1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
27
28 /* magic values for the inode_only field in btrfs_log_inode:
29 *
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
33 */
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
36
37 /*
38 * stages for the tree walking. The first
39 * stage (0) is to only pin down the blocks we find
40 * the second stage (1) is to make sure that all the inodes
41 * we find in the log are created in the subvolume.
42 *
43 * The last stage is to deal with directories and links and extents
44 * and all the other fun semantics
45 */
46 #define LOG_WALK_PIN_ONLY 0
47 #define LOG_WALK_REPLAY_INODES 1
48 #define LOG_WALK_REPLAY_ALL 2
49
50 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51 struct btrfs_root *root, struct inode *inode,
52 int inode_only);
53 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
54 struct btrfs_root *root,
55 struct btrfs_path *path, u64 objectid);
56
57 /*
58 * tree logging is a special write ahead log used to make sure that
59 * fsyncs and O_SYNCs can happen without doing full tree commits.
60 *
61 * Full tree commits are expensive because they require commonly
62 * modified blocks to be recowed, creating many dirty pages in the
63 * extent tree an 4x-6x higher write load than ext3.
64 *
65 * Instead of doing a tree commit on every fsync, we use the
66 * key ranges and transaction ids to find items for a given file or directory
67 * that have changed in this transaction. Those items are copied into
68 * a special tree (one per subvolume root), that tree is written to disk
69 * and then the fsync is considered complete.
70 *
71 * After a crash, items are copied out of the log-tree back into the
72 * subvolume tree. Any file data extents found are recorded in the extent
73 * allocation tree, and the log-tree freed.
74 *
75 * The log tree is read three times, once to pin down all the extents it is
76 * using in ram and once, once to create all the inodes logged in the tree
77 * and once to do all the other items.
78 */
79
80 /*
81 * start a sub transaction and setup the log tree
82 * this increments the log tree writer count to make the people
83 * syncing the tree wait for us to finish
84 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)85 static int start_log_trans(struct btrfs_trans_handle *trans,
86 struct btrfs_root *root)
87 {
88 int ret;
89
90 mutex_lock(&root->log_mutex);
91 if (root->log_root) {
92 root->log_batch++;
93 atomic_inc(&root->log_writers);
94 mutex_unlock(&root->log_mutex);
95 return 0;
96 }
97 mutex_lock(&root->fs_info->tree_log_mutex);
98 if (!root->fs_info->log_root_tree) {
99 ret = btrfs_init_log_root_tree(trans, root->fs_info);
100 BUG_ON(ret);
101 }
102 if (!root->log_root) {
103 ret = btrfs_add_log_tree(trans, root);
104 BUG_ON(ret);
105 }
106 mutex_unlock(&root->fs_info->tree_log_mutex);
107 root->log_batch++;
108 atomic_inc(&root->log_writers);
109 mutex_unlock(&root->log_mutex);
110 return 0;
111 }
112
113 /*
114 * returns 0 if there was a log transaction running and we were able
115 * to join, or returns -ENOENT if there were not transactions
116 * in progress
117 */
join_running_log_trans(struct btrfs_root * root)118 static int join_running_log_trans(struct btrfs_root *root)
119 {
120 int ret = -ENOENT;
121
122 smp_mb();
123 if (!root->log_root)
124 return -ENOENT;
125
126 mutex_lock(&root->log_mutex);
127 if (root->log_root) {
128 ret = 0;
129 atomic_inc(&root->log_writers);
130 }
131 mutex_unlock(&root->log_mutex);
132 return ret;
133 }
134
135 /*
136 * indicate we're done making changes to the log tree
137 * and wake up anyone waiting to do a sync
138 */
end_log_trans(struct btrfs_root * root)139 static int end_log_trans(struct btrfs_root *root)
140 {
141 if (atomic_dec_and_test(&root->log_writers)) {
142 smp_mb();
143 if (waitqueue_active(&root->log_writer_wait))
144 wake_up(&root->log_writer_wait);
145 }
146 return 0;
147 }
148
149
150 /*
151 * the walk control struct is used to pass state down the chain when
152 * processing the log tree. The stage field tells us which part
153 * of the log tree processing we are currently doing. The others
154 * are state fields used for that specific part
155 */
156 struct walk_control {
157 /* should we free the extent on disk when done? This is used
158 * at transaction commit time while freeing a log tree
159 */
160 int free;
161
162 /* should we write out the extent buffer? This is used
163 * while flushing the log tree to disk during a sync
164 */
165 int write;
166
167 /* should we wait for the extent buffer io to finish? Also used
168 * while flushing the log tree to disk for a sync
169 */
170 int wait;
171
172 /* pin only walk, we record which extents on disk belong to the
173 * log trees
174 */
175 int pin;
176
177 /* what stage of the replay code we're currently in */
178 int stage;
179
180 /* the root we are currently replaying */
181 struct btrfs_root *replay_dest;
182
183 /* the trans handle for the current replay */
184 struct btrfs_trans_handle *trans;
185
186 /* the function that gets used to process blocks we find in the
187 * tree. Note the extent_buffer might not be up to date when it is
188 * passed in, and it must be checked or read if you need the data
189 * inside it
190 */
191 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
192 struct walk_control *wc, u64 gen);
193 };
194
195 /*
196 * process_func used to pin down extents, write them or wait on them
197 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)198 static int process_one_buffer(struct btrfs_root *log,
199 struct extent_buffer *eb,
200 struct walk_control *wc, u64 gen)
201 {
202 if (wc->pin) {
203 mutex_lock(&log->fs_info->pinned_mutex);
204 btrfs_update_pinned_extents(log->fs_info->extent_root,
205 eb->start, eb->len, 1);
206 mutex_unlock(&log->fs_info->pinned_mutex);
207 }
208
209 if (btrfs_buffer_uptodate(eb, gen)) {
210 if (wc->write)
211 btrfs_write_tree_block(eb);
212 if (wc->wait)
213 btrfs_wait_tree_block_writeback(eb);
214 }
215 return 0;
216 }
217
218 /*
219 * Item overwrite used by replay and tree logging. eb, slot and key all refer
220 * to the src data we are copying out.
221 *
222 * root is the tree we are copying into, and path is a scratch
223 * path for use in this function (it should be released on entry and
224 * will be released on exit).
225 *
226 * If the key is already in the destination tree the existing item is
227 * overwritten. If the existing item isn't big enough, it is extended.
228 * If it is too large, it is truncated.
229 *
230 * If the key isn't in the destination yet, a new item is inserted.
231 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)232 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
233 struct btrfs_root *root,
234 struct btrfs_path *path,
235 struct extent_buffer *eb, int slot,
236 struct btrfs_key *key)
237 {
238 int ret;
239 u32 item_size;
240 u64 saved_i_size = 0;
241 int save_old_i_size = 0;
242 unsigned long src_ptr;
243 unsigned long dst_ptr;
244 int overwrite_root = 0;
245
246 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
247 overwrite_root = 1;
248
249 item_size = btrfs_item_size_nr(eb, slot);
250 src_ptr = btrfs_item_ptr_offset(eb, slot);
251
252 /* look for the key in the destination tree */
253 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
254 if (ret == 0) {
255 char *src_copy;
256 char *dst_copy;
257 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
258 path->slots[0]);
259 if (dst_size != item_size)
260 goto insert;
261
262 if (item_size == 0) {
263 btrfs_release_path(root, path);
264 return 0;
265 }
266 dst_copy = kmalloc(item_size, GFP_NOFS);
267 src_copy = kmalloc(item_size, GFP_NOFS);
268
269 read_extent_buffer(eb, src_copy, src_ptr, item_size);
270
271 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
272 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
273 item_size);
274 ret = memcmp(dst_copy, src_copy, item_size);
275
276 kfree(dst_copy);
277 kfree(src_copy);
278 /*
279 * they have the same contents, just return, this saves
280 * us from cowing blocks in the destination tree and doing
281 * extra writes that may not have been done by a previous
282 * sync
283 */
284 if (ret == 0) {
285 btrfs_release_path(root, path);
286 return 0;
287 }
288
289 }
290 insert:
291 btrfs_release_path(root, path);
292 /* try to insert the key into the destination tree */
293 ret = btrfs_insert_empty_item(trans, root, path,
294 key, item_size);
295
296 /* make sure any existing item is the correct size */
297 if (ret == -EEXIST) {
298 u32 found_size;
299 found_size = btrfs_item_size_nr(path->nodes[0],
300 path->slots[0]);
301 if (found_size > item_size) {
302 btrfs_truncate_item(trans, root, path, item_size, 1);
303 } else if (found_size < item_size) {
304 ret = btrfs_extend_item(trans, root, path,
305 item_size - found_size);
306 BUG_ON(ret);
307 }
308 } else if (ret) {
309 BUG();
310 }
311 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
312 path->slots[0]);
313
314 /* don't overwrite an existing inode if the generation number
315 * was logged as zero. This is done when the tree logging code
316 * is just logging an inode to make sure it exists after recovery.
317 *
318 * Also, don't overwrite i_size on directories during replay.
319 * log replay inserts and removes directory items based on the
320 * state of the tree found in the subvolume, and i_size is modified
321 * as it goes
322 */
323 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
324 struct btrfs_inode_item *src_item;
325 struct btrfs_inode_item *dst_item;
326
327 src_item = (struct btrfs_inode_item *)src_ptr;
328 dst_item = (struct btrfs_inode_item *)dst_ptr;
329
330 if (btrfs_inode_generation(eb, src_item) == 0)
331 goto no_copy;
332
333 if (overwrite_root &&
334 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
335 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
336 save_old_i_size = 1;
337 saved_i_size = btrfs_inode_size(path->nodes[0],
338 dst_item);
339 }
340 }
341
342 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
343 src_ptr, item_size);
344
345 if (save_old_i_size) {
346 struct btrfs_inode_item *dst_item;
347 dst_item = (struct btrfs_inode_item *)dst_ptr;
348 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
349 }
350
351 /* make sure the generation is filled in */
352 if (key->type == BTRFS_INODE_ITEM_KEY) {
353 struct btrfs_inode_item *dst_item;
354 dst_item = (struct btrfs_inode_item *)dst_ptr;
355 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
356 btrfs_set_inode_generation(path->nodes[0], dst_item,
357 trans->transid);
358 }
359 }
360 no_copy:
361 btrfs_mark_buffer_dirty(path->nodes[0]);
362 btrfs_release_path(root, path);
363 return 0;
364 }
365
366 /*
367 * simple helper to read an inode off the disk from a given root
368 * This can only be called for subvolume roots and not for the log
369 */
read_one_inode(struct btrfs_root * root,u64 objectid)370 static noinline struct inode *read_one_inode(struct btrfs_root *root,
371 u64 objectid)
372 {
373 struct inode *inode;
374 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
375 if (inode->i_state & I_NEW) {
376 BTRFS_I(inode)->root = root;
377 BTRFS_I(inode)->location.objectid = objectid;
378 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
379 BTRFS_I(inode)->location.offset = 0;
380 btrfs_read_locked_inode(inode);
381 unlock_new_inode(inode);
382
383 }
384 if (is_bad_inode(inode)) {
385 iput(inode);
386 inode = NULL;
387 }
388 return inode;
389 }
390
391 /* replays a single extent in 'eb' at 'slot' with 'key' into the
392 * subvolume 'root'. path is released on entry and should be released
393 * on exit.
394 *
395 * extents in the log tree have not been allocated out of the extent
396 * tree yet. So, this completes the allocation, taking a reference
397 * as required if the extent already exists or creating a new extent
398 * if it isn't in the extent allocation tree yet.
399 *
400 * The extent is inserted into the file, dropping any existing extents
401 * from the file that overlap the new one.
402 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)403 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
404 struct btrfs_root *root,
405 struct btrfs_path *path,
406 struct extent_buffer *eb, int slot,
407 struct btrfs_key *key)
408 {
409 int found_type;
410 u64 mask = root->sectorsize - 1;
411 u64 extent_end;
412 u64 alloc_hint;
413 u64 start = key->offset;
414 u64 saved_nbytes;
415 struct btrfs_file_extent_item *item;
416 struct inode *inode = NULL;
417 unsigned long size;
418 int ret = 0;
419
420 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
421 found_type = btrfs_file_extent_type(eb, item);
422
423 if (found_type == BTRFS_FILE_EXTENT_REG ||
424 found_type == BTRFS_FILE_EXTENT_PREALLOC)
425 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
426 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
427 size = btrfs_file_extent_inline_len(eb, item);
428 extent_end = (start + size + mask) & ~mask;
429 } else {
430 ret = 0;
431 goto out;
432 }
433
434 inode = read_one_inode(root, key->objectid);
435 if (!inode) {
436 ret = -EIO;
437 goto out;
438 }
439
440 /*
441 * first check to see if we already have this extent in the
442 * file. This must be done before the btrfs_drop_extents run
443 * so we don't try to drop this extent.
444 */
445 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
446 start, 0);
447
448 if (ret == 0 &&
449 (found_type == BTRFS_FILE_EXTENT_REG ||
450 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
451 struct btrfs_file_extent_item cmp1;
452 struct btrfs_file_extent_item cmp2;
453 struct btrfs_file_extent_item *existing;
454 struct extent_buffer *leaf;
455
456 leaf = path->nodes[0];
457 existing = btrfs_item_ptr(leaf, path->slots[0],
458 struct btrfs_file_extent_item);
459
460 read_extent_buffer(eb, &cmp1, (unsigned long)item,
461 sizeof(cmp1));
462 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
463 sizeof(cmp2));
464
465 /*
466 * we already have a pointer to this exact extent,
467 * we don't have to do anything
468 */
469 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
470 btrfs_release_path(root, path);
471 goto out;
472 }
473 }
474 btrfs_release_path(root, path);
475
476 saved_nbytes = inode_get_bytes(inode);
477 /* drop any overlapping extents */
478 ret = btrfs_drop_extents(trans, root, inode,
479 start, extent_end, start, &alloc_hint);
480 BUG_ON(ret);
481
482 if (found_type == BTRFS_FILE_EXTENT_REG ||
483 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
484 unsigned long dest_offset;
485 struct btrfs_key ins;
486
487 ret = btrfs_insert_empty_item(trans, root, path, key,
488 sizeof(*item));
489 BUG_ON(ret);
490 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
491 path->slots[0]);
492 copy_extent_buffer(path->nodes[0], eb, dest_offset,
493 (unsigned long)item, sizeof(*item));
494
495 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
496 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
497 ins.type = BTRFS_EXTENT_ITEM_KEY;
498
499 if (ins.objectid > 0) {
500 u64 csum_start;
501 u64 csum_end;
502 LIST_HEAD(ordered_sums);
503 /*
504 * is this extent already allocated in the extent
505 * allocation tree? If so, just add a reference
506 */
507 ret = btrfs_lookup_extent(root, ins.objectid,
508 ins.offset);
509 if (ret == 0) {
510 ret = btrfs_inc_extent_ref(trans, root,
511 ins.objectid, ins.offset,
512 path->nodes[0]->start,
513 root->root_key.objectid,
514 trans->transid, key->objectid);
515 } else {
516 /*
517 * insert the extent pointer in the extent
518 * allocation tree
519 */
520 ret = btrfs_alloc_logged_extent(trans, root,
521 path->nodes[0]->start,
522 root->root_key.objectid,
523 trans->transid, key->objectid,
524 &ins);
525 BUG_ON(ret);
526 }
527 btrfs_release_path(root, path);
528
529 if (btrfs_file_extent_compression(eb, item)) {
530 csum_start = ins.objectid;
531 csum_end = csum_start + ins.offset;
532 } else {
533 csum_start = ins.objectid +
534 btrfs_file_extent_offset(eb, item);
535 csum_end = csum_start +
536 btrfs_file_extent_num_bytes(eb, item);
537 }
538
539 ret = btrfs_lookup_csums_range(root->log_root,
540 csum_start, csum_end - 1,
541 &ordered_sums);
542 BUG_ON(ret);
543 while (!list_empty(&ordered_sums)) {
544 struct btrfs_ordered_sum *sums;
545 sums = list_entry(ordered_sums.next,
546 struct btrfs_ordered_sum,
547 list);
548 ret = btrfs_csum_file_blocks(trans,
549 root->fs_info->csum_root,
550 sums);
551 BUG_ON(ret);
552 list_del(&sums->list);
553 kfree(sums);
554 }
555 } else {
556 btrfs_release_path(root, path);
557 }
558 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
559 /* inline extents are easy, we just overwrite them */
560 ret = overwrite_item(trans, root, path, eb, slot, key);
561 BUG_ON(ret);
562 }
563
564 inode_set_bytes(inode, saved_nbytes);
565 btrfs_update_inode(trans, root, inode);
566 out:
567 if (inode)
568 iput(inode);
569 return ret;
570 }
571
572 /*
573 * when cleaning up conflicts between the directory names in the
574 * subvolume, directory names in the log and directory names in the
575 * inode back references, we may have to unlink inodes from directories.
576 *
577 * This is a helper function to do the unlink of a specific directory
578 * item
579 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct inode * dir,struct btrfs_dir_item * di)580 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
581 struct btrfs_root *root,
582 struct btrfs_path *path,
583 struct inode *dir,
584 struct btrfs_dir_item *di)
585 {
586 struct inode *inode;
587 char *name;
588 int name_len;
589 struct extent_buffer *leaf;
590 struct btrfs_key location;
591 int ret;
592
593 leaf = path->nodes[0];
594
595 btrfs_dir_item_key_to_cpu(leaf, di, &location);
596 name_len = btrfs_dir_name_len(leaf, di);
597 name = kmalloc(name_len, GFP_NOFS);
598 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
599 btrfs_release_path(root, path);
600
601 inode = read_one_inode(root, location.objectid);
602 BUG_ON(!inode);
603
604 ret = link_to_fixup_dir(trans, root, path, location.objectid);
605 BUG_ON(ret);
606 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
607 BUG_ON(ret);
608 kfree(name);
609
610 iput(inode);
611 return ret;
612 }
613
614 /*
615 * helper function to see if a given name and sequence number found
616 * in an inode back reference are already in a directory and correctly
617 * point to this inode
618 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,const char * name,int name_len)619 static noinline int inode_in_dir(struct btrfs_root *root,
620 struct btrfs_path *path,
621 u64 dirid, u64 objectid, u64 index,
622 const char *name, int name_len)
623 {
624 struct btrfs_dir_item *di;
625 struct btrfs_key location;
626 int match = 0;
627
628 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
629 index, name, name_len, 0);
630 if (di && !IS_ERR(di)) {
631 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
632 if (location.objectid != objectid)
633 goto out;
634 } else
635 goto out;
636 btrfs_release_path(root, path);
637
638 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
639 if (di && !IS_ERR(di)) {
640 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
641 if (location.objectid != objectid)
642 goto out;
643 } else
644 goto out;
645 match = 1;
646 out:
647 btrfs_release_path(root, path);
648 return match;
649 }
650
651 /*
652 * helper function to check a log tree for a named back reference in
653 * an inode. This is used to decide if a back reference that is
654 * found in the subvolume conflicts with what we find in the log.
655 *
656 * inode backreferences may have multiple refs in a single item,
657 * during replay we process one reference at a time, and we don't
658 * want to delete valid links to a file from the subvolume if that
659 * link is also in the log.
660 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,char * name,int namelen)661 static noinline int backref_in_log(struct btrfs_root *log,
662 struct btrfs_key *key,
663 char *name, int namelen)
664 {
665 struct btrfs_path *path;
666 struct btrfs_inode_ref *ref;
667 unsigned long ptr;
668 unsigned long ptr_end;
669 unsigned long name_ptr;
670 int found_name_len;
671 int item_size;
672 int ret;
673 int match = 0;
674
675 path = btrfs_alloc_path();
676 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
677 if (ret != 0)
678 goto out;
679
680 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
681 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
682 ptr_end = ptr + item_size;
683 while (ptr < ptr_end) {
684 ref = (struct btrfs_inode_ref *)ptr;
685 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
686 if (found_name_len == namelen) {
687 name_ptr = (unsigned long)(ref + 1);
688 ret = memcmp_extent_buffer(path->nodes[0], name,
689 name_ptr, namelen);
690 if (ret == 0) {
691 match = 1;
692 goto out;
693 }
694 }
695 ptr = (unsigned long)(ref + 1) + found_name_len;
696 }
697 out:
698 btrfs_free_path(path);
699 return match;
700 }
701
702
703 /*
704 * replay one inode back reference item found in the log tree.
705 * eb, slot and key refer to the buffer and key found in the log tree.
706 * root is the destination we are replaying into, and path is for temp
707 * use by this function. (it should be released on return).
708 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)709 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
710 struct btrfs_root *root,
711 struct btrfs_root *log,
712 struct btrfs_path *path,
713 struct extent_buffer *eb, int slot,
714 struct btrfs_key *key)
715 {
716 struct inode *dir;
717 int ret;
718 struct btrfs_key location;
719 struct btrfs_inode_ref *ref;
720 struct btrfs_dir_item *di;
721 struct inode *inode;
722 char *name;
723 int namelen;
724 unsigned long ref_ptr;
725 unsigned long ref_end;
726
727 location.objectid = key->objectid;
728 location.type = BTRFS_INODE_ITEM_KEY;
729 location.offset = 0;
730
731 /*
732 * it is possible that we didn't log all the parent directories
733 * for a given inode. If we don't find the dir, just don't
734 * copy the back ref in. The link count fixup code will take
735 * care of the rest
736 */
737 dir = read_one_inode(root, key->offset);
738 if (!dir)
739 return -ENOENT;
740
741 inode = read_one_inode(root, key->objectid);
742 BUG_ON(!dir);
743
744 ref_ptr = btrfs_item_ptr_offset(eb, slot);
745 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
746
747 again:
748 ref = (struct btrfs_inode_ref *)ref_ptr;
749
750 namelen = btrfs_inode_ref_name_len(eb, ref);
751 name = kmalloc(namelen, GFP_NOFS);
752 BUG_ON(!name);
753
754 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
755
756 /* if we already have a perfect match, we're done */
757 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
758 btrfs_inode_ref_index(eb, ref),
759 name, namelen)) {
760 goto out;
761 }
762
763 /*
764 * look for a conflicting back reference in the metadata.
765 * if we find one we have to unlink that name of the file
766 * before we add our new link. Later on, we overwrite any
767 * existing back reference, and we don't want to create
768 * dangling pointers in the directory.
769 */
770 conflict_again:
771 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
772 if (ret == 0) {
773 char *victim_name;
774 int victim_name_len;
775 struct btrfs_inode_ref *victim_ref;
776 unsigned long ptr;
777 unsigned long ptr_end;
778 struct extent_buffer *leaf = path->nodes[0];
779
780 /* are we trying to overwrite a back ref for the root directory
781 * if so, just jump out, we're done
782 */
783 if (key->objectid == key->offset)
784 goto out_nowrite;
785
786 /* check all the names in this back reference to see
787 * if they are in the log. if so, we allow them to stay
788 * otherwise they must be unlinked as a conflict
789 */
790 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
791 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
792 while (ptr < ptr_end) {
793 victim_ref = (struct btrfs_inode_ref *)ptr;
794 victim_name_len = btrfs_inode_ref_name_len(leaf,
795 victim_ref);
796 victim_name = kmalloc(victim_name_len, GFP_NOFS);
797 BUG_ON(!victim_name);
798
799 read_extent_buffer(leaf, victim_name,
800 (unsigned long)(victim_ref + 1),
801 victim_name_len);
802
803 if (!backref_in_log(log, key, victim_name,
804 victim_name_len)) {
805 btrfs_inc_nlink(inode);
806 btrfs_release_path(root, path);
807 ret = btrfs_unlink_inode(trans, root, dir,
808 inode, victim_name,
809 victim_name_len);
810 kfree(victim_name);
811 btrfs_release_path(root, path);
812 goto conflict_again;
813 }
814 kfree(victim_name);
815 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
816 }
817 BUG_ON(ret);
818 }
819 btrfs_release_path(root, path);
820
821 /* look for a conflicting sequence number */
822 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
823 btrfs_inode_ref_index(eb, ref),
824 name, namelen, 0);
825 if (di && !IS_ERR(di)) {
826 ret = drop_one_dir_item(trans, root, path, dir, di);
827 BUG_ON(ret);
828 }
829 btrfs_release_path(root, path);
830
831
832 /* look for a conflicting name */
833 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
834 name, namelen, 0);
835 if (di && !IS_ERR(di)) {
836 ret = drop_one_dir_item(trans, root, path, dir, di);
837 BUG_ON(ret);
838 }
839 btrfs_release_path(root, path);
840
841 /* insert our name */
842 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
843 btrfs_inode_ref_index(eb, ref));
844 BUG_ON(ret);
845
846 btrfs_update_inode(trans, root, inode);
847
848 out:
849 ref_ptr = (unsigned long)(ref + 1) + namelen;
850 kfree(name);
851 if (ref_ptr < ref_end)
852 goto again;
853
854 /* finally write the back reference in the inode */
855 ret = overwrite_item(trans, root, path, eb, slot, key);
856 BUG_ON(ret);
857
858 out_nowrite:
859 btrfs_release_path(root, path);
860 iput(dir);
861 iput(inode);
862 return 0;
863 }
864
865 /*
866 * There are a few corners where the link count of the file can't
867 * be properly maintained during replay. So, instead of adding
868 * lots of complexity to the log code, we just scan the backrefs
869 * for any file that has been through replay.
870 *
871 * The scan will update the link count on the inode to reflect the
872 * number of back refs found. If it goes down to zero, the iput
873 * will free the inode.
874 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)875 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
876 struct btrfs_root *root,
877 struct inode *inode)
878 {
879 struct btrfs_path *path;
880 int ret;
881 struct btrfs_key key;
882 u64 nlink = 0;
883 unsigned long ptr;
884 unsigned long ptr_end;
885 int name_len;
886
887 key.objectid = inode->i_ino;
888 key.type = BTRFS_INODE_REF_KEY;
889 key.offset = (u64)-1;
890
891 path = btrfs_alloc_path();
892
893 while (1) {
894 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
895 if (ret < 0)
896 break;
897 if (ret > 0) {
898 if (path->slots[0] == 0)
899 break;
900 path->slots[0]--;
901 }
902 btrfs_item_key_to_cpu(path->nodes[0], &key,
903 path->slots[0]);
904 if (key.objectid != inode->i_ino ||
905 key.type != BTRFS_INODE_REF_KEY)
906 break;
907 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
908 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
909 path->slots[0]);
910 while (ptr < ptr_end) {
911 struct btrfs_inode_ref *ref;
912
913 ref = (struct btrfs_inode_ref *)ptr;
914 name_len = btrfs_inode_ref_name_len(path->nodes[0],
915 ref);
916 ptr = (unsigned long)(ref + 1) + name_len;
917 nlink++;
918 }
919
920 if (key.offset == 0)
921 break;
922 key.offset--;
923 btrfs_release_path(root, path);
924 }
925 btrfs_free_path(path);
926 if (nlink != inode->i_nlink) {
927 inode->i_nlink = nlink;
928 btrfs_update_inode(trans, root, inode);
929 }
930 BTRFS_I(inode)->index_cnt = (u64)-1;
931
932 return 0;
933 }
934
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)935 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
936 struct btrfs_root *root,
937 struct btrfs_path *path)
938 {
939 int ret;
940 struct btrfs_key key;
941 struct inode *inode;
942
943 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
944 key.type = BTRFS_ORPHAN_ITEM_KEY;
945 key.offset = (u64)-1;
946 while (1) {
947 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
948 if (ret < 0)
949 break;
950
951 if (ret == 1) {
952 if (path->slots[0] == 0)
953 break;
954 path->slots[0]--;
955 }
956
957 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
958 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
959 key.type != BTRFS_ORPHAN_ITEM_KEY)
960 break;
961
962 ret = btrfs_del_item(trans, root, path);
963 BUG_ON(ret);
964
965 btrfs_release_path(root, path);
966 inode = read_one_inode(root, key.offset);
967 BUG_ON(!inode);
968
969 ret = fixup_inode_link_count(trans, root, inode);
970 BUG_ON(ret);
971
972 iput(inode);
973
974 if (key.offset == 0)
975 break;
976 key.offset--;
977 }
978 btrfs_release_path(root, path);
979 return 0;
980 }
981
982
983 /*
984 * record a given inode in the fixup dir so we can check its link
985 * count when replay is done. The link count is incremented here
986 * so the inode won't go away until we check it
987 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)988 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
989 struct btrfs_root *root,
990 struct btrfs_path *path,
991 u64 objectid)
992 {
993 struct btrfs_key key;
994 int ret = 0;
995 struct inode *inode;
996
997 inode = read_one_inode(root, objectid);
998 BUG_ON(!inode);
999
1000 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1001 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1002 key.offset = objectid;
1003
1004 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1005
1006 btrfs_release_path(root, path);
1007 if (ret == 0) {
1008 btrfs_inc_nlink(inode);
1009 btrfs_update_inode(trans, root, inode);
1010 } else if (ret == -EEXIST) {
1011 ret = 0;
1012 } else {
1013 BUG();
1014 }
1015 iput(inode);
1016
1017 return ret;
1018 }
1019
1020 /*
1021 * when replaying the log for a directory, we only insert names
1022 * for inodes that actually exist. This means an fsync on a directory
1023 * does not implicitly fsync all the new files in it
1024 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 index,char * name,int name_len,u8 type,struct btrfs_key * location)1025 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1026 struct btrfs_root *root,
1027 struct btrfs_path *path,
1028 u64 dirid, u64 index,
1029 char *name, int name_len, u8 type,
1030 struct btrfs_key *location)
1031 {
1032 struct inode *inode;
1033 struct inode *dir;
1034 int ret;
1035
1036 inode = read_one_inode(root, location->objectid);
1037 if (!inode)
1038 return -ENOENT;
1039
1040 dir = read_one_inode(root, dirid);
1041 if (!dir) {
1042 iput(inode);
1043 return -EIO;
1044 }
1045 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1046
1047 /* FIXME, put inode into FIXUP list */
1048
1049 iput(inode);
1050 iput(dir);
1051 return ret;
1052 }
1053
1054 /*
1055 * take a single entry in a log directory item and replay it into
1056 * the subvolume.
1057 *
1058 * if a conflicting item exists in the subdirectory already,
1059 * the inode it points to is unlinked and put into the link count
1060 * fix up tree.
1061 *
1062 * If a name from the log points to a file or directory that does
1063 * not exist in the FS, it is skipped. fsyncs on directories
1064 * do not force down inodes inside that directory, just changes to the
1065 * names or unlinks in a directory.
1066 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1067 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1068 struct btrfs_root *root,
1069 struct btrfs_path *path,
1070 struct extent_buffer *eb,
1071 struct btrfs_dir_item *di,
1072 struct btrfs_key *key)
1073 {
1074 char *name;
1075 int name_len;
1076 struct btrfs_dir_item *dst_di;
1077 struct btrfs_key found_key;
1078 struct btrfs_key log_key;
1079 struct inode *dir;
1080 u8 log_type;
1081 int exists;
1082 int ret;
1083
1084 dir = read_one_inode(root, key->objectid);
1085 BUG_ON(!dir);
1086
1087 name_len = btrfs_dir_name_len(eb, di);
1088 name = kmalloc(name_len, GFP_NOFS);
1089 log_type = btrfs_dir_type(eb, di);
1090 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1091 name_len);
1092
1093 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1094 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1095 if (exists == 0)
1096 exists = 1;
1097 else
1098 exists = 0;
1099 btrfs_release_path(root, path);
1100
1101 if (key->type == BTRFS_DIR_ITEM_KEY) {
1102 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1103 name, name_len, 1);
1104 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1105 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1106 key->objectid,
1107 key->offset, name,
1108 name_len, 1);
1109 } else {
1110 BUG();
1111 }
1112 if (!dst_di || IS_ERR(dst_di)) {
1113 /* we need a sequence number to insert, so we only
1114 * do inserts for the BTRFS_DIR_INDEX_KEY types
1115 */
1116 if (key->type != BTRFS_DIR_INDEX_KEY)
1117 goto out;
1118 goto insert;
1119 }
1120
1121 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1122 /* the existing item matches the logged item */
1123 if (found_key.objectid == log_key.objectid &&
1124 found_key.type == log_key.type &&
1125 found_key.offset == log_key.offset &&
1126 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1127 goto out;
1128 }
1129
1130 /*
1131 * don't drop the conflicting directory entry if the inode
1132 * for the new entry doesn't exist
1133 */
1134 if (!exists)
1135 goto out;
1136
1137 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1138 BUG_ON(ret);
1139
1140 if (key->type == BTRFS_DIR_INDEX_KEY)
1141 goto insert;
1142 out:
1143 btrfs_release_path(root, path);
1144 kfree(name);
1145 iput(dir);
1146 return 0;
1147
1148 insert:
1149 btrfs_release_path(root, path);
1150 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1151 name, name_len, log_type, &log_key);
1152
1153 if (ret && ret != -ENOENT)
1154 BUG();
1155 goto out;
1156 }
1157
1158 /*
1159 * find all the names in a directory item and reconcile them into
1160 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1161 * one name in a directory item, but the same code gets used for
1162 * both directory index types
1163 */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1164 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1165 struct btrfs_root *root,
1166 struct btrfs_path *path,
1167 struct extent_buffer *eb, int slot,
1168 struct btrfs_key *key)
1169 {
1170 int ret;
1171 u32 item_size = btrfs_item_size_nr(eb, slot);
1172 struct btrfs_dir_item *di;
1173 int name_len;
1174 unsigned long ptr;
1175 unsigned long ptr_end;
1176
1177 ptr = btrfs_item_ptr_offset(eb, slot);
1178 ptr_end = ptr + item_size;
1179 while (ptr < ptr_end) {
1180 di = (struct btrfs_dir_item *)ptr;
1181 name_len = btrfs_dir_name_len(eb, di);
1182 ret = replay_one_name(trans, root, path, eb, di, key);
1183 BUG_ON(ret);
1184 ptr = (unsigned long)(di + 1);
1185 ptr += name_len;
1186 }
1187 return 0;
1188 }
1189
1190 /*
1191 * directory replay has two parts. There are the standard directory
1192 * items in the log copied from the subvolume, and range items
1193 * created in the log while the subvolume was logged.
1194 *
1195 * The range items tell us which parts of the key space the log
1196 * is authoritative for. During replay, if a key in the subvolume
1197 * directory is in a logged range item, but not actually in the log
1198 * that means it was deleted from the directory before the fsync
1199 * and should be removed.
1200 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,int key_type,u64 * start_ret,u64 * end_ret)1201 static noinline int find_dir_range(struct btrfs_root *root,
1202 struct btrfs_path *path,
1203 u64 dirid, int key_type,
1204 u64 *start_ret, u64 *end_ret)
1205 {
1206 struct btrfs_key key;
1207 u64 found_end;
1208 struct btrfs_dir_log_item *item;
1209 int ret;
1210 int nritems;
1211
1212 if (*start_ret == (u64)-1)
1213 return 1;
1214
1215 key.objectid = dirid;
1216 key.type = key_type;
1217 key.offset = *start_ret;
1218
1219 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1220 if (ret < 0)
1221 goto out;
1222 if (ret > 0) {
1223 if (path->slots[0] == 0)
1224 goto out;
1225 path->slots[0]--;
1226 }
1227 if (ret != 0)
1228 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1229
1230 if (key.type != key_type || key.objectid != dirid) {
1231 ret = 1;
1232 goto next;
1233 }
1234 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1235 struct btrfs_dir_log_item);
1236 found_end = btrfs_dir_log_end(path->nodes[0], item);
1237
1238 if (*start_ret >= key.offset && *start_ret <= found_end) {
1239 ret = 0;
1240 *start_ret = key.offset;
1241 *end_ret = found_end;
1242 goto out;
1243 }
1244 ret = 1;
1245 next:
1246 /* check the next slot in the tree to see if it is a valid item */
1247 nritems = btrfs_header_nritems(path->nodes[0]);
1248 if (path->slots[0] >= nritems) {
1249 ret = btrfs_next_leaf(root, path);
1250 if (ret)
1251 goto out;
1252 } else {
1253 path->slots[0]++;
1254 }
1255
1256 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1257
1258 if (key.type != key_type || key.objectid != dirid) {
1259 ret = 1;
1260 goto out;
1261 }
1262 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1263 struct btrfs_dir_log_item);
1264 found_end = btrfs_dir_log_end(path->nodes[0], item);
1265 *start_ret = key.offset;
1266 *end_ret = found_end;
1267 ret = 0;
1268 out:
1269 btrfs_release_path(root, path);
1270 return ret;
1271 }
1272
1273 /*
1274 * this looks for a given directory item in the log. If the directory
1275 * item is not in the log, the item is removed and the inode it points
1276 * to is unlinked
1277 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)1278 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1279 struct btrfs_root *root,
1280 struct btrfs_root *log,
1281 struct btrfs_path *path,
1282 struct btrfs_path *log_path,
1283 struct inode *dir,
1284 struct btrfs_key *dir_key)
1285 {
1286 int ret;
1287 struct extent_buffer *eb;
1288 int slot;
1289 u32 item_size;
1290 struct btrfs_dir_item *di;
1291 struct btrfs_dir_item *log_di;
1292 int name_len;
1293 unsigned long ptr;
1294 unsigned long ptr_end;
1295 char *name;
1296 struct inode *inode;
1297 struct btrfs_key location;
1298
1299 again:
1300 eb = path->nodes[0];
1301 slot = path->slots[0];
1302 item_size = btrfs_item_size_nr(eb, slot);
1303 ptr = btrfs_item_ptr_offset(eb, slot);
1304 ptr_end = ptr + item_size;
1305 while (ptr < ptr_end) {
1306 di = (struct btrfs_dir_item *)ptr;
1307 name_len = btrfs_dir_name_len(eb, di);
1308 name = kmalloc(name_len, GFP_NOFS);
1309 if (!name) {
1310 ret = -ENOMEM;
1311 goto out;
1312 }
1313 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1314 name_len);
1315 log_di = NULL;
1316 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1317 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1318 dir_key->objectid,
1319 name, name_len, 0);
1320 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1321 log_di = btrfs_lookup_dir_index_item(trans, log,
1322 log_path,
1323 dir_key->objectid,
1324 dir_key->offset,
1325 name, name_len, 0);
1326 }
1327 if (!log_di || IS_ERR(log_di)) {
1328 btrfs_dir_item_key_to_cpu(eb, di, &location);
1329 btrfs_release_path(root, path);
1330 btrfs_release_path(log, log_path);
1331 inode = read_one_inode(root, location.objectid);
1332 BUG_ON(!inode);
1333
1334 ret = link_to_fixup_dir(trans, root,
1335 path, location.objectid);
1336 BUG_ON(ret);
1337 btrfs_inc_nlink(inode);
1338 ret = btrfs_unlink_inode(trans, root, dir, inode,
1339 name, name_len);
1340 BUG_ON(ret);
1341 kfree(name);
1342 iput(inode);
1343
1344 /* there might still be more names under this key
1345 * check and repeat if required
1346 */
1347 ret = btrfs_search_slot(NULL, root, dir_key, path,
1348 0, 0);
1349 if (ret == 0)
1350 goto again;
1351 ret = 0;
1352 goto out;
1353 }
1354 btrfs_release_path(log, log_path);
1355 kfree(name);
1356
1357 ptr = (unsigned long)(di + 1);
1358 ptr += name_len;
1359 }
1360 ret = 0;
1361 out:
1362 btrfs_release_path(root, path);
1363 btrfs_release_path(log, log_path);
1364 return ret;
1365 }
1366
1367 /*
1368 * deletion replay happens before we copy any new directory items
1369 * out of the log or out of backreferences from inodes. It
1370 * scans the log to find ranges of keys that log is authoritative for,
1371 * and then scans the directory to find items in those ranges that are
1372 * not present in the log.
1373 *
1374 * Anything we don't find in the log is unlinked and removed from the
1375 * directory.
1376 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid)1377 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1378 struct btrfs_root *root,
1379 struct btrfs_root *log,
1380 struct btrfs_path *path,
1381 u64 dirid)
1382 {
1383 u64 range_start;
1384 u64 range_end;
1385 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1386 int ret = 0;
1387 struct btrfs_key dir_key;
1388 struct btrfs_key found_key;
1389 struct btrfs_path *log_path;
1390 struct inode *dir;
1391
1392 dir_key.objectid = dirid;
1393 dir_key.type = BTRFS_DIR_ITEM_KEY;
1394 log_path = btrfs_alloc_path();
1395 if (!log_path)
1396 return -ENOMEM;
1397
1398 dir = read_one_inode(root, dirid);
1399 /* it isn't an error if the inode isn't there, that can happen
1400 * because we replay the deletes before we copy in the inode item
1401 * from the log
1402 */
1403 if (!dir) {
1404 btrfs_free_path(log_path);
1405 return 0;
1406 }
1407 again:
1408 range_start = 0;
1409 range_end = 0;
1410 while (1) {
1411 ret = find_dir_range(log, path, dirid, key_type,
1412 &range_start, &range_end);
1413 if (ret != 0)
1414 break;
1415
1416 dir_key.offset = range_start;
1417 while (1) {
1418 int nritems;
1419 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1420 0, 0);
1421 if (ret < 0)
1422 goto out;
1423
1424 nritems = btrfs_header_nritems(path->nodes[0]);
1425 if (path->slots[0] >= nritems) {
1426 ret = btrfs_next_leaf(root, path);
1427 if (ret)
1428 break;
1429 }
1430 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1431 path->slots[0]);
1432 if (found_key.objectid != dirid ||
1433 found_key.type != dir_key.type)
1434 goto next_type;
1435
1436 if (found_key.offset > range_end)
1437 break;
1438
1439 ret = check_item_in_log(trans, root, log, path,
1440 log_path, dir, &found_key);
1441 BUG_ON(ret);
1442 if (found_key.offset == (u64)-1)
1443 break;
1444 dir_key.offset = found_key.offset + 1;
1445 }
1446 btrfs_release_path(root, path);
1447 if (range_end == (u64)-1)
1448 break;
1449 range_start = range_end + 1;
1450 }
1451
1452 next_type:
1453 ret = 0;
1454 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1455 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1456 dir_key.type = BTRFS_DIR_INDEX_KEY;
1457 btrfs_release_path(root, path);
1458 goto again;
1459 }
1460 out:
1461 btrfs_release_path(root, path);
1462 btrfs_free_path(log_path);
1463 iput(dir);
1464 return ret;
1465 }
1466
1467 /*
1468 * the process_func used to replay items from the log tree. This
1469 * gets called in two different stages. The first stage just looks
1470 * for inodes and makes sure they are all copied into the subvolume.
1471 *
1472 * The second stage copies all the other item types from the log into
1473 * the subvolume. The two stage approach is slower, but gets rid of
1474 * lots of complexity around inodes referencing other inodes that exist
1475 * only in the log (references come from either directory items or inode
1476 * back refs).
1477 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen)1478 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1479 struct walk_control *wc, u64 gen)
1480 {
1481 int nritems;
1482 struct btrfs_path *path;
1483 struct btrfs_root *root = wc->replay_dest;
1484 struct btrfs_key key;
1485 u32 item_size;
1486 int level;
1487 int i;
1488 int ret;
1489
1490 btrfs_read_buffer(eb, gen);
1491
1492 level = btrfs_header_level(eb);
1493
1494 if (level != 0)
1495 return 0;
1496
1497 path = btrfs_alloc_path();
1498 BUG_ON(!path);
1499
1500 nritems = btrfs_header_nritems(eb);
1501 for (i = 0; i < nritems; i++) {
1502 btrfs_item_key_to_cpu(eb, &key, i);
1503 item_size = btrfs_item_size_nr(eb, i);
1504
1505 /* inode keys are done during the first stage */
1506 if (key.type == BTRFS_INODE_ITEM_KEY &&
1507 wc->stage == LOG_WALK_REPLAY_INODES) {
1508 struct inode *inode;
1509 struct btrfs_inode_item *inode_item;
1510 u32 mode;
1511
1512 inode_item = btrfs_item_ptr(eb, i,
1513 struct btrfs_inode_item);
1514 mode = btrfs_inode_mode(eb, inode_item);
1515 if (S_ISDIR(mode)) {
1516 ret = replay_dir_deletes(wc->trans,
1517 root, log, path, key.objectid);
1518 BUG_ON(ret);
1519 }
1520 ret = overwrite_item(wc->trans, root, path,
1521 eb, i, &key);
1522 BUG_ON(ret);
1523
1524 /* for regular files, truncate away
1525 * extents past the new EOF
1526 */
1527 if (S_ISREG(mode)) {
1528 inode = read_one_inode(root,
1529 key.objectid);
1530 BUG_ON(!inode);
1531
1532 ret = btrfs_truncate_inode_items(wc->trans,
1533 root, inode, inode->i_size,
1534 BTRFS_EXTENT_DATA_KEY);
1535 BUG_ON(ret);
1536 iput(inode);
1537 }
1538 ret = link_to_fixup_dir(wc->trans, root,
1539 path, key.objectid);
1540 BUG_ON(ret);
1541 }
1542 if (wc->stage < LOG_WALK_REPLAY_ALL)
1543 continue;
1544
1545 /* these keys are simply copied */
1546 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1547 ret = overwrite_item(wc->trans, root, path,
1548 eb, i, &key);
1549 BUG_ON(ret);
1550 } else if (key.type == BTRFS_INODE_REF_KEY) {
1551 ret = add_inode_ref(wc->trans, root, log, path,
1552 eb, i, &key);
1553 BUG_ON(ret && ret != -ENOENT);
1554 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1555 ret = replay_one_extent(wc->trans, root, path,
1556 eb, i, &key);
1557 BUG_ON(ret);
1558 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1559 key.type == BTRFS_DIR_INDEX_KEY) {
1560 ret = replay_one_dir_item(wc->trans, root, path,
1561 eb, i, &key);
1562 BUG_ON(ret);
1563 }
1564 }
1565 btrfs_free_path(path);
1566 return 0;
1567 }
1568
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)1569 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1570 struct btrfs_root *root,
1571 struct btrfs_path *path, int *level,
1572 struct walk_control *wc)
1573 {
1574 u64 root_owner;
1575 u64 root_gen;
1576 u64 bytenr;
1577 u64 ptr_gen;
1578 struct extent_buffer *next;
1579 struct extent_buffer *cur;
1580 struct extent_buffer *parent;
1581 u32 blocksize;
1582 int ret = 0;
1583
1584 WARN_ON(*level < 0);
1585 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1586
1587 while (*level > 0) {
1588 WARN_ON(*level < 0);
1589 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1590 cur = path->nodes[*level];
1591
1592 if (btrfs_header_level(cur) != *level)
1593 WARN_ON(1);
1594
1595 if (path->slots[*level] >=
1596 btrfs_header_nritems(cur))
1597 break;
1598
1599 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1600 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1601 blocksize = btrfs_level_size(root, *level - 1);
1602
1603 parent = path->nodes[*level];
1604 root_owner = btrfs_header_owner(parent);
1605 root_gen = btrfs_header_generation(parent);
1606
1607 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1608
1609 wc->process_func(root, next, wc, ptr_gen);
1610
1611 if (*level == 1) {
1612 path->slots[*level]++;
1613 if (wc->free) {
1614 btrfs_read_buffer(next, ptr_gen);
1615
1616 btrfs_tree_lock(next);
1617 clean_tree_block(trans, root, next);
1618 btrfs_set_lock_blocking(next);
1619 btrfs_wait_tree_block_writeback(next);
1620 btrfs_tree_unlock(next);
1621
1622 ret = btrfs_drop_leaf_ref(trans, root, next);
1623 BUG_ON(ret);
1624
1625 WARN_ON(root_owner !=
1626 BTRFS_TREE_LOG_OBJECTID);
1627 ret = btrfs_free_reserved_extent(root,
1628 bytenr, blocksize);
1629 BUG_ON(ret);
1630 }
1631 free_extent_buffer(next);
1632 continue;
1633 }
1634 btrfs_read_buffer(next, ptr_gen);
1635
1636 WARN_ON(*level <= 0);
1637 if (path->nodes[*level-1])
1638 free_extent_buffer(path->nodes[*level-1]);
1639 path->nodes[*level-1] = next;
1640 *level = btrfs_header_level(next);
1641 path->slots[*level] = 0;
1642 cond_resched();
1643 }
1644 WARN_ON(*level < 0);
1645 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1646
1647 if (path->nodes[*level] == root->node)
1648 parent = path->nodes[*level];
1649 else
1650 parent = path->nodes[*level + 1];
1651
1652 bytenr = path->nodes[*level]->start;
1653
1654 blocksize = btrfs_level_size(root, *level);
1655 root_owner = btrfs_header_owner(parent);
1656 root_gen = btrfs_header_generation(parent);
1657
1658 wc->process_func(root, path->nodes[*level], wc,
1659 btrfs_header_generation(path->nodes[*level]));
1660
1661 if (wc->free) {
1662 next = path->nodes[*level];
1663 btrfs_tree_lock(next);
1664 clean_tree_block(trans, root, next);
1665 btrfs_set_lock_blocking(next);
1666 btrfs_wait_tree_block_writeback(next);
1667 btrfs_tree_unlock(next);
1668
1669 if (*level == 0) {
1670 ret = btrfs_drop_leaf_ref(trans, root, next);
1671 BUG_ON(ret);
1672 }
1673 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1674 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1675 BUG_ON(ret);
1676 }
1677 free_extent_buffer(path->nodes[*level]);
1678 path->nodes[*level] = NULL;
1679 *level += 1;
1680
1681 cond_resched();
1682 return 0;
1683 }
1684
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)1685 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1686 struct btrfs_root *root,
1687 struct btrfs_path *path, int *level,
1688 struct walk_control *wc)
1689 {
1690 u64 root_owner;
1691 u64 root_gen;
1692 int i;
1693 int slot;
1694 int ret;
1695
1696 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1697 slot = path->slots[i];
1698 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1699 struct extent_buffer *node;
1700 node = path->nodes[i];
1701 path->slots[i]++;
1702 *level = i;
1703 WARN_ON(*level == 0);
1704 return 0;
1705 } else {
1706 struct extent_buffer *parent;
1707 if (path->nodes[*level] == root->node)
1708 parent = path->nodes[*level];
1709 else
1710 parent = path->nodes[*level + 1];
1711
1712 root_owner = btrfs_header_owner(parent);
1713 root_gen = btrfs_header_generation(parent);
1714 wc->process_func(root, path->nodes[*level], wc,
1715 btrfs_header_generation(path->nodes[*level]));
1716 if (wc->free) {
1717 struct extent_buffer *next;
1718
1719 next = path->nodes[*level];
1720
1721 btrfs_tree_lock(next);
1722 clean_tree_block(trans, root, next);
1723 btrfs_set_lock_blocking(next);
1724 btrfs_wait_tree_block_writeback(next);
1725 btrfs_tree_unlock(next);
1726
1727 if (*level == 0) {
1728 ret = btrfs_drop_leaf_ref(trans, root,
1729 next);
1730 BUG_ON(ret);
1731 }
1732
1733 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1734 ret = btrfs_free_reserved_extent(root,
1735 path->nodes[*level]->start,
1736 path->nodes[*level]->len);
1737 BUG_ON(ret);
1738 }
1739 free_extent_buffer(path->nodes[*level]);
1740 path->nodes[*level] = NULL;
1741 *level = i + 1;
1742 }
1743 }
1744 return 1;
1745 }
1746
1747 /*
1748 * drop the reference count on the tree rooted at 'snap'. This traverses
1749 * the tree freeing any blocks that have a ref count of zero after being
1750 * decremented.
1751 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)1752 static int walk_log_tree(struct btrfs_trans_handle *trans,
1753 struct btrfs_root *log, struct walk_control *wc)
1754 {
1755 int ret = 0;
1756 int wret;
1757 int level;
1758 struct btrfs_path *path;
1759 int i;
1760 int orig_level;
1761
1762 path = btrfs_alloc_path();
1763 BUG_ON(!path);
1764
1765 level = btrfs_header_level(log->node);
1766 orig_level = level;
1767 path->nodes[level] = log->node;
1768 extent_buffer_get(log->node);
1769 path->slots[level] = 0;
1770
1771 while (1) {
1772 wret = walk_down_log_tree(trans, log, path, &level, wc);
1773 if (wret > 0)
1774 break;
1775 if (wret < 0)
1776 ret = wret;
1777
1778 wret = walk_up_log_tree(trans, log, path, &level, wc);
1779 if (wret > 0)
1780 break;
1781 if (wret < 0)
1782 ret = wret;
1783 }
1784
1785 /* was the root node processed? if not, catch it here */
1786 if (path->nodes[orig_level]) {
1787 wc->process_func(log, path->nodes[orig_level], wc,
1788 btrfs_header_generation(path->nodes[orig_level]));
1789 if (wc->free) {
1790 struct extent_buffer *next;
1791
1792 next = path->nodes[orig_level];
1793
1794 btrfs_tree_lock(next);
1795 clean_tree_block(trans, log, next);
1796 btrfs_set_lock_blocking(next);
1797 btrfs_wait_tree_block_writeback(next);
1798 btrfs_tree_unlock(next);
1799
1800 if (orig_level == 0) {
1801 ret = btrfs_drop_leaf_ref(trans, log,
1802 next);
1803 BUG_ON(ret);
1804 }
1805 WARN_ON(log->root_key.objectid !=
1806 BTRFS_TREE_LOG_OBJECTID);
1807 ret = btrfs_free_reserved_extent(log, next->start,
1808 next->len);
1809 BUG_ON(ret);
1810 }
1811 }
1812
1813 for (i = 0; i <= orig_level; i++) {
1814 if (path->nodes[i]) {
1815 free_extent_buffer(path->nodes[i]);
1816 path->nodes[i] = NULL;
1817 }
1818 }
1819 btrfs_free_path(path);
1820 return ret;
1821 }
1822
1823 /*
1824 * helper function to update the item for a given subvolumes log root
1825 * in the tree of log roots
1826 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log)1827 static int update_log_root(struct btrfs_trans_handle *trans,
1828 struct btrfs_root *log)
1829 {
1830 int ret;
1831
1832 if (log->log_transid == 1) {
1833 /* insert root item on the first sync */
1834 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1835 &log->root_key, &log->root_item);
1836 } else {
1837 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1838 &log->root_key, &log->root_item);
1839 }
1840 return ret;
1841 }
1842
wait_log_commit(struct btrfs_root * root,unsigned long transid)1843 static int wait_log_commit(struct btrfs_root *root, unsigned long transid)
1844 {
1845 DEFINE_WAIT(wait);
1846 int index = transid % 2;
1847
1848 /*
1849 * we only allow two pending log transactions at a time,
1850 * so we know that if ours is more than 2 older than the
1851 * current transaction, we're done
1852 */
1853 do {
1854 prepare_to_wait(&root->log_commit_wait[index],
1855 &wait, TASK_UNINTERRUPTIBLE);
1856 mutex_unlock(&root->log_mutex);
1857 if (root->log_transid < transid + 2 &&
1858 atomic_read(&root->log_commit[index]))
1859 schedule();
1860 finish_wait(&root->log_commit_wait[index], &wait);
1861 mutex_lock(&root->log_mutex);
1862 } while (root->log_transid < transid + 2 &&
1863 atomic_read(&root->log_commit[index]));
1864 return 0;
1865 }
1866
wait_for_writer(struct btrfs_root * root)1867 static int wait_for_writer(struct btrfs_root *root)
1868 {
1869 DEFINE_WAIT(wait);
1870 while (atomic_read(&root->log_writers)) {
1871 prepare_to_wait(&root->log_writer_wait,
1872 &wait, TASK_UNINTERRUPTIBLE);
1873 mutex_unlock(&root->log_mutex);
1874 if (atomic_read(&root->log_writers))
1875 schedule();
1876 mutex_lock(&root->log_mutex);
1877 finish_wait(&root->log_writer_wait, &wait);
1878 }
1879 return 0;
1880 }
1881
1882 /*
1883 * btrfs_sync_log does sends a given tree log down to the disk and
1884 * updates the super blocks to record it. When this call is done,
1885 * you know that any inodes previously logged are safely on disk
1886 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)1887 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1888 struct btrfs_root *root)
1889 {
1890 int index1;
1891 int index2;
1892 int ret;
1893 struct btrfs_root *log = root->log_root;
1894 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
1895
1896 mutex_lock(&root->log_mutex);
1897 index1 = root->log_transid % 2;
1898 if (atomic_read(&root->log_commit[index1])) {
1899 wait_log_commit(root, root->log_transid);
1900 mutex_unlock(&root->log_mutex);
1901 return 0;
1902 }
1903 atomic_set(&root->log_commit[index1], 1);
1904
1905 /* wait for previous tree log sync to complete */
1906 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
1907 wait_log_commit(root, root->log_transid - 1);
1908
1909 while (1) {
1910 unsigned long batch = root->log_batch;
1911 mutex_unlock(&root->log_mutex);
1912 schedule_timeout_uninterruptible(1);
1913 mutex_lock(&root->log_mutex);
1914 wait_for_writer(root);
1915 if (batch == root->log_batch)
1916 break;
1917 }
1918
1919 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
1920 BUG_ON(ret);
1921
1922 btrfs_set_root_bytenr(&log->root_item, log->node->start);
1923 btrfs_set_root_generation(&log->root_item, trans->transid);
1924 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
1925
1926 root->log_batch = 0;
1927 root->log_transid++;
1928 log->log_transid = root->log_transid;
1929 smp_mb();
1930 /*
1931 * log tree has been flushed to disk, new modifications of
1932 * the log will be written to new positions. so it's safe to
1933 * allow log writers to go in.
1934 */
1935 mutex_unlock(&root->log_mutex);
1936
1937 mutex_lock(&log_root_tree->log_mutex);
1938 log_root_tree->log_batch++;
1939 atomic_inc(&log_root_tree->log_writers);
1940 mutex_unlock(&log_root_tree->log_mutex);
1941
1942 ret = update_log_root(trans, log);
1943 BUG_ON(ret);
1944
1945 mutex_lock(&log_root_tree->log_mutex);
1946 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
1947 smp_mb();
1948 if (waitqueue_active(&log_root_tree->log_writer_wait))
1949 wake_up(&log_root_tree->log_writer_wait);
1950 }
1951
1952 index2 = log_root_tree->log_transid % 2;
1953 if (atomic_read(&log_root_tree->log_commit[index2])) {
1954 wait_log_commit(log_root_tree, log_root_tree->log_transid);
1955 mutex_unlock(&log_root_tree->log_mutex);
1956 goto out;
1957 }
1958 atomic_set(&log_root_tree->log_commit[index2], 1);
1959
1960 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2]))
1961 wait_log_commit(log_root_tree, log_root_tree->log_transid - 1);
1962
1963 wait_for_writer(log_root_tree);
1964
1965 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
1966 &log_root_tree->dirty_log_pages);
1967 BUG_ON(ret);
1968
1969 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
1970 log_root_tree->node->start);
1971 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
1972 btrfs_header_level(log_root_tree->node));
1973
1974 log_root_tree->log_batch = 0;
1975 log_root_tree->log_transid++;
1976 smp_mb();
1977
1978 mutex_unlock(&log_root_tree->log_mutex);
1979
1980 /*
1981 * nobody else is going to jump in and write the the ctree
1982 * super here because the log_commit atomic below is protecting
1983 * us. We must be called with a transaction handle pinning
1984 * the running transaction open, so a full commit can't hop
1985 * in and cause problems either.
1986 */
1987 write_ctree_super(trans, root->fs_info->tree_root, 2);
1988
1989 atomic_set(&log_root_tree->log_commit[index2], 0);
1990 smp_mb();
1991 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
1992 wake_up(&log_root_tree->log_commit_wait[index2]);
1993 out:
1994 atomic_set(&root->log_commit[index1], 0);
1995 smp_mb();
1996 if (waitqueue_active(&root->log_commit_wait[index1]))
1997 wake_up(&root->log_commit_wait[index1]);
1998 return 0;
1999 }
2000
2001 /* * free all the extents used by the tree log. This should be called
2002 * at commit time of the full transaction
2003 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)2004 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2005 {
2006 int ret;
2007 struct btrfs_root *log;
2008 struct key;
2009 u64 start;
2010 u64 end;
2011 struct walk_control wc = {
2012 .free = 1,
2013 .process_func = process_one_buffer
2014 };
2015
2016 if (!root->log_root || root->fs_info->log_root_recovering)
2017 return 0;
2018
2019 log = root->log_root;
2020 ret = walk_log_tree(trans, log, &wc);
2021 BUG_ON(ret);
2022
2023 while (1) {
2024 ret = find_first_extent_bit(&log->dirty_log_pages,
2025 0, &start, &end, EXTENT_DIRTY);
2026 if (ret)
2027 break;
2028
2029 clear_extent_dirty(&log->dirty_log_pages,
2030 start, end, GFP_NOFS);
2031 }
2032
2033 if (log->log_transid > 0) {
2034 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2035 &log->root_key);
2036 BUG_ON(ret);
2037 }
2038 root->log_root = NULL;
2039 free_extent_buffer(log->node);
2040 kfree(log);
2041 return 0;
2042 }
2043
2044 /*
2045 * If both a file and directory are logged, and unlinks or renames are
2046 * mixed in, we have a few interesting corners:
2047 *
2048 * create file X in dir Y
2049 * link file X to X.link in dir Y
2050 * fsync file X
2051 * unlink file X but leave X.link
2052 * fsync dir Y
2053 *
2054 * After a crash we would expect only X.link to exist. But file X
2055 * didn't get fsync'd again so the log has back refs for X and X.link.
2056 *
2057 * We solve this by removing directory entries and inode backrefs from the
2058 * log when a file that was logged in the current transaction is
2059 * unlinked. Any later fsync will include the updated log entries, and
2060 * we'll be able to reconstruct the proper directory items from backrefs.
2061 *
2062 * This optimizations allows us to avoid relogging the entire inode
2063 * or the entire directory.
2064 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,u64 index)2065 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2066 struct btrfs_root *root,
2067 const char *name, int name_len,
2068 struct inode *dir, u64 index)
2069 {
2070 struct btrfs_root *log;
2071 struct btrfs_dir_item *di;
2072 struct btrfs_path *path;
2073 int ret;
2074 int bytes_del = 0;
2075
2076 if (BTRFS_I(dir)->logged_trans < trans->transid)
2077 return 0;
2078
2079 ret = join_running_log_trans(root);
2080 if (ret)
2081 return 0;
2082
2083 mutex_lock(&BTRFS_I(dir)->log_mutex);
2084
2085 log = root->log_root;
2086 path = btrfs_alloc_path();
2087 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2088 name, name_len, -1);
2089 if (di && !IS_ERR(di)) {
2090 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2091 bytes_del += name_len;
2092 BUG_ON(ret);
2093 }
2094 btrfs_release_path(log, path);
2095 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2096 index, name, name_len, -1);
2097 if (di && !IS_ERR(di)) {
2098 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2099 bytes_del += name_len;
2100 BUG_ON(ret);
2101 }
2102
2103 /* update the directory size in the log to reflect the names
2104 * we have removed
2105 */
2106 if (bytes_del) {
2107 struct btrfs_key key;
2108
2109 key.objectid = dir->i_ino;
2110 key.offset = 0;
2111 key.type = BTRFS_INODE_ITEM_KEY;
2112 btrfs_release_path(log, path);
2113
2114 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2115 if (ret == 0) {
2116 struct btrfs_inode_item *item;
2117 u64 i_size;
2118
2119 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2120 struct btrfs_inode_item);
2121 i_size = btrfs_inode_size(path->nodes[0], item);
2122 if (i_size > bytes_del)
2123 i_size -= bytes_del;
2124 else
2125 i_size = 0;
2126 btrfs_set_inode_size(path->nodes[0], item, i_size);
2127 btrfs_mark_buffer_dirty(path->nodes[0]);
2128 } else
2129 ret = 0;
2130 btrfs_release_path(log, path);
2131 }
2132
2133 btrfs_free_path(path);
2134 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2135 end_log_trans(root);
2136
2137 return 0;
2138 }
2139
2140 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * inode,u64 dirid)2141 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2142 struct btrfs_root *root,
2143 const char *name, int name_len,
2144 struct inode *inode, u64 dirid)
2145 {
2146 struct btrfs_root *log;
2147 u64 index;
2148 int ret;
2149
2150 if (BTRFS_I(inode)->logged_trans < trans->transid)
2151 return 0;
2152
2153 ret = join_running_log_trans(root);
2154 if (ret)
2155 return 0;
2156 log = root->log_root;
2157 mutex_lock(&BTRFS_I(inode)->log_mutex);
2158
2159 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2160 dirid, &index);
2161 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2162 end_log_trans(root);
2163
2164 return ret;
2165 }
2166
2167 /*
2168 * creates a range item in the log for 'dirid'. first_offset and
2169 * last_offset tell us which parts of the key space the log should
2170 * be considered authoritative for.
2171 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,int key_type,u64 dirid,u64 first_offset,u64 last_offset)2172 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2173 struct btrfs_root *log,
2174 struct btrfs_path *path,
2175 int key_type, u64 dirid,
2176 u64 first_offset, u64 last_offset)
2177 {
2178 int ret;
2179 struct btrfs_key key;
2180 struct btrfs_dir_log_item *item;
2181
2182 key.objectid = dirid;
2183 key.offset = first_offset;
2184 if (key_type == BTRFS_DIR_ITEM_KEY)
2185 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2186 else
2187 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2188 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2189 BUG_ON(ret);
2190
2191 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2192 struct btrfs_dir_log_item);
2193 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2194 btrfs_mark_buffer_dirty(path->nodes[0]);
2195 btrfs_release_path(log, path);
2196 return 0;
2197 }
2198
2199 /*
2200 * log all the items included in the current transaction for a given
2201 * directory. This also creates the range items in the log tree required
2202 * to replay anything deleted before the fsync
2203 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,int key_type,u64 min_offset,u64 * last_offset_ret)2204 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2205 struct btrfs_root *root, struct inode *inode,
2206 struct btrfs_path *path,
2207 struct btrfs_path *dst_path, int key_type,
2208 u64 min_offset, u64 *last_offset_ret)
2209 {
2210 struct btrfs_key min_key;
2211 struct btrfs_key max_key;
2212 struct btrfs_root *log = root->log_root;
2213 struct extent_buffer *src;
2214 int ret;
2215 int i;
2216 int nritems;
2217 u64 first_offset = min_offset;
2218 u64 last_offset = (u64)-1;
2219
2220 log = root->log_root;
2221 max_key.objectid = inode->i_ino;
2222 max_key.offset = (u64)-1;
2223 max_key.type = key_type;
2224
2225 min_key.objectid = inode->i_ino;
2226 min_key.type = key_type;
2227 min_key.offset = min_offset;
2228
2229 path->keep_locks = 1;
2230
2231 ret = btrfs_search_forward(root, &min_key, &max_key,
2232 path, 0, trans->transid);
2233
2234 /*
2235 * we didn't find anything from this transaction, see if there
2236 * is anything at all
2237 */
2238 if (ret != 0 || min_key.objectid != inode->i_ino ||
2239 min_key.type != key_type) {
2240 min_key.objectid = inode->i_ino;
2241 min_key.type = key_type;
2242 min_key.offset = (u64)-1;
2243 btrfs_release_path(root, path);
2244 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2245 if (ret < 0) {
2246 btrfs_release_path(root, path);
2247 return ret;
2248 }
2249 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2250
2251 /* if ret == 0 there are items for this type,
2252 * create a range to tell us the last key of this type.
2253 * otherwise, there are no items in this directory after
2254 * *min_offset, and we create a range to indicate that.
2255 */
2256 if (ret == 0) {
2257 struct btrfs_key tmp;
2258 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2259 path->slots[0]);
2260 if (key_type == tmp.type)
2261 first_offset = max(min_offset, tmp.offset) + 1;
2262 }
2263 goto done;
2264 }
2265
2266 /* go backward to find any previous key */
2267 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2268 if (ret == 0) {
2269 struct btrfs_key tmp;
2270 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2271 if (key_type == tmp.type) {
2272 first_offset = tmp.offset;
2273 ret = overwrite_item(trans, log, dst_path,
2274 path->nodes[0], path->slots[0],
2275 &tmp);
2276 }
2277 }
2278 btrfs_release_path(root, path);
2279
2280 /* find the first key from this transaction again */
2281 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2282 if (ret != 0) {
2283 WARN_ON(1);
2284 goto done;
2285 }
2286
2287 /*
2288 * we have a block from this transaction, log every item in it
2289 * from our directory
2290 */
2291 while (1) {
2292 struct btrfs_key tmp;
2293 src = path->nodes[0];
2294 nritems = btrfs_header_nritems(src);
2295 for (i = path->slots[0]; i < nritems; i++) {
2296 btrfs_item_key_to_cpu(src, &min_key, i);
2297
2298 if (min_key.objectid != inode->i_ino ||
2299 min_key.type != key_type)
2300 goto done;
2301 ret = overwrite_item(trans, log, dst_path, src, i,
2302 &min_key);
2303 BUG_ON(ret);
2304 }
2305 path->slots[0] = nritems;
2306
2307 /*
2308 * look ahead to the next item and see if it is also
2309 * from this directory and from this transaction
2310 */
2311 ret = btrfs_next_leaf(root, path);
2312 if (ret == 1) {
2313 last_offset = (u64)-1;
2314 goto done;
2315 }
2316 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2317 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2318 last_offset = (u64)-1;
2319 goto done;
2320 }
2321 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2322 ret = overwrite_item(trans, log, dst_path,
2323 path->nodes[0], path->slots[0],
2324 &tmp);
2325
2326 BUG_ON(ret);
2327 last_offset = tmp.offset;
2328 goto done;
2329 }
2330 }
2331 done:
2332 *last_offset_ret = last_offset;
2333 btrfs_release_path(root, path);
2334 btrfs_release_path(log, dst_path);
2335
2336 /* insert the log range keys to indicate where the log is valid */
2337 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2338 first_offset, last_offset);
2339 BUG_ON(ret);
2340 return 0;
2341 }
2342
2343 /*
2344 * logging directories is very similar to logging inodes, We find all the items
2345 * from the current transaction and write them to the log.
2346 *
2347 * The recovery code scans the directory in the subvolume, and if it finds a
2348 * key in the range logged that is not present in the log tree, then it means
2349 * that dir entry was unlinked during the transaction.
2350 *
2351 * In order for that scan to work, we must include one key smaller than
2352 * the smallest logged by this transaction and one key larger than the largest
2353 * key logged by this transaction.
2354 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path)2355 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2356 struct btrfs_root *root, struct inode *inode,
2357 struct btrfs_path *path,
2358 struct btrfs_path *dst_path)
2359 {
2360 u64 min_key;
2361 u64 max_key;
2362 int ret;
2363 int key_type = BTRFS_DIR_ITEM_KEY;
2364
2365 again:
2366 min_key = 0;
2367 max_key = 0;
2368 while (1) {
2369 ret = log_dir_items(trans, root, inode, path,
2370 dst_path, key_type, min_key,
2371 &max_key);
2372 BUG_ON(ret);
2373 if (max_key == (u64)-1)
2374 break;
2375 min_key = max_key + 1;
2376 }
2377
2378 if (key_type == BTRFS_DIR_ITEM_KEY) {
2379 key_type = BTRFS_DIR_INDEX_KEY;
2380 goto again;
2381 }
2382 return 0;
2383 }
2384
2385 /*
2386 * a helper function to drop items from the log before we relog an
2387 * inode. max_key_type indicates the highest item type to remove.
2388 * This cannot be run for file data extents because it does not
2389 * free the extents they point to.
2390 */
drop_objectid_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 objectid,int max_key_type)2391 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2392 struct btrfs_root *log,
2393 struct btrfs_path *path,
2394 u64 objectid, int max_key_type)
2395 {
2396 int ret;
2397 struct btrfs_key key;
2398 struct btrfs_key found_key;
2399
2400 key.objectid = objectid;
2401 key.type = max_key_type;
2402 key.offset = (u64)-1;
2403
2404 while (1) {
2405 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2406
2407 if (ret != 1)
2408 break;
2409
2410 if (path->slots[0] == 0)
2411 break;
2412
2413 path->slots[0]--;
2414 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2415 path->slots[0]);
2416
2417 if (found_key.objectid != objectid)
2418 break;
2419
2420 ret = btrfs_del_item(trans, log, path);
2421 BUG_ON(ret);
2422 btrfs_release_path(log, path);
2423 }
2424 btrfs_release_path(log, path);
2425 return 0;
2426 }
2427
copy_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * dst_path,struct extent_buffer * src,int start_slot,int nr,int inode_only)2428 static noinline int copy_items(struct btrfs_trans_handle *trans,
2429 struct btrfs_root *log,
2430 struct btrfs_path *dst_path,
2431 struct extent_buffer *src,
2432 int start_slot, int nr, int inode_only)
2433 {
2434 unsigned long src_offset;
2435 unsigned long dst_offset;
2436 struct btrfs_file_extent_item *extent;
2437 struct btrfs_inode_item *inode_item;
2438 int ret;
2439 struct btrfs_key *ins_keys;
2440 u32 *ins_sizes;
2441 char *ins_data;
2442 int i;
2443 struct list_head ordered_sums;
2444
2445 INIT_LIST_HEAD(&ordered_sums);
2446
2447 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2448 nr * sizeof(u32), GFP_NOFS);
2449 ins_sizes = (u32 *)ins_data;
2450 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2451
2452 for (i = 0; i < nr; i++) {
2453 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2454 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2455 }
2456 ret = btrfs_insert_empty_items(trans, log, dst_path,
2457 ins_keys, ins_sizes, nr);
2458 BUG_ON(ret);
2459
2460 for (i = 0; i < nr; i++) {
2461 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2462 dst_path->slots[0]);
2463
2464 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2465
2466 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2467 src_offset, ins_sizes[i]);
2468
2469 if (inode_only == LOG_INODE_EXISTS &&
2470 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2471 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2472 dst_path->slots[0],
2473 struct btrfs_inode_item);
2474 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2475
2476 /* set the generation to zero so the recover code
2477 * can tell the difference between an logging
2478 * just to say 'this inode exists' and a logging
2479 * to say 'update this inode with these values'
2480 */
2481 btrfs_set_inode_generation(dst_path->nodes[0],
2482 inode_item, 0);
2483 }
2484 /* take a reference on file data extents so that truncates
2485 * or deletes of this inode don't have to relog the inode
2486 * again
2487 */
2488 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2489 int found_type;
2490 extent = btrfs_item_ptr(src, start_slot + i,
2491 struct btrfs_file_extent_item);
2492
2493 found_type = btrfs_file_extent_type(src, extent);
2494 if (found_type == BTRFS_FILE_EXTENT_REG ||
2495 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2496 u64 ds = btrfs_file_extent_disk_bytenr(src,
2497 extent);
2498 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2499 extent);
2500 u64 cs = btrfs_file_extent_offset(src, extent);
2501 u64 cl = btrfs_file_extent_num_bytes(src,
2502 extent);;
2503 if (btrfs_file_extent_compression(src,
2504 extent)) {
2505 cs = 0;
2506 cl = dl;
2507 }
2508 /* ds == 0 is a hole */
2509 if (ds != 0) {
2510 ret = btrfs_inc_extent_ref(trans, log,
2511 ds, dl,
2512 dst_path->nodes[0]->start,
2513 BTRFS_TREE_LOG_OBJECTID,
2514 trans->transid,
2515 ins_keys[i].objectid);
2516 BUG_ON(ret);
2517 ret = btrfs_lookup_csums_range(
2518 log->fs_info->csum_root,
2519 ds + cs, ds + cs + cl - 1,
2520 &ordered_sums);
2521 BUG_ON(ret);
2522 }
2523 }
2524 }
2525 dst_path->slots[0]++;
2526 }
2527
2528 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2529 btrfs_release_path(log, dst_path);
2530 kfree(ins_data);
2531
2532 /*
2533 * we have to do this after the loop above to avoid changing the
2534 * log tree while trying to change the log tree.
2535 */
2536 while (!list_empty(&ordered_sums)) {
2537 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2538 struct btrfs_ordered_sum,
2539 list);
2540 ret = btrfs_csum_file_blocks(trans, log, sums);
2541 BUG_ON(ret);
2542 list_del(&sums->list);
2543 kfree(sums);
2544 }
2545 return 0;
2546 }
2547
2548 /* log a single inode in the tree log.
2549 * At least one parent directory for this inode must exist in the tree
2550 * or be logged already.
2551 *
2552 * Any items from this inode changed by the current transaction are copied
2553 * to the log tree. An extra reference is taken on any extents in this
2554 * file, allowing us to avoid a whole pile of corner cases around logging
2555 * blocks that have been removed from the tree.
2556 *
2557 * See LOG_INODE_ALL and related defines for a description of what inode_only
2558 * does.
2559 *
2560 * This handles both files and directories.
2561 */
__btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only)2562 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2563 struct btrfs_root *root, struct inode *inode,
2564 int inode_only)
2565 {
2566 struct btrfs_path *path;
2567 struct btrfs_path *dst_path;
2568 struct btrfs_key min_key;
2569 struct btrfs_key max_key;
2570 struct btrfs_root *log = root->log_root;
2571 struct extent_buffer *src = NULL;
2572 u32 size;
2573 int ret;
2574 int nritems;
2575 int ins_start_slot = 0;
2576 int ins_nr;
2577
2578 log = root->log_root;
2579
2580 path = btrfs_alloc_path();
2581 dst_path = btrfs_alloc_path();
2582
2583 min_key.objectid = inode->i_ino;
2584 min_key.type = BTRFS_INODE_ITEM_KEY;
2585 min_key.offset = 0;
2586
2587 max_key.objectid = inode->i_ino;
2588 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2589 max_key.type = BTRFS_XATTR_ITEM_KEY;
2590 else
2591 max_key.type = (u8)-1;
2592 max_key.offset = (u64)-1;
2593
2594 /*
2595 * if this inode has already been logged and we're in inode_only
2596 * mode, we don't want to delete the things that have already
2597 * been written to the log.
2598 *
2599 * But, if the inode has been through an inode_only log,
2600 * the logged_trans field is not set. This allows us to catch
2601 * any new names for this inode in the backrefs by logging it
2602 * again
2603 */
2604 if (inode_only == LOG_INODE_EXISTS &&
2605 BTRFS_I(inode)->logged_trans == trans->transid) {
2606 btrfs_free_path(path);
2607 btrfs_free_path(dst_path);
2608 goto out;
2609 }
2610 mutex_lock(&BTRFS_I(inode)->log_mutex);
2611
2612 /*
2613 * a brute force approach to making sure we get the most uptodate
2614 * copies of everything.
2615 */
2616 if (S_ISDIR(inode->i_mode)) {
2617 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2618
2619 if (inode_only == LOG_INODE_EXISTS)
2620 max_key_type = BTRFS_XATTR_ITEM_KEY;
2621 ret = drop_objectid_items(trans, log, path,
2622 inode->i_ino, max_key_type);
2623 } else {
2624 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2625 }
2626 BUG_ON(ret);
2627 path->keep_locks = 1;
2628
2629 while (1) {
2630 ins_nr = 0;
2631 ret = btrfs_search_forward(root, &min_key, &max_key,
2632 path, 0, trans->transid);
2633 if (ret != 0)
2634 break;
2635 again:
2636 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2637 if (min_key.objectid != inode->i_ino)
2638 break;
2639 if (min_key.type > max_key.type)
2640 break;
2641
2642 src = path->nodes[0];
2643 size = btrfs_item_size_nr(src, path->slots[0]);
2644 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2645 ins_nr++;
2646 goto next_slot;
2647 } else if (!ins_nr) {
2648 ins_start_slot = path->slots[0];
2649 ins_nr = 1;
2650 goto next_slot;
2651 }
2652
2653 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2654 ins_nr, inode_only);
2655 BUG_ON(ret);
2656 ins_nr = 1;
2657 ins_start_slot = path->slots[0];
2658 next_slot:
2659
2660 nritems = btrfs_header_nritems(path->nodes[0]);
2661 path->slots[0]++;
2662 if (path->slots[0] < nritems) {
2663 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2664 path->slots[0]);
2665 goto again;
2666 }
2667 if (ins_nr) {
2668 ret = copy_items(trans, log, dst_path, src,
2669 ins_start_slot,
2670 ins_nr, inode_only);
2671 BUG_ON(ret);
2672 ins_nr = 0;
2673 }
2674 btrfs_release_path(root, path);
2675
2676 if (min_key.offset < (u64)-1)
2677 min_key.offset++;
2678 else if (min_key.type < (u8)-1)
2679 min_key.type++;
2680 else if (min_key.objectid < (u64)-1)
2681 min_key.objectid++;
2682 else
2683 break;
2684 }
2685 if (ins_nr) {
2686 ret = copy_items(trans, log, dst_path, src,
2687 ins_start_slot,
2688 ins_nr, inode_only);
2689 BUG_ON(ret);
2690 ins_nr = 0;
2691 }
2692 WARN_ON(ins_nr);
2693 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2694 btrfs_release_path(root, path);
2695 btrfs_release_path(log, dst_path);
2696 BTRFS_I(inode)->log_dirty_trans = 0;
2697 ret = log_directory_changes(trans, root, inode, path, dst_path);
2698 BUG_ON(ret);
2699 }
2700 BTRFS_I(inode)->logged_trans = trans->transid;
2701 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2702
2703 btrfs_free_path(path);
2704 btrfs_free_path(dst_path);
2705 out:
2706 return 0;
2707 }
2708
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,int inode_only)2709 int btrfs_log_inode(struct btrfs_trans_handle *trans,
2710 struct btrfs_root *root, struct inode *inode,
2711 int inode_only)
2712 {
2713 int ret;
2714
2715 start_log_trans(trans, root);
2716 ret = __btrfs_log_inode(trans, root, inode, inode_only);
2717 end_log_trans(root);
2718 return ret;
2719 }
2720
2721 /*
2722 * helper function around btrfs_log_inode to make sure newly created
2723 * parent directories also end up in the log. A minimal inode and backref
2724 * only logging is done of any parent directories that are older than
2725 * the last committed transaction
2726 */
btrfs_log_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry)2727 int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2728 struct btrfs_root *root, struct dentry *dentry)
2729 {
2730 int inode_only = LOG_INODE_ALL;
2731 struct super_block *sb;
2732 int ret;
2733
2734 start_log_trans(trans, root);
2735 sb = dentry->d_inode->i_sb;
2736 while (1) {
2737 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2738 inode_only);
2739 BUG_ON(ret);
2740 inode_only = LOG_INODE_EXISTS;
2741
2742 dentry = dentry->d_parent;
2743 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2744 break;
2745
2746 if (BTRFS_I(dentry->d_inode)->generation <=
2747 root->fs_info->last_trans_committed)
2748 break;
2749 }
2750 end_log_trans(root);
2751 return 0;
2752 }
2753
2754 /*
2755 * it is not safe to log dentry if the chunk root has added new
2756 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2757 * If this returns 1, you must commit the transaction to safely get your
2758 * data on disk.
2759 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct dentry * dentry)2760 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2761 struct btrfs_root *root, struct dentry *dentry)
2762 {
2763 u64 gen;
2764 gen = root->fs_info->last_trans_new_blockgroup;
2765 if (gen > root->fs_info->last_trans_committed)
2766 return 1;
2767 else
2768 return btrfs_log_dentry(trans, root, dentry);
2769 }
2770
2771 /*
2772 * should be called during mount to recover any replay any log trees
2773 * from the FS
2774 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)2775 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2776 {
2777 int ret;
2778 struct btrfs_path *path;
2779 struct btrfs_trans_handle *trans;
2780 struct btrfs_key key;
2781 struct btrfs_key found_key;
2782 struct btrfs_key tmp_key;
2783 struct btrfs_root *log;
2784 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2785 u64 highest_inode;
2786 struct walk_control wc = {
2787 .process_func = process_one_buffer,
2788 .stage = 0,
2789 };
2790
2791 fs_info->log_root_recovering = 1;
2792 path = btrfs_alloc_path();
2793 BUG_ON(!path);
2794
2795 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2796
2797 wc.trans = trans;
2798 wc.pin = 1;
2799
2800 walk_log_tree(trans, log_root_tree, &wc);
2801
2802 again:
2803 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2804 key.offset = (u64)-1;
2805 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2806
2807 while (1) {
2808 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2809 if (ret < 0)
2810 break;
2811 if (ret > 0) {
2812 if (path->slots[0] == 0)
2813 break;
2814 path->slots[0]--;
2815 }
2816 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2817 path->slots[0]);
2818 btrfs_release_path(log_root_tree, path);
2819 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2820 break;
2821
2822 log = btrfs_read_fs_root_no_radix(log_root_tree,
2823 &found_key);
2824 BUG_ON(!log);
2825
2826
2827 tmp_key.objectid = found_key.offset;
2828 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2829 tmp_key.offset = (u64)-1;
2830
2831 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2832 BUG_ON(!wc.replay_dest);
2833
2834 wc.replay_dest->log_root = log;
2835 mutex_lock(&fs_info->trans_mutex);
2836 btrfs_record_root_in_trans(wc.replay_dest);
2837 mutex_unlock(&fs_info->trans_mutex);
2838 ret = walk_log_tree(trans, log, &wc);
2839 BUG_ON(ret);
2840
2841 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2842 ret = fixup_inode_link_counts(trans, wc.replay_dest,
2843 path);
2844 BUG_ON(ret);
2845 }
2846 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2847 if (ret == 0) {
2848 wc.replay_dest->highest_inode = highest_inode;
2849 wc.replay_dest->last_inode_alloc = highest_inode;
2850 }
2851
2852 key.offset = found_key.offset - 1;
2853 wc.replay_dest->log_root = NULL;
2854 free_extent_buffer(log->node);
2855 kfree(log);
2856
2857 if (found_key.offset == 0)
2858 break;
2859 }
2860 btrfs_release_path(log_root_tree, path);
2861
2862 /* step one is to pin it all, step two is to replay just inodes */
2863 if (wc.pin) {
2864 wc.pin = 0;
2865 wc.process_func = replay_one_buffer;
2866 wc.stage = LOG_WALK_REPLAY_INODES;
2867 goto again;
2868 }
2869 /* step three is to replay everything */
2870 if (wc.stage < LOG_WALK_REPLAY_ALL) {
2871 wc.stage++;
2872 goto again;
2873 }
2874
2875 btrfs_free_path(path);
2876
2877 free_extent_buffer(log_root_tree->node);
2878 log_root_tree->log_root = NULL;
2879 fs_info->log_root_recovering = 0;
2880
2881 /* step 4: commit the transaction, which also unpins the blocks */
2882 btrfs_commit_transaction(trans, fs_info->tree_root);
2883
2884 kfree(log_root_tree);
2885 return 0;
2886 }
2887