• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/smp_lock.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mpage.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "ioctl.h"
37 #include "print-tree.h"
38 #include "tree-log.h"
39 #include "locking.h"
40 #include "compat.h"
41 
42 
43 /* simple helper to fault in pages and copy.  This should go away
44  * and be replaced with calls into generic code.
45  */
btrfs_copy_from_user(loff_t pos,int num_pages,int write_bytes,struct page ** prepared_pages,const char __user * buf)46 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
47 					 int write_bytes,
48 					 struct page **prepared_pages,
49 					 const char __user *buf)
50 {
51 	long page_fault = 0;
52 	int i;
53 	int offset = pos & (PAGE_CACHE_SIZE - 1);
54 
55 	for (i = 0; i < num_pages && write_bytes > 0; i++, offset = 0) {
56 		size_t count = min_t(size_t,
57 				     PAGE_CACHE_SIZE - offset, write_bytes);
58 		struct page *page = prepared_pages[i];
59 		fault_in_pages_readable(buf, count);
60 
61 		/* Copy data from userspace to the current page */
62 		kmap(page);
63 		page_fault = __copy_from_user(page_address(page) + offset,
64 					      buf, count);
65 		/* Flush processor's dcache for this page */
66 		flush_dcache_page(page);
67 		kunmap(page);
68 		buf += count;
69 		write_bytes -= count;
70 
71 		if (page_fault)
72 			break;
73 	}
74 	return page_fault ? -EFAULT : 0;
75 }
76 
77 /*
78  * unlocks pages after btrfs_file_write is done with them
79  */
btrfs_drop_pages(struct page ** pages,size_t num_pages)80 static noinline void btrfs_drop_pages(struct page **pages, size_t num_pages)
81 {
82 	size_t i;
83 	for (i = 0; i < num_pages; i++) {
84 		if (!pages[i])
85 			break;
86 		/* page checked is some magic around finding pages that
87 		 * have been modified without going through btrfs_set_page_dirty
88 		 * clear it here
89 		 */
90 		ClearPageChecked(pages[i]);
91 		unlock_page(pages[i]);
92 		mark_page_accessed(pages[i]);
93 		page_cache_release(pages[i]);
94 	}
95 }
96 
97 /*
98  * after copy_from_user, pages need to be dirtied and we need to make
99  * sure holes are created between the current EOF and the start of
100  * any next extents (if required).
101  *
102  * this also makes the decision about creating an inline extent vs
103  * doing real data extents, marking pages dirty and delalloc as required.
104  */
dirty_and_release_pages(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct file * file,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes)105 static noinline int dirty_and_release_pages(struct btrfs_trans_handle *trans,
106 				   struct btrfs_root *root,
107 				   struct file *file,
108 				   struct page **pages,
109 				   size_t num_pages,
110 				   loff_t pos,
111 				   size_t write_bytes)
112 {
113 	int err = 0;
114 	int i;
115 	struct inode *inode = fdentry(file)->d_inode;
116 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
117 	u64 hint_byte;
118 	u64 num_bytes;
119 	u64 start_pos;
120 	u64 end_of_last_block;
121 	u64 end_pos = pos + write_bytes;
122 	loff_t isize = i_size_read(inode);
123 
124 	start_pos = pos & ~((u64)root->sectorsize - 1);
125 	num_bytes = (write_bytes + pos - start_pos +
126 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
127 
128 	end_of_last_block = start_pos + num_bytes - 1;
129 
130 	lock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS);
131 	trans = btrfs_join_transaction(root, 1);
132 	if (!trans) {
133 		err = -ENOMEM;
134 		goto out_unlock;
135 	}
136 	btrfs_set_trans_block_group(trans, inode);
137 	hint_byte = 0;
138 
139 	set_extent_uptodate(io_tree, start_pos, end_of_last_block, GFP_NOFS);
140 
141 	/* check for reserved extents on each page, we don't want
142 	 * to reset the delalloc bit on things that already have
143 	 * extents reserved.
144 	 */
145 	btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block);
146 	for (i = 0; i < num_pages; i++) {
147 		struct page *p = pages[i];
148 		SetPageUptodate(p);
149 		ClearPageChecked(p);
150 		set_page_dirty(p);
151 	}
152 	if (end_pos > isize) {
153 		i_size_write(inode, end_pos);
154 		btrfs_update_inode(trans, root, inode);
155 	}
156 	err = btrfs_end_transaction(trans, root);
157 out_unlock:
158 	unlock_extent(io_tree, start_pos, end_of_last_block, GFP_NOFS);
159 	return err;
160 }
161 
162 /*
163  * this drops all the extents in the cache that intersect the range
164  * [start, end].  Existing extents are split as required.
165  */
btrfs_drop_extent_cache(struct inode * inode,u64 start,u64 end,int skip_pinned)166 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
167 			    int skip_pinned)
168 {
169 	struct extent_map *em;
170 	struct extent_map *split = NULL;
171 	struct extent_map *split2 = NULL;
172 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
173 	u64 len = end - start + 1;
174 	int ret;
175 	int testend = 1;
176 	unsigned long flags;
177 	int compressed = 0;
178 
179 	WARN_ON(end < start);
180 	if (end == (u64)-1) {
181 		len = (u64)-1;
182 		testend = 0;
183 	}
184 	while (1) {
185 		if (!split)
186 			split = alloc_extent_map(GFP_NOFS);
187 		if (!split2)
188 			split2 = alloc_extent_map(GFP_NOFS);
189 
190 		spin_lock(&em_tree->lock);
191 		em = lookup_extent_mapping(em_tree, start, len);
192 		if (!em) {
193 			spin_unlock(&em_tree->lock);
194 			break;
195 		}
196 		flags = em->flags;
197 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
198 			spin_unlock(&em_tree->lock);
199 			if (em->start <= start &&
200 			    (!testend || em->start + em->len >= start + len)) {
201 				free_extent_map(em);
202 				break;
203 			}
204 			if (start < em->start) {
205 				len = em->start - start;
206 			} else {
207 				len = start + len - (em->start + em->len);
208 				start = em->start + em->len;
209 			}
210 			free_extent_map(em);
211 			continue;
212 		}
213 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
214 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
215 		remove_extent_mapping(em_tree, em);
216 
217 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
218 		    em->start < start) {
219 			split->start = em->start;
220 			split->len = start - em->start;
221 			split->orig_start = em->orig_start;
222 			split->block_start = em->block_start;
223 
224 			if (compressed)
225 				split->block_len = em->block_len;
226 			else
227 				split->block_len = split->len;
228 
229 			split->bdev = em->bdev;
230 			split->flags = flags;
231 			ret = add_extent_mapping(em_tree, split);
232 			BUG_ON(ret);
233 			free_extent_map(split);
234 			split = split2;
235 			split2 = NULL;
236 		}
237 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
238 		    testend && em->start + em->len > start + len) {
239 			u64 diff = start + len - em->start;
240 
241 			split->start = start + len;
242 			split->len = em->start + em->len - (start + len);
243 			split->bdev = em->bdev;
244 			split->flags = flags;
245 
246 			if (compressed) {
247 				split->block_len = em->block_len;
248 				split->block_start = em->block_start;
249 				split->orig_start = em->orig_start;
250 			} else {
251 				split->block_len = split->len;
252 				split->block_start = em->block_start + diff;
253 				split->orig_start = split->start;
254 			}
255 
256 			ret = add_extent_mapping(em_tree, split);
257 			BUG_ON(ret);
258 			free_extent_map(split);
259 			split = NULL;
260 		}
261 		spin_unlock(&em_tree->lock);
262 
263 		/* once for us */
264 		free_extent_map(em);
265 		/* once for the tree*/
266 		free_extent_map(em);
267 	}
268 	if (split)
269 		free_extent_map(split);
270 	if (split2)
271 		free_extent_map(split2);
272 	return 0;
273 }
274 
btrfs_check_file(struct btrfs_root * root,struct inode * inode)275 int btrfs_check_file(struct btrfs_root *root, struct inode *inode)
276 {
277 	return 0;
278 #if 0
279 	struct btrfs_path *path;
280 	struct btrfs_key found_key;
281 	struct extent_buffer *leaf;
282 	struct btrfs_file_extent_item *extent;
283 	u64 last_offset = 0;
284 	int nritems;
285 	int slot;
286 	int found_type;
287 	int ret;
288 	int err = 0;
289 	u64 extent_end = 0;
290 
291 	path = btrfs_alloc_path();
292 	ret = btrfs_lookup_file_extent(NULL, root, path, inode->i_ino,
293 				       last_offset, 0);
294 	while (1) {
295 		nritems = btrfs_header_nritems(path->nodes[0]);
296 		if (path->slots[0] >= nritems) {
297 			ret = btrfs_next_leaf(root, path);
298 			if (ret)
299 				goto out;
300 			nritems = btrfs_header_nritems(path->nodes[0]);
301 		}
302 		slot = path->slots[0];
303 		leaf = path->nodes[0];
304 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
305 		if (found_key.objectid != inode->i_ino)
306 			break;
307 		if (found_key.type != BTRFS_EXTENT_DATA_KEY)
308 			goto out;
309 
310 		if (found_key.offset < last_offset) {
311 			WARN_ON(1);
312 			btrfs_print_leaf(root, leaf);
313 			printk(KERN_ERR "inode %lu found offset %llu "
314 			       "expected %llu\n", inode->i_ino,
315 			       (unsigned long long)found_key.offset,
316 			       (unsigned long long)last_offset);
317 			err = 1;
318 			goto out;
319 		}
320 		extent = btrfs_item_ptr(leaf, slot,
321 					struct btrfs_file_extent_item);
322 		found_type = btrfs_file_extent_type(leaf, extent);
323 		if (found_type == BTRFS_FILE_EXTENT_REG) {
324 			extent_end = found_key.offset +
325 			     btrfs_file_extent_num_bytes(leaf, extent);
326 		} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
327 			struct btrfs_item *item;
328 			item = btrfs_item_nr(leaf, slot);
329 			extent_end = found_key.offset +
330 			     btrfs_file_extent_inline_len(leaf, extent);
331 			extent_end = (extent_end + root->sectorsize - 1) &
332 				~((u64)root->sectorsize - 1);
333 		}
334 		last_offset = extent_end;
335 		path->slots[0]++;
336 	}
337 	if (0 && last_offset < inode->i_size) {
338 		WARN_ON(1);
339 		btrfs_print_leaf(root, leaf);
340 		printk(KERN_ERR "inode %lu found offset %llu size %llu\n",
341 		       inode->i_ino, (unsigned long long)last_offset,
342 		       (unsigned long long)inode->i_size);
343 		err = 1;
344 
345 	}
346 out:
347 	btrfs_free_path(path);
348 	return err;
349 #endif
350 }
351 
352 /*
353  * this is very complex, but the basic idea is to drop all extents
354  * in the range start - end.  hint_block is filled in with a block number
355  * that would be a good hint to the block allocator for this file.
356  *
357  * If an extent intersects the range but is not entirely inside the range
358  * it is either truncated or split.  Anything entirely inside the range
359  * is deleted from the tree.
360  *
361  * inline_limit is used to tell this code which offsets in the file to keep
362  * if they contain inline extents.
363  */
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end,u64 inline_limit,u64 * hint_byte)364 noinline int btrfs_drop_extents(struct btrfs_trans_handle *trans,
365 		       struct btrfs_root *root, struct inode *inode,
366 		       u64 start, u64 end, u64 inline_limit, u64 *hint_byte)
367 {
368 	u64 extent_end = 0;
369 	u64 locked_end = end;
370 	u64 search_start = start;
371 	u64 leaf_start;
372 	u64 ram_bytes = 0;
373 	u64 orig_parent = 0;
374 	u64 disk_bytenr = 0;
375 	u8 compression;
376 	u8 encryption;
377 	u16 other_encoding = 0;
378 	u64 root_gen;
379 	u64 root_owner;
380 	struct extent_buffer *leaf;
381 	struct btrfs_file_extent_item *extent;
382 	struct btrfs_path *path;
383 	struct btrfs_key key;
384 	struct btrfs_file_extent_item old;
385 	int keep;
386 	int slot;
387 	int bookend;
388 	int found_type = 0;
389 	int found_extent;
390 	int found_inline;
391 	int recow;
392 	int ret;
393 
394 	inline_limit = 0;
395 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
396 
397 	path = btrfs_alloc_path();
398 	if (!path)
399 		return -ENOMEM;
400 	while (1) {
401 		recow = 0;
402 		btrfs_release_path(root, path);
403 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
404 					       search_start, -1);
405 		if (ret < 0)
406 			goto out;
407 		if (ret > 0) {
408 			if (path->slots[0] == 0) {
409 				ret = 0;
410 				goto out;
411 			}
412 			path->slots[0]--;
413 		}
414 next_slot:
415 		keep = 0;
416 		bookend = 0;
417 		found_extent = 0;
418 		found_inline = 0;
419 		leaf_start = 0;
420 		root_gen = 0;
421 		root_owner = 0;
422 		compression = 0;
423 		encryption = 0;
424 		extent = NULL;
425 		leaf = path->nodes[0];
426 		slot = path->slots[0];
427 		ret = 0;
428 		btrfs_item_key_to_cpu(leaf, &key, slot);
429 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY &&
430 		    key.offset >= end) {
431 			goto out;
432 		}
433 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
434 		    key.objectid != inode->i_ino) {
435 			goto out;
436 		}
437 		if (recow) {
438 			search_start = max(key.offset, start);
439 			continue;
440 		}
441 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
442 			extent = btrfs_item_ptr(leaf, slot,
443 						struct btrfs_file_extent_item);
444 			found_type = btrfs_file_extent_type(leaf, extent);
445 			compression = btrfs_file_extent_compression(leaf,
446 								    extent);
447 			encryption = btrfs_file_extent_encryption(leaf,
448 								  extent);
449 			other_encoding = btrfs_file_extent_other_encoding(leaf,
450 								  extent);
451 			if (found_type == BTRFS_FILE_EXTENT_REG ||
452 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
453 				extent_end =
454 				     btrfs_file_extent_disk_bytenr(leaf,
455 								   extent);
456 				if (extent_end)
457 					*hint_byte = extent_end;
458 
459 				extent_end = key.offset +
460 				     btrfs_file_extent_num_bytes(leaf, extent);
461 				ram_bytes = btrfs_file_extent_ram_bytes(leaf,
462 								extent);
463 				found_extent = 1;
464 			} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
465 				found_inline = 1;
466 				extent_end = key.offset +
467 				     btrfs_file_extent_inline_len(leaf, extent);
468 			}
469 		} else {
470 			extent_end = search_start;
471 		}
472 
473 		/* we found nothing we can drop */
474 		if ((!found_extent && !found_inline) ||
475 		    search_start >= extent_end) {
476 			int nextret;
477 			u32 nritems;
478 			nritems = btrfs_header_nritems(leaf);
479 			if (slot >= nritems - 1) {
480 				nextret = btrfs_next_leaf(root, path);
481 				if (nextret)
482 					goto out;
483 				recow = 1;
484 			} else {
485 				path->slots[0]++;
486 			}
487 			goto next_slot;
488 		}
489 
490 		if (end <= extent_end && start >= key.offset && found_inline)
491 			*hint_byte = EXTENT_MAP_INLINE;
492 
493 		if (found_extent) {
494 			read_extent_buffer(leaf, &old, (unsigned long)extent,
495 					   sizeof(old));
496 			root_gen = btrfs_header_generation(leaf);
497 			root_owner = btrfs_header_owner(leaf);
498 			leaf_start = leaf->start;
499 		}
500 
501 		if (end < extent_end && end >= key.offset) {
502 			bookend = 1;
503 			if (found_inline && start <= key.offset)
504 				keep = 1;
505 		}
506 
507 		if (bookend && found_extent) {
508 			if (locked_end < extent_end) {
509 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
510 						locked_end, extent_end - 1,
511 						GFP_NOFS);
512 				if (!ret) {
513 					btrfs_release_path(root, path);
514 					lock_extent(&BTRFS_I(inode)->io_tree,
515 						locked_end, extent_end - 1,
516 						GFP_NOFS);
517 					locked_end = extent_end;
518 					continue;
519 				}
520 				locked_end = extent_end;
521 			}
522 			orig_parent = path->nodes[0]->start;
523 			disk_bytenr = le64_to_cpu(old.disk_bytenr);
524 			if (disk_bytenr != 0) {
525 				ret = btrfs_inc_extent_ref(trans, root,
526 					   disk_bytenr,
527 					   le64_to_cpu(old.disk_num_bytes),
528 					   orig_parent, root->root_key.objectid,
529 					   trans->transid, inode->i_ino);
530 				BUG_ON(ret);
531 			}
532 		}
533 
534 		if (found_inline) {
535 			u64 mask = root->sectorsize - 1;
536 			search_start = (extent_end + mask) & ~mask;
537 		} else
538 			search_start = extent_end;
539 
540 		/* truncate existing extent */
541 		if (start > key.offset) {
542 			u64 new_num;
543 			u64 old_num;
544 			keep = 1;
545 			WARN_ON(start & (root->sectorsize - 1));
546 			if (found_extent) {
547 				new_num = start - key.offset;
548 				old_num = btrfs_file_extent_num_bytes(leaf,
549 								      extent);
550 				*hint_byte =
551 					btrfs_file_extent_disk_bytenr(leaf,
552 								      extent);
553 				if (btrfs_file_extent_disk_bytenr(leaf,
554 								  extent)) {
555 					inode_sub_bytes(inode, old_num -
556 							new_num);
557 				}
558 				btrfs_set_file_extent_num_bytes(leaf,
559 							extent, new_num);
560 				btrfs_mark_buffer_dirty(leaf);
561 			} else if (key.offset < inline_limit &&
562 				   (end > extent_end) &&
563 				   (inline_limit < extent_end)) {
564 				u32 new_size;
565 				new_size = btrfs_file_extent_calc_inline_size(
566 						   inline_limit - key.offset);
567 				inode_sub_bytes(inode, extent_end -
568 						inline_limit);
569 				btrfs_set_file_extent_ram_bytes(leaf, extent,
570 							new_size);
571 				if (!compression && !encryption) {
572 					btrfs_truncate_item(trans, root, path,
573 							    new_size, 1);
574 				}
575 			}
576 		}
577 		/* delete the entire extent */
578 		if (!keep) {
579 			if (found_inline)
580 				inode_sub_bytes(inode, extent_end -
581 						key.offset);
582 			ret = btrfs_del_item(trans, root, path);
583 			/* TODO update progress marker and return */
584 			BUG_ON(ret);
585 			extent = NULL;
586 			btrfs_release_path(root, path);
587 			/* the extent will be freed later */
588 		}
589 		if (bookend && found_inline && start <= key.offset) {
590 			u32 new_size;
591 			new_size = btrfs_file_extent_calc_inline_size(
592 						   extent_end - end);
593 			inode_sub_bytes(inode, end - key.offset);
594 			btrfs_set_file_extent_ram_bytes(leaf, extent,
595 							new_size);
596 			if (!compression && !encryption)
597 				ret = btrfs_truncate_item(trans, root, path,
598 							  new_size, 0);
599 			BUG_ON(ret);
600 		}
601 		/* create bookend, splitting the extent in two */
602 		if (bookend && found_extent) {
603 			struct btrfs_key ins;
604 			ins.objectid = inode->i_ino;
605 			ins.offset = end;
606 			btrfs_set_key_type(&ins, BTRFS_EXTENT_DATA_KEY);
607 
608 			btrfs_release_path(root, path);
609 			ret = btrfs_insert_empty_item(trans, root, path, &ins,
610 						      sizeof(*extent));
611 			BUG_ON(ret);
612 
613 			leaf = path->nodes[0];
614 			extent = btrfs_item_ptr(leaf, path->slots[0],
615 						struct btrfs_file_extent_item);
616 			write_extent_buffer(leaf, &old,
617 					    (unsigned long)extent, sizeof(old));
618 
619 			btrfs_set_file_extent_compression(leaf, extent,
620 							  compression);
621 			btrfs_set_file_extent_encryption(leaf, extent,
622 							 encryption);
623 			btrfs_set_file_extent_other_encoding(leaf, extent,
624 							     other_encoding);
625 			btrfs_set_file_extent_offset(leaf, extent,
626 				    le64_to_cpu(old.offset) + end - key.offset);
627 			WARN_ON(le64_to_cpu(old.num_bytes) <
628 				(extent_end - end));
629 			btrfs_set_file_extent_num_bytes(leaf, extent,
630 							extent_end - end);
631 
632 			/*
633 			 * set the ram bytes to the size of the full extent
634 			 * before splitting.  This is a worst case flag,
635 			 * but its the best we can do because we don't know
636 			 * how splitting affects compression
637 			 */
638 			btrfs_set_file_extent_ram_bytes(leaf, extent,
639 							ram_bytes);
640 			btrfs_set_file_extent_type(leaf, extent, found_type);
641 
642 			btrfs_mark_buffer_dirty(path->nodes[0]);
643 
644 			if (disk_bytenr != 0) {
645 				ret = btrfs_update_extent_ref(trans, root,
646 						disk_bytenr, orig_parent,
647 						leaf->start,
648 						root->root_key.objectid,
649 						trans->transid, ins.objectid);
650 
651 				BUG_ON(ret);
652 			}
653 			btrfs_release_path(root, path);
654 			if (disk_bytenr != 0)
655 				inode_add_bytes(inode, extent_end - end);
656 		}
657 
658 		if (found_extent && !keep) {
659 			u64 old_disk_bytenr = le64_to_cpu(old.disk_bytenr);
660 
661 			if (old_disk_bytenr != 0) {
662 				inode_sub_bytes(inode,
663 						le64_to_cpu(old.num_bytes));
664 				ret = btrfs_free_extent(trans, root,
665 						old_disk_bytenr,
666 						le64_to_cpu(old.disk_num_bytes),
667 						leaf_start, root_owner,
668 						root_gen, key.objectid, 0);
669 				BUG_ON(ret);
670 				*hint_byte = old_disk_bytenr;
671 			}
672 		}
673 
674 		if (search_start >= end) {
675 			ret = 0;
676 			goto out;
677 		}
678 	}
679 out:
680 	btrfs_free_path(path);
681 	if (locked_end > end) {
682 		unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1,
683 			      GFP_NOFS);
684 	}
685 	btrfs_check_file(root, inode);
686 	return ret;
687 }
688 
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 * start,u64 * end)689 static int extent_mergeable(struct extent_buffer *leaf, int slot,
690 			    u64 objectid, u64 bytenr, u64 *start, u64 *end)
691 {
692 	struct btrfs_file_extent_item *fi;
693 	struct btrfs_key key;
694 	u64 extent_end;
695 
696 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
697 		return 0;
698 
699 	btrfs_item_key_to_cpu(leaf, &key, slot);
700 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
701 		return 0;
702 
703 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
704 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
705 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
706 	    btrfs_file_extent_compression(leaf, fi) ||
707 	    btrfs_file_extent_encryption(leaf, fi) ||
708 	    btrfs_file_extent_other_encoding(leaf, fi))
709 		return 0;
710 
711 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
712 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
713 		return 0;
714 
715 	*start = key.offset;
716 	*end = extent_end;
717 	return 1;
718 }
719 
720 /*
721  * Mark extent in the range start - end as written.
722  *
723  * This changes extent type from 'pre-allocated' to 'regular'. If only
724  * part of extent is marked as written, the extent will be split into
725  * two or three.
726  */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end)727 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
728 			      struct btrfs_root *root,
729 			      struct inode *inode, u64 start, u64 end)
730 {
731 	struct extent_buffer *leaf;
732 	struct btrfs_path *path;
733 	struct btrfs_file_extent_item *fi;
734 	struct btrfs_key key;
735 	u64 bytenr;
736 	u64 num_bytes;
737 	u64 extent_end;
738 	u64 extent_offset;
739 	u64 other_start;
740 	u64 other_end;
741 	u64 split = start;
742 	u64 locked_end = end;
743 	u64 orig_parent;
744 	int extent_type;
745 	int split_end = 1;
746 	int ret;
747 
748 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
749 
750 	path = btrfs_alloc_path();
751 	BUG_ON(!path);
752 again:
753 	key.objectid = inode->i_ino;
754 	key.type = BTRFS_EXTENT_DATA_KEY;
755 	if (split == start)
756 		key.offset = split;
757 	else
758 		key.offset = split - 1;
759 
760 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
761 	if (ret > 0 && path->slots[0] > 0)
762 		path->slots[0]--;
763 
764 	leaf = path->nodes[0];
765 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
766 	BUG_ON(key.objectid != inode->i_ino ||
767 	       key.type != BTRFS_EXTENT_DATA_KEY);
768 	fi = btrfs_item_ptr(leaf, path->slots[0],
769 			    struct btrfs_file_extent_item);
770 	extent_type = btrfs_file_extent_type(leaf, fi);
771 	BUG_ON(extent_type != BTRFS_FILE_EXTENT_PREALLOC);
772 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
773 	BUG_ON(key.offset > start || extent_end < end);
774 
775 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
776 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
777 	extent_offset = btrfs_file_extent_offset(leaf, fi);
778 
779 	if (key.offset == start)
780 		split = end;
781 
782 	if (key.offset == start && extent_end == end) {
783 		int del_nr = 0;
784 		int del_slot = 0;
785 		u64 leaf_owner = btrfs_header_owner(leaf);
786 		u64 leaf_gen = btrfs_header_generation(leaf);
787 		other_start = end;
788 		other_end = 0;
789 		if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
790 				     bytenr, &other_start, &other_end)) {
791 			extent_end = other_end;
792 			del_slot = path->slots[0] + 1;
793 			del_nr++;
794 			ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
795 						leaf->start, leaf_owner,
796 						leaf_gen, inode->i_ino, 0);
797 			BUG_ON(ret);
798 		}
799 		other_start = 0;
800 		other_end = start;
801 		if (extent_mergeable(leaf, path->slots[0] - 1, inode->i_ino,
802 				     bytenr, &other_start, &other_end)) {
803 			key.offset = other_start;
804 			del_slot = path->slots[0];
805 			del_nr++;
806 			ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
807 						leaf->start, leaf_owner,
808 						leaf_gen, inode->i_ino, 0);
809 			BUG_ON(ret);
810 		}
811 		split_end = 0;
812 		if (del_nr == 0) {
813 			btrfs_set_file_extent_type(leaf, fi,
814 						   BTRFS_FILE_EXTENT_REG);
815 			goto done;
816 		}
817 
818 		fi = btrfs_item_ptr(leaf, del_slot - 1,
819 				    struct btrfs_file_extent_item);
820 		btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG);
821 		btrfs_set_file_extent_num_bytes(leaf, fi,
822 						extent_end - key.offset);
823 		btrfs_mark_buffer_dirty(leaf);
824 
825 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
826 		BUG_ON(ret);
827 		goto done;
828 	} else if (split == start) {
829 		if (locked_end < extent_end) {
830 			ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
831 					locked_end, extent_end - 1, GFP_NOFS);
832 			if (!ret) {
833 				btrfs_release_path(root, path);
834 				lock_extent(&BTRFS_I(inode)->io_tree,
835 					locked_end, extent_end - 1, GFP_NOFS);
836 				locked_end = extent_end;
837 				goto again;
838 			}
839 			locked_end = extent_end;
840 		}
841 		btrfs_set_file_extent_num_bytes(leaf, fi, split - key.offset);
842 		extent_offset += split - key.offset;
843 	} else  {
844 		BUG_ON(key.offset != start);
845 		btrfs_set_file_extent_offset(leaf, fi, extent_offset +
846 					     split - key.offset);
847 		btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - split);
848 		key.offset = split;
849 		btrfs_set_item_key_safe(trans, root, path, &key);
850 		extent_end = split;
851 	}
852 
853 	if (extent_end == end) {
854 		split_end = 0;
855 		extent_type = BTRFS_FILE_EXTENT_REG;
856 	}
857 	if (extent_end == end && split == start) {
858 		other_start = end;
859 		other_end = 0;
860 		if (extent_mergeable(leaf, path->slots[0] + 1, inode->i_ino,
861 				     bytenr, &other_start, &other_end)) {
862 			path->slots[0]++;
863 			fi = btrfs_item_ptr(leaf, path->slots[0],
864 					    struct btrfs_file_extent_item);
865 			key.offset = split;
866 			btrfs_set_item_key_safe(trans, root, path, &key);
867 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
868 			btrfs_set_file_extent_num_bytes(leaf, fi,
869 							other_end - split);
870 			goto done;
871 		}
872 	}
873 	if (extent_end == end && split == end) {
874 		other_start = 0;
875 		other_end = start;
876 		if (extent_mergeable(leaf, path->slots[0] - 1 , inode->i_ino,
877 				     bytenr, &other_start, &other_end)) {
878 			path->slots[0]--;
879 			fi = btrfs_item_ptr(leaf, path->slots[0],
880 					    struct btrfs_file_extent_item);
881 			btrfs_set_file_extent_num_bytes(leaf, fi, extent_end -
882 							other_start);
883 			goto done;
884 		}
885 	}
886 
887 	btrfs_mark_buffer_dirty(leaf);
888 
889 	orig_parent = leaf->start;
890 	ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
891 				   orig_parent, root->root_key.objectid,
892 				   trans->transid, inode->i_ino);
893 	BUG_ON(ret);
894 	btrfs_release_path(root, path);
895 
896 	key.offset = start;
897 	ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*fi));
898 	BUG_ON(ret);
899 
900 	leaf = path->nodes[0];
901 	fi = btrfs_item_ptr(leaf, path->slots[0],
902 			    struct btrfs_file_extent_item);
903 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
904 	btrfs_set_file_extent_type(leaf, fi, extent_type);
905 	btrfs_set_file_extent_disk_bytenr(leaf, fi, bytenr);
906 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes);
907 	btrfs_set_file_extent_offset(leaf, fi, extent_offset);
908 	btrfs_set_file_extent_num_bytes(leaf, fi, extent_end - key.offset);
909 	btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
910 	btrfs_set_file_extent_compression(leaf, fi, 0);
911 	btrfs_set_file_extent_encryption(leaf, fi, 0);
912 	btrfs_set_file_extent_other_encoding(leaf, fi, 0);
913 
914 	if (orig_parent != leaf->start) {
915 		ret = btrfs_update_extent_ref(trans, root, bytenr,
916 					      orig_parent, leaf->start,
917 					      root->root_key.objectid,
918 					      trans->transid, inode->i_ino);
919 		BUG_ON(ret);
920 	}
921 done:
922 	btrfs_mark_buffer_dirty(leaf);
923 	btrfs_release_path(root, path);
924 	if (split_end && split == start) {
925 		split = end;
926 		goto again;
927 	}
928 	if (locked_end > end) {
929 		unlock_extent(&BTRFS_I(inode)->io_tree, end, locked_end - 1,
930 			      GFP_NOFS);
931 	}
932 	btrfs_free_path(path);
933 	return 0;
934 }
935 
936 /*
937  * this gets pages into the page cache and locks them down, it also properly
938  * waits for data=ordered extents to finish before allowing the pages to be
939  * modified.
940  */
prepare_pages(struct btrfs_root * root,struct file * file,struct page ** pages,size_t num_pages,loff_t pos,unsigned long first_index,unsigned long last_index,size_t write_bytes)941 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
942 			 struct page **pages, size_t num_pages,
943 			 loff_t pos, unsigned long first_index,
944 			 unsigned long last_index, size_t write_bytes)
945 {
946 	int i;
947 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
948 	struct inode *inode = fdentry(file)->d_inode;
949 	int err = 0;
950 	u64 start_pos;
951 	u64 last_pos;
952 
953 	start_pos = pos & ~((u64)root->sectorsize - 1);
954 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
955 
956 	if (start_pos > inode->i_size) {
957 		err = btrfs_cont_expand(inode, start_pos);
958 		if (err)
959 			return err;
960 	}
961 
962 	memset(pages, 0, num_pages * sizeof(struct page *));
963 again:
964 	for (i = 0; i < num_pages; i++) {
965 		pages[i] = grab_cache_page(inode->i_mapping, index + i);
966 		if (!pages[i]) {
967 			err = -ENOMEM;
968 			BUG_ON(1);
969 		}
970 		wait_on_page_writeback(pages[i]);
971 	}
972 	if (start_pos < inode->i_size) {
973 		struct btrfs_ordered_extent *ordered;
974 		lock_extent(&BTRFS_I(inode)->io_tree,
975 			    start_pos, last_pos - 1, GFP_NOFS);
976 		ordered = btrfs_lookup_first_ordered_extent(inode,
977 							    last_pos - 1);
978 		if (ordered &&
979 		    ordered->file_offset + ordered->len > start_pos &&
980 		    ordered->file_offset < last_pos) {
981 			btrfs_put_ordered_extent(ordered);
982 			unlock_extent(&BTRFS_I(inode)->io_tree,
983 				      start_pos, last_pos - 1, GFP_NOFS);
984 			for (i = 0; i < num_pages; i++) {
985 				unlock_page(pages[i]);
986 				page_cache_release(pages[i]);
987 			}
988 			btrfs_wait_ordered_range(inode, start_pos,
989 						 last_pos - start_pos);
990 			goto again;
991 		}
992 		if (ordered)
993 			btrfs_put_ordered_extent(ordered);
994 
995 		clear_extent_bits(&BTRFS_I(inode)->io_tree, start_pos,
996 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC,
997 				  GFP_NOFS);
998 		unlock_extent(&BTRFS_I(inode)->io_tree,
999 			      start_pos, last_pos - 1, GFP_NOFS);
1000 	}
1001 	for (i = 0; i < num_pages; i++) {
1002 		clear_page_dirty_for_io(pages[i]);
1003 		set_page_extent_mapped(pages[i]);
1004 		WARN_ON(!PageLocked(pages[i]));
1005 	}
1006 	return 0;
1007 }
1008 
btrfs_file_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1009 static ssize_t btrfs_file_write(struct file *file, const char __user *buf,
1010 				size_t count, loff_t *ppos)
1011 {
1012 	loff_t pos;
1013 	loff_t start_pos;
1014 	ssize_t num_written = 0;
1015 	ssize_t err = 0;
1016 	int ret = 0;
1017 	struct inode *inode = fdentry(file)->d_inode;
1018 	struct btrfs_root *root = BTRFS_I(inode)->root;
1019 	struct page **pages = NULL;
1020 	int nrptrs;
1021 	struct page *pinned[2];
1022 	unsigned long first_index;
1023 	unsigned long last_index;
1024 	int will_write;
1025 
1026 	will_write = ((file->f_flags & O_SYNC) || IS_SYNC(inode) ||
1027 		      (file->f_flags & O_DIRECT));
1028 
1029 	nrptrs = min((count + PAGE_CACHE_SIZE - 1) / PAGE_CACHE_SIZE,
1030 		     PAGE_CACHE_SIZE / (sizeof(struct page *)));
1031 	pinned[0] = NULL;
1032 	pinned[1] = NULL;
1033 
1034 	pos = *ppos;
1035 	start_pos = pos;
1036 
1037 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1038 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1039 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1040 	if (err)
1041 		goto out_nolock;
1042 	if (count == 0)
1043 		goto out_nolock;
1044 
1045 	err = file_remove_suid(file);
1046 	if (err)
1047 		goto out_nolock;
1048 	file_update_time(file);
1049 
1050 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1051 
1052 	mutex_lock(&inode->i_mutex);
1053 	BTRFS_I(inode)->sequence++;
1054 	first_index = pos >> PAGE_CACHE_SHIFT;
1055 	last_index = (pos + count) >> PAGE_CACHE_SHIFT;
1056 
1057 	/*
1058 	 * there are lots of better ways to do this, but this code
1059 	 * makes sure the first and last page in the file range are
1060 	 * up to date and ready for cow
1061 	 */
1062 	if ((pos & (PAGE_CACHE_SIZE - 1))) {
1063 		pinned[0] = grab_cache_page(inode->i_mapping, first_index);
1064 		if (!PageUptodate(pinned[0])) {
1065 			ret = btrfs_readpage(NULL, pinned[0]);
1066 			BUG_ON(ret);
1067 			wait_on_page_locked(pinned[0]);
1068 		} else {
1069 			unlock_page(pinned[0]);
1070 		}
1071 	}
1072 	if ((pos + count) & (PAGE_CACHE_SIZE - 1)) {
1073 		pinned[1] = grab_cache_page(inode->i_mapping, last_index);
1074 		if (!PageUptodate(pinned[1])) {
1075 			ret = btrfs_readpage(NULL, pinned[1]);
1076 			BUG_ON(ret);
1077 			wait_on_page_locked(pinned[1]);
1078 		} else {
1079 			unlock_page(pinned[1]);
1080 		}
1081 	}
1082 
1083 	while (count > 0) {
1084 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1085 		size_t write_bytes = min(count, nrptrs *
1086 					(size_t)PAGE_CACHE_SIZE -
1087 					 offset);
1088 		size_t num_pages = (write_bytes + PAGE_CACHE_SIZE - 1) >>
1089 					PAGE_CACHE_SHIFT;
1090 
1091 		WARN_ON(num_pages > nrptrs);
1092 		memset(pages, 0, sizeof(struct page *) * nrptrs);
1093 
1094 		ret = btrfs_check_data_free_space(root, inode, write_bytes);
1095 		if (ret)
1096 			goto out;
1097 
1098 		ret = prepare_pages(root, file, pages, num_pages,
1099 				    pos, first_index, last_index,
1100 				    write_bytes);
1101 		if (ret) {
1102 			btrfs_free_reserved_data_space(root, inode,
1103 						       write_bytes);
1104 			goto out;
1105 		}
1106 
1107 		ret = btrfs_copy_from_user(pos, num_pages,
1108 					   write_bytes, pages, buf);
1109 		if (ret) {
1110 			btrfs_free_reserved_data_space(root, inode,
1111 						       write_bytes);
1112 			btrfs_drop_pages(pages, num_pages);
1113 			goto out;
1114 		}
1115 
1116 		ret = dirty_and_release_pages(NULL, root, file, pages,
1117 					      num_pages, pos, write_bytes);
1118 		btrfs_drop_pages(pages, num_pages);
1119 		if (ret) {
1120 			btrfs_free_reserved_data_space(root, inode,
1121 						       write_bytes);
1122 			goto out;
1123 		}
1124 
1125 		if (will_write) {
1126 			btrfs_fdatawrite_range(inode->i_mapping, pos,
1127 					       pos + write_bytes - 1,
1128 					       WB_SYNC_NONE);
1129 		} else {
1130 			balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1131 							   num_pages);
1132 			if (num_pages <
1133 			    (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1134 				btrfs_btree_balance_dirty(root, 1);
1135 			btrfs_throttle(root);
1136 		}
1137 
1138 		buf += write_bytes;
1139 		count -= write_bytes;
1140 		pos += write_bytes;
1141 		num_written += write_bytes;
1142 
1143 		cond_resched();
1144 	}
1145 out:
1146 	mutex_unlock(&inode->i_mutex);
1147 	if (ret)
1148 		err = ret;
1149 
1150 out_nolock:
1151 	kfree(pages);
1152 	if (pinned[0])
1153 		page_cache_release(pinned[0]);
1154 	if (pinned[1])
1155 		page_cache_release(pinned[1]);
1156 	*ppos = pos;
1157 
1158 	if (num_written > 0 && will_write) {
1159 		struct btrfs_trans_handle *trans;
1160 
1161 		err = btrfs_wait_ordered_range(inode, start_pos, num_written);
1162 		if (err)
1163 			num_written = err;
1164 
1165 		if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
1166 			trans = btrfs_start_transaction(root, 1);
1167 			ret = btrfs_log_dentry_safe(trans, root,
1168 						    file->f_dentry);
1169 			if (ret == 0) {
1170 				btrfs_sync_log(trans, root);
1171 				btrfs_end_transaction(trans, root);
1172 			} else {
1173 				btrfs_commit_transaction(trans, root);
1174 			}
1175 		}
1176 		if (file->f_flags & O_DIRECT) {
1177 			invalidate_mapping_pages(inode->i_mapping,
1178 			      start_pos >> PAGE_CACHE_SHIFT,
1179 			     (start_pos + num_written - 1) >> PAGE_CACHE_SHIFT);
1180 		}
1181 	}
1182 	current->backing_dev_info = NULL;
1183 	return num_written ? num_written : err;
1184 }
1185 
btrfs_release_file(struct inode * inode,struct file * filp)1186 int btrfs_release_file(struct inode *inode, struct file *filp)
1187 {
1188 	if (filp->private_data)
1189 		btrfs_ioctl_trans_end(filp);
1190 	return 0;
1191 }
1192 
1193 /*
1194  * fsync call for both files and directories.  This logs the inode into
1195  * the tree log instead of forcing full commits whenever possible.
1196  *
1197  * It needs to call filemap_fdatawait so that all ordered extent updates are
1198  * in the metadata btree are up to date for copying to the log.
1199  *
1200  * It drops the inode mutex before doing the tree log commit.  This is an
1201  * important optimization for directories because holding the mutex prevents
1202  * new operations on the dir while we write to disk.
1203  */
btrfs_sync_file(struct file * file,struct dentry * dentry,int datasync)1204 int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync)
1205 {
1206 	struct inode *inode = dentry->d_inode;
1207 	struct btrfs_root *root = BTRFS_I(inode)->root;
1208 	int ret = 0;
1209 	struct btrfs_trans_handle *trans;
1210 
1211 	/*
1212 	 * check the transaction that last modified this inode
1213 	 * and see if its already been committed
1214 	 */
1215 	if (!BTRFS_I(inode)->last_trans)
1216 		goto out;
1217 
1218 	mutex_lock(&root->fs_info->trans_mutex);
1219 	if (BTRFS_I(inode)->last_trans <=
1220 	    root->fs_info->last_trans_committed) {
1221 		BTRFS_I(inode)->last_trans = 0;
1222 		mutex_unlock(&root->fs_info->trans_mutex);
1223 		goto out;
1224 	}
1225 	mutex_unlock(&root->fs_info->trans_mutex);
1226 
1227 	root->log_batch++;
1228 	filemap_fdatawrite(inode->i_mapping);
1229 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1230 	root->log_batch++;
1231 
1232 	/*
1233 	 * ok we haven't committed the transaction yet, lets do a commit
1234 	 */
1235 	if (file && file->private_data)
1236 		btrfs_ioctl_trans_end(file);
1237 
1238 	trans = btrfs_start_transaction(root, 1);
1239 	if (!trans) {
1240 		ret = -ENOMEM;
1241 		goto out;
1242 	}
1243 
1244 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1245 	if (ret < 0)
1246 		goto out;
1247 
1248 	/* we've logged all the items and now have a consistent
1249 	 * version of the file in the log.  It is possible that
1250 	 * someone will come in and modify the file, but that's
1251 	 * fine because the log is consistent on disk, and we
1252 	 * have references to all of the file's extents
1253 	 *
1254 	 * It is possible that someone will come in and log the
1255 	 * file again, but that will end up using the synchronization
1256 	 * inside btrfs_sync_log to keep things safe.
1257 	 */
1258 	mutex_unlock(&dentry->d_inode->i_mutex);
1259 
1260 	if (ret > 0) {
1261 		ret = btrfs_commit_transaction(trans, root);
1262 	} else {
1263 		btrfs_sync_log(trans, root);
1264 		ret = btrfs_end_transaction(trans, root);
1265 	}
1266 	mutex_lock(&dentry->d_inode->i_mutex);
1267 out:
1268 	return ret > 0 ? EIO : ret;
1269 }
1270 
1271 static struct vm_operations_struct btrfs_file_vm_ops = {
1272 	.fault		= filemap_fault,
1273 	.page_mkwrite	= btrfs_page_mkwrite,
1274 };
1275 
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)1276 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1277 {
1278 	vma->vm_ops = &btrfs_file_vm_ops;
1279 	file_accessed(filp);
1280 	return 0;
1281 }
1282 
1283 struct file_operations btrfs_file_operations = {
1284 	.llseek		= generic_file_llseek,
1285 	.read		= do_sync_read,
1286 	.aio_read       = generic_file_aio_read,
1287 	.splice_read	= generic_file_splice_read,
1288 	.write		= btrfs_file_write,
1289 	.mmap		= btrfs_file_mmap,
1290 	.open		= generic_file_open,
1291 	.release	= btrfs_release_file,
1292 	.fsync		= btrfs_sync_file,
1293 	.unlocked_ioctl	= btrfs_ioctl,
1294 #ifdef CONFIG_COMPAT
1295 	.compat_ioctl	= btrfs_ioctl,
1296 #endif
1297 };
1298