• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/smp_lock.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mount.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/swap.h>
36 #include <linux/writeback.h>
37 #include <linux/statfs.h>
38 #include <linux/compat.h>
39 #include <linux/bit_spinlock.h>
40 #include <linux/security.h>
41 #include <linux/xattr.h>
42 #include <linux/vmalloc.h>
43 #include "compat.h"
44 #include "ctree.h"
45 #include "disk-io.h"
46 #include "transaction.h"
47 #include "btrfs_inode.h"
48 #include "ioctl.h"
49 #include "print-tree.h"
50 #include "volumes.h"
51 #include "locking.h"
52 
53 
54 
create_subvol(struct btrfs_root * root,struct dentry * dentry,char * name,int namelen)55 static noinline int create_subvol(struct btrfs_root *root,
56 				  struct dentry *dentry,
57 				  char *name, int namelen)
58 {
59 	struct btrfs_trans_handle *trans;
60 	struct btrfs_key key;
61 	struct btrfs_root_item root_item;
62 	struct btrfs_inode_item *inode_item;
63 	struct extent_buffer *leaf;
64 	struct btrfs_root *new_root = root;
65 	struct inode *dir;
66 	int ret;
67 	int err;
68 	u64 objectid;
69 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
70 	u64 index = 0;
71 	unsigned long nr = 1;
72 
73 	ret = btrfs_check_metadata_free_space(root);
74 	if (ret)
75 		goto fail_commit;
76 
77 	trans = btrfs_start_transaction(root, 1);
78 	BUG_ON(!trans);
79 
80 	ret = btrfs_find_free_objectid(trans, root->fs_info->tree_root,
81 				       0, &objectid);
82 	if (ret)
83 		goto fail;
84 
85 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
86 				      objectid, trans->transid, 0, 0, 0);
87 	if (IS_ERR(leaf)) {
88 		ret = PTR_ERR(leaf);
89 		goto fail;
90 	}
91 
92 	btrfs_set_header_nritems(leaf, 0);
93 	btrfs_set_header_level(leaf, 0);
94 	btrfs_set_header_bytenr(leaf, leaf->start);
95 	btrfs_set_header_generation(leaf, trans->transid);
96 	btrfs_set_header_owner(leaf, objectid);
97 
98 	write_extent_buffer(leaf, root->fs_info->fsid,
99 			    (unsigned long)btrfs_header_fsid(leaf),
100 			    BTRFS_FSID_SIZE);
101 	btrfs_mark_buffer_dirty(leaf);
102 
103 	inode_item = &root_item.inode;
104 	memset(inode_item, 0, sizeof(*inode_item));
105 	inode_item->generation = cpu_to_le64(1);
106 	inode_item->size = cpu_to_le64(3);
107 	inode_item->nlink = cpu_to_le32(1);
108 	inode_item->nbytes = cpu_to_le64(root->leafsize);
109 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
110 
111 	btrfs_set_root_bytenr(&root_item, leaf->start);
112 	btrfs_set_root_generation(&root_item, trans->transid);
113 	btrfs_set_root_level(&root_item, 0);
114 	btrfs_set_root_refs(&root_item, 1);
115 	btrfs_set_root_used(&root_item, 0);
116 	btrfs_set_root_last_snapshot(&root_item, 0);
117 
118 	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
119 	root_item.drop_level = 0;
120 
121 	btrfs_tree_unlock(leaf);
122 	free_extent_buffer(leaf);
123 	leaf = NULL;
124 
125 	btrfs_set_root_dirid(&root_item, new_dirid);
126 
127 	key.objectid = objectid;
128 	key.offset = 1;
129 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
130 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
131 				&root_item);
132 	if (ret)
133 		goto fail;
134 
135 	/*
136 	 * insert the directory item
137 	 */
138 	key.offset = (u64)-1;
139 	dir = dentry->d_parent->d_inode;
140 	ret = btrfs_set_inode_index(dir, &index);
141 	BUG_ON(ret);
142 
143 	ret = btrfs_insert_dir_item(trans, root,
144 				    name, namelen, dir->i_ino, &key,
145 				    BTRFS_FT_DIR, index);
146 	if (ret)
147 		goto fail;
148 
149 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
150 	ret = btrfs_update_inode(trans, root, dir);
151 	BUG_ON(ret);
152 
153 	/* add the backref first */
154 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
155 				 objectid, BTRFS_ROOT_BACKREF_KEY,
156 				 root->root_key.objectid,
157 				 dir->i_ino, index, name, namelen);
158 
159 	BUG_ON(ret);
160 
161 	/* now add the forward ref */
162 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
163 				 root->root_key.objectid, BTRFS_ROOT_REF_KEY,
164 				 objectid,
165 				 dir->i_ino, index, name, namelen);
166 
167 	BUG_ON(ret);
168 
169 	ret = btrfs_commit_transaction(trans, root);
170 	if (ret)
171 		goto fail_commit;
172 
173 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
174 	BUG_ON(!new_root);
175 
176 	trans = btrfs_start_transaction(new_root, 1);
177 	BUG_ON(!trans);
178 
179 	ret = btrfs_create_subvol_root(trans, new_root, dentry, new_dirid,
180 				       BTRFS_I(dir)->block_group);
181 	if (ret)
182 		goto fail;
183 
184 fail:
185 	nr = trans->blocks_used;
186 	err = btrfs_commit_transaction(trans, new_root);
187 	if (err && !ret)
188 		ret = err;
189 fail_commit:
190 	btrfs_btree_balance_dirty(root, nr);
191 	return ret;
192 }
193 
create_snapshot(struct btrfs_root * root,struct dentry * dentry,char * name,int namelen)194 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
195 			   char *name, int namelen)
196 {
197 	struct btrfs_pending_snapshot *pending_snapshot;
198 	struct btrfs_trans_handle *trans;
199 	int ret = 0;
200 	int err;
201 	unsigned long nr = 0;
202 
203 	if (!root->ref_cows)
204 		return -EINVAL;
205 
206 	ret = btrfs_check_metadata_free_space(root);
207 	if (ret)
208 		goto fail_unlock;
209 
210 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
211 	if (!pending_snapshot) {
212 		ret = -ENOMEM;
213 		goto fail_unlock;
214 	}
215 	pending_snapshot->name = kmalloc(namelen + 1, GFP_NOFS);
216 	if (!pending_snapshot->name) {
217 		ret = -ENOMEM;
218 		kfree(pending_snapshot);
219 		goto fail_unlock;
220 	}
221 	memcpy(pending_snapshot->name, name, namelen);
222 	pending_snapshot->name[namelen] = '\0';
223 	pending_snapshot->dentry = dentry;
224 	trans = btrfs_start_transaction(root, 1);
225 	BUG_ON(!trans);
226 	pending_snapshot->root = root;
227 	list_add(&pending_snapshot->list,
228 		 &trans->transaction->pending_snapshots);
229 	err = btrfs_commit_transaction(trans, root);
230 
231 fail_unlock:
232 	btrfs_btree_balance_dirty(root, nr);
233 	return ret;
234 }
235 
236 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)237 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
238 {
239 	if (child->d_inode)
240 		return -EEXIST;
241 	if (IS_DEADDIR(dir))
242 		return -ENOENT;
243 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
244 }
245 
246 /*
247  * Create a new subvolume below @parent.  This is largely modeled after
248  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
249  * inside this filesystem so it's quite a bit simpler.
250  */
btrfs_mksubvol(struct path * parent,char * name,int mode,int namelen,struct btrfs_root * snap_src)251 static noinline int btrfs_mksubvol(struct path *parent, char *name,
252 				   int mode, int namelen,
253 				   struct btrfs_root *snap_src)
254 {
255 	struct dentry *dentry;
256 	int error;
257 
258 	mutex_lock_nested(&parent->dentry->d_inode->i_mutex, I_MUTEX_PARENT);
259 
260 	dentry = lookup_one_len(name, parent->dentry, namelen);
261 	error = PTR_ERR(dentry);
262 	if (IS_ERR(dentry))
263 		goto out_unlock;
264 
265 	error = -EEXIST;
266 	if (dentry->d_inode)
267 		goto out_dput;
268 
269 	if (!IS_POSIXACL(parent->dentry->d_inode))
270 		mode &= ~current->fs->umask;
271 
272 	error = mnt_want_write(parent->mnt);
273 	if (error)
274 		goto out_dput;
275 
276 	error = btrfs_may_create(parent->dentry->d_inode, dentry);
277 	if (error)
278 		goto out_drop_write;
279 
280 	/*
281 	 * Actually perform the low-level subvolume creation after all
282 	 * this VFS fuzz.
283 	 *
284 	 * Eventually we want to pass in an inode under which we create this
285 	 * subvolume, but for now all are under the filesystem root.
286 	 *
287 	 * Also we should pass on the mode eventually to allow creating new
288 	 * subvolume with specific mode bits.
289 	 */
290 	if (snap_src) {
291 		struct dentry *dir = dentry->d_parent;
292 		struct dentry *test = dir->d_parent;
293 		struct btrfs_path *path = btrfs_alloc_path();
294 		int ret;
295 		u64 test_oid;
296 		u64 parent_oid = BTRFS_I(dir->d_inode)->root->root_key.objectid;
297 
298 		test_oid = snap_src->root_key.objectid;
299 
300 		ret = btrfs_find_root_ref(snap_src->fs_info->tree_root,
301 					  path, parent_oid, test_oid);
302 		if (ret == 0)
303 			goto create;
304 		btrfs_release_path(snap_src->fs_info->tree_root, path);
305 
306 		/* we need to make sure we aren't creating a directory loop
307 		 * by taking a snapshot of something that has our current
308 		 * subvol in its directory tree.  So, this loops through
309 		 * the dentries and checks the forward refs for each subvolume
310 		 * to see if is references the subvolume where we are
311 		 * placing this new snapshot.
312 		 */
313 		while (1) {
314 			if (!test ||
315 			    dir == snap_src->fs_info->sb->s_root ||
316 			    test == snap_src->fs_info->sb->s_root ||
317 			    test->d_inode->i_sb != snap_src->fs_info->sb) {
318 				break;
319 			}
320 			if (S_ISLNK(test->d_inode->i_mode)) {
321 				printk(KERN_INFO "Btrfs symlink in snapshot "
322 				       "path, failed\n");
323 				error = -EMLINK;
324 				btrfs_free_path(path);
325 				goto out_drop_write;
326 			}
327 			test_oid =
328 				BTRFS_I(test->d_inode)->root->root_key.objectid;
329 			ret = btrfs_find_root_ref(snap_src->fs_info->tree_root,
330 				  path, test_oid, parent_oid);
331 			if (ret == 0) {
332 				printk(KERN_INFO "Btrfs snapshot creation "
333 				       "failed, looping\n");
334 				error = -EMLINK;
335 				btrfs_free_path(path);
336 				goto out_drop_write;
337 			}
338 			btrfs_release_path(snap_src->fs_info->tree_root, path);
339 			test = test->d_parent;
340 		}
341 create:
342 		btrfs_free_path(path);
343 		error = create_snapshot(snap_src, dentry, name, namelen);
344 	} else {
345 		error = create_subvol(BTRFS_I(parent->dentry->d_inode)->root,
346 				      dentry, name, namelen);
347 	}
348 	if (error)
349 		goto out_drop_write;
350 
351 	fsnotify_mkdir(parent->dentry->d_inode, dentry);
352 out_drop_write:
353 	mnt_drop_write(parent->mnt);
354 out_dput:
355 	dput(dentry);
356 out_unlock:
357 	mutex_unlock(&parent->dentry->d_inode->i_mutex);
358 	return error;
359 }
360 
361 
btrfs_defrag_file(struct file * file)362 static int btrfs_defrag_file(struct file *file)
363 {
364 	struct inode *inode = fdentry(file)->d_inode;
365 	struct btrfs_root *root = BTRFS_I(inode)->root;
366 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
367 	struct btrfs_ordered_extent *ordered;
368 	struct page *page;
369 	unsigned long last_index;
370 	unsigned long ra_pages = root->fs_info->bdi.ra_pages;
371 	unsigned long total_read = 0;
372 	u64 page_start;
373 	u64 page_end;
374 	unsigned long i;
375 	int ret;
376 
377 	ret = btrfs_check_data_free_space(root, inode, inode->i_size);
378 	if (ret)
379 		return -ENOSPC;
380 
381 	mutex_lock(&inode->i_mutex);
382 	last_index = inode->i_size >> PAGE_CACHE_SHIFT;
383 	for (i = 0; i <= last_index; i++) {
384 		if (total_read % ra_pages == 0) {
385 			btrfs_force_ra(inode->i_mapping, &file->f_ra, file, i,
386 				       min(last_index, i + ra_pages - 1));
387 		}
388 		total_read++;
389 again:
390 		page = grab_cache_page(inode->i_mapping, i);
391 		if (!page)
392 			goto out_unlock;
393 		if (!PageUptodate(page)) {
394 			btrfs_readpage(NULL, page);
395 			lock_page(page);
396 			if (!PageUptodate(page)) {
397 				unlock_page(page);
398 				page_cache_release(page);
399 				goto out_unlock;
400 			}
401 		}
402 
403 		wait_on_page_writeback(page);
404 
405 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
406 		page_end = page_start + PAGE_CACHE_SIZE - 1;
407 		lock_extent(io_tree, page_start, page_end, GFP_NOFS);
408 
409 		ordered = btrfs_lookup_ordered_extent(inode, page_start);
410 		if (ordered) {
411 			unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
412 			unlock_page(page);
413 			page_cache_release(page);
414 			btrfs_start_ordered_extent(inode, ordered, 1);
415 			btrfs_put_ordered_extent(ordered);
416 			goto again;
417 		}
418 		set_page_extent_mapped(page);
419 
420 		/*
421 		 * this makes sure page_mkwrite is called on the
422 		 * page if it is dirtied again later
423 		 */
424 		clear_page_dirty_for_io(page);
425 
426 		btrfs_set_extent_delalloc(inode, page_start, page_end);
427 
428 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
429 		set_page_dirty(page);
430 		unlock_page(page);
431 		page_cache_release(page);
432 		balance_dirty_pages_ratelimited_nr(inode->i_mapping, 1);
433 	}
434 
435 out_unlock:
436 	mutex_unlock(&inode->i_mutex);
437 	return 0;
438 }
439 
440 /*
441  * Called inside transaction, so use GFP_NOFS
442  */
443 
btrfs_ioctl_resize(struct btrfs_root * root,void __user * arg)444 static int btrfs_ioctl_resize(struct btrfs_root *root, void __user *arg)
445 {
446 	u64 new_size;
447 	u64 old_size;
448 	u64 devid = 1;
449 	struct btrfs_ioctl_vol_args *vol_args;
450 	struct btrfs_trans_handle *trans;
451 	struct btrfs_device *device = NULL;
452 	char *sizestr;
453 	char *devstr = NULL;
454 	int ret = 0;
455 	int namelen;
456 	int mod = 0;
457 
458 	if (root->fs_info->sb->s_flags & MS_RDONLY)
459 		return -EROFS;
460 
461 	if (!capable(CAP_SYS_ADMIN))
462 		return -EPERM;
463 
464 	vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS);
465 
466 	if (!vol_args)
467 		return -ENOMEM;
468 
469 	if (copy_from_user(vol_args, arg, sizeof(*vol_args))) {
470 		ret = -EFAULT;
471 		goto out;
472 	}
473 
474 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
475 	namelen = strlen(vol_args->name);
476 
477 	mutex_lock(&root->fs_info->volume_mutex);
478 	sizestr = vol_args->name;
479 	devstr = strchr(sizestr, ':');
480 	if (devstr) {
481 		char *end;
482 		sizestr = devstr + 1;
483 		*devstr = '\0';
484 		devstr = vol_args->name;
485 		devid = simple_strtoull(devstr, &end, 10);
486 		printk(KERN_INFO "resizing devid %llu\n", devid);
487 	}
488 	device = btrfs_find_device(root, devid, NULL, NULL);
489 	if (!device) {
490 		printk(KERN_INFO "resizer unable to find device %llu\n", devid);
491 		ret = -EINVAL;
492 		goto out_unlock;
493 	}
494 	if (!strcmp(sizestr, "max"))
495 		new_size = device->bdev->bd_inode->i_size;
496 	else {
497 		if (sizestr[0] == '-') {
498 			mod = -1;
499 			sizestr++;
500 		} else if (sizestr[0] == '+') {
501 			mod = 1;
502 			sizestr++;
503 		}
504 		new_size = btrfs_parse_size(sizestr);
505 		if (new_size == 0) {
506 			ret = -EINVAL;
507 			goto out_unlock;
508 		}
509 	}
510 
511 	old_size = device->total_bytes;
512 
513 	if (mod < 0) {
514 		if (new_size > old_size) {
515 			ret = -EINVAL;
516 			goto out_unlock;
517 		}
518 		new_size = old_size - new_size;
519 	} else if (mod > 0) {
520 		new_size = old_size + new_size;
521 	}
522 
523 	if (new_size < 256 * 1024 * 1024) {
524 		ret = -EINVAL;
525 		goto out_unlock;
526 	}
527 	if (new_size > device->bdev->bd_inode->i_size) {
528 		ret = -EFBIG;
529 		goto out_unlock;
530 	}
531 
532 	do_div(new_size, root->sectorsize);
533 	new_size *= root->sectorsize;
534 
535 	printk(KERN_INFO "new size for %s is %llu\n",
536 		device->name, (unsigned long long)new_size);
537 
538 	if (new_size > old_size) {
539 		trans = btrfs_start_transaction(root, 1);
540 		ret = btrfs_grow_device(trans, device, new_size);
541 		btrfs_commit_transaction(trans, root);
542 	} else {
543 		ret = btrfs_shrink_device(device, new_size);
544 	}
545 
546 out_unlock:
547 	mutex_unlock(&root->fs_info->volume_mutex);
548 out:
549 	kfree(vol_args);
550 	return ret;
551 }
552 
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)553 static noinline int btrfs_ioctl_snap_create(struct file *file,
554 					    void __user *arg, int subvol)
555 {
556 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
557 	struct btrfs_ioctl_vol_args *vol_args;
558 	struct btrfs_dir_item *di;
559 	struct btrfs_path *path;
560 	struct file *src_file;
561 	u64 root_dirid;
562 	int namelen;
563 	int ret = 0;
564 
565 	if (root->fs_info->sb->s_flags & MS_RDONLY)
566 		return -EROFS;
567 
568 	vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS);
569 
570 	if (!vol_args)
571 		return -ENOMEM;
572 
573 	if (copy_from_user(vol_args, arg, sizeof(*vol_args))) {
574 		ret = -EFAULT;
575 		goto out;
576 	}
577 
578 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
579 	namelen = strlen(vol_args->name);
580 	if (strchr(vol_args->name, '/')) {
581 		ret = -EINVAL;
582 		goto out;
583 	}
584 
585 	path = btrfs_alloc_path();
586 	if (!path) {
587 		ret = -ENOMEM;
588 		goto out;
589 	}
590 
591 	root_dirid = root->fs_info->sb->s_root->d_inode->i_ino,
592 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root,
593 			    path, root_dirid,
594 			    vol_args->name, namelen, 0);
595 	btrfs_free_path(path);
596 
597 	if (di && !IS_ERR(di)) {
598 		ret = -EEXIST;
599 		goto out;
600 	}
601 
602 	if (IS_ERR(di)) {
603 		ret = PTR_ERR(di);
604 		goto out;
605 	}
606 
607 	if (subvol) {
608 		ret = btrfs_mksubvol(&file->f_path, vol_args->name,
609 				     file->f_path.dentry->d_inode->i_mode,
610 				     namelen, NULL);
611 	} else {
612 		struct inode *src_inode;
613 		src_file = fget(vol_args->fd);
614 		if (!src_file) {
615 			ret = -EINVAL;
616 			goto out;
617 		}
618 
619 		src_inode = src_file->f_path.dentry->d_inode;
620 		if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
621 			printk(KERN_INFO "btrfs: Snapshot src from "
622 			       "another FS\n");
623 			ret = -EINVAL;
624 			fput(src_file);
625 			goto out;
626 		}
627 		ret = btrfs_mksubvol(&file->f_path, vol_args->name,
628 			     file->f_path.dentry->d_inode->i_mode,
629 			     namelen, BTRFS_I(src_inode)->root);
630 		fput(src_file);
631 	}
632 
633 out:
634 	kfree(vol_args);
635 	return ret;
636 }
637 
btrfs_ioctl_defrag(struct file * file)638 static int btrfs_ioctl_defrag(struct file *file)
639 {
640 	struct inode *inode = fdentry(file)->d_inode;
641 	struct btrfs_root *root = BTRFS_I(inode)->root;
642 	int ret;
643 
644 	ret = mnt_want_write(file->f_path.mnt);
645 	if (ret)
646 		return ret;
647 
648 	switch (inode->i_mode & S_IFMT) {
649 	case S_IFDIR:
650 		if (!capable(CAP_SYS_ADMIN)) {
651 			ret = -EPERM;
652 			goto out;
653 		}
654 		btrfs_defrag_root(root, 0);
655 		btrfs_defrag_root(root->fs_info->extent_root, 0);
656 		break;
657 	case S_IFREG:
658 		if (!(file->f_mode & FMODE_WRITE)) {
659 			ret = -EINVAL;
660 			goto out;
661 		}
662 		btrfs_defrag_file(file);
663 		break;
664 	}
665 out:
666 	mnt_drop_write(file->f_path.mnt);
667 	return ret;
668 }
669 
btrfs_ioctl_add_dev(struct btrfs_root * root,void __user * arg)670 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
671 {
672 	struct btrfs_ioctl_vol_args *vol_args;
673 	int ret;
674 
675 	if (!capable(CAP_SYS_ADMIN))
676 		return -EPERM;
677 
678 	vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS);
679 
680 	if (!vol_args)
681 		return -ENOMEM;
682 
683 	if (copy_from_user(vol_args, arg, sizeof(*vol_args))) {
684 		ret = -EFAULT;
685 		goto out;
686 	}
687 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
688 	ret = btrfs_init_new_device(root, vol_args->name);
689 
690 out:
691 	kfree(vol_args);
692 	return ret;
693 }
694 
btrfs_ioctl_rm_dev(struct btrfs_root * root,void __user * arg)695 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
696 {
697 	struct btrfs_ioctl_vol_args *vol_args;
698 	int ret;
699 
700 	if (!capable(CAP_SYS_ADMIN))
701 		return -EPERM;
702 
703 	if (root->fs_info->sb->s_flags & MS_RDONLY)
704 		return -EROFS;
705 
706 	vol_args = kmalloc(sizeof(*vol_args), GFP_NOFS);
707 
708 	if (!vol_args)
709 		return -ENOMEM;
710 
711 	if (copy_from_user(vol_args, arg, sizeof(*vol_args))) {
712 		ret = -EFAULT;
713 		goto out;
714 	}
715 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
716 	ret = btrfs_rm_device(root, vol_args->name);
717 
718 out:
719 	kfree(vol_args);
720 	return ret;
721 }
722 
btrfs_ioctl_clone(struct file * file,unsigned long srcfd,u64 off,u64 olen,u64 destoff)723 static long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
724 		u64 off, u64 olen, u64 destoff)
725 {
726 	struct inode *inode = fdentry(file)->d_inode;
727 	struct btrfs_root *root = BTRFS_I(inode)->root;
728 	struct file *src_file;
729 	struct inode *src;
730 	struct btrfs_trans_handle *trans;
731 	struct btrfs_path *path;
732 	struct extent_buffer *leaf;
733 	char *buf;
734 	struct btrfs_key key;
735 	u32 nritems;
736 	int slot;
737 	int ret;
738 	u64 len = olen;
739 	u64 bs = root->fs_info->sb->s_blocksize;
740 	u64 hint_byte;
741 
742 	/*
743 	 * TODO:
744 	 * - split compressed inline extents.  annoying: we need to
745 	 *   decompress into destination's address_space (the file offset
746 	 *   may change, so source mapping won't do), then recompress (or
747 	 *   otherwise reinsert) a subrange.
748 	 * - allow ranges within the same file to be cloned (provided
749 	 *   they don't overlap)?
750 	 */
751 
752 	/* the destination must be opened for writing */
753 	if (!(file->f_mode & FMODE_WRITE))
754 		return -EINVAL;
755 
756 	ret = mnt_want_write(file->f_path.mnt);
757 	if (ret)
758 		return ret;
759 
760 	src_file = fget(srcfd);
761 	if (!src_file) {
762 		ret = -EBADF;
763 		goto out_drop_write;
764 	}
765 	src = src_file->f_dentry->d_inode;
766 
767 	ret = -EINVAL;
768 	if (src == inode)
769 		goto out_fput;
770 
771 	ret = -EISDIR;
772 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
773 		goto out_fput;
774 
775 	ret = -EXDEV;
776 	if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
777 		goto out_fput;
778 
779 	ret = -ENOMEM;
780 	buf = vmalloc(btrfs_level_size(root, 0));
781 	if (!buf)
782 		goto out_fput;
783 
784 	path = btrfs_alloc_path();
785 	if (!path) {
786 		vfree(buf);
787 		goto out_fput;
788 	}
789 	path->reada = 2;
790 
791 	if (inode < src) {
792 		mutex_lock(&inode->i_mutex);
793 		mutex_lock(&src->i_mutex);
794 	} else {
795 		mutex_lock(&src->i_mutex);
796 		mutex_lock(&inode->i_mutex);
797 	}
798 
799 	/* determine range to clone */
800 	ret = -EINVAL;
801 	if (off >= src->i_size || off + len > src->i_size)
802 		goto out_unlock;
803 	if (len == 0)
804 		olen = len = src->i_size - off;
805 	/* if we extend to eof, continue to block boundary */
806 	if (off + len == src->i_size)
807 		len = ((src->i_size + bs-1) & ~(bs-1))
808 			- off;
809 
810 	/* verify the end result is block aligned */
811 	if ((off & (bs-1)) ||
812 	    ((off + len) & (bs-1)))
813 		goto out_unlock;
814 
815 	/* do any pending delalloc/csum calc on src, one way or
816 	   another, and lock file content */
817 	while (1) {
818 		struct btrfs_ordered_extent *ordered;
819 		lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
820 		ordered = btrfs_lookup_first_ordered_extent(inode, off+len);
821 		if (BTRFS_I(src)->delalloc_bytes == 0 && !ordered)
822 			break;
823 		unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
824 		if (ordered)
825 			btrfs_put_ordered_extent(ordered);
826 		btrfs_wait_ordered_range(src, off, off+len);
827 	}
828 
829 	trans = btrfs_start_transaction(root, 1);
830 	BUG_ON(!trans);
831 
832 	/* punch hole in destination first */
833 	btrfs_drop_extents(trans, root, inode, off, off+len, 0, &hint_byte);
834 
835 	/* clone data */
836 	key.objectid = src->i_ino;
837 	key.type = BTRFS_EXTENT_DATA_KEY;
838 	key.offset = 0;
839 
840 	while (1) {
841 		/*
842 		 * note the key will change type as we walk through the
843 		 * tree.
844 		 */
845 		ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
846 		if (ret < 0)
847 			goto out;
848 
849 		nritems = btrfs_header_nritems(path->nodes[0]);
850 		if (path->slots[0] >= nritems) {
851 			ret = btrfs_next_leaf(root, path);
852 			if (ret < 0)
853 				goto out;
854 			if (ret > 0)
855 				break;
856 			nritems = btrfs_header_nritems(path->nodes[0]);
857 		}
858 		leaf = path->nodes[0];
859 		slot = path->slots[0];
860 
861 		btrfs_item_key_to_cpu(leaf, &key, slot);
862 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
863 		    key.objectid != src->i_ino)
864 			break;
865 
866 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
867 			struct btrfs_file_extent_item *extent;
868 			int type;
869 			u32 size;
870 			struct btrfs_key new_key;
871 			u64 disko = 0, diskl = 0;
872 			u64 datao = 0, datal = 0;
873 			u8 comp;
874 
875 			size = btrfs_item_size_nr(leaf, slot);
876 			read_extent_buffer(leaf, buf,
877 					   btrfs_item_ptr_offset(leaf, slot),
878 					   size);
879 
880 			extent = btrfs_item_ptr(leaf, slot,
881 						struct btrfs_file_extent_item);
882 			comp = btrfs_file_extent_compression(leaf, extent);
883 			type = btrfs_file_extent_type(leaf, extent);
884 			if (type == BTRFS_FILE_EXTENT_REG) {
885 				disko = btrfs_file_extent_disk_bytenr(leaf,
886 								      extent);
887 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
888 								 extent);
889 				datao = btrfs_file_extent_offset(leaf, extent);
890 				datal = btrfs_file_extent_num_bytes(leaf,
891 								    extent);
892 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
893 				/* take upper bound, may be compressed */
894 				datal = btrfs_file_extent_ram_bytes(leaf,
895 								    extent);
896 			}
897 			btrfs_release_path(root, path);
898 
899 			if (key.offset + datal < off ||
900 			    key.offset >= off+len)
901 				goto next;
902 
903 			memcpy(&new_key, &key, sizeof(new_key));
904 			new_key.objectid = inode->i_ino;
905 			new_key.offset = key.offset + destoff - off;
906 
907 			if (type == BTRFS_FILE_EXTENT_REG) {
908 				ret = btrfs_insert_empty_item(trans, root, path,
909 							      &new_key, size);
910 				if (ret)
911 					goto out;
912 
913 				leaf = path->nodes[0];
914 				slot = path->slots[0];
915 				write_extent_buffer(leaf, buf,
916 					    btrfs_item_ptr_offset(leaf, slot),
917 					    size);
918 
919 				extent = btrfs_item_ptr(leaf, slot,
920 						struct btrfs_file_extent_item);
921 
922 				if (off > key.offset) {
923 					datao += off - key.offset;
924 					datal -= off - key.offset;
925 				}
926 				if (key.offset + datao + datal + key.offset >
927 				    off + len)
928 					datal = off + len - key.offset - datao;
929 				/* disko == 0 means it's a hole */
930 				if (!disko)
931 					datao = 0;
932 
933 				btrfs_set_file_extent_offset(leaf, extent,
934 							     datao);
935 				btrfs_set_file_extent_num_bytes(leaf, extent,
936 								datal);
937 				if (disko) {
938 					inode_add_bytes(inode, datal);
939 					ret = btrfs_inc_extent_ref(trans, root,
940 						   disko, diskl, leaf->start,
941 						   root->root_key.objectid,
942 						   trans->transid,
943 						   inode->i_ino);
944 					BUG_ON(ret);
945 				}
946 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
947 				u64 skip = 0;
948 				u64 trim = 0;
949 				if (off > key.offset) {
950 					skip = off - key.offset;
951 					new_key.offset += skip;
952 				}
953 
954 				if (key.offset + datal > off+len)
955 					trim = key.offset + datal - (off+len);
956 
957 				if (comp && (skip || trim)) {
958 					ret = -EINVAL;
959 					goto out;
960 				}
961 				size -= skip + trim;
962 				datal -= skip + trim;
963 				ret = btrfs_insert_empty_item(trans, root, path,
964 							      &new_key, size);
965 				if (ret)
966 					goto out;
967 
968 				if (skip) {
969 					u32 start =
970 					  btrfs_file_extent_calc_inline_size(0);
971 					memmove(buf+start, buf+start+skip,
972 						datal);
973 				}
974 
975 				leaf = path->nodes[0];
976 				slot = path->slots[0];
977 				write_extent_buffer(leaf, buf,
978 					    btrfs_item_ptr_offset(leaf, slot),
979 					    size);
980 				inode_add_bytes(inode, datal);
981 			}
982 
983 			btrfs_mark_buffer_dirty(leaf);
984 		}
985 
986 next:
987 		btrfs_release_path(root, path);
988 		key.offset++;
989 	}
990 	ret = 0;
991 out:
992 	btrfs_release_path(root, path);
993 	if (ret == 0) {
994 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
995 		if (destoff + olen > inode->i_size)
996 			btrfs_i_size_write(inode, destoff + olen);
997 		BTRFS_I(inode)->flags = BTRFS_I(src)->flags;
998 		ret = btrfs_update_inode(trans, root, inode);
999 	}
1000 	btrfs_end_transaction(trans, root);
1001 	unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
1002 	if (ret)
1003 		vmtruncate(inode, 0);
1004 out_unlock:
1005 	mutex_unlock(&src->i_mutex);
1006 	mutex_unlock(&inode->i_mutex);
1007 	vfree(buf);
1008 	btrfs_free_path(path);
1009 out_fput:
1010 	fput(src_file);
1011 out_drop_write:
1012 	mnt_drop_write(file->f_path.mnt);
1013 	return ret;
1014 }
1015 
btrfs_ioctl_clone_range(struct file * file,void __user * argp)1016 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
1017 {
1018 	struct btrfs_ioctl_clone_range_args args;
1019 
1020 	if (copy_from_user(&args, argp, sizeof(args)))
1021 		return -EFAULT;
1022 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
1023 				 args.src_length, args.dest_offset);
1024 }
1025 
1026 /*
1027  * there are many ways the trans_start and trans_end ioctls can lead
1028  * to deadlocks.  They should only be used by applications that
1029  * basically own the machine, and have a very in depth understanding
1030  * of all the possible deadlocks and enospc problems.
1031  */
btrfs_ioctl_trans_start(struct file * file)1032 static long btrfs_ioctl_trans_start(struct file *file)
1033 {
1034 	struct inode *inode = fdentry(file)->d_inode;
1035 	struct btrfs_root *root = BTRFS_I(inode)->root;
1036 	struct btrfs_trans_handle *trans;
1037 	int ret = 0;
1038 
1039 	if (!capable(CAP_SYS_ADMIN))
1040 		return -EPERM;
1041 
1042 	if (file->private_data) {
1043 		ret = -EINPROGRESS;
1044 		goto out;
1045 	}
1046 
1047 	ret = mnt_want_write(file->f_path.mnt);
1048 	if (ret)
1049 		goto out;
1050 
1051 	mutex_lock(&root->fs_info->trans_mutex);
1052 	root->fs_info->open_ioctl_trans++;
1053 	mutex_unlock(&root->fs_info->trans_mutex);
1054 
1055 	trans = btrfs_start_ioctl_transaction(root, 0);
1056 	if (trans)
1057 		file->private_data = trans;
1058 	else
1059 		ret = -ENOMEM;
1060 	/*printk(KERN_INFO "btrfs_ioctl_trans_start on %p\n", file);*/
1061 out:
1062 	return ret;
1063 }
1064 
1065 /*
1066  * there are many ways the trans_start and trans_end ioctls can lead
1067  * to deadlocks.  They should only be used by applications that
1068  * basically own the machine, and have a very in depth understanding
1069  * of all the possible deadlocks and enospc problems.
1070  */
btrfs_ioctl_trans_end(struct file * file)1071 long btrfs_ioctl_trans_end(struct file *file)
1072 {
1073 	struct inode *inode = fdentry(file)->d_inode;
1074 	struct btrfs_root *root = BTRFS_I(inode)->root;
1075 	struct btrfs_trans_handle *trans;
1076 	int ret = 0;
1077 
1078 	trans = file->private_data;
1079 	if (!trans) {
1080 		ret = -EINVAL;
1081 		goto out;
1082 	}
1083 	btrfs_end_transaction(trans, root);
1084 	file->private_data = NULL;
1085 
1086 	mutex_lock(&root->fs_info->trans_mutex);
1087 	root->fs_info->open_ioctl_trans--;
1088 	mutex_unlock(&root->fs_info->trans_mutex);
1089 
1090 	mnt_drop_write(file->f_path.mnt);
1091 
1092 out:
1093 	return ret;
1094 }
1095 
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1096 long btrfs_ioctl(struct file *file, unsigned int
1097 		cmd, unsigned long arg)
1098 {
1099 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1100 	void __user *argp = (void __user *)arg;
1101 
1102 	switch (cmd) {
1103 	case BTRFS_IOC_SNAP_CREATE:
1104 		return btrfs_ioctl_snap_create(file, argp, 0);
1105 	case BTRFS_IOC_SUBVOL_CREATE:
1106 		return btrfs_ioctl_snap_create(file, argp, 1);
1107 	case BTRFS_IOC_DEFRAG:
1108 		return btrfs_ioctl_defrag(file);
1109 	case BTRFS_IOC_RESIZE:
1110 		return btrfs_ioctl_resize(root, argp);
1111 	case BTRFS_IOC_ADD_DEV:
1112 		return btrfs_ioctl_add_dev(root, argp);
1113 	case BTRFS_IOC_RM_DEV:
1114 		return btrfs_ioctl_rm_dev(root, argp);
1115 	case BTRFS_IOC_BALANCE:
1116 		return btrfs_balance(root->fs_info->dev_root);
1117 	case BTRFS_IOC_CLONE:
1118 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
1119 	case BTRFS_IOC_CLONE_RANGE:
1120 		return btrfs_ioctl_clone_range(file, argp);
1121 	case BTRFS_IOC_TRANS_START:
1122 		return btrfs_ioctl_trans_start(file);
1123 	case BTRFS_IOC_TRANS_END:
1124 		return btrfs_ioctl_trans_end(file);
1125 	case BTRFS_IOC_SYNC:
1126 		btrfs_sync_fs(file->f_dentry->d_sb, 1);
1127 		return 0;
1128 	}
1129 
1130 	return -ENOTTY;
1131 }
1132