of an aio context has gone away,
211  *	and the struct needs to be freed.
212  */
__put_ioctx(struct kioctx * ctx)213 static void __put_ioctx(struct kioctx *ctx)
214 {
215 	BUG_ON(ctx->reqs_active);
216 
217 	cancel_delayed_work(&ctx->wq);
218 	cancel_work_sync(&ctx->wq.work);
219 	aio_free_ring(ctx);
220 	mmdrop(ctx->mm);
221 	ctx->mm = NULL;
222 	pr_debug("__put_ioctx: freeing %p\n", ctx);
223 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
224 }
225 
226 #define get_ioctx(kioctx) do {						\
227 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
228 	atomic_inc(&(kioctx)->users);					\
229 } while (0)
230 #define put_ioctx(kioctx) do {						\
231 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
232 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
233 		__put_ioctx(kioctx);					\
234 } while (0)
235 
236 /* ioctx_alloc
237  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
238  */
ioctx_alloc(unsigned nr_events)239 static struct kioctx *ioctx_alloc(unsigned nr_events)
240 {
241 	struct mm_struct *mm;
242 	struct kioctx *ctx;
243 	int did_sync = 0;
244 
245 	/* Prevent overflows */
246 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
247 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
248 		pr_debug("ENOMEM: nr_events too high\n");
249 		return ERR_PTR(-EINVAL);
250 	}
251 
252 	if ((unsigned long)nr_events > aio_max_nr)
253 		return ERR_PTR(-EAGAIN);
254 
255 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
256 	if (!ctx)
257 		return ERR_PTR(-ENOMEM);
258 
259 	ctx->max_reqs = nr_events;
260 	mm = ctx->mm = current->mm;
261 	atomic_inc(&mm->mm_count);
262 
263 	atomic_set(&ctx->users, 1);
264 	spin_lock_init(&ctx->ctx_lock);
265 	spin_lock_init(&ctx->ring_info.ring_lock);
266 	init_waitqueue_head(&ctx->wait);
267 
268 	INIT_LIST_HEAD(&ctx->active_reqs);
269 	INIT_LIST_HEAD(&ctx->run_list);
270 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
271 
272 	if (aio_setup_ring(ctx) < 0)
273 		goto out_freectx;
274 
275 	/* limit the number of system wide aios */
276 	do {
277 		spin_lock_bh(&aio_nr_lock);
278 		if (aio_nr + nr_events > aio_max_nr ||
279 		    aio_nr + nr_events < aio_nr)
280 			ctx->max_reqs = 0;
281 		else
282 			aio_nr += ctx->max_reqs;
283 		spin_unlock_bh(&aio_nr_lock);
284 		if (ctx->max_reqs || did_sync)
285 			break;
286 
287 		/* wait for rcu callbacks to have completed before giving up */
288 		synchronize_rcu();
289 		did_sync = 1;
290 		ctx->max_reqs = nr_events;
291 	} while (1);
292 
293 	if (ctx->max_reqs == 0)
294 		goto out_cleanup;
295 
296 	/* now link into global list. */
297 	spin_lock(&mm->ioctx_lock);
298 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
299 	spin_unlock(&mm->ioctx_lock);
300 
301 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
302 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
303 	return ctx;
304 
305 out_cleanup:
306 	__put_ioctx(ctx);
307 	return ERR_PTR(-EAGAIN);
308 
309 out_freectx:
310 	mmdrop(mm);
311 	kmem_cache_free(kioctx_cachep, ctx);
312 	ctx = ERR_PTR(-ENOMEM);
313 
314 	dprintk("aio: error allocating ioctx %p\n", ctx);
315 	return ctx;
316 }
317 
318 /* aio_cancel_all
319  *	Cancels all outstanding aio requests on an aio context.  Used
320  *	when the processes owning a context have all exited to encourage
321  *	the rapid destruction of the kioctx.
322  */
aio_cancel_all(struct kioctx * ctx)323 static void aio_cancel_all(struct kioctx *ctx)
324 {
325 	int (*cancel)(struct kiocb *, struct io_event *);
326 	struct io_event res;
327 	spin_lock_irq(&ctx->ctx_lock);
328 	ctx->dead = 1;
329 	while (!list_empty(&ctx->active_reqs)) {
330 		struct list_head *pos = ctx->active_reqs.next;
331 		struct kiocb *iocb = list_kiocb(pos);
332 		list_del_init(&iocb->ki_list);
333 		cancel = iocb->ki_cancel;
334 		kiocbSetCancelled(iocb);
335 		if (cancel) {
336 			iocb->ki_users++;
337 			spin_unlock_irq(&ctx->ctx_lock);
338 			cancel(iocb, &res);
339 			spin_lock_irq(&ctx->ctx_lock);
340 		}
341 	}
342 	spin_unlock_irq(&ctx->ctx_lock);
343 }
344 
wait_for_all_aios(struct kioctx * ctx)345 static void wait_for_all_aios(struct kioctx *ctx)
346 {
347 	struct task_struct *tsk = current;
348 	DECLARE_WAITQUEUE(wait, tsk);
349 
350 	spin_lock_irq(&ctx->ctx_lock);
351 	if (!ctx->reqs_active)
352 		goto out;
353 
354 	add_wait_queue(&ctx->wait, &wait);
355 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
356 	while (ctx->reqs_active) {
357 		spin_unlock_irq(&ctx->ctx_lock);
358 		io_schedule();
359 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
360 		spin_lock_irq(&ctx->ctx_lock);
361 	}
362 	__set_task_state(tsk, TASK_RUNNING);
363 	remove_wait_queue(&ctx->wait, &wait);
364 
365 out:
366 	spin_unlock_irq(&ctx->ctx_lock);
367 }
368 
369 /* wait_on_sync_kiocb:
370  *	Waits on the given sync kiocb to complete.
371  */
wait_on_sync_kiocb(struct kiocb * iocb)372 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
373 {
374 	while (iocb->ki_users) {
375 		set_current_state(TASK_UNINTERRUPTIBLE);
376 		if (!iocb->ki_users)
377 			break;
378 		io_schedule();
379 	}
380 	__set_current_state(TASK_RUNNING);
381 	return iocb->ki_user_data;
382 }
383 
384 /* exit_aio: called when the last user of mm goes away.  At this point,
385  * there is no way for any new requests to be submited or any of the
386  * io_* syscalls to be called on the context.  However, there may be
387  * outstanding requests which hold references to the context; as they
388  * go away, they will call put_ioctx and release any pinned memory
389  * associated with the request (held via struct page * references).
390  */
exit_aio(struct mm_struct * mm)391 void exit_aio(struct mm_struct *mm)
392 {
393 	struct kioctx *ctx;
394 
395 	while (!hlist_empty(&mm->ioctx_list)) {
396 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
397 		hlist_del_rcu(&ctx->list);
398 
399 		aio_cancel_all(ctx);
400 
401 		wait_for_all_aios(ctx);
402 		/*
403 		 * Ensure we don't leave the ctx on the aio_wq
404 		 */
405 		cancel_work_sync(&ctx->wq.work);
406 
407 		if (1 != atomic_read(&ctx->users))
408 			printk(KERN_DEBUG
409 				"exit_aio:ioctx still alive: %d %d %d\n",
410 				atomic_read(&ctx->users), ctx->dead,
411 				ctx->reqs_active);
412 		put_ioctx(ctx);
413 	}
414 }
415 
416 /* aio_get_req
417  *	Allocate a slot for an aio request.  Increments the users count
418  * of the kioctx so that the kioctx stays around until all requests are
419  * complete.  Returns NULL if no requests are free.
420  *
421  * Returns with kiocb->users set to 2.  The io submit code path holds
422  * an extra reference while submitting the i/o.
423  * This prevents races between the aio code path referencing the
424  * req (after submitting it) and aio_complete() freeing the req.
425  */
__aio_get_req(struct kioctx * ctx)426 static struct kiocb *__aio_get_req(struct kioctx *ctx)
427 {
428 	struct kiocb *req = NULL;
429 	struct aio_ring *ring;
430 	int okay = 0;
431 
432 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
433 	if (unlikely(!req))
434 		return NULL;
435 
436 	req->ki_flags = 0;
437 	req->ki_users = 2;
438 	req->ki_key = 0;
439 	req->ki_ctx = ctx;
440 	req->ki_cancel = NULL;
441 	req->ki_retry = NULL;
442 	req->ki_dtor = NULL;
443 	req->private = NULL;
444 	req->ki_iovec = NULL;
445 	INIT_LIST_HEAD(&req->ki_run_list);
446 	req->ki_eventfd = NULL;
447 
448 	/* Check if the completion queue has enough free space to
449 	 * accept an event from this io.
450 	 */
451 	spin_lock_irq(&ctx->ctx_lock);
452 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
453 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
454 		list_add(&req->ki_list, &ctx->active_reqs);
455 		ctx->reqs_active++;
456 		okay = 1;
457 	}
458 	kunmap_atomic(ring, KM_USER0);
459 	spin_unlock_irq(&ctx->ctx_lock);
460 
461 	if (!okay) {
462 		kmem_cache_free(kiocb_cachep, req);
463 		req = NULL;
464 	}
465 
466 	return req;
467 }
468 
aio_get_req(struct kioctx * ctx)469 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
470 {
471 	struct kiocb *req;
472 	/* Handle a potential starvation case -- should be exceedingly rare as
473 	 * requests will be stuck on fput_head only if the aio_fput_routine is
474 	 * delayed and the requests were the last user of the struct file.
475 	 */
476 	req = __aio_get_req(ctx);
477 	if (unlikely(NULL == req)) {
478 		aio_fput_routine(NULL);
479 		req = __aio_get_req(ctx);
480 	}
481 	return req;
482 }
483 
really_put_req(struct kioctx * ctx,struct kiocb * req)484 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
485 {
486 	assert_spin_locked(&ctx->ctx_lock);
487 
488 	if (req->ki_dtor)
489 		req->ki_dtor(req);
490 	if (req->ki_iovec != &req->ki_inline_vec)
491 		kfree(req->ki_iovec);
492 	kmem_cache_free(kiocb_cachep, req);
493 	ctx->reqs_active--;
494 
495 	if (unlikely(!ctx->reqs_active && ctx->dead))
496 		wake_up(&ctx->wait);
497 }
498 
aio_fput_routine(struct work_struct * data)499 static void aio_fput_routine(struct work_struct *data)
500 {
501 	spin_lock_irq(&fput_lock);
502 	while (likely(!list_empty(&fput_head))) {
503 		struct kiocb *req = list_kiocb(fput_head.next);
504 		struct kioctx *ctx = req->ki_ctx;
505 
506 		list_del(&req->ki_list);
507 		spin_unlock_irq(&fput_lock);
508 
509 		/* Complete the fput(s) */
510 		if (req->ki_filp != NULL)
511 			__fput(req->ki_filp);
512 		if (req->ki_eventfd != NULL)
513 			__fput(req->ki_eventfd);
514 
515 		/* Link the iocb into the context's free list */
516 		spin_lock_irq(&ctx->ctx_lock);
517 		really_put_req(ctx, req);
518 		spin_unlock_irq(&ctx->ctx_lock);
519 
520 		put_ioctx(ctx);
521 		spin_lock_irq(&fput_lock);
522 	}
523 	spin_unlock_irq(&fput_lock);
524 }
525 
526 /* __aio_put_req
527  *	Returns true if this put was the last user of the request.
528  */
__aio_put_req(struct kioctx * ctx,struct kiocb * req)529 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
530 {
531 	int schedule_putreq = 0;
532 
533 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
534 		req, atomic_long_read(&req->ki_filp->f_count));
535 
536 	assert_spin_locked(&ctx->ctx_lock);
537 
538 	req->ki_users--;
539 	BUG_ON(req->ki_users < 0);
540 	if (likely(req->ki_users))
541 		return 0;
542 	list_del(&req->ki_list);		/* remove from active_reqs */
543 	req->ki_cancel = NULL;
544 	req->ki_retry = NULL;
545 
546 	/*
547 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
548 	 * schedule work in case it is not __fput() time. In normal cases,
549 	 * we would not be holding the last reference to the file*, so
550 	 * this function will be executed w/out any aio kthread wakeup.
551 	 */
552 	if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count)))
553 		schedule_putreq++;
554 	else
555 		req->ki_filp = NULL;
556 	if (req->ki_eventfd != NULL) {
557 		if (unlikely(atomic_long_dec_and_test(&req->ki_eventfd->f_count)))
558 			schedule_putreq++;
559 		else
560 			req->ki_eventfd = NULL;
561 	}
562 	if (unlikely(schedule_putreq)) {
563 		get_ioctx(ctx);
564 		spin_lock(&fput_lock);
565 		list_add(&req->ki_list, &fput_head);
566 		spin_unlock(&fput_lock);
567 		queue_work(aio_wq, &fput_work);
568 	} else
569 		really_put_req(ctx, req);
570 	return 1;
571 }
572 
573 /* aio_put_req
574  *	Returns true if this put was the last user of the kiocb,
575  *	false if the request is still in use.
576  */
aio_put_req(struct kiocb * req)577 int aio_put_req(struct kiocb *req)
578 {
579 	struct kioctx *ctx = req->ki_ctx;
580 	int ret;
581 	spin_lock_irq(&ctx->ctx_lock);
582 	ret = __aio_put_req(ctx, req);
583 	spin_unlock_irq(&ctx->ctx_lock);
584 	return ret;
585 }
586 
lookup_ioctx(unsigned long ctx_id)587 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
588 {
589 	struct mm_struct *mm = current->mm;
590 	struct kioctx *ctx, *ret = NULL;
591 	struct hlist_node *n;
592 
593 	rcu_read_lock();
594 
595 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
596 		if (ctx->user_id == ctx_id && !ctx->dead) {
597 			get_ioctx(ctx);
598 			ret = ctx;
599 			break;
600 		}
601 	}
602 
603 	rcu_read_unlock();
604 	return ret;
605 }
606 
607 /*
608  * use_mm
609  *	Makes the calling kernel thread take on the specified
610  *	mm context.
611  *	Called by the retry thread execute retries within the
612  *	iocb issuer's mm context, so that copy_from/to_user
613  *	operations work seamlessly for aio.
614  *	(Note: this routine is intended to be called only
615  *	from a kernel thread context)
616  */
use_mm(struct mm_struct * mm)617 static void use_mm(struct mm_struct *mm)
618 {
619 	struct mm_struct *active_mm;
620 	struct task_struct *tsk = current;
621 
622 	task_lock(tsk);
623 	active_mm = tsk->active_mm;
624 	atomic_inc(&mm->mm_count);
625 	tsk->mm = mm;
626 	tsk->active_mm = mm;
627 	switch_mm(active_mm, mm, tsk);
628 	task_unlock(tsk);
629 
630 	mmdrop(active_mm);
631 }
632 
633 /*
634  * unuse_mm
635  *	Reverses the effect of use_mm, i.e. releases the
636  *	specified mm context which was earlier taken on
637  *	by the calling kernel thread
638  *	(Note: this routine is intended to be called only
639  *	from a kernel thread context)
640  */
unuse_mm(struct mm_struct * mm)641 static void unuse_mm(struct mm_struct *mm)
642 {
643 	struct task_struct *tsk = current;
644 
645 	task_lock(tsk);
646 	tsk->mm = NULL;
647 	/* active_mm is still 'mm' */
648 	enter_lazy_tlb(mm, tsk);
649 	task_unlock(tsk);
650 }
651 
652 /*
653  * Queue up a kiocb to be retried. Assumes that the kiocb
654  * has already been marked as kicked, and places it on
655  * the retry run list for the corresponding ioctx, if it
656  * isn't already queued. Returns 1 if it actually queued
657  * the kiocb (to tell the caller to activate the work
658  * queue to process it), or 0, if it found that it was
659  * already queued.
660  */
__queue_kicked_iocb(struct kiocb * iocb)661 static inline int __queue_kicked_iocb(struct kiocb *iocb)
662 {
663 	struct kioctx *ctx = iocb->ki_ctx;
664 
665 	assert_spin_locked(&ctx->ctx_lock);
666 
667 	if (list_empty(&iocb->ki_run_list)) {
668 		list_add_tail(&iocb->ki_run_list,
669 			&ctx->run_list);
670 		return 1;
671 	}
672 	return 0;
673 }
674 
675 /* aio_run_iocb
676  *	This is the core aio execution routine. It is
677  *	invoked both for initial i/o submission and
678  *	subsequent retries via the aio_kick_handler.
679  *	Expects to be invoked with iocb->ki_ctx->lock
680  *	already held. The lock is released and reacquired
681  *	as needed during processing.
682  *
683  * Calls the iocb retry method (already setup for the
684  * iocb on initial submission) for operation specific
685  * handling, but takes care of most of common retry
686  * execution details for a given iocb. The retry method
687  * needs to be non-blocking as far as possible, to avoid
688  * holding up other iocbs waiting to be serviced by the
689  * retry kernel thread.
690  *
691  * The trickier parts in this code have to do with
692  * ensuring that only one retry instance is in progress
693  * for a given iocb at any time. Providing that guarantee
694  * simplifies the coding of individual aio operations as
695  * it avoids various potential races.
696  */
aio_run_iocb(struct kiocb * iocb)697 static ssize_t aio_run_iocb(struct kiocb *iocb)
698 {
699 	struct kioctx	*ctx = iocb->ki_ctx;
700 	ssize_t (*retry)(struct kiocb *);
701 	ssize_t ret;
702 
703 	if (!(retry = iocb->ki_retry)) {
704 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
705 		return 0;
706 	}
707 
708 	/*
709 	 * We don't want the next retry iteration for this
710 	 * operation to start until this one has returned and
711 	 * updated the iocb state. However, wait_queue functions
712 	 * can trigger a kick_iocb from interrupt context in the
713 	 * meantime, indicating that data is available for the next
714 	 * iteration. We want to remember that and enable the
715 	 * next retry iteration _after_ we are through with
716 	 * this one.
717 	 *
718 	 * So, in order to be able to register a "kick", but
719 	 * prevent it from being queued now, we clear the kick
720 	 * flag, but make the kick code *think* that the iocb is
721 	 * still on the run list until we are actually done.
722 	 * When we are done with this iteration, we check if
723 	 * the iocb was kicked in the meantime and if so, queue
724 	 * it up afresh.
725 	 */
726 
727 	kiocbClearKicked(iocb);
728 
729 	/*
730 	 * This is so that aio_complete knows it doesn't need to
731 	 * pull the iocb off the run list (We can't just call
732 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
733 	 * queue this on the run list yet)
734 	 */
735 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
736 	spin_unlock_irq(&ctx->ctx_lock);
737 
738 	/* Quit retrying if the i/o has been cancelled */
739 	if (kiocbIsCancelled(iocb)) {
740 		ret = -EINTR;
741 		aio_complete(iocb, ret, 0);
742 		/* must not access the iocb after this */
743 		goto out;
744 	}
745 
746 	/*
747 	 * Now we are all set to call the retry method in async
748 	 * context.
749 	 */
750 	ret = retry(iocb);
751 
752 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
753 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
754 		aio_complete(iocb, ret, 0);
755 	}
756 out:
757 	spin_lock_irq(&ctx->ctx_lock);
758 
759 	if (-EIOCBRETRY == ret) {
760 		/*
761 		 * OK, now that we are done with this iteration
762 		 * and know that there is more left to go,
763 		 * this is where we let go so that a subsequent
764 		 * "kick" can start the next iteration
765 		 */
766 
767 		/* will make __queue_kicked_iocb succeed from here on */
768 		INIT_LIST_HEAD(&iocb->ki_run_list);
769 		/* we must queue the next iteration ourselves, if it
770 		 * has already been kicked */
771 		if (kiocbIsKicked(iocb)) {
772 			__queue_kicked_iocb(iocb);
773 
774 			/*
775 			 * __queue_kicked_iocb will always return 1 here, because
776 			 * iocb->ki_run_list is empty at this point so it should
777 			 * be safe to unconditionally queue the context into the
778 			 * work queue.
779 			 */
780 			aio_queue_work(ctx);
781 		}
782 	}
783 	return ret;
784 }
785 
786 /*
787  * __aio_run_iocbs:
788  * 	Process all pending retries queued on the ioctx
789  * 	run list.
790  * Assumes it is operating within the aio issuer's mm
791  * context.
792  */
__aio_run_iocbs(struct kioctx * ctx)793 static int __aio_run_iocbs(struct kioctx *ctx)
794 {
795 	struct kiocb *iocb;
796 	struct list_head run_list;
797 
798 	assert_spin_locked(&ctx->ctx_lock);
799 
800 	list_replace_init(&ctx->run_list, &run_list);
801 	while (!list_empty(&run_list)) {
802 		iocb = list_entry(run_list.next, struct kiocb,
803 			ki_run_list);
804 		list_del(&iocb->ki_run_list);
805 		/*
806 		 * Hold an extra reference while retrying i/o.
807 		 */
808 		iocb->ki_users++;       /* grab extra reference */
809 		aio_run_iocb(iocb);
810 		__aio_put_req(ctx, iocb);
811  	}
812 	if (!list_empty(&ctx->run_list))
813 		return 1;
814 	return 0;
815 }
816 
aio_queue_work(struct kioctx * ctx)817 static void aio_queue_work(struct kioctx * ctx)
818 {
819 	unsigned long timeout;
820 	/*
821 	 * if someone is waiting, get the work started right
822 	 * away, otherwise, use a longer delay
823 	 */
824 	smp_mb();
825 	if (waitqueue_active(&ctx->wait))
826 		timeout = 1;
827 	else
828 		timeout = HZ/10;
829 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
830 }
831 
832 
833 /*
834  * aio_run_iocbs:
835  * 	Process all pending retries queued on the ioctx
836  * 	run list.
837  * Assumes it is operating within the aio issuer's mm
838  * context.
839  */
aio_run_iocbs(struct kioctx * ctx)840 static inline void aio_run_iocbs(struct kioctx *ctx)
841 {
842 	int requeue;
843 
844 	spin_lock_irq(&ctx->ctx_lock);
845 
846 	requeue = __aio_run_iocbs(ctx);
847 	spin_unlock_irq(&ctx->ctx_lock);
848 	if (requeue)
849 		aio_queue_work(ctx);
850 }
851 
852 /*
853  * just like aio_run_iocbs, but keeps running them until
854  * the list stays empty
855  */
aio_run_all_iocbs(struct kioctx * ctx)856 static inline void aio_run_all_iocbs(struct kioctx *ctx)
857 {
858 	spin_lock_irq(&ctx->ctx_lock);
859 	while (__aio_run_iocbs(ctx))
860 		;
861 	spin_unlock_irq(&ctx->ctx_lock);
862 }
863 
864 /*
865  * aio_kick_handler:
866  * 	Work queue handler triggered to process pending
867  * 	retries on an ioctx. Takes on the aio issuer's
868  *	mm context before running the iocbs, so that
869  *	copy_xxx_user operates on the issuer's address
870  *      space.
871  * Run on aiod's context.
872  */
aio_kick_handler(struct work_struct * work)873 static void aio_kick_handler(struct work_struct *work)
874 {
875 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
876 	mm_segment_t oldfs = get_fs();
877 	struct mm_struct *mm;
878 	int requeue;
879 
880 	set_fs(USER_DS);
881 	use_mm(ctx->mm);
882 	spin_lock_irq(&ctx->ctx_lock);
883 	requeue =__aio_run_iocbs(ctx);
884 	mm = ctx->mm;
885 	spin_unlock_irq(&ctx->ctx_lock);
886  	unuse_mm(mm);
887 	set_fs(oldfs);
888 	/*
889 	 * we're in a worker thread already, don't use queue_delayed_work,
890 	 */
891 	if (requeue)
892 		queue_delayed_work(aio_wq, &ctx->wq, 0);
893 }
894 
895 
896 /*
897  * Called by kick_iocb to queue the kiocb for retry
898  * and if required activate the aio work queue to process
899  * it
900  */
try_queue_kicked_iocb(struct kiocb * iocb)901 static void try_queue_kicked_iocb(struct kiocb *iocb)
902 {
903  	struct kioctx	*ctx = iocb->ki_ctx;
904 	unsigned long flags;
905 	int run = 0;
906 
907 	/* We're supposed to be the only path putting the iocb back on the run
908 	 * list.  If we find that the iocb is *back* on a wait queue already
909 	 * than retry has happened before we could queue the iocb.  This also
910 	 * means that the retry could have completed and freed our iocb, no
911 	 * good. */
912 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
913 
914 	spin_lock_irqsave(&ctx->ctx_lock, flags);
915 	/* set this inside the lock so that we can't race with aio_run_iocb()
916 	 * testing it and putting the iocb on the run list under the lock */
917 	if (!kiocbTryKick(iocb))
918 		run = __queue_kicked_iocb(iocb);
919 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
920 	if (run)
921 		aio_queue_work(ctx);
922 }
923 
924 /*
925  * kick_iocb:
926  *      Called typically from a wait queue callback context
927  *      (aio_wake_function) to trigger a retry of the iocb.
928  *      The retry is usually executed by aio workqueue
929  *      threads (See aio_kick_handler).
930  */
kick_iocb(struct kiocb * iocb)931 void kick_iocb(struct kiocb *iocb)
932 {
933 	/* sync iocbs are easy: they can only ever be executing from a
934 	 * single context. */
935 	if (is_sync_kiocb(iocb)) {
936 		kiocbSetKicked(iocb);
937 	        wake_up_process(iocb->ki_obj.tsk);
938 		return;
939 	}
940 
941 	try_queue_kicked_iocb(iocb);
942 }
943 EXPORT_SYMBOL(kick_iocb);
944 
945 /* aio_complete
946  *	Called when the io request on the given iocb is complete.
947  *	Returns true if this is the last user of the request.  The
948  *	only other user of the request can be the cancellation code.
949  */
aio_complete(struct kiocb * iocb,long res,long res2)950 int aio_complete(struct kiocb *iocb, long res, long res2)
951 {
952 	struct kioctx	*ctx = iocb->ki_ctx;
953 	struct aio_ring_info	*info;
954 	struct aio_ring	*ring;
955 	struct io_event	*event;
956 	unsigned long	flags;
957 	unsigned long	tail;
958 	int		ret;
959 
960 	/*
961 	 * Special case handling for sync iocbs:
962 	 *  - events go directly into the iocb for fast handling
963 	 *  - the sync task with the iocb in its stack holds the single iocb
964 	 *    ref, no other paths have a way to get another ref
965 	 *  - the sync task helpfully left a reference to itself in the iocb
966 	 */
967 	if (is_sync_kiocb(iocb)) {
968 		BUG_ON(iocb->ki_users != 1);
969 		iocb->ki_user_data = res;
970 		iocb->ki_users = 0;
971 		wake_up_process(iocb->ki_obj.tsk);
972 		return 1;
973 	}
974 
975 	info = &ctx->ring_info;
976 
977 	/* add a completion event to the ring buffer.
978 	 * must be done holding ctx->ctx_lock to prevent
979 	 * other code from messing with the tail
980 	 * pointer since we might be called from irq
981 	 * context.
982 	 */
983 	spin_lock_irqsave(&ctx->ctx_lock, flags);
984 
985 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
986 		list_del_init(&iocb->ki_run_list);
987 
988 	/*
989 	 * cancelled requests don't get events, userland was given one
990 	 * when the event got cancelled.
991 	 */
992 	if (kiocbIsCancelled(iocb))
993 		goto put_rq;
994 
995 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
996 
997 	tail = info->tail;
998 	event = aio_ring_event(info, tail, KM_IRQ0);
999 	if (++tail >= info->nr)
1000 		tail = 0;
1001 
1002 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1003 	event->data = iocb->ki_user_data;
1004 	event->res = res;
1005 	event->res2 = res2;
1006 
1007 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1008 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1009 		res, res2);
1010 
1011 	/* after flagging the request as done, we
1012 	 * must never even look at it again
1013 	 */
1014 	smp_wmb();	/* make event visible before updating tail */
1015 
1016 	info->tail = tail;
1017 	ring->tail = tail;
1018 
1019 	put_aio_ring_event(event, KM_IRQ0);
1020 	kunmap_atomic(ring, KM_IRQ1);
1021 
1022 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1023 
1024 	/*
1025 	 * Check if the user asked us to deliver the result through an
1026 	 * eventfd. The eventfd_signal() function is safe to be called
1027 	 * from IRQ context.
1028 	 */
1029 	if (iocb->ki_eventfd != NULL)
1030 		eventfd_signal(iocb->ki_eventfd, 1);
1031 
1032 put_rq:
1033 	/* everything turned out well, dispose of the aiocb. */
1034 	ret = __aio_put_req(ctx, iocb);
1035 
1036 	/*
1037 	 * We have to order our ring_info tail store above and test
1038 	 * of the wait list below outside the wait lock.  This is
1039 	 * like in wake_up_bit() where clearing a bit has to be
1040 	 * ordered with the unlocked test.
1041 	 */
1042 	smp_mb();
1043 
1044 	if (waitqueue_active(&ctx->wait))
1045 		wake_up(&ctx->wait);
1046 
1047 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1048 	return ret;
1049 }
1050 
1051 /* aio_read_evt
1052  *	Pull an event off of the ioctx's event ring.  Returns the number of
1053  *	events fetched (0 or 1 ;-)
1054  *	FIXME: make this use cmpxchg.
1055  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1056  */
aio_read_evt(struct kioctx * ioctx,struct io_event * ent)1057 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1058 {
1059 	struct aio_ring_info *info = &ioctx->ring_info;
1060 	struct aio_ring *ring;
1061 	unsigned long head;
1062 	int ret = 0;
1063 
1064 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1065 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1066 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1067 		 (unsigned long)ring->nr);
1068 
1069 	if (ring->head == ring->tail)
1070 		goto out;
1071 
1072 	spin_lock(&info->ring_lock);
1073 
1074 	head = ring->head % info->nr;
1075 	if (head != ring->tail) {
1076 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1077 		*ent = *evp;
1078 		head = (head + 1) % info->nr;
1079 		smp_mb(); /* finish reading the event before updatng the head */
1080 		ring->head = head;
1081 		ret = 1;
1082 		put_aio_ring_event(evp, KM_USER1);
1083 	}
1084 	spin_unlock(&info->ring_lock);
1085 
1086 out:
1087 	kunmap_atomic(ring, KM_USER0);
1088 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1089 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1090 	return ret;
1091 }
1092 
1093 struct aio_timeout {
1094 	struct timer_list	timer;
1095 	int			timed_out;
1096 	struct task_struct	*p;
1097 };
1098 
timeout_func(unsigned long data)1099 static void timeout_func(unsigned long data)
1100 {
1101 	struct aio_timeout *to = (struct aio_timeout *)data;
1102 
1103 	to->timed_out = 1;
1104 	wake_up_process(to->p);
1105 }
1106 
init_timeout(struct aio_timeout * to)1107 static inline void init_timeout(struct aio_timeout *to)
1108 {
1109 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1110 	to->timed_out = 0;
1111 	to->p = current;
1112 }
1113 
set_timeout(long start_jiffies,struct aio_timeout * to,const struct timespec * ts)1114 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1115 			       const struct timespec *ts)
1116 {
1117 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1118 	if (time_after(to->timer.expires, jiffies))
1119 		add_timer(&to->timer);
1120 	else
1121 		to->timed_out = 1;
1122 }
1123 
clear_timeout(struct aio_timeout * to)1124 static inline void clear_timeout(struct aio_timeout *to)
1125 {
1126 	del_singleshot_timer_sync(&to->timer);
1127 }
1128 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,struct timespec __user * timeout)1129 static int read_events(struct kioctx *ctx,
1130 			long min_nr, long nr,
1131 			struct io_event __user *event,
1132 			struct timespec __user *timeout)
1133 {
1134 	long			start_jiffies = jiffies;
1135 	struct task_struct	*tsk = current;
1136 	DECLARE_WAITQUEUE(wait, tsk);
1137 	int			ret;
1138 	int			i = 0;
1139 	struct io_event		ent;
1140 	struct aio_timeout	to;
1141 	int			retry = 0;
1142 
1143 	/* needed to zero any padding within an entry (there shouldn't be
1144 	 * any, but C is fun!
1145 	 */
1146 	memset(&ent, 0, sizeof(ent));
1147 retry:
1148 	ret = 0;
1149 	while (likely(i < nr)) {
1150 		ret = aio_read_evt(ctx, &ent);
1151 		if (unlikely(ret <= 0))
1152 			break;
1153 
1154 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1155 			ent.data, ent.obj, ent.res, ent.res2);
1156 
1157 		/* Could we split the check in two? */
1158 		ret = -EFAULT;
1159 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1160 			dprintk("aio: lost an event due to EFAULT.\n");
1161 			break;
1162 		}
1163 		ret = 0;
1164 
1165 		/* Good, event copied to userland, update counts. */
1166 		event ++;
1167 		i ++;
1168 	}
1169 
1170 	if (min_nr <= i)
1171 		return i;
1172 	if (ret)
1173 		return ret;
1174 
1175 	/* End fast path */
1176 
1177 	/* racey check, but it gets redone */
1178 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1179 		retry = 1;
1180 		aio_run_all_iocbs(ctx);
1181 		goto retry;
1182 	}
1183 
1184 	init_timeout(&to);
1185 	if (timeout) {
1186 		struct timespec	ts;
1187 		ret = -EFAULT;
1188 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1189 			goto out;
1190 
1191 		set_timeout(start_jiffies, &to, &ts);
1192 	}
1193 
1194 	while (likely(i < nr)) {
1195 		add_wait_queue_exclusive(&ctx->wait, &wait);
1196 		do {
1197 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1198 			ret = aio_read_evt(ctx, &ent);
1199 			if (ret)
1200 				break;
1201 			if (min_nr <= i)
1202 				break;
1203 			if (unlikely(ctx->dead)) {
1204 				ret = -EINVAL;
1205 				break;
1206 			}
1207 			if (to.timed_out)	/* Only check after read evt */
1208 				break;
1209 			/* Try to only show up in io wait if there are ops
1210 			 *  in flight */
1211 			if (ctx->reqs_active)
1212 				io_schedule();
1213 			else
1214 				schedule();
1215 			if (signal_pending(tsk)) {
1216 				ret = -EINTR;
1217 				break;
1218 			}
1219 			/*ret = aio_read_evt(ctx, &ent);*/
1220 		} while (1) ;
1221 
1222 		set_task_state(tsk, TASK_RUNNING);
1223 		remove_wait_queue(&ctx->wait, &wait);
1224 
1225 		if (unlikely(ret <= 0))
1226 			break;
1227 
1228 		ret = -EFAULT;
1229 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1230 			dprintk("aio: lost an event due to EFAULT.\n");
1231 			break;
1232 		}
1233 
1234 		/* Good, event copied to userland, update counts. */
1235 		event ++;
1236 		i ++;
1237 	}
1238 
1239 	if (timeout)
1240 		clear_timeout(&to);
1241 out:
1242 	destroy_timer_on_stack(&to.timer);
1243 	return i ? i : ret;
1244 }
1245 
1246 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1247  * against races with itself via ->dead.
1248  */
io_destroy(struct kioctx * ioctx)1249 static void io_destroy(struct kioctx *ioctx)
1250 {
1251 	struct mm_struct *mm = current->mm;
1252 	int was_dead;
1253 
1254 	/* delete the entry from the list is someone else hasn't already */
1255 	spin_lock(&mm->ioctx_lock);
1256 	was_dead = ioctx->dead;
1257 	ioctx->dead = 1;
1258 	hlist_del_rcu(&ioctx->list);
1259 	spin_unlock(&mm->ioctx_lock);
1260 
1261 	dprintk("aio_release(%p)\n", ioctx);
1262 	if (likely(!was_dead))
1263 		put_ioctx(ioctx);	/* twice for the list */
1264 
1265 	aio_cancel_all(ioctx);
1266 	wait_for_all_aios(ioctx);
1267 
1268 	/*
1269 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1270 	 * by other CPUs at this point.  Right now, we rely on the
1271 	 * locking done by the above calls to ensure this consistency.
1272 	 */
1273 	wake_up(&ioctx->wait);
1274 	put_ioctx(ioctx);	/* once for the lookup */
1275 }
1276 
1277 /* sys_io_setup:
1278  *	Create an aio_context capable of receiving at least nr_events.
1279  *	ctxp must not point to an aio_context that already exists, and
1280  *	must be initialized to 0 prior to the call.  On successful
1281  *	creation of the aio_context, *ctxp is filled in with the resulting
1282  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1283  *	if the specified nr_events exceeds internal limits.  May fail
1284  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1285  *	of available events.  May fail with -ENOMEM if insufficient kernel
1286  *	resources are available.  May fail with -EFAULT if an invalid
1287  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1288  *	implemented.
1289  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1290 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1291 {
1292 	struct kioctx *ioctx = NULL;
1293 	unsigned long ctx;
1294 	long ret;
1295 
1296 	ret = get_user(ctx, ctxp);
1297 	if (unlikely(ret))
1298 		goto out;
1299 
1300 	ret = -EINVAL;
1301 	if (unlikely(ctx || nr_events == 0)) {
1302 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1303 		         ctx, nr_events);
1304 		goto out;
1305 	}
1306 
1307 	ioctx = ioctx_alloc(nr_events);
1308 	ret = PTR_ERR(ioctx);
1309 	if (!IS_ERR(ioctx)) {
1310 		ret = put_user(ioctx->user_id, ctxp);
1311 		if (!ret)
1312 			return 0;
1313 
1314 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1315 		io_destroy(ioctx);
1316 	}
1317 
1318 out:
1319 	return ret;
1320 }
1321 
1322 /* sys_io_destroy:
1323  *	Destroy the aio_context specified.  May cancel any outstanding
1324  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1325  *	implemented.  May fail with -EFAULT if the context pointed to
1326  *	is invalid.
1327  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1328 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1329 {
1330 	struct kioctx *ioctx = lookup_ioctx(ctx);
1331 	if (likely(NULL != ioctx)) {
1332 		io_destroy(ioctx);
1333 		return 0;
1334 	}
1335 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1336 	return -EINVAL;
1337 }
1338 
aio_advance_iovec(struct kiocb * iocb,ssize_t ret)1339 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1340 {
1341 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1342 
1343 	BUG_ON(ret <= 0);
1344 
1345 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1346 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1347 		iov->iov_base += this;
1348 		iov->iov_len -= this;
1349 		iocb->ki_left -= this;
1350 		ret -= this;
1351 		if (iov->iov_len == 0) {
1352 			iocb->ki_cur_seg++;
1353 			iov++;
1354 		}
1355 	}
1356 
1357 	/* the caller should not have done more io than what fit in
1358 	 * the remaining iovecs */
1359 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1360 }
1361 
aio_rw_vect_retry(struct kiocb * iocb)1362 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1363 {
1364 	struct file *file = iocb->ki_filp;
1365 	struct address_space *mapping = file->f_mapping;
1366 	struct inode *inode = mapping->host;
1367 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1368 			 unsigned long, loff_t);
1369 	ssize_t ret = 0;
1370 	unsigned short opcode;
1371 
1372 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1373 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1374 		rw_op = file->f_op->aio_read;
1375 		opcode = IOCB_CMD_PREADV;
1376 	} else {
1377 		rw_op = file->f_op->aio_write;
1378 		opcode = IOCB_CMD_PWRITEV;
1379 	}
1380 
1381 	/* This matches the pread()/pwrite() logic */
1382 	if (iocb->ki_pos < 0)
1383 		return -EINVAL;
1384 
1385 	do {
1386 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1387 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1388 			    iocb->ki_pos);
1389 		if (ret > 0)
1390 			aio_advance_iovec(iocb, ret);
1391 
1392 	/* retry all partial writes.  retry partial reads as long as its a
1393 	 * regular file. */
1394 	} while (ret > 0 && iocb->ki_left > 0 &&
1395 		 (opcode == IOCB_CMD_PWRITEV ||
1396 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1397 
1398 	/* This means we must have transferred all that we could */
1399 	/* No need to retry anymore */
1400 	if ((ret == 0) || (iocb->ki_left == 0))
1401 		ret = iocb->ki_nbytes - iocb->ki_left;
1402 
1403 	/* If we managed to write some out we return that, rather than
1404 	 * the eventual error. */
1405 	if (opcode == IOCB_CMD_PWRITEV
1406 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1407 	    && iocb->ki_nbytes - iocb->ki_left)
1408 		ret = iocb->ki_nbytes - iocb->ki_left;
1409 
1410 	return ret;
1411 }
1412 
aio_fdsync(struct kiocb * iocb)1413 static ssize_t aio_fdsync(struct kiocb *iocb)
1414 {
1415 	struct file *file = iocb->ki_filp;
1416 	ssize_t ret = -EINVAL;
1417 
1418 	if (file->f_op->aio_fsync)
1419 		ret = file->f_op->aio_fsync(iocb, 1);
1420 	return ret;
1421 }
1422 
aio_fsync(struct kiocb * iocb)1423 static ssize_t aio_fsync(struct kiocb *iocb)
1424 {
1425 	struct file *file = iocb->ki_filp;
1426 	ssize_t ret = -EINVAL;
1427 
1428 	if (file->f_op->aio_fsync)
1429 		ret = file->f_op->aio_fsync(iocb, 0);
1430 	return ret;
1431 }
1432 
aio_setup_vectored_rw(int type,struct kiocb * kiocb)1433 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1434 {
1435 	ssize_t ret;
1436 
1437 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1438 				    kiocb->ki_nbytes, 1,
1439 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1440 	if (ret < 0)
1441 		goto out;
1442 
1443 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1444 	kiocb->ki_cur_seg = 0;
1445 	/* ki_nbytes/left now reflect bytes instead of segs */
1446 	kiocb->ki_nbytes = ret;
1447 	kiocb->ki_left = ret;
1448 
1449 	ret = 0;
1450 out:
1451 	return ret;
1452 }
1453 
aio_setup_single_vector(struct kiocb * kiocb)1454 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1455 {
1456 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1457 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1458 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1459 	kiocb->ki_nr_segs = 1;
1460 	kiocb->ki_cur_seg = 0;
1461 	return 0;
1462 }
1463 
1464 /*
1465  * aio_setup_iocb:
1466  *	Performs the initial checks and aio retry method
1467  *	setup for the kiocb at the time of io submission.
1468  */
aio_setup_iocb(struct kiocb * kiocb)1469 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1470 {
1471 	struct file *file = kiocb->ki_filp;
1472 	ssize_t ret = 0;
1473 
1474 	switch (kiocb->ki_opcode) {
1475 	case IOCB_CMD_PREAD:
1476 		ret = -EBADF;
1477 		if (unlikely(!(file->f_mode & FMODE_READ)))
1478 			break;
1479 		ret = -EFAULT;
1480 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1481 			kiocb->ki_left)))
1482 			break;
1483 		ret = security_file_permission(file, MAY_READ);
1484 		if (unlikely(ret))
1485 			break;
1486 		ret = aio_setup_single_vector(kiocb);
1487 		if (ret)
1488 			break;
1489 		ret = -EINVAL;
1490 		if (file->f_op->aio_read)
1491 			kiocb->ki_retry = aio_rw_vect_retry;
1492 		break;
1493 	case IOCB_CMD_PWRITE:
1494 		ret = -EBADF;
1495 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1496 			break;
1497 		ret = -EFAULT;
1498 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1499 			kiocb->ki_left)))
1500 			break;
1501 		ret = security_file_permission(file, MAY_WRITE);
1502 		if (unlikely(ret))
1503 			break;
1504 		ret = aio_setup_single_vector(kiocb);
1505 		if (ret)
1506 			break;
1507 		ret = -EINVAL;
1508 		if (file->f_op->aio_write)
1509 			kiocb->ki_retry = aio_rw_vect_retry;
1510 		break;
1511 	case IOCB_CMD_PREADV:
1512 		ret = -EBADF;
1513 		if (unlikely(!(file->f_mode & FMODE_READ)))
1514 			break;
1515 		ret = security_file_permission(file, MAY_READ);
1516 		if (unlikely(ret))
1517 			break;
1518 		ret = aio_setup_vectored_rw(READ, kiocb);
1519 		if (ret)
1520 			break;
1521 		ret = -EINVAL;
1522 		if (file->f_op->aio_read)
1523 			kiocb->ki_retry = aio_rw_vect_retry;
1524 		break;
1525 	case IOCB_CMD_PWRITEV:
1526 		ret = -EBADF;
1527 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1528 			break;
1529 		ret = security_file_permission(file, MAY_WRITE);
1530 		if (unlikely(ret))
1531 			break;
1532 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1533 		if (ret)
1534 			break;
1535 		ret = -EINVAL;
1536 		if (file->f_op->aio_write)
1537 			kiocb->ki_retry = aio_rw_vect_retry;
1538 		break;
1539 	case IOCB_CMD_FDSYNC:
1540 		ret = -EINVAL;
1541 		if (file->f_op->aio_fsync)
1542 			kiocb->ki_retry = aio_fdsync;
1543 		break;
1544 	case IOCB_CMD_FSYNC:
1545 		ret = -EINVAL;
1546 		if (file->f_op->aio_fsync)
1547 			kiocb->ki_retry = aio_fsync;
1548 		break;
1549 	default:
1550 		dprintk("EINVAL: io_submit: no operation provided\n");
1551 		ret = -EINVAL;
1552 	}
1553 
1554 	if (!kiocb->ki_retry)
1555 		return ret;
1556 
1557 	return 0;
1558 }
1559 
1560 /*
1561  * aio_wake_function:
1562  * 	wait queue callback function for aio notification,
1563  * 	Simply triggers a retry of the operation via kick_iocb.
1564  *
1565  * 	This callback is specified in the wait queue entry in
1566  *	a kiocb.
1567  *
1568  * Note:
1569  * This routine is executed with the wait queue lock held.
1570  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1571  * the ioctx lock inside the wait queue lock. This is safe
1572  * because this callback isn't used for wait queues which
1573  * are nested inside ioctx lock (i.e. ctx->wait)
1574  */
aio_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * key)1575 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1576 			     int sync, void *key)
1577 {
1578 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1579 
1580 	list_del_init(&wait->task_list);
1581 	kick_iocb(iocb);
1582 	return 1;
1583 }
1584 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,struct iocb * iocb)1585 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1586 			 struct iocb *iocb)
1587 {
1588 	struct kiocb *req;
1589 	struct file *file;
1590 	ssize_t ret;
1591 
1592 	/* enforce forwards compatibility on users */
1593 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1594 		pr_debug("EINVAL: io_submit: reserve field set\n");
1595 		return -EINVAL;
1596 	}
1597 
1598 	/* prevent overflows */
1599 	if (unlikely(
1600 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1601 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1602 	    ((ssize_t)iocb->aio_nbytes < 0)
1603 	   )) {
1604 		pr_debug("EINVAL: io_submit: overflow check\n");
1605 		return -EINVAL;
1606 	}
1607 
1608 	file = fget(iocb->aio_fildes);
1609 	if (unlikely(!file))
1610 		return -EBADF;
1611 
1612 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1613 	if (unlikely(!req)) {
1614 		fput(file);
1615 		return -EAGAIN;
1616 	}
1617 	req->ki_filp = file;
1618 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1619 		/*
1620 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1621 		 * instance of the file* now. The file descriptor must be
1622 		 * an eventfd() fd, and will be signaled for each completed
1623 		 * event using the eventfd_signal() function.
1624 		 */
1625 		req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1626 		if (IS_ERR(req->ki_eventfd)) {
1627 			ret = PTR_ERR(req->ki_eventfd);
1628 			req->ki_eventfd = NULL;
1629 			goto out_put_req;
1630 		}
1631 	}
1632 
1633 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1634 	if (unlikely(ret)) {
1635 		dprintk("EFAULT: aio_key\n");
1636 		goto out_put_req;
1637 	}
1638 
1639 	req->ki_obj.user = user_iocb;
1640 	req->ki_user_data = iocb->aio_data;
1641 	req->ki_pos = iocb->aio_offset;
1642 
1643 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1644 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1645 	req->ki_opcode = iocb->aio_lio_opcode;
1646 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1647 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1648 
1649 	ret = aio_setup_iocb(req);
1650 
1651 	if (ret)
1652 		goto out_put_req;
1653 
1654 	spin_lock_irq(&ctx->ctx_lock);
1655 	aio_run_iocb(req);
1656 	if (!list_empty(&ctx->run_list)) {
1657 		/* drain the run list */
1658 		while (__aio_run_iocbs(ctx))
1659 			;
1660 	}
1661 	spin_unlock_irq(&ctx->ctx_lock);
1662 	aio_put_req(req);	/* drop extra ref to req */
1663 	return 0;
1664 
1665 out_put_req:
1666 	aio_put_req(req);	/* drop extra ref to req */
1667 	aio_put_req(req);	/* drop i/o ref to req */
1668 	return ret;
1669 }
1670 
1671 /* sys_io_submit:
1672  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1673  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1674  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1675  *	*iocbpp[0] is not properly initialized, if the operation specified
1676  *	is invalid for the file descriptor in the iocb.  May fail with
1677  *	-EFAULT if any of the data structures point to invalid data.  May
1678  *	fail with -EBADF if the file descriptor specified in the first
1679  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1680  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1681  *	fail with -ENOSYS if not implemented.
1682  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)1683 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1684 		struct iocb __user * __user *, iocbpp)
1685 {
1686 	struct kioctx *ctx;
1687 	long ret = 0;
1688 	int i;
1689 
1690 	if (unlikely(nr < 0))
1691 		return -EINVAL;
1692 
1693 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1694 		return -EFAULT;
1695 
1696 	ctx = lookup_ioctx(ctx_id);
1697 	if (unlikely(!ctx)) {
1698 		pr_debug("EINVAL: io_submit: invalid context id\n");
1699 		return -EINVAL;
1700 	}
1701 
1702 	/*
1703 	 * AKPM: should this return a partial result if some of the IOs were
1704 	 * successfully submitted?
1705 	 */
1706 	for (i=0; i<nr; i++) {
1707 		struct iocb __user *user_iocb;
1708 		struct iocb tmp;
1709 
1710 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1711 			ret = -EFAULT;
1712 			break;
1713 		}
1714 
1715 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1716 			ret = -EFAULT;
1717 			break;
1718 		}
1719 
1720 		ret = io_submit_one(ctx, user_iocb, &tmp);
1721 		if (ret)
1722 			break;
1723 	}
1724 
1725 	put_ioctx(ctx);
1726 	return i ? i : ret;
1727 }
1728 
1729 /* lookup_kiocb
1730  *	Finds a given iocb for cancellation.
1731  */
lookup_kiocb(struct kioctx * ctx,struct iocb __user * iocb,u32 key)1732 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1733 				  u32 key)
1734 {
1735 	struct list_head *pos;
1736 
1737 	assert_spin_locked(&ctx->ctx_lock);
1738 
1739 	/* TODO: use a hash or array, this sucks. */
1740 	list_for_each(pos, &ctx->active_reqs) {
1741 		struct kiocb *kiocb = list_kiocb(pos);
1742 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1743 			return kiocb;
1744 	}
1745 	return NULL;
1746 }
1747 
1748 /* sys_io_cancel:
1749  *	Attempts to cancel an iocb previously passed to io_submit.  If
1750  *	the operation is successfully cancelled, the resulting event is
1751  *	copied into the memory pointed to by result without being placed
1752  *	into the completion queue and 0 is returned.  May fail with
1753  *	-EFAULT if any of the data structures pointed to are invalid.
1754  *	May fail with -EINVAL if aio_context specified by ctx_id is
1755  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1756  *	cancelled.  Will fail with -ENOSYS if not implemented.
1757  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)1758 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1759 		struct io_event __user *, result)
1760 {
1761 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1762 	struct kioctx *ctx;
1763 	struct kiocb *kiocb;
1764 	u32 key;
1765 	int ret;
1766 
1767 	ret = get_user(key, &iocb->aio_key);
1768 	if (unlikely(ret))
1769 		return -EFAULT;
1770 
1771 	ctx = lookup_ioctx(ctx_id);
1772 	if (unlikely(!ctx))
1773 		return -EINVAL;
1774 
1775 	spin_lock_irq(&ctx->ctx_lock);
1776 	ret = -EAGAIN;
1777 	kiocb = lookup_kiocb(ctx, iocb, key);
1778 	if (kiocb && kiocb->ki_cancel) {
1779 		cancel = kiocb->ki_cancel;
1780 		kiocb->ki_users ++;
1781 		kiocbSetCancelled(kiocb);
1782 	} else
1783 		cancel = NULL;
1784 	spin_unlock_irq(&ctx->ctx_lock);
1785 
1786 	if (NULL != cancel) {
1787 		struct io_event tmp;
1788 		pr_debug("calling cancel\n");
1789 		memset(&tmp, 0, sizeof(tmp));
1790 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1791 		tmp.data = kiocb->ki_user_data;
1792 		ret = cancel(kiocb, &tmp);
1793 		if (!ret) {
1794 			/* Cancellation succeeded -- copy the result
1795 			 * into the user's buffer.
1796 			 */
1797 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1798 				ret = -EFAULT;
1799 		}
1800 	} else
1801 		ret = -EINVAL;
1802 
1803 	put_ioctx(ctx);
1804 
1805 	return ret;
1806 }
1807 
1808 /* io_getevents:
1809  *	Attempts to read at least min_nr events and up to nr events from
1810  *	the completion queue for the aio_context specified by ctx_id.  May
1811  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1812  *	if nr is out of range, if when is out of range.  May fail with
1813  *	-EFAULT if any of the memory specified to is invalid.  May return
1814  *	0 or < min_nr if no events are available and the timeout specified
1815  *	by when	has elapsed, where when == NULL specifies an infinite
1816  *	timeout.  Note that the timeout pointed to by when is relative and
1817  *	will be updated if not NULL and the operation blocks.  Will fail
1818  *	with -ENOSYS if not implemented.
1819  */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)1820 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1821 		long, min_nr,
1822 		long, nr,
1823 		struct io_event __user *, events,
1824 		struct timespec __user *, timeout)
1825 {
1826 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1827 	long ret = -EINVAL;
1828 
1829 	if (likely(ioctx)) {
1830 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1831 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1832 		put_ioctx(ioctx);
1833 	}
1834 
1835 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1836 	return ret;
1837 }
1838 
1839 __initcall(aio_setup);
1840 
1841 EXPORT_SYMBOL(aio_complete);
1842 EXPORT_SYMBOL(aio_put_req);
1843 EXPORT_SYMBOL(wait_on_sync_kiocb);
1844