• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
27 
28 /* magic values for the inode_only field in btrfs_log_inode:
29  *
30  * LOG_INODE_ALL means to log everything
31  * LOG_INODE_EXISTS means to log just enough to recreate the inode
32  * during log replay
33  */
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
36 
37 /*
38  * stages for the tree walking.  The first
39  * stage (0) is to only pin down the blocks we find
40  * the second stage (1) is to make sure that all the inodes
41  * we find in the log are created in the subvolume.
42  *
43  * The last stage is to deal with directories and links and extents
44  * and all the other fun semantics
45  */
46 #define LOG_WALK_PIN_ONLY 0
47 #define LOG_WALK_REPLAY_INODES 1
48 #define LOG_WALK_REPLAY_ALL 2
49 
50 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51 			     struct btrfs_root *root, struct inode *inode,
52 			     int inode_only);
53 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
54 			     struct btrfs_root *root,
55 			     struct btrfs_path *path, u64 objectid);
56 
57 /*
58  * tree logging is a special write ahead log used to make sure that
59  * fsyncs and O_SYNCs can happen without doing full tree commits.
60  *
61  * Full tree commits are expensive because they require commonly
62  * modified blocks to be recowed, creating many dirty pages in the
63  * extent tree an 4x-6x higher write load than ext3.
64  *
65  * Instead of doing a tree commit on every fsync, we use the
66  * key ranges and transaction ids to find items for a given file or directory
67  * that have changed in this transaction.  Those items are copied into
68  * a special tree (one per subvolume root), that tree is written to disk
69  * and then the fsync is considered complete.
70  *
71  * After a crash, items are copied out of the log-tree back into the
72  * subvolume tree.  Any file data extents found are recorded in the extent
73  * allocation tree, and the log-tree freed.
74  *
75  * The log tree is read three times, once to pin down all the extents it is
76  * using in ram and once, once to create all the inodes logged in the tree
77  * and once to do all the other items.
78  */
79 
80 /*
81  * start a sub transaction and setup the log tree
82  * this increments the log tree writer count to make the people
83  * syncing the tree wait for us to finish
84  */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)85 static int start_log_trans(struct btrfs_trans_handle *trans,
86 			   struct btrfs_root *root)
87 {
88 	int ret;
89 
90 	mutex_lock(&root->log_mutex);
91 	if (root->log_root) {
92 		root->log_batch++;
93 		atomic_inc(&root->log_writers);
94 		mutex_unlock(&root->log_mutex);
95 		return 0;
96 	}
97 	mutex_lock(&root->fs_info->tree_log_mutex);
98 	if (!root->fs_info->log_root_tree) {
99 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
100 		BUG_ON(ret);
101 	}
102 	if (!root->log_root) {
103 		ret = btrfs_add_log_tree(trans, root);
104 		BUG_ON(ret);
105 	}
106 	mutex_unlock(&root->fs_info->tree_log_mutex);
107 	root->log_batch++;
108 	atomic_inc(&root->log_writers);
109 	mutex_unlock(&root->log_mutex);
110 	return 0;
111 }
112 
113 /*
114  * returns 0 if there was a log transaction running and we were able
115  * to join, or returns -ENOENT if there were not transactions
116  * in progress
117  */
join_running_log_trans(struct btrfs_root * root)118 static int join_running_log_trans(struct btrfs_root *root)
119 {
120 	int ret = -ENOENT;
121 
122 	smp_mb();
123 	if (!root->log_root)
124 		return -ENOENT;
125 
126 	mutex_lock(&root->log_mutex);
127 	if (root->log_root) {
128 		ret = 0;
129 		atomic_inc(&root->log_writers);
130 	}
131 	mutex_unlock(&root->log_mutex);
132 	return ret;
133 }
134 
135 /*
136  * indicate we're done making changes to the log tree
137  * and wake up anyone waiting to do a sync
138  */
end_log_trans(struct btrfs_root * root)139 static int end_log_trans(struct btrfs_root *root)
140 {
141 	if (atomic_dec_and_test(&root->log_writers)) {
142 		smp_mb();
143 		if (waitqueue_active(&root->log_writer_wait))
144 			wake_up(&root->log_writer_wait);
145 	}
146 	return 0;
147 }
148 
149 
150 /*
151  * the walk control struct is used to pass state down the chain when
152  * processing the log tree.  The stage field tells us which part
153  * of the log tree processing we are currently doing.  The others
154  * are state fields used for that specific part
155  */
156 struct walk_control {
157 	/* should we free the extent on disk when done?  This is used
158 	 * at transaction commit time while freeing a log tree
159 	 */
160 	int free;
161 
162 	/* should we write out the extent buffer?  This is used
163 	 * while flushing the log tree to disk during a sync
164 	 */
165 	int write;
166 
167 	/* should we wait for the extent buffer io to finish?  Also used
168 	 * while flushing the log tree to disk for a sync
169 	 */
170 	int wait;
171 
172 	/* pin only walk, we record which extents on disk belong to the
173 	 * log trees
174 	 */
175 	int pin;
176 
177 	/* what stage of the replay code we're currently in */
178 	int stage;
179 
180 	/* the root we are currently replaying */
181 	struct btrfs_root *replay_dest;
182 
183 	/* the trans handle for the current replay */
184 	struct btrfs_trans_handle *trans;
185 
186 	/* the function that gets used to process blocks we find in the
187 	 * tree.  Note the extent_buffer might not be up to date when it is
188 	 * passed in, and it must be checked or read if you need the data
189 	 * inside it
190 	 */
191 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
192 			    struct walk_control *wc, u64 gen);
193 };
194 
195 /*
196  * process_func used to pin down extents, write them or wait on them
197  */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)198 static int process_one_buffer(struct btrfs_root *log,
199 			      struct extent_buffer *eb,
200 			      struct walk_control *wc, u64 gen)
201 {
202 	if (wc->pin) {
203 		mutex_lock(&log->fs_info->pinned_mutex);
204 		btrfs_update_pinned_extents(log->fs_info->extent_root,
205 					    eb->start, eb->len, 1);
206 		mutex_unlock(&log->fs_info->pinned_mutex);
207 	}
208 
209 	if (btrfs_buffer_uptodate(eb, gen)) {
210 		if (wc->write)
211 			btrfs_write_tree_block(eb);
212 		if (wc->wait)
213 			btrfs_wait_tree_block_writeback(eb);
214 	}
215 	return 0;
216 }
217 
218 /*
219  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
220  * to the src data we are copying out.
221  *
222  * root is the tree we are copying into, and path is a scratch
223  * path for use in this function (it should be released on entry and
224  * will be released on exit).
225  *
226  * If the key is already in the destination tree the existing item is
227  * overwritten.  If the existing item isn't big enough, it is extended.
228  * If it is too large, it is truncated.
229  *
230  * If the key isn't in the destination yet, a new item is inserted.
231  */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)232 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
233 				   struct btrfs_root *root,
234 				   struct btrfs_path *path,
235 				   struct extent_buffer *eb, int slot,
236 				   struct btrfs_key *key)
237 {
238 	int ret;
239 	u32 item_size;
240 	u64 saved_i_size = 0;
241 	int save_old_i_size = 0;
242 	unsigned long src_ptr;
243 	unsigned long dst_ptr;
244 	int overwrite_root = 0;
245 
246 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
247 		overwrite_root = 1;
248 
249 	item_size = btrfs_item_size_nr(eb, slot);
250 	src_ptr = btrfs_item_ptr_offset(eb, slot);
251 
252 	/* look for the key in the destination tree */
253 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
254 	if (ret == 0) {
255 		char *src_copy;
256 		char *dst_copy;
257 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
258 						  path->slots[0]);
259 		if (dst_size != item_size)
260 			goto insert;
261 
262 		if (item_size == 0) {
263 			btrfs_release_path(root, path);
264 			return 0;
265 		}
266 		dst_copy = kmalloc(item_size, GFP_NOFS);
267 		src_copy = kmalloc(item_size, GFP_NOFS);
268 
269 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
270 
271 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
272 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
273 				   item_size);
274 		ret = memcmp(dst_copy, src_copy, item_size);
275 
276 		kfree(dst_copy);
277 		kfree(src_copy);
278 		/*
279 		 * they have the same contents, just return, this saves
280 		 * us from cowing blocks in the destination tree and doing
281 		 * extra writes that may not have been done by a previous
282 		 * sync
283 		 */
284 		if (ret == 0) {
285 			btrfs_release_path(root, path);
286 			return 0;
287 		}
288 
289 	}
290 insert:
291 	btrfs_release_path(root, path);
292 	/* try to insert the key into the destination tree */
293 	ret = btrfs_insert_empty_item(trans, root, path,
294 				      key, item_size);
295 
296 	/* make sure any existing item is the correct size */
297 	if (ret == -EEXIST) {
298 		u32 found_size;
299 		found_size = btrfs_item_size_nr(path->nodes[0],
300 						path->slots[0]);
301 		if (found_size > item_size) {
302 			btrfs_truncate_item(trans, root, path, item_size, 1);
303 		} else if (found_size < item_size) {
304 			ret = btrfs_extend_item(trans, root, path,
305 						item_size - found_size);
306 			BUG_ON(ret);
307 		}
308 	} else if (ret) {
309 		BUG();
310 	}
311 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
312 					path->slots[0]);
313 
314 	/* don't overwrite an existing inode if the generation number
315 	 * was logged as zero.  This is done when the tree logging code
316 	 * is just logging an inode to make sure it exists after recovery.
317 	 *
318 	 * Also, don't overwrite i_size on directories during replay.
319 	 * log replay inserts and removes directory items based on the
320 	 * state of the tree found in the subvolume, and i_size is modified
321 	 * as it goes
322 	 */
323 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
324 		struct btrfs_inode_item *src_item;
325 		struct btrfs_inode_item *dst_item;
326 
327 		src_item = (struct btrfs_inode_item *)src_ptr;
328 		dst_item = (struct btrfs_inode_item *)dst_ptr;
329 
330 		if (btrfs_inode_generation(eb, src_item) == 0)
331 			goto no_copy;
332 
333 		if (overwrite_root &&
334 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
335 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
336 			save_old_i_size = 1;
337 			saved_i_size = btrfs_inode_size(path->nodes[0],
338 							dst_item);
339 		}
340 	}
341 
342 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
343 			   src_ptr, item_size);
344 
345 	if (save_old_i_size) {
346 		struct btrfs_inode_item *dst_item;
347 		dst_item = (struct btrfs_inode_item *)dst_ptr;
348 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
349 	}
350 
351 	/* make sure the generation is filled in */
352 	if (key->type == BTRFS_INODE_ITEM_KEY) {
353 		struct btrfs_inode_item *dst_item;
354 		dst_item = (struct btrfs_inode_item *)dst_ptr;
355 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
356 			btrfs_set_inode_generation(path->nodes[0], dst_item,
357 						   trans->transid);
358 		}
359 	}
360 no_copy:
361 	btrfs_mark_buffer_dirty(path->nodes[0]);
362 	btrfs_release_path(root, path);
363 	return 0;
364 }
365 
366 /*
367  * simple helper to read an inode off the disk from a given root
368  * This can only be called for subvolume roots and not for the log
369  */
read_one_inode(struct btrfs_root * root,u64 objectid)370 static noinline struct inode *read_one_inode(struct btrfs_root *root,
371 					     u64 objectid)
372 {
373 	struct inode *inode;
374 	inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
375 	if (inode->i_state & I_NEW) {
376 		BTRFS_I(inode)->root = root;
377 		BTRFS_I(inode)->location.objectid = objectid;
378 		BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
379 		BTRFS_I(inode)->location.offset = 0;
380 		btrfs_read_locked_inode(inode);
381 		unlock_new_inode(inode);
382 
383 	}
384 	if (is_bad_inode(inode)) {
385 		iput(inode);
386 		inode = NULL;
387 	}
388 	return inode;
389 }
390 
391 /* replays a single extent in 'eb' at 'slot' with 'key' into the
392  * subvolume 'root'.  path is released on entry and should be released
393  * on exit.
394  *
395  * extents in the log tree have not been allocated out of the extent
396  * tree yet.  So, this completes the allocation, taking a reference
397  * as required if the extent already exists or creating a new extent
398  * if it isn't in the extent allocation tree yet.
399  *
400  * The extent is inserted into the file, dropping any existing extents
401  * from the file that overlap the new one.
402  */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)403 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
404 				      struct btrfs_root *root,
405 				      struct btrfs_path *path,
406 				      struct extent_buffer *eb, int slot,
407 				      struct btrfs_key *key)
408 {
409 	int found_type;
410 	u64 mask = root->sectorsize - 1;
411 	u64 extent_end;
412 	u64 alloc_hint;
413 	u64 start = key->offset;
414 	u64 saved_nbytes;
415 	struct btrfs_file_extent_item *item;
416 	struct inode *inode = NULL;
417 	unsigned long size;
418 	int ret = 0;
419 
420 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
421 	found_type = btrfs_file_extent_type(eb, item);
422 
423 	if (found_type == BTRFS_FILE_EXTENT_REG ||
424 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
425 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
426 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
427 		size = btrfs_file_extent_inline_len(eb, item);
428 		extent_end = (start + size + mask) & ~mask;
429 	} else {
430 		ret = 0;
431 		goto out;
432 	}
433 
434 	inode = read_one_inode(root, key->objectid);
435 	if (!inode) {
436 		ret = -EIO;
437 		goto out;
438 	}
439 
440 	/*
441 	 * first check to see if we already have this extent in the
442 	 * file.  This must be done before the btrfs_drop_extents run
443 	 * so we don't try to drop this extent.
444 	 */
445 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
446 				       start, 0);
447 
448 	if (ret == 0 &&
449 	    (found_type == BTRFS_FILE_EXTENT_REG ||
450 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
451 		struct btrfs_file_extent_item cmp1;
452 		struct btrfs_file_extent_item cmp2;
453 		struct btrfs_file_extent_item *existing;
454 		struct extent_buffer *leaf;
455 
456 		leaf = path->nodes[0];
457 		existing = btrfs_item_ptr(leaf, path->slots[0],
458 					  struct btrfs_file_extent_item);
459 
460 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
461 				   sizeof(cmp1));
462 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
463 				   sizeof(cmp2));
464 
465 		/*
466 		 * we already have a pointer to this exact extent,
467 		 * we don't have to do anything
468 		 */
469 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
470 			btrfs_release_path(root, path);
471 			goto out;
472 		}
473 	}
474 	btrfs_release_path(root, path);
475 
476 	saved_nbytes = inode_get_bytes(inode);
477 	/* drop any overlapping extents */
478 	ret = btrfs_drop_extents(trans, root, inode,
479 			 start, extent_end, start, &alloc_hint);
480 	BUG_ON(ret);
481 
482 	if (found_type == BTRFS_FILE_EXTENT_REG ||
483 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
484 		unsigned long dest_offset;
485 		struct btrfs_key ins;
486 
487 		ret = btrfs_insert_empty_item(trans, root, path, key,
488 					      sizeof(*item));
489 		BUG_ON(ret);
490 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
491 						    path->slots[0]);
492 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
493 				(unsigned long)item,  sizeof(*item));
494 
495 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
496 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
497 		ins.type = BTRFS_EXTENT_ITEM_KEY;
498 
499 		if (ins.objectid > 0) {
500 			u64 csum_start;
501 			u64 csum_end;
502 			LIST_HEAD(ordered_sums);
503 			/*
504 			 * is this extent already allocated in the extent
505 			 * allocation tree?  If so, just add a reference
506 			 */
507 			ret = btrfs_lookup_extent(root, ins.objectid,
508 						ins.offset);
509 			if (ret == 0) {
510 				ret = btrfs_inc_extent_ref(trans, root,
511 						ins.objectid, ins.offset,
512 						path->nodes[0]->start,
513 						root->root_key.objectid,
514 						trans->transid, key->objectid);
515 			} else {
516 				/*
517 				 * insert the extent pointer in the extent
518 				 * allocation tree
519 				 */
520 				ret = btrfs_alloc_logged_extent(trans, root,
521 						path->nodes[0]->start,
522 						root->root_key.objectid,
523 						trans->transid, key->objectid,
524 						&ins);
525 				BUG_ON(ret);
526 			}
527 			btrfs_release_path(root, path);
528 
529 			if (btrfs_file_extent_compression(eb, item)) {
530 				csum_start = ins.objectid;
531 				csum_end = csum_start + ins.offset;
532 			} else {
533 				csum_start = ins.objectid +
534 					btrfs_file_extent_offset(eb, item);
535 				csum_end = csum_start +
536 					btrfs_file_extent_num_bytes(eb, item);
537 			}
538 
539 			ret = btrfs_lookup_csums_range(root->log_root,
540 						csum_start, csum_end - 1,
541 						&ordered_sums);
542 			BUG_ON(ret);
543 			while (!list_empty(&ordered_sums)) {
544 				struct btrfs_ordered_sum *sums;
545 				sums = list_entry(ordered_sums.next,
546 						struct btrfs_ordered_sum,
547 						list);
548 				ret = btrfs_csum_file_blocks(trans,
549 						root->fs_info->csum_root,
550 						sums);
551 				BUG_ON(ret);
552 				list_del(&sums->list);
553 				kfree(sums);
554 			}
555 		} else {
556 			btrfs_release_path(root, path);
557 		}
558 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
559 		/* inline extents are easy, we just overwrite them */
560 		ret = overwrite_item(trans, root, path, eb, slot, key);
561 		BUG_ON(ret);
562 	}
563 
564 	inode_set_bytes(inode, saved_nbytes);
565 	btrfs_update_inode(trans, root, inode);
566 out:
567 	if (inode)
568 		iput(inode);
569 	return ret;
570 }
571 
572 /*
573  * when cleaning up conflicts between the directory names in the
574  * subvolume, directory names in the log and directory names in the
575  * inode back references, we may have to unlink inodes from directories.
576  *
577  * This is a helper function to do the unlink of a specific directory
578  * item
579  */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct inode * dir,struct btrfs_dir_item * di)580 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
581 				      struct btrfs_root *root,
582 				      struct btrfs_path *path,
583 				      struct inode *dir,
584 				      struct btrfs_dir_item *di)
585 {
586 	struct inode *inode;
587 	char *name;
588 	int name_len;
589 	struct extent_buffer *leaf;
590 	struct btrfs_key location;
591 	int ret;
592 
593 	leaf = path->nodes[0];
594 
595 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
596 	name_len = btrfs_dir_name_len(leaf, di);
597 	name = kmalloc(name_len, GFP_NOFS);
598 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
599 	btrfs_release_path(root, path);
600 
601 	inode = read_one_inode(root, location.objectid);
602 	BUG_ON(!inode);
603 
604 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
605 	BUG_ON(ret);
606 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
607 	BUG_ON(ret);
608 	kfree(name);
609 
610 	iput(inode);
611 	return ret;
612 }
613 
614 /*
615  * helper function to see if a given name and sequence number found
616  * in an inode back reference are already in a directory and correctly
617  * point to this inode
618  */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)619 static noinline int inode_in_dir(struct btrfs_root *root,
620 				 struct btrfs_path *path,
621 				 u64 dirid, u64 objectid, u64 index,
622 				 const char *name, int name_len)
623 {
624 	struct btrfs_dir_item *di;
625 	struct btrfs_key location;
626 	int match = 0;
627 
628 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
629 					 index, name, name_len, 0);
630 	if (di && !IS_ERR(di)) {
631 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
632 		if (location.objectid != objectid)
633 			goto out;
634 	} else
635 		goto out;
636 	btrfs_release_path(root, path);
637 
638 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
639 	if (di && !IS_ERR(di)) {
640 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
641 		if (location.objectid != objectid)
642 			goto out;
643 	} else
644 		goto out;
645 	match = 1;
646 out:
647 	btrfs_release_path(root, path);
648 	return match;
649 }
650 
651 /*
652  * helper function to check a log tree for a named back reference in
653  * an inode.  This is used to decide if a back reference that is
654  * found in the subvolume conflicts with what we find in the log.
655  *
656  * inode backreferences may have multiple refs in a single item,
657  * during replay we process one reference at a time, and we don't
658  * want to delete valid links to a file from the subvolume if that
659  * link is also in the log.
660  */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,char * name,int namelen)661 static noinline int backref_in_log(struct btrfs_root *log,
662 				   struct btrfs_key *key,
663 				   char *name, int namelen)
664 {
665 	struct btrfs_path *path;
666 	struct btrfs_inode_ref *ref;
667 	unsigned long ptr;
668 	unsigned long ptr_end;
669 	unsigned long name_ptr;
670 	int found_name_len;
671 	int item_size;
672 	int ret;
673 	int match = 0;
674 
675 	path = btrfs_alloc_path();
676 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
677 	if (ret != 0)
678 		goto out;
679 
680 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
681 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
682 	ptr_end = ptr + item_size;
683 	while (ptr < ptr_end) {
684 		ref = (struct btrfs_inode_ref *)ptr;
685 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
686 		if (found_name_len == namelen) {
687 			name_ptr = (unsigned long)(ref + 1);
688 			ret = memcmp_extent_buffer(path->nodes[0], name,
689 						   name_ptr, namelen);
690 			if (ret == 0) {
691 				match = 1;
692 				goto out;
693 			}
694 		}
695 		ptr = (unsigned long)(ref + 1) + found_name_len;
696 	}
697 out:
698 	btrfs_free_path(path);
699 	return match;
700 }
701 
702 
703 /*
704  * replay one inode back reference item found in the log tree.
705  * eb, slot and key refer to the buffer and key found in the log tree.
706  * root is the destination we are replaying into, and path is for temp
707  * use by this function.  (it should be released on return).
708  */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)709 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
710 				  struct btrfs_root *root,
711 				  struct btrfs_root *log,
712 				  struct btrfs_path *path,
713 				  struct extent_buffer *eb, int slot,
714 				  struct btrfs_key *key)
715 {
716 	struct inode *dir;
717 	int ret;
718 	struct btrfs_key location;
719 	struct btrfs_inode_ref *ref;
720 	struct btrfs_dir_item *di;
721 	struct inode *inode;
722 	char *name;
723 	int namelen;
724 	unsigned long ref_ptr;
725 	unsigned long ref_end;
726 
727 	location.objectid = key->objectid;
728 	location.type = BTRFS_INODE_ITEM_KEY;
729 	location.offset = 0;
730 
731 	/*
732 	 * it is possible that we didn't log all the parent directories
733 	 * for a given inode.  If we don't find the dir, just don't
734 	 * copy the back ref in.  The link count fixup code will take
735 	 * care of the rest
736 	 */
737 	dir = read_one_inode(root, key->offset);
738 	if (!dir)
739 		return -ENOENT;
740 
741 	inode = read_one_inode(root, key->objectid);
742 	BUG_ON(!dir);
743 
744 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
745 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
746 
747 again:
748 	ref = (struct btrfs_inode_ref *)ref_ptr;
749 
750 	namelen = btrfs_inode_ref_name_len(eb, ref);
751 	name = kmalloc(namelen, GFP_NOFS);
752 	BUG_ON(!name);
753 
754 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
755 
756 	/* if we already have a perfect match, we're done */
757 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
758 			 btrfs_inode_ref_index(eb, ref),
759 			 name, namelen)) {
760 		goto out;
761 	}
762 
763 	/*
764 	 * look for a conflicting back reference in the metadata.
765 	 * if we find one we have to unlink that name of the file
766 	 * before we add our new link.  Later on, we overwrite any
767 	 * existing back reference, and we don't want to create
768 	 * dangling pointers in the directory.
769 	 */
770 conflict_again:
771 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
772 	if (ret == 0) {
773 		char *victim_name;
774 		int victim_name_len;
775 		struct btrfs_inode_ref *victim_ref;
776 		unsigned long ptr;
777 		unsigned long ptr_end;
778 		struct extent_buffer *leaf = path->nodes[0];
779 
780 		/* are we trying to overwrite a back ref for the root directory
781 		 * if so, just jump out, we're done
782 		 */
783 		if (key->objectid == key->offset)
784 			goto out_nowrite;
785 
786 		/* check all the names in this back reference to see
787 		 * if they are in the log.  if so, we allow them to stay
788 		 * otherwise they must be unlinked as a conflict
789 		 */
790 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
791 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
792 		while (ptr < ptr_end) {
793 			victim_ref = (struct btrfs_inode_ref *)ptr;
794 			victim_name_len = btrfs_inode_ref_name_len(leaf,
795 								   victim_ref);
796 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
797 			BUG_ON(!victim_name);
798 
799 			read_extent_buffer(leaf, victim_name,
800 					   (unsigned long)(victim_ref + 1),
801 					   victim_name_len);
802 
803 			if (!backref_in_log(log, key, victim_name,
804 					    victim_name_len)) {
805 				btrfs_inc_nlink(inode);
806 				btrfs_release_path(root, path);
807 				ret = btrfs_unlink_inode(trans, root, dir,
808 							 inode, victim_name,
809 							 victim_name_len);
810 				kfree(victim_name);
811 				btrfs_release_path(root, path);
812 				goto conflict_again;
813 			}
814 			kfree(victim_name);
815 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
816 		}
817 		BUG_ON(ret);
818 	}
819 	btrfs_release_path(root, path);
820 
821 	/* look for a conflicting sequence number */
822 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
823 					 btrfs_inode_ref_index(eb, ref),
824 					 name, namelen, 0);
825 	if (di && !IS_ERR(di)) {
826 		ret = drop_one_dir_item(trans, root, path, dir, di);
827 		BUG_ON(ret);
828 	}
829 	btrfs_release_path(root, path);
830 
831 
832 	/* look for a conflicting name */
833 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
834 				   name, namelen, 0);
835 	if (di && !IS_ERR(di)) {
836 		ret = drop_one_dir_item(trans, root, path, dir, di);
837 		BUG_ON(ret);
838 	}
839 	btrfs_release_path(root, path);
840 
841 	/* insert our name */
842 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
843 			     btrfs_inode_ref_index(eb, ref));
844 	BUG_ON(ret);
845 
846 	btrfs_update_inode(trans, root, inode);
847 
848 out:
849 	ref_ptr = (unsigned long)(ref + 1) + namelen;
850 	kfree(name);
851 	if (ref_ptr < ref_end)
852 		goto again;
853 
854 	/* finally write the back reference in the inode */
855 	ret = overwrite_item(trans, root, path, eb, slot, key);
856 	BUG_ON(ret);
857 
858 out_nowrite:
859 	btrfs_release_path(root, path);
860 	iput(dir);
861 	iput(inode);
862 	return 0;
863 }
864 
865 /*
866  * There are a few corners where the link count of the file can't
867  * be properly maintained during replay.  So, instead of adding
868  * lots of complexity to the log code, we just scan the backrefs
869  * for any file that has been through replay.
870  *
871  * The scan will update the link count on the inode to reflect the
872  * number of back refs found.  If it goes down to zero, the iput
873  * will free the inode.
874  */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)875 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
876 					   struct btrfs_root *root,
877 					   struct inode *inode)
878 {
879 	struct btrfs_path *path;
880 	int ret;
881 	struct btrfs_key key;
882 	u64 nlink = 0;
883 	unsigned long ptr;
884 	unsigned long ptr_end;
885 	int name_len;
886 
887 	key.objectid = inode->i_ino;
888 	key.type = BTRFS_INODE_REF_KEY;
889 	key.offset = (u64)-1;
890 
891 	path = btrfs_alloc_path();
892 
893 	while (1) {
894 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
895 		if (ret < 0)
896 			break;
897 		if (ret > 0) {
898 			if (path->slots[0] == 0)
899 				break;
900 			path->slots[0]--;
901 		}
902 		btrfs_item_key_to_cpu(path->nodes[0], &key,
903 				      path->slots[0]);
904 		if (key.objectid != inode->i_ino ||
905 		    key.type != BTRFS_INODE_REF_KEY)
906 			break;
907 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
908 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
909 						   path->slots[0]);
910 		while (ptr < ptr_end) {
911 			struct btrfs_inode_ref *ref;
912 
913 			ref = (struct btrfs_inode_ref *)ptr;
914 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
915 							    ref);
916 			ptr = (unsigned long)(ref + 1) + name_len;
917 			nlink++;
918 		}
919 
920 		if (key.offset == 0)
921 			break;
922 		key.offset--;
923 		btrfs_release_path(root, path);
924 	}
925 	btrfs_free_path(path);
926 	if (nlink != inode->i_nlink) {
927 		inode->i_nlink = nlink;
928 		btrfs_update_inode(trans, root, inode);
929 	}
930 	BTRFS_I(inode)->index_cnt = (u64)-1;
931 
932 	return 0;
933 }
934 
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)935 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
936 					    struct btrfs_root *root,
937 					    struct btrfs_path *path)
938 {
939 	int ret;
940 	struct btrfs_key key;
941 	struct inode *inode;
942 
943 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
944 	key.type = BTRFS_ORPHAN_ITEM_KEY;
945 	key.offset = (u64)-1;
946 	while (1) {
947 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
948 		if (ret < 0)
949 			break;
950 
951 		if (ret == 1) {
952 			if (path->slots[0] == 0)
953 				break;
954 			path->slots[0]--;
955 		}
956 
957 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
958 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
959 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
960 			break;
961 
962 		ret = btrfs_del_item(trans, root, path);
963 		BUG_ON(ret);
964 
965 		btrfs_release_path(root, path);
966 		inode = read_one_inode(root, key.offset);
967 		BUG_ON(!inode);
968 
969 		ret = fixup_inode_link_count(trans, root, inode);
970 		BUG_ON(ret);
971 
972 		iput(inode);
973 
974 		if (key.offset == 0)
975 			break;
976 		key.offset--;
977 	}
978 	btrfs_release_path(root, path);
979 	return 0;
980 }
981 
982 
983 /*
984  * record a given inode in the fixup dir so we can check its link
985  * count when replay is done.  The link count is incremented here
986  * so the inode won't go away until we check it
987  */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)988 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
989 				      struct btrfs_root *root,
990 				      struct btrfs_path *path,
991 				      u64 objectid)
992 {
993 	struct btrfs_key key;
994 	int ret = 0;
995 	struct inode *inode;
996 
997 	inode = read_one_inode(root, objectid);
998 	BUG_ON(!inode);
999 
1000 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1001 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1002 	key.offset = objectid;
1003 
1004 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1005 
1006 	btrfs_release_path(root, path);
1007 	if (ret == 0) {
1008 		btrfs_inc_nlink(inode);
1009 		btrfs_update_inode(trans, root, inode);
1010 	} else if (ret == -EEXIST) {
1011 		ret = 0;
1012 	} else {
1013 		BUG();
1014 	}
1015 	iput(inode);
1016 
1017 	return ret;
1018 }
1019 
1020 /*
1021  * when replaying the log for a directory, we only insert names
1022  * for inodes that actually exist.  This means an fsync on a directory
1023  * does not implicitly fsync all the new files in it
1024  */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 index,char * name,int name_len,u8 type,struct btrfs_key * location)1025 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1026 				    struct btrfs_root *root,
1027 				    struct btrfs_path *path,
1028 				    u64 dirid, u64 index,
1029 				    char *name, int name_len, u8 type,
1030 				    struct btrfs_key *location)
1031 {
1032 	struct inode *inode;
1033 	struct inode *dir;
1034 	int ret;
1035 
1036 	inode = read_one_inode(root, location->objectid);
1037 	if (!inode)
1038 		return -ENOENT;
1039 
1040 	dir = read_one_inode(root, dirid);
1041 	if (!dir) {
1042 		iput(inode);
1043 		return -EIO;
1044 	}
1045 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1046 
1047 	/* FIXME, put inode into FIXUP list */
1048 
1049 	iput(inode);
1050 	iput(dir);
1051 	return ret;
1052 }
1053 
1054 /*
1055  * take a single entry in a log directory item and replay it into
1056  * the subvolume.
1057  *
1058  * if a conflicting item exists in the subdirectory already,
1059  * the inode it points to is unlinked and put into the link count
1060  * fix up tree.
1061  *
1062  * If a name from the log points to a file or directory that does
1063  * not exist in the FS, it is skipped.  fsyncs on directories
1064  * do not force down inodes inside that directory, just changes to the
1065  * names or unlinks in a directory.
1066  */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1067 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1068 				    struct btrfs_root *root,
1069 				    struct btrfs_path *path,
1070 				    struct extent_buffer *eb,
1071 				    struct btrfs_dir_item *di,
1072 				    struct btrfs_key *key)
1073 {
1074 	char *name;
1075 	int name_len;
1076 	struct btrfs_dir_item *dst_di;
1077 	struct btrfs_key found_key;
1078 	struct btrfs_key log_key;
1079 	struct inode *dir;
1080 	u8 log_type;
1081 	int exists;
1082 	int ret;
1083 
1084 	dir = read_one_inode(root, key->objectid);
1085 	BUG_ON(!dir);
1086 
1087 	name_len = btrfs_dir_name_len(eb, di);
1088 	name = kmalloc(name_len, GFP_NOFS);
1089 	log_type = btrfs_dir_type(eb, di);
1090 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1091 		   name_len);
1092 
1093 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1094 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1095 	if (exists == 0)
1096 		exists = 1;
1097 	else
1098 		exists = 0;
1099 	btrfs_release_path(root, path);
1100 
1101 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1102 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1103 				       name, name_len, 1);
1104 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1105 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1106 						     key->objectid,
1107 						     key->offset, name,
1108 						     name_len, 1);
1109 	} else {
1110 		BUG();
1111 	}
1112 	if (!dst_di || IS_ERR(dst_di)) {
1113 		/* we need a sequence number to insert, so we only
1114 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1115 		 */
1116 		if (key->type != BTRFS_DIR_INDEX_KEY)
1117 			goto out;
1118 		goto insert;
1119 	}
1120 
1121 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1122 	/* the existing item matches the logged item */
1123 	if (found_key.objectid == log_key.objectid &&
1124 	    found_key.type == log_key.type &&
1125 	    found_key.offset == log_key.offset &&
1126 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1127 		goto out;
1128 	}
1129 
1130 	/*
1131 	 * don't drop the conflicting directory entry if the inode
1132 	 * for the new entry doesn't exist
1133 	 */
1134 	if (!exists)
1135 		goto out;
1136 
1137 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1138 	BUG_ON(ret);
1139 
1140 	if (key->type == BTRFS_DIR_INDEX_KEY)
1141 		goto insert;
1142 out:
1143 	btrfs_release_path(root, path);
1144 	kfree(name);
1145 	iput(dir);
1146 	return 0;
1147 
1148 insert:
1149 	btrfs_release_path(root, path);
1150 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1151 			      name, name_len, log_type, &log_key);
1152 
1153 	if (ret && ret != -ENOENT)
1154 		BUG();
1155 	goto out;
1156 }
1157 
1158 /*
1159  * find all the names in a directory item and reconcile them into
1160  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1161  * one name in a directory item, but the same code gets used for
1162  * both directory index types
1163  */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1164 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1165 					struct btrfs_root *root,
1166 					struct btrfs_path *path,
1167 					struct extent_buffer *eb, int slot,
1168 					struct btrfs_key *key)
1169 {
1170 	int ret;
1171 	u32 item_size = btrfs_item_size_nr(eb, slot);
1172 	struct btrfs_dir_item *di;
1173 	int name_len;
1174 	unsigned long ptr;
1175 	unsigned long ptr_end;
1176 
1177 	ptr = btrfs_item_ptr_offset(eb, slot);
1178 	ptr_end = ptr + item_size;
1179 	while (ptr < ptr_end) {
1180 		di = (struct btrfs_dir_item *)ptr;
1181 		name_len = btrfs_dir_name_len(eb, di);
1182 		ret = replay_one_name(trans, root, path, eb, di, key);
1183 		BUG_ON(ret);
1184 		ptr = (unsigned long)(di + 1);
1185 		ptr += name_len;
1186 	}
1187 	return 0;
1188 }
1189 
1190 /*
1191  * directory replay has two parts.  There are the standard directory
1192  * items in the log copied from the subvolume, and range items
1193  * created in the log while the subvolume was logged.
1194  *
1195  * The range items tell us which parts of the key space the log
1196  * is authoritative for.  During replay, if a key in the subvolume
1197  * directory is in a logged range item, but not actually in the log
1198  * that means it was deleted from the directory before the fsync
1199  * and should be removed.
1200  */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)1201 static noinline int find_dir_range(struct btrfs_root *root,
1202 				   struct btrfs_path *path,
1203 				   u64 dirid, int key_type,
1204 				   u64 *start_ret, u64 *end_ret)
1205 {
1206 	struct btrfs_key key;
1207 	u64 found_end;
1208 	struct btrfs_dir_log_item *item;
1209 	int ret;
1210 	int nritems;
1211 
1212 	if (*start_ret == (u64)-1)
1213 		return 1;
1214 
1215 	key.objectid = dirid;
1216 	key.type = key_type;
1217 	key.offset = *start_ret;
1218 
1219 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1220 	if (ret < 0)
1221 		goto out;
1222 	if (ret > 0) {
1223 		if (path->slots[0] == 0)
1224 			goto out;
1225 		path->slots[0]--;
1226 	}
1227 	if (ret != 0)
1228 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1229 
1230 	if (key.type != key_type || key.objectid != dirid) {
1231 		ret = 1;
1232 		goto next;
1233 	}
1234 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1235 			      struct btrfs_dir_log_item);
1236 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1237 
1238 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1239 		ret = 0;
1240 		*start_ret = key.offset;
1241 		*end_ret = found_end;
1242 		goto out;
1243 	}
1244 	ret = 1;
1245 next:
1246 	/* check the next slot in the tree to see if it is a valid item */
1247 	nritems = btrfs_header_nritems(path->nodes[0]);
1248 	if (path->slots[0] >= nritems) {
1249 		ret = btrfs_next_leaf(root, path);
1250 		if (ret)
1251 			goto out;
1252 	} else {
1253 		path->slots[0]++;
1254 	}
1255 
1256 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1257 
1258 	if (key.type != key_type || key.objectid != dirid) {
1259 		ret = 1;
1260 		goto out;
1261 	}
1262 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1263 			      struct btrfs_dir_log_item);
1264 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1265 	*start_ret = key.offset;
1266 	*end_ret = found_end;
1267 	ret = 0;
1268 out:
1269 	btrfs_release_path(root, path);
1270 	return ret;
1271 }
1272 
1273 /*
1274  * this looks for a given directory item in the log.  If the directory
1275  * item is not in the log, the item is removed and the inode it points
1276  * to is unlinked
1277  */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)1278 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1279 				      struct btrfs_root *root,
1280 				      struct btrfs_root *log,
1281 				      struct btrfs_path *path,
1282 				      struct btrfs_path *log_path,
1283 				      struct inode *dir,
1284 				      struct btrfs_key *dir_key)
1285 {
1286 	int ret;
1287 	struct extent_buffer *eb;
1288 	int slot;
1289 	u32 item_size;
1290 	struct btrfs_dir_item *di;
1291 	struct btrfs_dir_item *log_di;
1292 	int name_len;
1293 	unsigned long ptr;
1294 	unsigned long ptr_end;
1295 	char *name;
1296 	struct inode *inode;
1297 	struct btrfs_key location;
1298 
1299 again:
1300 	eb = path->nodes[0];
1301 	slot = path->slots[0];
1302 	item_size = btrfs_item_size_nr(eb, slot);
1303 	ptr = btrfs_item_ptr_offset(eb, slot);
1304 	ptr_end = ptr + item_size;
1305 	while (ptr < ptr_end) {
1306 		di = (struct btrfs_dir_item *)ptr;
1307 		name_len = btrfs_dir_name_len(eb, di);
1308 		name = kmalloc(name_len, GFP_NOFS);
1309 		if (!name) {
1310 			ret = -ENOMEM;
1311 			goto out;
1312 		}
1313 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1314 				  name_len);
1315 		log_di = NULL;
1316 		if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1317 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1318 						       dir_key->objectid,
1319 						       name, name_len, 0);
1320 		} else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1321 			log_di = btrfs_lookup_dir_index_item(trans, log,
1322 						     log_path,
1323 						     dir_key->objectid,
1324 						     dir_key->offset,
1325 						     name, name_len, 0);
1326 		}
1327 		if (!log_di || IS_ERR(log_di)) {
1328 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1329 			btrfs_release_path(root, path);
1330 			btrfs_release_path(log, log_path);
1331 			inode = read_one_inode(root, location.objectid);
1332 			BUG_ON(!inode);
1333 
1334 			ret = link_to_fixup_dir(trans, root,
1335 						path, location.objectid);
1336 			BUG_ON(ret);
1337 			btrfs_inc_nlink(inode);
1338 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1339 						 name, name_len);
1340 			BUG_ON(ret);
1341 			kfree(name);
1342 			iput(inode);
1343 
1344 			/* there might still be more names under this key
1345 			 * check and repeat if required
1346 			 */
1347 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1348 						0, 0);
1349 			if (ret == 0)
1350 				goto again;
1351 			ret = 0;
1352 			goto out;
1353 		}
1354 		btrfs_release_path(log, log_path);
1355 		kfree(name);
1356 
1357 		ptr = (unsigned long)(di + 1);
1358 		ptr += name_len;
1359 	}
1360 	ret = 0;
1361 out:
1362 	btrfs_release_path(root, path);
1363 	btrfs_release_path(log, log_path);
1364 	return ret;
1365 }
1366 
1367 /*
1368  * deletion replay happens before we copy any new directory items
1369  * out of the log or out of backreferences from inodes.  It
1370  * scans the log to find ranges of keys that log is authoritative for,
1371  * and then scans the directory to find items in those ranges that are
1372  * not present in the log.
1373  *
1374  * Anything we don't find in the log is unlinked and removed from the
1375  * directory.
1376  */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid)1377 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1378 				       struct btrfs_root *root,
1379 				       struct btrfs_root *log,
1380 				       struct btrfs_path *path,
1381 				       u64 dirid)
1382 {
1383 	u64 range_start;
1384 	u64 range_end;
1385 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1386 	int ret = 0;
1387 	struct btrfs_key dir_key;
1388 	struct btrfs_key found_key;
1389 	struct btrfs_path *log_path;
1390 	struct inode *dir;
1391 
1392 	dir_key.objectid = dirid;
1393 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1394 	log_path = btrfs_alloc_path();
1395 	if (!log_path)
1396 		return -ENOMEM;
1397 
1398 	dir = read_one_inode(root, dirid);
1399 	/* it isn't an error if the inode isn't there, that can happen
1400 	 * because we replay the deletes before we copy in the inode item
1401 	 * from the log
1402 	 */
1403 	if (!dir) {
1404 		btrfs_free_path(log_path);
1405 		return 0;
1406 	}
1407 again:
1408 	range_start = 0;
1409 	range_end = 0;
1410 	while (1) {
1411 		ret = find_dir_range(log, path, dirid, key_type,
1412 				     &range_start, &range_end);
1413 		if (ret != 0)
1414 			break;
1415 
1416 		dir_key.offset = range_start;
1417 		while (1) {
1418 			int nritems;
1419 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1420 						0, 0);
1421 			if (ret < 0)
1422 				goto out;
1423 
1424 			nritems = btrfs_header_nritems(path->nodes[0]);
1425 			if (path->slots[0] >= nritems) {
1426 				ret = btrfs_next_leaf(root, path);
1427 				if (ret)
1428 					break;
1429 			}
1430 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1431 					      path->slots[0]);
1432 			if (found_key.objectid != dirid ||
1433 			    found_key.type != dir_key.type)
1434 				goto next_type;
1435 
1436 			if (found_key.offset > range_end)
1437 				break;
1438 
1439 			ret = check_item_in_log(trans, root, log, path,
1440 						log_path, dir, &found_key);
1441 			BUG_ON(ret);
1442 			if (found_key.offset == (u64)-1)
1443 				break;
1444 			dir_key.offset = found_key.offset + 1;
1445 		}
1446 		btrfs_release_path(root, path);
1447 		if (range_end == (u64)-1)
1448 			break;
1449 		range_start = range_end + 1;
1450 	}
1451 
1452 next_type:
1453 	ret = 0;
1454 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1455 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1456 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1457 		btrfs_release_path(root, path);
1458 		goto again;
1459 	}
1460 out:
1461 	btrfs_release_path(root, path);
1462 	btrfs_free_path(log_path);
1463 	iput(dir);
1464 	return ret;
1465 }
1466 
1467 /*
1468  * the process_func used to replay items from the log tree.  This
1469  * gets called in two different stages.  The first stage just looks
1470  * for inodes and makes sure they are all copied into the subvolume.
1471  *
1472  * The second stage copies all the other item types from the log into
1473  * the subvolume.  The two stage approach is slower, but gets rid of
1474  * lots of complexity around inodes referencing other inodes that exist
1475  * only in the log (references come from either directory items or inode
1476  * back refs).
1477  */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)1478 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1479 			     struct walk_control *wc, u64 gen)
1480 {
1481 	int nritems;
1482 	struct btrfs_path *path;
1483 	struct btrfs_root *root = wc->replay_dest;
1484 	struct btrfs_key key;
1485 	u32 item_size;
1486 	int level;
1487 	int i;
1488 	int ret;
1489 
1490 	btrfs_read_buffer(eb, gen);
1491 
1492 	level = btrfs_header_level(eb);
1493 
1494 	if (level != 0)
1495 		return 0;
1496 
1497 	path = btrfs_alloc_path();
1498 	BUG_ON(!path);
1499 
1500 	nritems = btrfs_header_nritems(eb);
1501 	for (i = 0; i < nritems; i++) {
1502 		btrfs_item_key_to_cpu(eb, &key, i);
1503 		item_size = btrfs_item_size_nr(eb, i);
1504 
1505 		/* inode keys are done during the first stage */
1506 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1507 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1508 			struct inode *inode;
1509 			struct btrfs_inode_item *inode_item;
1510 			u32 mode;
1511 
1512 			inode_item = btrfs_item_ptr(eb, i,
1513 					    struct btrfs_inode_item);
1514 			mode = btrfs_inode_mode(eb, inode_item);
1515 			if (S_ISDIR(mode)) {
1516 				ret = replay_dir_deletes(wc->trans,
1517 					 root, log, path, key.objectid);
1518 				BUG_ON(ret);
1519 			}
1520 			ret = overwrite_item(wc->trans, root, path,
1521 					     eb, i, &key);
1522 			BUG_ON(ret);
1523 
1524 			/* for regular files, truncate away
1525 			 * extents past the new EOF
1526 			 */
1527 			if (S_ISREG(mode)) {
1528 				inode = read_one_inode(root,
1529 						       key.objectid);
1530 				BUG_ON(!inode);
1531 
1532 				ret = btrfs_truncate_inode_items(wc->trans,
1533 					root, inode, inode->i_size,
1534 					BTRFS_EXTENT_DATA_KEY);
1535 				BUG_ON(ret);
1536 				iput(inode);
1537 			}
1538 			ret = link_to_fixup_dir(wc->trans, root,
1539 						path, key.objectid);
1540 			BUG_ON(ret);
1541 		}
1542 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1543 			continue;
1544 
1545 		/* these keys are simply copied */
1546 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1547 			ret = overwrite_item(wc->trans, root, path,
1548 					     eb, i, &key);
1549 			BUG_ON(ret);
1550 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1551 			ret = add_inode_ref(wc->trans, root, log, path,
1552 					    eb, i, &key);
1553 			BUG_ON(ret && ret != -ENOENT);
1554 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1555 			ret = replay_one_extent(wc->trans, root, path,
1556 						eb, i, &key);
1557 			BUG_ON(ret);
1558 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1559 			   key.type == BTRFS_DIR_INDEX_KEY) {
1560 			ret = replay_one_dir_item(wc->trans, root, path,
1561 						  eb, i, &key);
1562 			BUG_ON(ret);
1563 		}
1564 	}
1565 	btrfs_free_path(path);
1566 	return 0;
1567 }
1568 
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)1569 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1570 				   struct btrfs_root *root,
1571 				   struct btrfs_path *path, int *level,
1572 				   struct walk_control *wc)
1573 {
1574 	u64 root_owner;
1575 	u64 root_gen;
1576 	u64 bytenr;
1577 	u64 ptr_gen;
1578 	struct extent_buffer *next;
1579 	struct extent_buffer *cur;
1580 	struct extent_buffer *parent;
1581 	u32 blocksize;
1582 	int ret = 0;
1583 
1584 	WARN_ON(*level < 0);
1585 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1586 
1587 	while (*level > 0) {
1588 		WARN_ON(*level < 0);
1589 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1590 		cur = path->nodes[*level];
1591 
1592 		if (btrfs_header_level(cur) != *level)
1593 			WARN_ON(1);
1594 
1595 		if (path->slots[*level] >=
1596 		    btrfs_header_nritems(cur))
1597 			break;
1598 
1599 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1600 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1601 		blocksize = btrfs_level_size(root, *level - 1);
1602 
1603 		parent = path->nodes[*level];
1604 		root_owner = btrfs_header_owner(parent);
1605 		root_gen = btrfs_header_generation(parent);
1606 
1607 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1608 
1609 		wc->process_func(root, next, wc, ptr_gen);
1610 
1611 		if (*level == 1) {
1612 			path->slots[*level]++;
1613 			if (wc->free) {
1614 				btrfs_read_buffer(next, ptr_gen);
1615 
1616 				btrfs_tree_lock(next);
1617 				clean_tree_block(trans, root, next);
1618 				btrfs_set_lock_blocking(next);
1619 				btrfs_wait_tree_block_writeback(next);
1620 				btrfs_tree_unlock(next);
1621 
1622 				ret = btrfs_drop_leaf_ref(trans, root, next);
1623 				BUG_ON(ret);
1624 
1625 				WARN_ON(root_owner !=
1626 					BTRFS_TREE_LOG_OBJECTID);
1627 				ret = btrfs_free_reserved_extent(root,
1628 							 bytenr, blocksize);
1629 				BUG_ON(ret);
1630 			}
1631 			free_extent_buffer(next);
1632 			continue;
1633 		}
1634 		btrfs_read_buffer(next, ptr_gen);
1635 
1636 		WARN_ON(*level <= 0);
1637 		if (path->nodes[*level-1])
1638 			free_extent_buffer(path->nodes[*level-1]);
1639 		path->nodes[*level-1] = next;
1640 		*level = btrfs_header_level(next);
1641 		path->slots[*level] = 0;
1642 		cond_resched();
1643 	}
1644 	WARN_ON(*level < 0);
1645 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1646 
1647 	if (path->nodes[*level] == root->node)
1648 		parent = path->nodes[*level];
1649 	else
1650 		parent = path->nodes[*level + 1];
1651 
1652 	bytenr = path->nodes[*level]->start;
1653 
1654 	blocksize = btrfs_level_size(root, *level);
1655 	root_owner = btrfs_header_owner(parent);
1656 	root_gen = btrfs_header_generation(parent);
1657 
1658 	wc->process_func(root, path->nodes[*level], wc,
1659 			 btrfs_header_generation(path->nodes[*level]));
1660 
1661 	if (wc->free) {
1662 		next = path->nodes[*level];
1663 		btrfs_tree_lock(next);
1664 		clean_tree_block(trans, root, next);
1665 		btrfs_set_lock_blocking(next);
1666 		btrfs_wait_tree_block_writeback(next);
1667 		btrfs_tree_unlock(next);
1668 
1669 		if (*level == 0) {
1670 			ret = btrfs_drop_leaf_ref(trans, root, next);
1671 			BUG_ON(ret);
1672 		}
1673 		WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1674 		ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1675 		BUG_ON(ret);
1676 	}
1677 	free_extent_buffer(path->nodes[*level]);
1678 	path->nodes[*level] = NULL;
1679 	*level += 1;
1680 
1681 	cond_resched();
1682 	return 0;
1683 }
1684 
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)1685 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1686 				 struct btrfs_root *root,
1687 				 struct btrfs_path *path, int *level,
1688 				 struct walk_control *wc)
1689 {
1690 	u64 root_owner;
1691 	u64 root_gen;
1692 	int i;
1693 	int slot;
1694 	int ret;
1695 
1696 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1697 		slot = path->slots[i];
1698 		if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1699 			struct extent_buffer *node;
1700 			node = path->nodes[i];
1701 			path->slots[i]++;
1702 			*level = i;
1703 			WARN_ON(*level == 0);
1704 			return 0;
1705 		} else {
1706 			struct extent_buffer *parent;
1707 			if (path->nodes[*level] == root->node)
1708 				parent = path->nodes[*level];
1709 			else
1710 				parent = path->nodes[*level + 1];
1711 
1712 			root_owner = btrfs_header_owner(parent);
1713 			root_gen = btrfs_header_generation(parent);
1714 			wc->process_func(root, path->nodes[*level], wc,
1715 				 btrfs_header_generation(path->nodes[*level]));
1716 			if (wc->free) {
1717 				struct extent_buffer *next;
1718 
1719 				next = path->nodes[*level];
1720 
1721 				btrfs_tree_lock(next);
1722 				clean_tree_block(trans, root, next);
1723 				btrfs_set_lock_blocking(next);
1724 				btrfs_wait_tree_block_writeback(next);
1725 				btrfs_tree_unlock(next);
1726 
1727 				if (*level == 0) {
1728 					ret = btrfs_drop_leaf_ref(trans, root,
1729 								  next);
1730 					BUG_ON(ret);
1731 				}
1732 
1733 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1734 				ret = btrfs_free_reserved_extent(root,
1735 						path->nodes[*level]->start,
1736 						path->nodes[*level]->len);
1737 				BUG_ON(ret);
1738 			}
1739 			free_extent_buffer(path->nodes[*level]);
1740 			path->nodes[*level] = NULL;
1741 			*level = i + 1;
1742 		}
1743 	}
1744 	return 1;
1745 }
1746 
1747 /*
1748  * drop the reference count on the tree rooted at 'snap'.  This traverses
1749  * the tree freeing any blocks that have a ref count of zero after being
1750  * decremented.
1751  */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)1752 static int walk_log_tree(struct btrfs_trans_handle *trans,
1753 			 struct btrfs_root *log, struct walk_control *wc)
1754 {
1755 	int ret = 0;
1756 	int wret;
1757 	int level;
1758 	struct btrfs_path *path;
1759 	int i;
1760 	int orig_level;
1761 
1762 	path = btrfs_alloc_path();
1763 	BUG_ON(!path);
1764 
1765 	level = btrfs_header_level(log->node);
1766 	orig_level = level;
1767 	path->nodes[level] = log->node;
1768 	extent_buffer_get(log->node);
1769 	path->slots[level] = 0;
1770 
1771 	while (1) {
1772 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1773 		if (wret > 0)
1774 			break;
1775 		if (wret < 0)
1776 			ret = wret;
1777 
1778 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1779 		if (wret > 0)
1780 			break;
1781 		if (wret < 0)
1782 			ret = wret;
1783 	}
1784 
1785 	/* was the root node processed? if not, catch it here */
1786 	if (path->nodes[orig_level]) {
1787 		wc->process_func(log, path->nodes[orig_level], wc,
1788 			 btrfs_header_generation(path->nodes[orig_level]));
1789 		if (wc->free) {
1790 			struct extent_buffer *next;
1791 
1792 			next = path->nodes[orig_level];
1793 
1794 			btrfs_tree_lock(next);
1795 			clean_tree_block(trans, log, next);
1796 			btrfs_set_lock_blocking(next);
1797 			btrfs_wait_tree_block_writeback(next);
1798 			btrfs_tree_unlock(next);
1799 
1800 			if (orig_level == 0) {
1801 				ret = btrfs_drop_leaf_ref(trans, log,
1802 							  next);
1803 				BUG_ON(ret);
1804 			}
1805 			WARN_ON(log->root_key.objectid !=
1806 				BTRFS_TREE_LOG_OBJECTID);
1807 			ret = btrfs_free_reserved_extent(log, next->start,
1808 							 next->len);
1809 			BUG_ON(ret);
1810 		}
1811 	}
1812 
1813 	for (i = 0; i <= orig_level; i++) {
1814 		if (path->nodes[i]) {
1815 			free_extent_buffer(path->nodes[i]);
1816 			path->nodes[i] = NULL;
1817 		}
1818 	}
1819 	btrfs_free_path(path);
1820 	return ret;
1821 }
1822 
1823 /*
1824  * helper function to update the item for a given subvolumes log root
1825  * in the tree of log roots
1826  */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log)1827 static int update_log_root(struct btrfs_trans_handle *trans,
1828 			   struct btrfs_root *log)
1829 {
1830 	int ret;
1831 
1832 	if (log->log_transid == 1) {
1833 		/* insert root item on the first sync */
1834 		ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1835 				&log->root_key, &log->root_item);
1836 	} else {
1837 		ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1838 				&log->root_key, &log->root_item);
1839 	}
1840 	return ret;
1841 }
1842 
wait_log_commit(struct btrfs_root * root,unsigned long transid)1843 static int wait_log_commit(struct btrfs_root *root, unsigned long transid)
1844 {
1845 	DEFINE_WAIT(wait);
1846 	int index = transid % 2;
1847 
1848 	/*
1849 	 * we only allow two pending log transactions at a time,
1850 	 * so we know that if ours is more than 2 older than the
1851 	 * current transaction, we're done
1852 	 */
1853 	do {
1854 		prepare_to_wait(&root->log_commit_wait[index],
1855 				&wait, TASK_UNINTERRUPTIBLE);
1856 		mutex_unlock(&root->log_mutex);
1857 		if (root->log_transid < transid + 2 &&
1858 		    atomic_read(&root->log_commit[index]))
1859 			schedule();
1860 		finish_wait(&root->log_commit_wait[index], &wait);
1861 		mutex_lock(&root->log_mutex);
1862 	} while (root->log_transid < transid + 2 &&
1863 		 atomic_read(&root->log_commit[index]));
1864 	return 0;
1865 }
1866 
wait_for_writer(struct btrfs_root * root)1867 static int wait_for_writer(struct btrfs_root *root)
1868 {
1869 	DEFINE_WAIT(wait);
1870 	while (atomic_read(&root->log_writers)) {
1871 		prepare_to_wait(&root->log_writer_wait,
1872 				&wait, TASK_UNINTERRUPTIBLE);
1873 		mutex_unlock(&root->log_mutex);
1874 		if (atomic_read(&root->log_writers))
1875 			schedule();
1876 		mutex_lock(&root->log_mutex);
1877 		finish_wait(&root->log_writer_wait, &wait);
1878 	}
1879 	return 0;
1880 }
1881 
1882 /*
1883  * btrfs_sync_log does sends a given tree log down to the disk and
1884  * updates the super blocks to record it.  When this call is done,
1885  * you know that any inodes previously logged are safely on disk
1886  */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)1887 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1888 		   struct btrfs_root *root)
1889 {
1890 	int index1;
1891 	int index2;
1892 	int ret;
1893 	struct btrfs_root *log = root->log_root;
1894 	struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1895 
1896 	mutex_lock(&root->log_mutex);
1897 	index1 = root->log_transid % 2;
1898 	if (atomic_read(&root->log_commit[index1])) {
1899 		wait_log_commit(root, root->log_transid);
1900 		mutex_unlock(&root->log_mutex);
1901 		return 0;
1902 	}
1903 	atomic_set(&root->log_commit[index1], 1);
1904 
1905 	/* wait for previous tree log sync to complete */
1906 	if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1907 		wait_log_commit(root, root->log_transid - 1);
1908 
1909 	while (1) {
1910 		unsigned long batch = root->log_batch;
1911 		mutex_unlock(&root->log_mutex);
1912 		schedule_timeout_uninterruptible(1);
1913 		mutex_lock(&root->log_mutex);
1914 		wait_for_writer(root);
1915 		if (batch == root->log_batch)
1916 			break;
1917 	}
1918 
1919 	ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
1920 	BUG_ON(ret);
1921 
1922 	btrfs_set_root_bytenr(&log->root_item, log->node->start);
1923 	btrfs_set_root_generation(&log->root_item, trans->transid);
1924 	btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
1925 
1926 	root->log_batch = 0;
1927 	root->log_transid++;
1928 	log->log_transid = root->log_transid;
1929 	smp_mb();
1930 	/*
1931 	 * log tree has been flushed to disk, new modifications of
1932 	 * the log will be written to new positions. so it's safe to
1933 	 * allow log writers to go in.
1934 	 */
1935 	mutex_unlock(&root->log_mutex);
1936 
1937 	mutex_lock(&log_root_tree->log_mutex);
1938 	log_root_tree->log_batch++;
1939 	atomic_inc(&log_root_tree->log_writers);
1940 	mutex_unlock(&log_root_tree->log_mutex);
1941 
1942 	ret = update_log_root(trans, log);
1943 	BUG_ON(ret);
1944 
1945 	mutex_lock(&log_root_tree->log_mutex);
1946 	if (atomic_dec_and_test(&log_root_tree->log_writers)) {
1947 		smp_mb();
1948 		if (waitqueue_active(&log_root_tree->log_writer_wait))
1949 			wake_up(&log_root_tree->log_writer_wait);
1950 	}
1951 
1952 	index2 = log_root_tree->log_transid % 2;
1953 	if (atomic_read(&log_root_tree->log_commit[index2])) {
1954 		wait_log_commit(log_root_tree, log_root_tree->log_transid);
1955 		mutex_unlock(&log_root_tree->log_mutex);
1956 		goto out;
1957 	}
1958 	atomic_set(&log_root_tree->log_commit[index2], 1);
1959 
1960 	if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2]))
1961 		wait_log_commit(log_root_tree, log_root_tree->log_transid - 1);
1962 
1963 	wait_for_writer(log_root_tree);
1964 
1965 	ret = btrfs_write_and_wait_marked_extents(log_root_tree,
1966 				&log_root_tree->dirty_log_pages);
1967 	BUG_ON(ret);
1968 
1969 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
1970 				log_root_tree->node->start);
1971 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
1972 				btrfs_header_level(log_root_tree->node));
1973 
1974 	log_root_tree->log_batch = 0;
1975 	log_root_tree->log_transid++;
1976 	smp_mb();
1977 
1978 	mutex_unlock(&log_root_tree->log_mutex);
1979 
1980 	/*
1981 	 * nobody else is going to jump in and write the the ctree
1982 	 * super here because the log_commit atomic below is protecting
1983 	 * us.  We must be called with a transaction handle pinning
1984 	 * the running transaction open, so a full commit can't hop
1985 	 * in and cause problems either.
1986 	 */
1987 	write_ctree_super(trans, root->fs_info->tree_root, 2);
1988 
1989 	atomic_set(&log_root_tree->log_commit[index2], 0);
1990 	smp_mb();
1991 	if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
1992 		wake_up(&log_root_tree->log_commit_wait[index2]);
1993 out:
1994 	atomic_set(&root->log_commit[index1], 0);
1995 	smp_mb();
1996 	if (waitqueue_active(&root->log_commit_wait[index1]))
1997 		wake_up(&root->log_commit_wait[index1]);
1998 	return 0;
1999 }
2000 
2001 /* * free all the extents used by the tree log.  This should be called
2002  * at commit time of the full transaction
2003  */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)2004 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2005 {
2006 	int ret;
2007 	struct btrfs_root *log;
2008 	struct key;
2009 	u64 start;
2010 	u64 end;
2011 	struct walk_control wc = {
2012 		.free = 1,
2013 		.process_func = process_one_buffer
2014 	};
2015 
2016 	if (!root->log_root || root->fs_info->log_root_recovering)
2017 		return 0;
2018 
2019 	log = root->log_root;
2020 	ret = walk_log_tree(trans, log, &wc);
2021 	BUG_ON(ret);
2022 
2023 	while (1) {
2024 		ret = find_first_extent_bit(&log->dirty_log_pages,
2025 				    0, &start, &end, EXTENT_DIRTY);
2026 		if (ret)
2027 			break;
2028 
2029 		clear_extent_dirty(&log->dirty_log_pages,
2030 				   start, end, GFP_NOFS);
2031 	}
2032 
2033 	if (log->log_transid > 0) {
2034 		ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2035 				     &log->root_key);
2036 		BUG_ON(ret);
2037 	}
2038 	root->log_root = NULL;
2039 	free_extent_buffer(log->node);
2040 	kfree(log);
2041 	return 0;
2042 }
2043 
2044 /*
2045  * If both a file and directory are logged, and unlinks or renames are
2046  * mixed in, we have a few interesting corners:
2047  *
2048  * create file X in dir Y
2049  * link file X to X.link in dir Y
2050  * fsync file X
2051  * unlink file X but leave X.link
2052  * fsync dir Y
2053  *
2054  * After a crash we would expect only X.link to exist.  But file X
2055  * didn't get fsync'd again so the log has back refs for X and X.link.
2056  *
2057  * We solve this by removing directory entries and inode backrefs from the
2058  * log when a file that was logged in the current transaction is
2059  * unlinked.  Any later fsync will include the updated log entries, and
2060  * we'll be able to reconstruct the proper directory items from backrefs.
2061  *
2062  * This optimizations allows us to avoid relogging the entire inode
2063  * or the entire directory.
2064  */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,u64 index)2065 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2066 				 struct btrfs_root *root,
2067 				 const char *name, int name_len,
2068 				 struct inode *dir, u64 index)
2069 {
2070 	struct btrfs_root *log;
2071 	struct btrfs_dir_item *di;
2072 	struct btrfs_path *path;
2073 	int ret;
2074 	int bytes_del = 0;
2075 
2076 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2077 		return 0;
2078 
2079 	ret = join_running_log_trans(root);
2080 	if (ret)
2081 		return 0;
2082 
2083 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2084 
2085 	log = root->log_root;
2086 	path = btrfs_alloc_path();
2087 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2088 				   name, name_len, -1);
2089 	if (di && !IS_ERR(di)) {
2090 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2091 		bytes_del += name_len;
2092 		BUG_ON(ret);
2093 	}
2094 	btrfs_release_path(log, path);
2095 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2096 					 index, name, name_len, -1);
2097 	if (di && !IS_ERR(di)) {
2098 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2099 		bytes_del += name_len;
2100 		BUG_ON(ret);
2101 	}
2102 
2103 	/* update the directory size in the log to reflect the names
2104 	 * we have removed
2105 	 */
2106 	if (bytes_del) {
2107 		struct btrfs_key key;
2108 
2109 		key.objectid = dir->i_ino;
2110 		key.offset = 0;
2111 		key.type = BTRFS_INODE_ITEM_KEY;
2112 		btrfs_release_path(log, path);
2113 
2114 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2115 		if (ret == 0) {
2116 			struct btrfs_inode_item *item;
2117 			u64 i_size;
2118 
2119 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2120 					      struct btrfs_inode_item);
2121 			i_size = btrfs_inode_size(path->nodes[0], item);
2122 			if (i_size > bytes_del)
2123 				i_size -= bytes_del;
2124 			else
2125 				i_size = 0;
2126 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2127 			btrfs_mark_buffer_dirty(path->nodes[0]);
2128 		} else
2129 			ret = 0;
2130 		btrfs_release_path(log, path);
2131 	}
2132 
2133 	btrfs_free_path(path);
2134 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2135 	end_log_trans(root);
2136 
2137 	return 0;
2138 }
2139 
2140 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * inode,u64 dirid)2141 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2142 			       struct btrfs_root *root,
2143 			       const char *name, int name_len,
2144 			       struct inode *inode, u64 dirid)
2145 {
2146 	struct btrfs_root *log;
2147 	u64 index;
2148 	int ret;
2149 
2150 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2151 		return 0;
2152 
2153 	ret = join_running_log_trans(root);
2154 	if (ret)
2155 		return 0;
2156 	log = root->log_root;
2157 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2158 
2159 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2160 				  dirid, &index);
2161 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2162 	end_log_trans(root);
2163 
2164 	return ret;
2165 }
2166 
2167 /*
2168  * creates a range item in the log for 'dirid'.  first_offset and
2169  * last_offset tell us which parts of the key space the log should
2170  * be considered authoritative for.
2171  */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)2172 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2173 				       struct btrfs_root *log,
2174 				       struct btrfs_path *path,
2175 				       int key_type, u64 dirid,
2176 				       u64 first_offset, u64 last_offset)
2177 {
2178 	int ret;
2179 	struct btrfs_key key;
2180 	struct btrfs_dir_log_item *item;
2181 
2182 	key.objectid = dirid;
2183 	key.offset = first_offset;
2184 	if (key_type == BTRFS_DIR_ITEM_KEY)
2185 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2186 	else
2187 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2188 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2189 	BUG_ON(ret);
2190 
2191 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2192 			      struct btrfs_dir_log_item);
2193 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2194 	btrfs_mark_buffer_dirty(path->nodes[0]);
2195 	btrfs_release_path(log, path);
2196 	return 0;
2197 }
2198 
2199 /*
2200  * log all the items included in the current transaction for a given
2201  * directory.  This also creates the range items in the log tree required
2202  * to replay anything deleted before the fsync
2203  */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,u64 min_offset,u64 * last_offset_ret)2204 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2205 			  struct btrfs_root *root, struct inode *inode,
2206 			  struct btrfs_path *path,
2207 			  struct btrfs_path *dst_path, int key_type,
2208 			  u64 min_offset, u64 *last_offset_ret)
2209 {
2210 	struct btrfs_key min_key;
2211 	struct btrfs_key max_key;
2212 	struct btrfs_root *log = root->log_root;
2213 	struct extent_buffer *src;
2214 	int ret;
2215 	int i;
2216 	int nritems;
2217 	u64 first_offset = min_offset;
2218 	u64 last_offset = (u64)-1;
2219 
2220 	log = root->log_root;
2221 	max_key.objectid = inode->i_ino;
2222 	max_key.offset = (u64)-1;
2223 	max_key.type = key_type;
2224 
2225 	min_key.objectid = inode->i_ino;
2226 	min_key.type = key_type;
2227 	min_key.offset = min_offset;
2228 
2229 	path->keep_locks = 1;
2230 
2231 	ret = btrfs_search_forward(root, &min_key, &max_key,
2232 				   path, 0, trans->transid);
2233 
2234 	/*
2235 	 * we didn't find anything from this transaction, see if there
2236 	 * is anything at all
2237 	 */
2238 	if (ret != 0 || min_key.objectid != inode->i_ino ||
2239 	    min_key.type != key_type) {
2240 		min_key.objectid = inode->i_ino;
2241 		min_key.type = key_type;
2242 		min_key.offset = (u64)-1;
2243 		btrfs_release_path(root, path);
2244 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2245 		if (ret < 0) {
2246 			btrfs_release_path(root, path);
2247 			return ret;
2248 		}
2249 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2250 
2251 		/* if ret == 0 there are items for this type,
2252 		 * create a range to tell us the last key of this type.
2253 		 * otherwise, there are no items in this directory after
2254 		 * *min_offset, and we create a range to indicate that.
2255 		 */
2256 		if (ret == 0) {
2257 			struct btrfs_key tmp;
2258 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2259 					      path->slots[0]);
2260 			if (key_type == tmp.type)
2261 				first_offset = max(min_offset, tmp.offset) + 1;
2262 		}
2263 		goto done;
2264 	}
2265 
2266 	/* go backward to find any previous key */
2267 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2268 	if (ret == 0) {
2269 		struct btrfs_key tmp;
2270 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2271 		if (key_type == tmp.type) {
2272 			first_offset = tmp.offset;
2273 			ret = overwrite_item(trans, log, dst_path,
2274 					     path->nodes[0], path->slots[0],
2275 					     &tmp);
2276 		}
2277 	}
2278 	btrfs_release_path(root, path);
2279 
2280 	/* find the first key from this transaction again */
2281 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2282 	if (ret != 0) {
2283 		WARN_ON(1);
2284 		goto done;
2285 	}
2286 
2287 	/*
2288 	 * we have a block from this transaction, log every item in it
2289 	 * from our directory
2290 	 */
2291 	while (1) {
2292 		struct btrfs_key tmp;
2293 		src = path->nodes[0];
2294 		nritems = btrfs_header_nritems(src);
2295 		for (i = path->slots[0]; i < nritems; i++) {
2296 			btrfs_item_key_to_cpu(src, &min_key, i);
2297 
2298 			if (min_key.objectid != inode->i_ino ||
2299 			    min_key.type != key_type)
2300 				goto done;
2301 			ret = overwrite_item(trans, log, dst_path, src, i,
2302 					     &min_key);
2303 			BUG_ON(ret);
2304 		}
2305 		path->slots[0] = nritems;
2306 
2307 		/*
2308 		 * look ahead to the next item and see if it is also
2309 		 * from this directory and from this transaction
2310 		 */
2311 		ret = btrfs_next_leaf(root, path);
2312 		if (ret == 1) {
2313 			last_offset = (u64)-1;
2314 			goto done;
2315 		}
2316 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2317 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2318 			last_offset = (u64)-1;
2319 			goto done;
2320 		}
2321 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2322 			ret = overwrite_item(trans, log, dst_path,
2323 					     path->nodes[0], path->slots[0],
2324 					     &tmp);
2325 
2326 			BUG_ON(ret);
2327 			last_offset = tmp.offset;
2328 			goto done;
2329 		}
2330 	}
2331 done:
2332 	*last_offset_ret = last_offset;
2333 	btrfs_release_path(root, path);
2334 	btrfs_release_path(log, dst_path);
2335 
2336 	/* insert the log range keys to indicate where the log is valid */
2337 	ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2338 				 first_offset, last_offset);
2339 	BUG_ON(ret);
2340 	return 0;
2341 }
2342 
2343 /*
2344  * logging directories is very similar to logging inodes, We find all the items
2345  * from the current transaction and write them to the log.
2346  *
2347  * The recovery code scans the directory in the subvolume, and if it finds a
2348  * key in the range logged that is not present in the log tree, then it means
2349  * that dir entry was unlinked during the transaction.
2350  *
2351  * In order for that scan to work, we must include one key smaller than
2352  * the smallest logged by this transaction and one key larger than the largest
2353  * key logged by this transaction.
2354  */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)2355 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2356 			  struct btrfs_root *root, struct inode *inode,
2357 			  struct btrfs_path *path,
2358 			  struct btrfs_path *dst_path)
2359 {
2360 	u64 min_key;
2361 	u64 max_key;
2362 	int ret;
2363 	int key_type = BTRFS_DIR_ITEM_KEY;
2364 
2365 again:
2366 	min_key = 0;
2367 	max_key = 0;
2368 	while (1) {
2369 		ret = log_dir_items(trans, root, inode, path,
2370 				    dst_path, key_type, min_key,
2371 				    &max_key);
2372 		BUG_ON(ret);
2373 		if (max_key == (u64)-1)
2374 			break;
2375 		min_key = max_key + 1;
2376 	}
2377 
2378 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2379 		key_type = BTRFS_DIR_INDEX_KEY;
2380 		goto again;
2381 	}
2382 	return 0;
2383 }
2384 
2385 /*
2386  * a helper function to drop items from the log before we relog an
2387  * inode.  max_key_type indicates the highest item type to remove.
2388  * This cannot be run for file data extents because it does not
2389  * free the extents they point to.
2390  */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)2391 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2392 				  struct btrfs_root *log,
2393 				  struct btrfs_path *path,
2394 				  u64 objectid, int max_key_type)
2395 {
2396 	int ret;
2397 	struct btrfs_key key;
2398 	struct btrfs_key found_key;
2399 
2400 	key.objectid = objectid;
2401 	key.type = max_key_type;
2402 	key.offset = (u64)-1;
2403 
2404 	while (1) {
2405 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2406 
2407 		if (ret != 1)
2408 			break;
2409 
2410 		if (path->slots[0] == 0)
2411 			break;
2412 
2413 		path->slots[0]--;
2414 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2415 				      path->slots[0]);
2416 
2417 		if (found_key.objectid != objectid)
2418 			break;
2419 
2420 		ret = btrfs_del_item(trans, log, path);
2421 		BUG_ON(ret);
2422 		btrfs_release_path(log, path);
2423 	}
2424 	btrfs_release_path(log, path);
2425 	return 0;
2426 }
2427 
copy_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * dst_path,struct extent_buffer * src,int start_slot,int nr,int inode_only)2428 static noinline int copy_items(struct btrfs_trans_handle *trans,
2429 			       struct btrfs_root *log,
2430 			       struct btrfs_path *dst_path,
2431 			       struct extent_buffer *src,
2432 			       int start_slot, int nr, int inode_only)
2433 {
2434 	unsigned long src_offset;
2435 	unsigned long dst_offset;
2436 	struct btrfs_file_extent_item *extent;
2437 	struct btrfs_inode_item *inode_item;
2438 	int ret;
2439 	struct btrfs_key *ins_keys;
2440 	u32 *ins_sizes;
2441 	char *ins_data;
2442 	int i;
2443 	struct list_head ordered_sums;
2444 
2445 	INIT_LIST_HEAD(&ordered_sums);
2446 
2447 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2448 			   nr * sizeof(u32), GFP_NOFS);
2449 	ins_sizes = (u32 *)ins_data;
2450 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2451 
2452 	for (i = 0; i < nr; i++) {
2453 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2454 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2455 	}
2456 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2457 				       ins_keys, ins_sizes, nr);
2458 	BUG_ON(ret);
2459 
2460 	for (i = 0; i < nr; i++) {
2461 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2462 						   dst_path->slots[0]);
2463 
2464 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2465 
2466 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2467 				   src_offset, ins_sizes[i]);
2468 
2469 		if (inode_only == LOG_INODE_EXISTS &&
2470 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2471 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2472 						    dst_path->slots[0],
2473 						    struct btrfs_inode_item);
2474 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2475 
2476 			/* set the generation to zero so the recover code
2477 			 * can tell the difference between an logging
2478 			 * just to say 'this inode exists' and a logging
2479 			 * to say 'update this inode with these values'
2480 			 */
2481 			btrfs_set_inode_generation(dst_path->nodes[0],
2482 						   inode_item, 0);
2483 		}
2484 		/* take a reference on file data extents so that truncates
2485 		 * or deletes of this inode don't have to relog the inode
2486 		 * again
2487 		 */
2488 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2489 			int found_type;
2490 			extent = btrfs_item_ptr(src, start_slot + i,
2491 						struct btrfs_file_extent_item);
2492 
2493 			found_type = btrfs_file_extent_type(src, extent);
2494 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2495 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2496 				u64 ds = btrfs_file_extent_disk_bytenr(src,
2497 								   extent);
2498 				u64 dl = btrfs_file_extent_disk_num_bytes(src,
2499 								      extent);
2500 				u64 cs = btrfs_file_extent_offset(src, extent);
2501 				u64 cl = btrfs_file_extent_num_bytes(src,
2502 								     extent);;
2503 				if (btrfs_file_extent_compression(src,
2504 								  extent)) {
2505 					cs = 0;
2506 					cl = dl;
2507 				}
2508 				/* ds == 0 is a hole */
2509 				if (ds != 0) {
2510 					ret = btrfs_inc_extent_ref(trans, log,
2511 						   ds, dl,
2512 						   dst_path->nodes[0]->start,
2513 						   BTRFS_TREE_LOG_OBJECTID,
2514 						   trans->transid,
2515 						   ins_keys[i].objectid);
2516 					BUG_ON(ret);
2517 					ret = btrfs_lookup_csums_range(
2518 						   log->fs_info->csum_root,
2519 						   ds + cs, ds + cs + cl - 1,
2520 						   &ordered_sums);
2521 					BUG_ON(ret);
2522 				}
2523 			}
2524 		}
2525 		dst_path->slots[0]++;
2526 	}
2527 
2528 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2529 	btrfs_release_path(log, dst_path);
2530 	kfree(ins_data);
2531 
2532 	/*
2533 	 * we have to do this after the loop above to avoid changing the
2534 	 * log tree while trying to change the log tree.
2535 	 */
2536 	while (!list_empty(&ordered_sums)) {
2537 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2538 						   struct btrfs_ordered_sum,
2539 						   list);
2540 		ret = btrfs_csum_file_blocks(trans, log, sums);
2541 		BUG_ON(ret);
2542 		list_del(&sums->list);
2543 		kfree(sums);
2544 	}
2545 	return 0;
2546 }
2547 
2548 /* log a single inode in the tree log.
2549  * At least one parent directory for this inode must exist in the tree
2550  * or be logged already.
2551  *
2552  * Any items from this inode changed by the current transaction are copied
2553  * to the log tree.  An extra reference is taken on any extents in this
2554  * file, allowing us to avoid a whole pile of corner cases around logging
2555  * blocks that have been removed from the tree.
2556  *
2557  * See LOG_INODE_ALL and related defines for a description of what inode_only
2558  * does.
2559  *
2560  * This handles both files and directories.
2561  */
__btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only)2562 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2563 			     struct btrfs_root *root, struct inode *inode,
2564 			     int inode_only)
2565 {
2566 	struct btrfs_path *path;
2567 	struct btrfs_path *dst_path;
2568 	struct btrfs_key min_key;
2569 	struct btrfs_key max_key;
2570 	struct btrfs_root *log = root->log_root;
2571 	struct extent_buffer *src = NULL;
2572 	u32 size;
2573 	int ret;
2574 	int nritems;
2575 	int ins_start_slot = 0;
2576 	int ins_nr;
2577 
2578 	log = root->log_root;
2579 
2580 	path = btrfs_alloc_path();
2581 	dst_path = btrfs_alloc_path();
2582 
2583 	min_key.objectid = inode->i_ino;
2584 	min_key.type = BTRFS_INODE_ITEM_KEY;
2585 	min_key.offset = 0;
2586 
2587 	max_key.objectid = inode->i_ino;
2588 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2589 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2590 	else
2591 		max_key.type = (u8)-1;
2592 	max_key.offset = (u64)-1;
2593 
2594 	/*
2595 	 * if this inode has already been logged and we're in inode_only
2596 	 * mode, we don't want to delete the things that have already
2597 	 * been written to the log.
2598 	 *
2599 	 * But, if the inode has been through an inode_only log,
2600 	 * the logged_trans field is not set.  This allows us to catch
2601 	 * any new names for this inode in the backrefs by logging it
2602 	 * again
2603 	 */
2604 	if (inode_only == LOG_INODE_EXISTS &&
2605 	    BTRFS_I(inode)->logged_trans == trans->transid) {
2606 		btrfs_free_path(path);
2607 		btrfs_free_path(dst_path);
2608 		goto out;
2609 	}
2610 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2611 
2612 	/*
2613 	 * a brute force approach to making sure we get the most uptodate
2614 	 * copies of everything.
2615 	 */
2616 	if (S_ISDIR(inode->i_mode)) {
2617 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2618 
2619 		if (inode_only == LOG_INODE_EXISTS)
2620 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2621 		ret = drop_objectid_items(trans, log, path,
2622 					  inode->i_ino, max_key_type);
2623 	} else {
2624 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2625 	}
2626 	BUG_ON(ret);
2627 	path->keep_locks = 1;
2628 
2629 	while (1) {
2630 		ins_nr = 0;
2631 		ret = btrfs_search_forward(root, &min_key, &max_key,
2632 					   path, 0, trans->transid);
2633 		if (ret != 0)
2634 			break;
2635 again:
2636 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2637 		if (min_key.objectid != inode->i_ino)
2638 			break;
2639 		if (min_key.type > max_key.type)
2640 			break;
2641 
2642 		src = path->nodes[0];
2643 		size = btrfs_item_size_nr(src, path->slots[0]);
2644 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2645 			ins_nr++;
2646 			goto next_slot;
2647 		} else if (!ins_nr) {
2648 			ins_start_slot = path->slots[0];
2649 			ins_nr = 1;
2650 			goto next_slot;
2651 		}
2652 
2653 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2654 				 ins_nr, inode_only);
2655 		BUG_ON(ret);
2656 		ins_nr = 1;
2657 		ins_start_slot = path->slots[0];
2658 next_slot:
2659 
2660 		nritems = btrfs_header_nritems(path->nodes[0]);
2661 		path->slots[0]++;
2662 		if (path->slots[0] < nritems) {
2663 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2664 					      path->slots[0]);
2665 			goto again;
2666 		}
2667 		if (ins_nr) {
2668 			ret = copy_items(trans, log, dst_path, src,
2669 					 ins_start_slot,
2670 					 ins_nr, inode_only);
2671 			BUG_ON(ret);
2672 			ins_nr = 0;
2673 		}
2674 		btrfs_release_path(root, path);
2675 
2676 		if (min_key.offset < (u64)-1)
2677 			min_key.offset++;
2678 		else if (min_key.type < (u8)-1)
2679 			min_key.type++;
2680 		else if (min_key.objectid < (u64)-1)
2681 			min_key.objectid++;
2682 		else
2683 			break;
2684 	}
2685 	if (ins_nr) {
2686 		ret = copy_items(trans, log, dst_path, src,
2687 				 ins_start_slot,
2688 				 ins_nr, inode_only);
2689 		BUG_ON(ret);
2690 		ins_nr = 0;
2691 	}
2692 	WARN_ON(ins_nr);
2693 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2694 		btrfs_release_path(root, path);
2695 		btrfs_release_path(log, dst_path);
2696 		BTRFS_I(inode)->log_dirty_trans = 0;
2697 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2698 		BUG_ON(ret);
2699 	}
2700 	BTRFS_I(inode)->logged_trans = trans->transid;
2701 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2702 
2703 	btrfs_free_path(path);
2704 	btrfs_free_path(dst_path);
2705 out:
2706 	return 0;
2707 }
2708 
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only)2709 int btrfs_log_inode(struct btrfs_trans_handle *trans,
2710 		    struct btrfs_root *root, struct inode *inode,
2711 		    int inode_only)
2712 {
2713 	int ret;
2714 
2715 	start_log_trans(trans, root);
2716 	ret = __btrfs_log_inode(trans, root, inode, inode_only);
2717 	end_log_trans(root);
2718 	return ret;
2719 }
2720 
2721 /*
2722  * helper function around btrfs_log_inode to make sure newly created
2723  * parent directories also end up in the log.  A minimal inode and backref
2724  * only logging is done of any parent directories that are older than
2725  * the last committed transaction
2726  */
btrfs_log_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry)2727 int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2728 		    struct btrfs_root *root, struct dentry *dentry)
2729 {
2730 	int inode_only = LOG_INODE_ALL;
2731 	struct super_block *sb;
2732 	int ret;
2733 
2734 	start_log_trans(trans, root);
2735 	sb = dentry->d_inode->i_sb;
2736 	while (1) {
2737 		ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2738 					inode_only);
2739 		BUG_ON(ret);
2740 		inode_only = LOG_INODE_EXISTS;
2741 
2742 		dentry = dentry->d_parent;
2743 		if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2744 			break;
2745 
2746 		if (BTRFS_I(dentry->d_inode)->generation <=
2747 		    root->fs_info->last_trans_committed)
2748 			break;
2749 	}
2750 	end_log_trans(root);
2751 	return 0;
2752 }
2753 
2754 /*
2755  * it is not safe to log dentry if the chunk root has added new
2756  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
2757  * If this returns 1, you must commit the transaction to safely get your
2758  * data on disk.
2759  */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry)2760 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2761 			  struct btrfs_root *root, struct dentry *dentry)
2762 {
2763 	u64 gen;
2764 	gen = root->fs_info->last_trans_new_blockgroup;
2765 	if (gen > root->fs_info->last_trans_committed)
2766 		return 1;
2767 	else
2768 		return btrfs_log_dentry(trans, root, dentry);
2769 }
2770 
2771 /*
2772  * should be called during mount to recover any replay any log trees
2773  * from the FS
2774  */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)2775 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2776 {
2777 	int ret;
2778 	struct btrfs_path *path;
2779 	struct btrfs_trans_handle *trans;
2780 	struct btrfs_key key;
2781 	struct btrfs_key found_key;
2782 	struct btrfs_key tmp_key;
2783 	struct btrfs_root *log;
2784 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2785 	u64 highest_inode;
2786 	struct walk_control wc = {
2787 		.process_func = process_one_buffer,
2788 		.stage = 0,
2789 	};
2790 
2791 	fs_info->log_root_recovering = 1;
2792 	path = btrfs_alloc_path();
2793 	BUG_ON(!path);
2794 
2795 	trans = btrfs_start_transaction(fs_info->tree_root, 1);
2796 
2797 	wc.trans = trans;
2798 	wc.pin = 1;
2799 
2800 	walk_log_tree(trans, log_root_tree, &wc);
2801 
2802 again:
2803 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
2804 	key.offset = (u64)-1;
2805 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2806 
2807 	while (1) {
2808 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2809 		if (ret < 0)
2810 			break;
2811 		if (ret > 0) {
2812 			if (path->slots[0] == 0)
2813 				break;
2814 			path->slots[0]--;
2815 		}
2816 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2817 				      path->slots[0]);
2818 		btrfs_release_path(log_root_tree, path);
2819 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2820 			break;
2821 
2822 		log = btrfs_read_fs_root_no_radix(log_root_tree,
2823 						  &found_key);
2824 		BUG_ON(!log);
2825 
2826 
2827 		tmp_key.objectid = found_key.offset;
2828 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2829 		tmp_key.offset = (u64)-1;
2830 
2831 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2832 		BUG_ON(!wc.replay_dest);
2833 
2834 		wc.replay_dest->log_root = log;
2835 		mutex_lock(&fs_info->trans_mutex);
2836 		btrfs_record_root_in_trans(wc.replay_dest);
2837 		mutex_unlock(&fs_info->trans_mutex);
2838 		ret = walk_log_tree(trans, log, &wc);
2839 		BUG_ON(ret);
2840 
2841 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
2842 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
2843 						      path);
2844 			BUG_ON(ret);
2845 		}
2846 		ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2847 		if (ret == 0) {
2848 			wc.replay_dest->highest_inode = highest_inode;
2849 			wc.replay_dest->last_inode_alloc = highest_inode;
2850 		}
2851 
2852 		key.offset = found_key.offset - 1;
2853 		wc.replay_dest->log_root = NULL;
2854 		free_extent_buffer(log->node);
2855 		kfree(log);
2856 
2857 		if (found_key.offset == 0)
2858 			break;
2859 	}
2860 	btrfs_release_path(log_root_tree, path);
2861 
2862 	/* step one is to pin it all, step two is to replay just inodes */
2863 	if (wc.pin) {
2864 		wc.pin = 0;
2865 		wc.process_func = replay_one_buffer;
2866 		wc.stage = LOG_WALK_REPLAY_INODES;
2867 		goto again;
2868 	}
2869 	/* step three is to replay everything */
2870 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
2871 		wc.stage++;
2872 		goto again;
2873 	}
2874 
2875 	btrfs_free_path(path);
2876 
2877 	free_extent_buffer(log_root_tree->node);
2878 	log_root_tree->log_root = NULL;
2879 	fs_info->log_root_recovering = 0;
2880 
2881 	/* step 4: commit the transaction, which also unpins the blocks */
2882 	btrfs_commit_transaction(trans, fs_info->tree_root);
2883 
2884 	kfree(log_root_tree);
2885 	return 0;
2886 }
2887