• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/gfp.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/writeback.h>
23 #include <linux/pagevec.h>
24 #include "ctree.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "extent_io.h"
28 
entry_end(struct btrfs_ordered_extent * entry)29 static u64 entry_end(struct btrfs_ordered_extent *entry)
30 {
31 	if (entry->file_offset + entry->len < entry->file_offset)
32 		return (u64)-1;
33 	return entry->file_offset + entry->len;
34 }
35 
36 /* returns NULL if the insertion worked, or it returns the node it did find
37  * in the tree
38  */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)39 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
40 				   struct rb_node *node)
41 {
42 	struct rb_node **p = &root->rb_node;
43 	struct rb_node *parent = NULL;
44 	struct btrfs_ordered_extent *entry;
45 
46 	while (*p) {
47 		parent = *p;
48 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
49 
50 		if (file_offset < entry->file_offset)
51 			p = &(*p)->rb_left;
52 		else if (file_offset >= entry_end(entry))
53 			p = &(*p)->rb_right;
54 		else
55 			return parent;
56 	}
57 
58 	rb_link_node(node, parent, p);
59 	rb_insert_color(node, root);
60 	return NULL;
61 }
62 
63 /*
64  * look for a given offset in the tree, and if it can't be found return the
65  * first lesser offset
66  */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 				     struct rb_node **prev_ret)
69 {
70 	struct rb_node *n = root->rb_node;
71 	struct rb_node *prev = NULL;
72 	struct rb_node *test;
73 	struct btrfs_ordered_extent *entry;
74 	struct btrfs_ordered_extent *prev_entry = NULL;
75 
76 	while (n) {
77 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 		prev = n;
79 		prev_entry = entry;
80 
81 		if (file_offset < entry->file_offset)
82 			n = n->rb_left;
83 		else if (file_offset >= entry_end(entry))
84 			n = n->rb_right;
85 		else
86 			return n;
87 	}
88 	if (!prev_ret)
89 		return NULL;
90 
91 	while (prev && file_offset >= entry_end(prev_entry)) {
92 		test = rb_next(prev);
93 		if (!test)
94 			break;
95 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 				      rb_node);
97 		if (file_offset < entry_end(prev_entry))
98 			break;
99 
100 		prev = test;
101 	}
102 	if (prev)
103 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 				      rb_node);
105 	while (prev && file_offset < entry_end(prev_entry)) {
106 		test = rb_prev(prev);
107 		if (!test)
108 			break;
109 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 				      rb_node);
111 		prev = test;
112 	}
113 	*prev_ret = prev;
114 	return NULL;
115 }
116 
117 /*
118  * helper to check if a given offset is inside a given entry
119  */
offset_in_entry(struct btrfs_ordered_extent * entry,u64 file_offset)120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
121 {
122 	if (file_offset < entry->file_offset ||
123 	    entry->file_offset + entry->len <= file_offset)
124 		return 0;
125 	return 1;
126 }
127 
128 /*
129  * look find the first ordered struct that has this offset, otherwise
130  * the first one less than this offset
131  */
tree_search(struct btrfs_ordered_inode_tree * tree,u64 file_offset)132 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
133 					  u64 file_offset)
134 {
135 	struct rb_root *root = &tree->tree;
136 	struct rb_node *prev;
137 	struct rb_node *ret;
138 	struct btrfs_ordered_extent *entry;
139 
140 	if (tree->last) {
141 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
142 				 rb_node);
143 		if (offset_in_entry(entry, file_offset))
144 			return tree->last;
145 	}
146 	ret = __tree_search(root, file_offset, &prev);
147 	if (!ret)
148 		ret = prev;
149 	if (ret)
150 		tree->last = ret;
151 	return ret;
152 }
153 
154 /* allocate and add a new ordered_extent into the per-inode tree.
155  * file_offset is the logical offset in the file
156  *
157  * start is the disk block number of an extent already reserved in the
158  * extent allocation tree
159  *
160  * len is the length of the extent
161  *
162  * This also sets the EXTENT_ORDERED bit on the range in the inode.
163  *
164  * The tree is given a single reference on the ordered extent that was
165  * inserted.
166  */
btrfs_add_ordered_extent(struct inode * inode,u64 file_offset,u64 start,u64 len,u64 disk_len,int type)167 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
168 			     u64 start, u64 len, u64 disk_len, int type)
169 {
170 	struct btrfs_ordered_inode_tree *tree;
171 	struct rb_node *node;
172 	struct btrfs_ordered_extent *entry;
173 
174 	tree = &BTRFS_I(inode)->ordered_tree;
175 	entry = kzalloc(sizeof(*entry), GFP_NOFS);
176 	if (!entry)
177 		return -ENOMEM;
178 
179 	mutex_lock(&tree->mutex);
180 	entry->file_offset = file_offset;
181 	entry->start = start;
182 	entry->len = len;
183 	entry->disk_len = disk_len;
184 	entry->inode = inode;
185 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
186 		set_bit(type, &entry->flags);
187 
188 	/* one ref for the tree */
189 	atomic_set(&entry->refs, 1);
190 	init_waitqueue_head(&entry->wait);
191 	INIT_LIST_HEAD(&entry->list);
192 	INIT_LIST_HEAD(&entry->root_extent_list);
193 
194 	node = tree_insert(&tree->tree, file_offset,
195 			   &entry->rb_node);
196 	BUG_ON(node);
197 
198 	set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset,
199 			   entry_end(entry) - 1, GFP_NOFS);
200 
201 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
202 	list_add_tail(&entry->root_extent_list,
203 		      &BTRFS_I(inode)->root->fs_info->ordered_extents);
204 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
205 
206 	mutex_unlock(&tree->mutex);
207 	BUG_ON(node);
208 	return 0;
209 }
210 
211 /*
212  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
213  * when an ordered extent is finished.  If the list covers more than one
214  * ordered extent, it is split across multiples.
215  */
btrfs_add_ordered_sum(struct inode * inode,struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)216 int btrfs_add_ordered_sum(struct inode *inode,
217 			  struct btrfs_ordered_extent *entry,
218 			  struct btrfs_ordered_sum *sum)
219 {
220 	struct btrfs_ordered_inode_tree *tree;
221 
222 	tree = &BTRFS_I(inode)->ordered_tree;
223 	mutex_lock(&tree->mutex);
224 	list_add_tail(&sum->list, &entry->list);
225 	mutex_unlock(&tree->mutex);
226 	return 0;
227 }
228 
229 /*
230  * this is used to account for finished IO across a given range
231  * of the file.  The IO should not span ordered extents.  If
232  * a given ordered_extent is completely done, 1 is returned, otherwise
233  * 0.
234  *
235  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
236  * to make sure this function only returns 1 once for a given ordered extent.
237  */
btrfs_dec_test_ordered_pending(struct inode * inode,u64 file_offset,u64 io_size)238 int btrfs_dec_test_ordered_pending(struct inode *inode,
239 				   u64 file_offset, u64 io_size)
240 {
241 	struct btrfs_ordered_inode_tree *tree;
242 	struct rb_node *node;
243 	struct btrfs_ordered_extent *entry;
244 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
245 	int ret;
246 
247 	tree = &BTRFS_I(inode)->ordered_tree;
248 	mutex_lock(&tree->mutex);
249 	clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1,
250 			     GFP_NOFS);
251 	node = tree_search(tree, file_offset);
252 	if (!node) {
253 		ret = 1;
254 		goto out;
255 	}
256 
257 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
258 	if (!offset_in_entry(entry, file_offset)) {
259 		ret = 1;
260 		goto out;
261 	}
262 
263 	ret = test_range_bit(io_tree, entry->file_offset,
264 			     entry->file_offset + entry->len - 1,
265 			     EXTENT_ORDERED, 0);
266 	if (ret == 0)
267 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
268 out:
269 	mutex_unlock(&tree->mutex);
270 	return ret == 0;
271 }
272 
273 /*
274  * used to drop a reference on an ordered extent.  This will free
275  * the extent if the last reference is dropped
276  */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)277 int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
278 {
279 	struct list_head *cur;
280 	struct btrfs_ordered_sum *sum;
281 
282 	if (atomic_dec_and_test(&entry->refs)) {
283 		while (!list_empty(&entry->list)) {
284 			cur = entry->list.next;
285 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
286 			list_del(&sum->list);
287 			kfree(sum);
288 		}
289 		kfree(entry);
290 	}
291 	return 0;
292 }
293 
294 /*
295  * remove an ordered extent from the tree.  No references are dropped
296  * but, anyone waiting on this extent is woken up.
297  */
btrfs_remove_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry)298 int btrfs_remove_ordered_extent(struct inode *inode,
299 				struct btrfs_ordered_extent *entry)
300 {
301 	struct btrfs_ordered_inode_tree *tree;
302 	struct rb_node *node;
303 
304 	tree = &BTRFS_I(inode)->ordered_tree;
305 	mutex_lock(&tree->mutex);
306 	node = &entry->rb_node;
307 	rb_erase(node, &tree->tree);
308 	tree->last = NULL;
309 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
310 
311 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
312 	list_del_init(&entry->root_extent_list);
313 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
314 
315 	mutex_unlock(&tree->mutex);
316 	wake_up(&entry->wait);
317 	return 0;
318 }
319 
320 /*
321  * wait for all the ordered extents in a root.  This is done when balancing
322  * space between drives.
323  */
btrfs_wait_ordered_extents(struct btrfs_root * root,int nocow_only)324 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only)
325 {
326 	struct list_head splice;
327 	struct list_head *cur;
328 	struct btrfs_ordered_extent *ordered;
329 	struct inode *inode;
330 
331 	INIT_LIST_HEAD(&splice);
332 
333 	spin_lock(&root->fs_info->ordered_extent_lock);
334 	list_splice_init(&root->fs_info->ordered_extents, &splice);
335 	while (!list_empty(&splice)) {
336 		cur = splice.next;
337 		ordered = list_entry(cur, struct btrfs_ordered_extent,
338 				     root_extent_list);
339 		if (nocow_only &&
340 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
341 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
342 			list_move(&ordered->root_extent_list,
343 				  &root->fs_info->ordered_extents);
344 			cond_resched_lock(&root->fs_info->ordered_extent_lock);
345 			continue;
346 		}
347 
348 		list_del_init(&ordered->root_extent_list);
349 		atomic_inc(&ordered->refs);
350 
351 		/*
352 		 * the inode may be getting freed (in sys_unlink path).
353 		 */
354 		inode = igrab(ordered->inode);
355 
356 		spin_unlock(&root->fs_info->ordered_extent_lock);
357 
358 		if (inode) {
359 			btrfs_start_ordered_extent(inode, ordered, 1);
360 			btrfs_put_ordered_extent(ordered);
361 			iput(inode);
362 		} else {
363 			btrfs_put_ordered_extent(ordered);
364 		}
365 
366 		spin_lock(&root->fs_info->ordered_extent_lock);
367 	}
368 	spin_unlock(&root->fs_info->ordered_extent_lock);
369 	return 0;
370 }
371 
372 /*
373  * Used to start IO or wait for a given ordered extent to finish.
374  *
375  * If wait is one, this effectively waits on page writeback for all the pages
376  * in the extent, and it waits on the io completion code to insert
377  * metadata into the btree corresponding to the extent
378  */
btrfs_start_ordered_extent(struct inode * inode,struct btrfs_ordered_extent * entry,int wait)379 void btrfs_start_ordered_extent(struct inode *inode,
380 				       struct btrfs_ordered_extent *entry,
381 				       int wait)
382 {
383 	u64 start = entry->file_offset;
384 	u64 end = start + entry->len - 1;
385 
386 	/*
387 	 * pages in the range can be dirty, clean or writeback.  We
388 	 * start IO on any dirty ones so the wait doesn't stall waiting
389 	 * for pdflush to find them
390 	 */
391 	btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL);
392 	if (wait) {
393 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
394 						 &entry->flags));
395 	}
396 }
397 
398 /*
399  * Used to wait on ordered extents across a large range of bytes.
400  */
btrfs_wait_ordered_range(struct inode * inode,u64 start,u64 len)401 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
402 {
403 	u64 end;
404 	u64 orig_end;
405 	u64 wait_end;
406 	struct btrfs_ordered_extent *ordered;
407 
408 	if (start + len < start) {
409 		orig_end = INT_LIMIT(loff_t);
410 	} else {
411 		orig_end = start + len - 1;
412 		if (orig_end > INT_LIMIT(loff_t))
413 			orig_end = INT_LIMIT(loff_t);
414 	}
415 	wait_end = orig_end;
416 again:
417 	/* start IO across the range first to instantiate any delalloc
418 	 * extents
419 	 */
420 	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE);
421 
422 	/* The compression code will leave pages locked but return from
423 	 * writepage without setting the page writeback.  Starting again
424 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start.
425 	 */
426 	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL);
427 
428 	btrfs_wait_on_page_writeback_range(inode->i_mapping,
429 					   start >> PAGE_CACHE_SHIFT,
430 					   orig_end >> PAGE_CACHE_SHIFT);
431 
432 	end = orig_end;
433 	while (1) {
434 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
435 		if (!ordered)
436 			break;
437 		if (ordered->file_offset > orig_end) {
438 			btrfs_put_ordered_extent(ordered);
439 			break;
440 		}
441 		if (ordered->file_offset + ordered->len < start) {
442 			btrfs_put_ordered_extent(ordered);
443 			break;
444 		}
445 		btrfs_start_ordered_extent(inode, ordered, 1);
446 		end = ordered->file_offset;
447 		btrfs_put_ordered_extent(ordered);
448 		if (end == 0 || end == start)
449 			break;
450 		end--;
451 	}
452 	if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
453 			   EXTENT_ORDERED | EXTENT_DELALLOC, 0)) {
454 		schedule_timeout(1);
455 		goto again;
456 	}
457 	return 0;
458 }
459 
460 /*
461  * find an ordered extent corresponding to file_offset.  return NULL if
462  * nothing is found, otherwise take a reference on the extent and return it
463  */
btrfs_lookup_ordered_extent(struct inode * inode,u64 file_offset)464 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
465 							 u64 file_offset)
466 {
467 	struct btrfs_ordered_inode_tree *tree;
468 	struct rb_node *node;
469 	struct btrfs_ordered_extent *entry = NULL;
470 
471 	tree = &BTRFS_I(inode)->ordered_tree;
472 	mutex_lock(&tree->mutex);
473 	node = tree_search(tree, file_offset);
474 	if (!node)
475 		goto out;
476 
477 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
478 	if (!offset_in_entry(entry, file_offset))
479 		entry = NULL;
480 	if (entry)
481 		atomic_inc(&entry->refs);
482 out:
483 	mutex_unlock(&tree->mutex);
484 	return entry;
485 }
486 
487 /*
488  * lookup and return any extent before 'file_offset'.  NULL is returned
489  * if none is found
490  */
491 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode * inode,u64 file_offset)492 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
493 {
494 	struct btrfs_ordered_inode_tree *tree;
495 	struct rb_node *node;
496 	struct btrfs_ordered_extent *entry = NULL;
497 
498 	tree = &BTRFS_I(inode)->ordered_tree;
499 	mutex_lock(&tree->mutex);
500 	node = tree_search(tree, file_offset);
501 	if (!node)
502 		goto out;
503 
504 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
505 	atomic_inc(&entry->refs);
506 out:
507 	mutex_unlock(&tree->mutex);
508 	return entry;
509 }
510 
511 /*
512  * After an extent is done, call this to conditionally update the on disk
513  * i_size.  i_size is updated to cover any fully written part of the file.
514  */
btrfs_ordered_update_i_size(struct inode * inode,struct btrfs_ordered_extent * ordered)515 int btrfs_ordered_update_i_size(struct inode *inode,
516 				struct btrfs_ordered_extent *ordered)
517 {
518 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
519 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
520 	u64 disk_i_size;
521 	u64 new_i_size;
522 	u64 i_size_test;
523 	struct rb_node *node;
524 	struct btrfs_ordered_extent *test;
525 
526 	mutex_lock(&tree->mutex);
527 	disk_i_size = BTRFS_I(inode)->disk_i_size;
528 
529 	/*
530 	 * if the disk i_size is already at the inode->i_size, or
531 	 * this ordered extent is inside the disk i_size, we're done
532 	 */
533 	if (disk_i_size >= inode->i_size ||
534 	    ordered->file_offset + ordered->len <= disk_i_size) {
535 		goto out;
536 	}
537 
538 	/*
539 	 * we can't update the disk_isize if there are delalloc bytes
540 	 * between disk_i_size and  this ordered extent
541 	 */
542 	if (test_range_bit(io_tree, disk_i_size,
543 			   ordered->file_offset + ordered->len - 1,
544 			   EXTENT_DELALLOC, 0)) {
545 		goto out;
546 	}
547 	/*
548 	 * walk backward from this ordered extent to disk_i_size.
549 	 * if we find an ordered extent then we can't update disk i_size
550 	 * yet
551 	 */
552 	node = &ordered->rb_node;
553 	while (1) {
554 		node = rb_prev(node);
555 		if (!node)
556 			break;
557 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
558 		if (test->file_offset + test->len <= disk_i_size)
559 			break;
560 		if (test->file_offset >= inode->i_size)
561 			break;
562 		if (test->file_offset >= disk_i_size)
563 			goto out;
564 	}
565 	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode));
566 
567 	/*
568 	 * at this point, we know we can safely update i_size to at least
569 	 * the offset from this ordered extent.  But, we need to
570 	 * walk forward and see if ios from higher up in the file have
571 	 * finished.
572 	 */
573 	node = rb_next(&ordered->rb_node);
574 	i_size_test = 0;
575 	if (node) {
576 		/*
577 		 * do we have an area where IO might have finished
578 		 * between our ordered extent and the next one.
579 		 */
580 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
581 		if (test->file_offset > entry_end(ordered))
582 			i_size_test = test->file_offset;
583 	} else {
584 		i_size_test = i_size_read(inode);
585 	}
586 
587 	/*
588 	 * i_size_test is the end of a region after this ordered
589 	 * extent where there are no ordered extents.  As long as there
590 	 * are no delalloc bytes in this area, it is safe to update
591 	 * disk_i_size to the end of the region.
592 	 */
593 	if (i_size_test > entry_end(ordered) &&
594 	    !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1,
595 			   EXTENT_DELALLOC, 0)) {
596 		new_i_size = min_t(u64, i_size_test, i_size_read(inode));
597 	}
598 	BTRFS_I(inode)->disk_i_size = new_i_size;
599 out:
600 	mutex_unlock(&tree->mutex);
601 	return 0;
602 }
603 
604 /*
605  * search the ordered extents for one corresponding to 'offset' and
606  * try to find a checksum.  This is used because we allow pages to
607  * be reclaimed before their checksum is actually put into the btree
608  */
btrfs_find_ordered_sum(struct inode * inode,u64 offset,u64 disk_bytenr,u32 * sum)609 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
610 			   u32 *sum)
611 {
612 	struct btrfs_ordered_sum *ordered_sum;
613 	struct btrfs_sector_sum *sector_sums;
614 	struct btrfs_ordered_extent *ordered;
615 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
616 	unsigned long num_sectors;
617 	unsigned long i;
618 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
619 	int ret = 1;
620 
621 	ordered = btrfs_lookup_ordered_extent(inode, offset);
622 	if (!ordered)
623 		return 1;
624 
625 	mutex_lock(&tree->mutex);
626 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
627 		if (disk_bytenr >= ordered_sum->bytenr) {
628 			num_sectors = ordered_sum->len / sectorsize;
629 			sector_sums = ordered_sum->sums;
630 			for (i = 0; i < num_sectors; i++) {
631 				if (sector_sums[i].bytenr == disk_bytenr) {
632 					*sum = sector_sums[i].sum;
633 					ret = 0;
634 					goto out;
635 				}
636 			}
637 		}
638 	}
639 out:
640 	mutex_unlock(&tree->mutex);
641 	btrfs_put_ordered_extent(ordered);
642 	return ret;
643 }
644 
645 
646 /**
647  * taken from mm/filemap.c because it isn't exported
648  *
649  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
650  * @mapping:	address space structure to write
651  * @start:	offset in bytes where the range starts
652  * @end:	offset in bytes where the range ends (inclusive)
653  * @sync_mode:	enable synchronous operation
654  *
655  * Start writeback against all of a mapping's dirty pages that lie
656  * within the byte offsets <start, end> inclusive.
657  *
658  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
659  * opposed to a regular memory cleansing writeback.  The difference between
660  * these two operations is that if a dirty page/buffer is encountered, it must
661  * be waited upon, and not just skipped over.
662  */
btrfs_fdatawrite_range(struct address_space * mapping,loff_t start,loff_t end,int sync_mode)663 int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start,
664 			   loff_t end, int sync_mode)
665 {
666 	struct writeback_control wbc = {
667 		.sync_mode = sync_mode,
668 		.nr_to_write = mapping->nrpages * 2,
669 		.range_start = start,
670 		.range_end = end,
671 		.for_writepages = 1,
672 	};
673 	return btrfs_writepages(mapping, &wbc);
674 }
675 
676 /**
677  * taken from mm/filemap.c because it isn't exported
678  *
679  * wait_on_page_writeback_range - wait for writeback to complete
680  * @mapping:	target address_space
681  * @start:	beginning page index
682  * @end:	ending page index
683  *
684  * Wait for writeback to complete against pages indexed by start->end
685  * inclusive
686  */
btrfs_wait_on_page_writeback_range(struct address_space * mapping,pgoff_t start,pgoff_t end)687 int btrfs_wait_on_page_writeback_range(struct address_space *mapping,
688 				       pgoff_t start, pgoff_t end)
689 {
690 	struct pagevec pvec;
691 	int nr_pages;
692 	int ret = 0;
693 	pgoff_t index;
694 
695 	if (end < start)
696 		return 0;
697 
698 	pagevec_init(&pvec, 0);
699 	index = start;
700 	while ((index <= end) &&
701 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
702 			PAGECACHE_TAG_WRITEBACK,
703 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
704 		unsigned i;
705 
706 		for (i = 0; i < nr_pages; i++) {
707 			struct page *page = pvec.pages[i];
708 
709 			/* until radix tree lookup accepts end_index */
710 			if (page->index > end)
711 				continue;
712 
713 			wait_on_page_writeback(page);
714 			if (PageError(page))
715 				ret = -EIO;
716 		}
717 		pagevec_release(&pvec);
718 		cond_resched();
719 	}
720 
721 	/* Check for outstanding write errors */
722 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
723 		ret = -ENOSPC;
724 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
725 		ret = -EIO;
726 
727 	return ret;
728 }
729