1 /*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7 /*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
init_buffer(struct buffer_head * bh,bh_end_io_t * handler,void * private)50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 bh->b_end_io = handler;
53 bh->b_private = private;
54 }
55
sync_buffer(void * word)56 static int sync_buffer(void *word)
57 {
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
61
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
68 }
69
__lock_buffer(struct buffer_head * bh)70 void __lock_buffer(struct buffer_head *bh)
71 {
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76
unlock_buffer(struct buffer_head * bh)77 void unlock_buffer(struct buffer_head *bh)
78 {
79 clear_bit_unlock(BH_Lock, &bh->b_state);
80 smp_mb__after_clear_bit();
81 wake_up_bit(&bh->b_state, BH_Lock);
82 }
83
84 /*
85 * Block until a buffer comes unlocked. This doesn't stop it
86 * from becoming locked again - you have to lock it yourself
87 * if you want to preserve its state.
88 */
__wait_on_buffer(struct buffer_head * bh)89 void __wait_on_buffer(struct buffer_head * bh)
90 {
91 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
92 }
93
94 static void
__clear_page_buffers(struct page * page)95 __clear_page_buffers(struct page *page)
96 {
97 ClearPagePrivate(page);
98 set_page_private(page, 0);
99 page_cache_release(page);
100 }
101
102
quiet_error(struct buffer_head * bh)103 static int quiet_error(struct buffer_head *bh)
104 {
105 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
106 return 0;
107 return 1;
108 }
109
110
buffer_io_error(struct buffer_head * bh)111 static void buffer_io_error(struct buffer_head *bh)
112 {
113 char b[BDEVNAME_SIZE];
114 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
115 bdevname(bh->b_bdev, b),
116 (unsigned long long)bh->b_blocknr);
117 }
118
119 /*
120 * End-of-IO handler helper function which does not touch the bh after
121 * unlocking it.
122 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
123 * a race there is benign: unlock_buffer() only use the bh's address for
124 * hashing after unlocking the buffer, so it doesn't actually touch the bh
125 * itself.
126 */
__end_buffer_read_notouch(struct buffer_head * bh,int uptodate)127 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
128 {
129 if (uptodate) {
130 set_buffer_uptodate(bh);
131 } else {
132 /* This happens, due to failed READA attempts. */
133 clear_buffer_uptodate(bh);
134 }
135 unlock_buffer(bh);
136 }
137
138 /*
139 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
140 * unlock the buffer. This is what ll_rw_block uses too.
141 */
end_buffer_read_sync(struct buffer_head * bh,int uptodate)142 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
143 {
144 __end_buffer_read_notouch(bh, uptodate);
145 put_bh(bh);
146 }
147
end_buffer_write_sync(struct buffer_head * bh,int uptodate)148 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
149 {
150 char b[BDEVNAME_SIZE];
151
152 if (uptodate) {
153 set_buffer_uptodate(bh);
154 } else {
155 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
156 buffer_io_error(bh);
157 printk(KERN_WARNING "lost page write due to "
158 "I/O error on %s\n",
159 bdevname(bh->b_bdev, b));
160 }
161 set_buffer_write_io_error(bh);
162 clear_buffer_uptodate(bh);
163 }
164 unlock_buffer(bh);
165 put_bh(bh);
166 }
167
168 /*
169 * Write out and wait upon all the dirty data associated with a block
170 * device via its mapping. Does not take the superblock lock.
171 */
sync_blockdev(struct block_device * bdev)172 int sync_blockdev(struct block_device *bdev)
173 {
174 int ret = 0;
175
176 if (bdev)
177 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
178 return ret;
179 }
180 EXPORT_SYMBOL(sync_blockdev);
181
182 /*
183 * Write out and wait upon all dirty data associated with this
184 * device. Filesystem data as well as the underlying block
185 * device. Takes the superblock lock.
186 */
fsync_bdev(struct block_device * bdev)187 int fsync_bdev(struct block_device *bdev)
188 {
189 struct super_block *sb = get_super(bdev);
190 if (sb) {
191 int res = fsync_super(sb);
192 drop_super(sb);
193 return res;
194 }
195 return sync_blockdev(bdev);
196 }
197
198 /**
199 * freeze_bdev -- lock a filesystem and force it into a consistent state
200 * @bdev: blockdevice to lock
201 *
202 * This takes the block device bd_mount_sem to make sure no new mounts
203 * happen on bdev until thaw_bdev() is called.
204 * If a superblock is found on this device, we take the s_umount semaphore
205 * on it to make sure nobody unmounts until the snapshot creation is done.
206 * The reference counter (bd_fsfreeze_count) guarantees that only the last
207 * unfreeze process can unfreeze the frozen filesystem actually when multiple
208 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
209 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
210 * actually.
211 */
freeze_bdev(struct block_device * bdev)212 struct super_block *freeze_bdev(struct block_device *bdev)
213 {
214 struct super_block *sb;
215 int error = 0;
216
217 mutex_lock(&bdev->bd_fsfreeze_mutex);
218 if (bdev->bd_fsfreeze_count > 0) {
219 bdev->bd_fsfreeze_count++;
220 sb = get_super(bdev);
221 mutex_unlock(&bdev->bd_fsfreeze_mutex);
222 return sb;
223 }
224 bdev->bd_fsfreeze_count++;
225
226 down(&bdev->bd_mount_sem);
227 sb = get_super(bdev);
228 if (sb && !(sb->s_flags & MS_RDONLY)) {
229 sb->s_frozen = SB_FREEZE_WRITE;
230 smp_wmb();
231
232 __fsync_super(sb);
233
234 sb->s_frozen = SB_FREEZE_TRANS;
235 smp_wmb();
236
237 sync_blockdev(sb->s_bdev);
238
239 if (sb->s_op->freeze_fs) {
240 error = sb->s_op->freeze_fs(sb);
241 if (error) {
242 printk(KERN_ERR
243 "VFS:Filesystem freeze failed\n");
244 sb->s_frozen = SB_UNFROZEN;
245 drop_super(sb);
246 up(&bdev->bd_mount_sem);
247 bdev->bd_fsfreeze_count--;
248 mutex_unlock(&bdev->bd_fsfreeze_mutex);
249 return ERR_PTR(error);
250 }
251 }
252 }
253
254 sync_blockdev(bdev);
255 mutex_unlock(&bdev->bd_fsfreeze_mutex);
256
257 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
258 }
259 EXPORT_SYMBOL(freeze_bdev);
260
261 /**
262 * thaw_bdev -- unlock filesystem
263 * @bdev: blockdevice to unlock
264 * @sb: associated superblock
265 *
266 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
267 */
thaw_bdev(struct block_device * bdev,struct super_block * sb)268 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
269 {
270 int error = 0;
271
272 mutex_lock(&bdev->bd_fsfreeze_mutex);
273 if (!bdev->bd_fsfreeze_count) {
274 mutex_unlock(&bdev->bd_fsfreeze_mutex);
275 return -EINVAL;
276 }
277
278 bdev->bd_fsfreeze_count--;
279 if (bdev->bd_fsfreeze_count > 0) {
280 if (sb)
281 drop_super(sb);
282 mutex_unlock(&bdev->bd_fsfreeze_mutex);
283 return 0;
284 }
285
286 if (sb) {
287 BUG_ON(sb->s_bdev != bdev);
288 if (!(sb->s_flags & MS_RDONLY)) {
289 if (sb->s_op->unfreeze_fs) {
290 error = sb->s_op->unfreeze_fs(sb);
291 if (error) {
292 printk(KERN_ERR
293 "VFS:Filesystem thaw failed\n");
294 sb->s_frozen = SB_FREEZE_TRANS;
295 bdev->bd_fsfreeze_count++;
296 mutex_unlock(&bdev->bd_fsfreeze_mutex);
297 return error;
298 }
299 }
300 sb->s_frozen = SB_UNFROZEN;
301 smp_wmb();
302 wake_up(&sb->s_wait_unfrozen);
303 }
304 drop_super(sb);
305 }
306
307 up(&bdev->bd_mount_sem);
308 mutex_unlock(&bdev->bd_fsfreeze_mutex);
309 return 0;
310 }
311 EXPORT_SYMBOL(thaw_bdev);
312
313 /*
314 * Various filesystems appear to want __find_get_block to be non-blocking.
315 * But it's the page lock which protects the buffers. To get around this,
316 * we get exclusion from try_to_free_buffers with the blockdev mapping's
317 * private_lock.
318 *
319 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
320 * may be quite high. This code could TryLock the page, and if that
321 * succeeds, there is no need to take private_lock. (But if
322 * private_lock is contended then so is mapping->tree_lock).
323 */
324 static struct buffer_head *
__find_get_block_slow(struct block_device * bdev,sector_t block)325 __find_get_block_slow(struct block_device *bdev, sector_t block)
326 {
327 struct inode *bd_inode = bdev->bd_inode;
328 struct address_space *bd_mapping = bd_inode->i_mapping;
329 struct buffer_head *ret = NULL;
330 pgoff_t index;
331 struct buffer_head *bh;
332 struct buffer_head *head;
333 struct page *page;
334 int all_mapped = 1;
335
336 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
337 page = find_get_page(bd_mapping, index);
338 if (!page)
339 goto out;
340
341 spin_lock(&bd_mapping->private_lock);
342 if (!page_has_buffers(page))
343 goto out_unlock;
344 head = page_buffers(page);
345 bh = head;
346 do {
347 if (bh->b_blocknr == block) {
348 ret = bh;
349 get_bh(bh);
350 goto out_unlock;
351 }
352 if (!buffer_mapped(bh))
353 all_mapped = 0;
354 bh = bh->b_this_page;
355 } while (bh != head);
356
357 /* we might be here because some of the buffers on this page are
358 * not mapped. This is due to various races between
359 * file io on the block device and getblk. It gets dealt with
360 * elsewhere, don't buffer_error if we had some unmapped buffers
361 */
362 if (all_mapped) {
363 printk("__find_get_block_slow() failed. "
364 "block=%llu, b_blocknr=%llu\n",
365 (unsigned long long)block,
366 (unsigned long long)bh->b_blocknr);
367 printk("b_state=0x%08lx, b_size=%zu\n",
368 bh->b_state, bh->b_size);
369 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
370 }
371 out_unlock:
372 spin_unlock(&bd_mapping->private_lock);
373 page_cache_release(page);
374 out:
375 return ret;
376 }
377
378 /* If invalidate_buffers() will trash dirty buffers, it means some kind
379 of fs corruption is going on. Trashing dirty data always imply losing
380 information that was supposed to be just stored on the physical layer
381 by the user.
382
383 Thus invalidate_buffers in general usage is not allwowed to trash
384 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
385 be preserved. These buffers are simply skipped.
386
387 We also skip buffers which are still in use. For example this can
388 happen if a userspace program is reading the block device.
389
390 NOTE: In the case where the user removed a removable-media-disk even if
391 there's still dirty data not synced on disk (due a bug in the device driver
392 or due an error of the user), by not destroying the dirty buffers we could
393 generate corruption also on the next media inserted, thus a parameter is
394 necessary to handle this case in the most safe way possible (trying
395 to not corrupt also the new disk inserted with the data belonging to
396 the old now corrupted disk). Also for the ramdisk the natural thing
397 to do in order to release the ramdisk memory is to destroy dirty buffers.
398
399 These are two special cases. Normal usage imply the device driver
400 to issue a sync on the device (without waiting I/O completion) and
401 then an invalidate_buffers call that doesn't trash dirty buffers.
402
403 For handling cache coherency with the blkdev pagecache the 'update' case
404 is been introduced. It is needed to re-read from disk any pinned
405 buffer. NOTE: re-reading from disk is destructive so we can do it only
406 when we assume nobody is changing the buffercache under our I/O and when
407 we think the disk contains more recent information than the buffercache.
408 The update == 1 pass marks the buffers we need to update, the update == 2
409 pass does the actual I/O. */
invalidate_bdev(struct block_device * bdev)410 void invalidate_bdev(struct block_device *bdev)
411 {
412 struct address_space *mapping = bdev->bd_inode->i_mapping;
413
414 if (mapping->nrpages == 0)
415 return;
416
417 invalidate_bh_lrus();
418 invalidate_mapping_pages(mapping, 0, -1);
419 }
420
421 /*
422 * Kick pdflush then try to free up some ZONE_NORMAL memory.
423 */
free_more_memory(void)424 static void free_more_memory(void)
425 {
426 struct zone *zone;
427 int nid;
428
429 wakeup_pdflush(1024);
430 yield();
431
432 for_each_online_node(nid) {
433 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
434 gfp_zone(GFP_NOFS), NULL,
435 &zone);
436 if (zone)
437 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
438 GFP_NOFS);
439 }
440 }
441
442 /*
443 * I/O completion handler for block_read_full_page() - pages
444 * which come unlocked at the end of I/O.
445 */
end_buffer_async_read(struct buffer_head * bh,int uptodate)446 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
447 {
448 unsigned long flags;
449 struct buffer_head *first;
450 struct buffer_head *tmp;
451 struct page *page;
452 int page_uptodate = 1;
453
454 BUG_ON(!buffer_async_read(bh));
455
456 page = bh->b_page;
457 if (uptodate) {
458 set_buffer_uptodate(bh);
459 } else {
460 clear_buffer_uptodate(bh);
461 if (!quiet_error(bh))
462 buffer_io_error(bh);
463 SetPageError(page);
464 }
465
466 /*
467 * Be _very_ careful from here on. Bad things can happen if
468 * two buffer heads end IO at almost the same time and both
469 * decide that the page is now completely done.
470 */
471 first = page_buffers(page);
472 local_irq_save(flags);
473 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
474 clear_buffer_async_read(bh);
475 unlock_buffer(bh);
476 tmp = bh;
477 do {
478 if (!buffer_uptodate(tmp))
479 page_uptodate = 0;
480 if (buffer_async_read(tmp)) {
481 BUG_ON(!buffer_locked(tmp));
482 goto still_busy;
483 }
484 tmp = tmp->b_this_page;
485 } while (tmp != bh);
486 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
487 local_irq_restore(flags);
488
489 /*
490 * If none of the buffers had errors and they are all
491 * uptodate then we can set the page uptodate.
492 */
493 if (page_uptodate && !PageError(page))
494 SetPageUptodate(page);
495 unlock_page(page);
496 return;
497
498 still_busy:
499 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
500 local_irq_restore(flags);
501 return;
502 }
503
504 /*
505 * Completion handler for block_write_full_page() - pages which are unlocked
506 * during I/O, and which have PageWriteback cleared upon I/O completion.
507 */
end_buffer_async_write(struct buffer_head * bh,int uptodate)508 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
509 {
510 char b[BDEVNAME_SIZE];
511 unsigned long flags;
512 struct buffer_head *first;
513 struct buffer_head *tmp;
514 struct page *page;
515
516 BUG_ON(!buffer_async_write(bh));
517
518 page = bh->b_page;
519 if (uptodate) {
520 set_buffer_uptodate(bh);
521 } else {
522 if (!quiet_error(bh)) {
523 buffer_io_error(bh);
524 printk(KERN_WARNING "lost page write due to "
525 "I/O error on %s\n",
526 bdevname(bh->b_bdev, b));
527 }
528 set_bit(AS_EIO, &page->mapping->flags);
529 set_buffer_write_io_error(bh);
530 clear_buffer_uptodate(bh);
531 SetPageError(page);
532 }
533
534 first = page_buffers(page);
535 local_irq_save(flags);
536 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
537
538 clear_buffer_async_write(bh);
539 unlock_buffer(bh);
540 tmp = bh->b_this_page;
541 while (tmp != bh) {
542 if (buffer_async_write(tmp)) {
543 BUG_ON(!buffer_locked(tmp));
544 goto still_busy;
545 }
546 tmp = tmp->b_this_page;
547 }
548 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
549 local_irq_restore(flags);
550 end_page_writeback(page);
551 return;
552
553 still_busy:
554 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
555 local_irq_restore(flags);
556 return;
557 }
558
559 /*
560 * If a page's buffers are under async readin (end_buffer_async_read
561 * completion) then there is a possibility that another thread of
562 * control could lock one of the buffers after it has completed
563 * but while some of the other buffers have not completed. This
564 * locked buffer would confuse end_buffer_async_read() into not unlocking
565 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
566 * that this buffer is not under async I/O.
567 *
568 * The page comes unlocked when it has no locked buffer_async buffers
569 * left.
570 *
571 * PageLocked prevents anyone starting new async I/O reads any of
572 * the buffers.
573 *
574 * PageWriteback is used to prevent simultaneous writeout of the same
575 * page.
576 *
577 * PageLocked prevents anyone from starting writeback of a page which is
578 * under read I/O (PageWriteback is only ever set against a locked page).
579 */
mark_buffer_async_read(struct buffer_head * bh)580 static void mark_buffer_async_read(struct buffer_head *bh)
581 {
582 bh->b_end_io = end_buffer_async_read;
583 set_buffer_async_read(bh);
584 }
585
mark_buffer_async_write(struct buffer_head * bh)586 void mark_buffer_async_write(struct buffer_head *bh)
587 {
588 bh->b_end_io = end_buffer_async_write;
589 set_buffer_async_write(bh);
590 }
591 EXPORT_SYMBOL(mark_buffer_async_write);
592
593
594 /*
595 * fs/buffer.c contains helper functions for buffer-backed address space's
596 * fsync functions. A common requirement for buffer-based filesystems is
597 * that certain data from the backing blockdev needs to be written out for
598 * a successful fsync(). For example, ext2 indirect blocks need to be
599 * written back and waited upon before fsync() returns.
600 *
601 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
602 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
603 * management of a list of dependent buffers at ->i_mapping->private_list.
604 *
605 * Locking is a little subtle: try_to_free_buffers() will remove buffers
606 * from their controlling inode's queue when they are being freed. But
607 * try_to_free_buffers() will be operating against the *blockdev* mapping
608 * at the time, not against the S_ISREG file which depends on those buffers.
609 * So the locking for private_list is via the private_lock in the address_space
610 * which backs the buffers. Which is different from the address_space
611 * against which the buffers are listed. So for a particular address_space,
612 * mapping->private_lock does *not* protect mapping->private_list! In fact,
613 * mapping->private_list will always be protected by the backing blockdev's
614 * ->private_lock.
615 *
616 * Which introduces a requirement: all buffers on an address_space's
617 * ->private_list must be from the same address_space: the blockdev's.
618 *
619 * address_spaces which do not place buffers at ->private_list via these
620 * utility functions are free to use private_lock and private_list for
621 * whatever they want. The only requirement is that list_empty(private_list)
622 * be true at clear_inode() time.
623 *
624 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
625 * filesystems should do that. invalidate_inode_buffers() should just go
626 * BUG_ON(!list_empty).
627 *
628 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
629 * take an address_space, not an inode. And it should be called
630 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
631 * queued up.
632 *
633 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
634 * list if it is already on a list. Because if the buffer is on a list,
635 * it *must* already be on the right one. If not, the filesystem is being
636 * silly. This will save a ton of locking. But first we have to ensure
637 * that buffers are taken *off* the old inode's list when they are freed
638 * (presumably in truncate). That requires careful auditing of all
639 * filesystems (do it inside bforget()). It could also be done by bringing
640 * b_inode back.
641 */
642
643 /*
644 * The buffer's backing address_space's private_lock must be held
645 */
__remove_assoc_queue(struct buffer_head * bh)646 static void __remove_assoc_queue(struct buffer_head *bh)
647 {
648 list_del_init(&bh->b_assoc_buffers);
649 WARN_ON(!bh->b_assoc_map);
650 if (buffer_write_io_error(bh))
651 set_bit(AS_EIO, &bh->b_assoc_map->flags);
652 bh->b_assoc_map = NULL;
653 }
654
inode_has_buffers(struct inode * inode)655 int inode_has_buffers(struct inode *inode)
656 {
657 return !list_empty(&inode->i_data.private_list);
658 }
659
660 /*
661 * osync is designed to support O_SYNC io. It waits synchronously for
662 * all already-submitted IO to complete, but does not queue any new
663 * writes to the disk.
664 *
665 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
666 * you dirty the buffers, and then use osync_inode_buffers to wait for
667 * completion. Any other dirty buffers which are not yet queued for
668 * write will not be flushed to disk by the osync.
669 */
osync_buffers_list(spinlock_t * lock,struct list_head * list)670 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
671 {
672 struct buffer_head *bh;
673 struct list_head *p;
674 int err = 0;
675
676 spin_lock(lock);
677 repeat:
678 list_for_each_prev(p, list) {
679 bh = BH_ENTRY(p);
680 if (buffer_locked(bh)) {
681 get_bh(bh);
682 spin_unlock(lock);
683 wait_on_buffer(bh);
684 if (!buffer_uptodate(bh))
685 err = -EIO;
686 brelse(bh);
687 spin_lock(lock);
688 goto repeat;
689 }
690 }
691 spin_unlock(lock);
692 return err;
693 }
694
695 /**
696 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
697 * @mapping: the mapping which wants those buffers written
698 *
699 * Starts I/O against the buffers at mapping->private_list, and waits upon
700 * that I/O.
701 *
702 * Basically, this is a convenience function for fsync().
703 * @mapping is a file or directory which needs those buffers to be written for
704 * a successful fsync().
705 */
sync_mapping_buffers(struct address_space * mapping)706 int sync_mapping_buffers(struct address_space *mapping)
707 {
708 struct address_space *buffer_mapping = mapping->assoc_mapping;
709
710 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
711 return 0;
712
713 return fsync_buffers_list(&buffer_mapping->private_lock,
714 &mapping->private_list);
715 }
716 EXPORT_SYMBOL(sync_mapping_buffers);
717
718 /*
719 * Called when we've recently written block `bblock', and it is known that
720 * `bblock' was for a buffer_boundary() buffer. This means that the block at
721 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
722 * dirty, schedule it for IO. So that indirects merge nicely with their data.
723 */
write_boundary_block(struct block_device * bdev,sector_t bblock,unsigned blocksize)724 void write_boundary_block(struct block_device *bdev,
725 sector_t bblock, unsigned blocksize)
726 {
727 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
728 if (bh) {
729 if (buffer_dirty(bh))
730 ll_rw_block(WRITE, 1, &bh);
731 put_bh(bh);
732 }
733 }
734
mark_buffer_dirty_inode(struct buffer_head * bh,struct inode * inode)735 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
736 {
737 struct address_space *mapping = inode->i_mapping;
738 struct address_space *buffer_mapping = bh->b_page->mapping;
739
740 mark_buffer_dirty(bh);
741 if (!mapping->assoc_mapping) {
742 mapping->assoc_mapping = buffer_mapping;
743 } else {
744 BUG_ON(mapping->assoc_mapping != buffer_mapping);
745 }
746 if (!bh->b_assoc_map) {
747 spin_lock(&buffer_mapping->private_lock);
748 list_move_tail(&bh->b_assoc_buffers,
749 &mapping->private_list);
750 bh->b_assoc_map = mapping;
751 spin_unlock(&buffer_mapping->private_lock);
752 }
753 }
754 EXPORT_SYMBOL(mark_buffer_dirty_inode);
755
756 /*
757 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
758 * dirty.
759 *
760 * If warn is true, then emit a warning if the page is not uptodate and has
761 * not been truncated.
762 */
__set_page_dirty(struct page * page,struct address_space * mapping,int warn)763 static void __set_page_dirty(struct page *page,
764 struct address_space *mapping, int warn)
765 {
766 spin_lock_irq(&mapping->tree_lock);
767 if (page->mapping) { /* Race with truncate? */
768 WARN_ON_ONCE(warn && !PageUptodate(page));
769
770 if (mapping_cap_account_dirty(mapping)) {
771 __inc_zone_page_state(page, NR_FILE_DIRTY);
772 __inc_bdi_stat(mapping->backing_dev_info,
773 BDI_RECLAIMABLE);
774 task_dirty_inc(current);
775 task_io_account_write(PAGE_CACHE_SIZE);
776 }
777 radix_tree_tag_set(&mapping->page_tree,
778 page_index(page), PAGECACHE_TAG_DIRTY);
779 }
780 spin_unlock_irq(&mapping->tree_lock);
781 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
782 }
783
784 /*
785 * Add a page to the dirty page list.
786 *
787 * It is a sad fact of life that this function is called from several places
788 * deeply under spinlocking. It may not sleep.
789 *
790 * If the page has buffers, the uptodate buffers are set dirty, to preserve
791 * dirty-state coherency between the page and the buffers. It the page does
792 * not have buffers then when they are later attached they will all be set
793 * dirty.
794 *
795 * The buffers are dirtied before the page is dirtied. There's a small race
796 * window in which a writepage caller may see the page cleanness but not the
797 * buffer dirtiness. That's fine. If this code were to set the page dirty
798 * before the buffers, a concurrent writepage caller could clear the page dirty
799 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
800 * page on the dirty page list.
801 *
802 * We use private_lock to lock against try_to_free_buffers while using the
803 * page's buffer list. Also use this to protect against clean buffers being
804 * added to the page after it was set dirty.
805 *
806 * FIXME: may need to call ->reservepage here as well. That's rather up to the
807 * address_space though.
808 */
__set_page_dirty_buffers(struct page * page)809 int __set_page_dirty_buffers(struct page *page)
810 {
811 int newly_dirty;
812 struct address_space *mapping = page_mapping(page);
813
814 if (unlikely(!mapping))
815 return !TestSetPageDirty(page);
816
817 spin_lock(&mapping->private_lock);
818 if (page_has_buffers(page)) {
819 struct buffer_head *head = page_buffers(page);
820 struct buffer_head *bh = head;
821
822 do {
823 set_buffer_dirty(bh);
824 bh = bh->b_this_page;
825 } while (bh != head);
826 }
827 newly_dirty = !TestSetPageDirty(page);
828 spin_unlock(&mapping->private_lock);
829
830 if (newly_dirty)
831 __set_page_dirty(page, mapping, 1);
832 return newly_dirty;
833 }
834 EXPORT_SYMBOL(__set_page_dirty_buffers);
835
836 /*
837 * Write out and wait upon a list of buffers.
838 *
839 * We have conflicting pressures: we want to make sure that all
840 * initially dirty buffers get waited on, but that any subsequently
841 * dirtied buffers don't. After all, we don't want fsync to last
842 * forever if somebody is actively writing to the file.
843 *
844 * Do this in two main stages: first we copy dirty buffers to a
845 * temporary inode list, queueing the writes as we go. Then we clean
846 * up, waiting for those writes to complete.
847 *
848 * During this second stage, any subsequent updates to the file may end
849 * up refiling the buffer on the original inode's dirty list again, so
850 * there is a chance we will end up with a buffer queued for write but
851 * not yet completed on that list. So, as a final cleanup we go through
852 * the osync code to catch these locked, dirty buffers without requeuing
853 * any newly dirty buffers for write.
854 */
fsync_buffers_list(spinlock_t * lock,struct list_head * list)855 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
856 {
857 struct buffer_head *bh;
858 struct list_head tmp;
859 struct address_space *mapping;
860 int err = 0, err2;
861
862 INIT_LIST_HEAD(&tmp);
863
864 spin_lock(lock);
865 while (!list_empty(list)) {
866 bh = BH_ENTRY(list->next);
867 mapping = bh->b_assoc_map;
868 __remove_assoc_queue(bh);
869 /* Avoid race with mark_buffer_dirty_inode() which does
870 * a lockless check and we rely on seeing the dirty bit */
871 smp_mb();
872 if (buffer_dirty(bh) || buffer_locked(bh)) {
873 list_add(&bh->b_assoc_buffers, &tmp);
874 bh->b_assoc_map = mapping;
875 if (buffer_dirty(bh)) {
876 get_bh(bh);
877 spin_unlock(lock);
878 /*
879 * Ensure any pending I/O completes so that
880 * ll_rw_block() actually writes the current
881 * contents - it is a noop if I/O is still in
882 * flight on potentially older contents.
883 */
884 ll_rw_block(SWRITE_SYNC, 1, &bh);
885 brelse(bh);
886 spin_lock(lock);
887 }
888 }
889 }
890
891 while (!list_empty(&tmp)) {
892 bh = BH_ENTRY(tmp.prev);
893 get_bh(bh);
894 mapping = bh->b_assoc_map;
895 __remove_assoc_queue(bh);
896 /* Avoid race with mark_buffer_dirty_inode() which does
897 * a lockless check and we rely on seeing the dirty bit */
898 smp_mb();
899 if (buffer_dirty(bh)) {
900 list_add(&bh->b_assoc_buffers,
901 &mapping->private_list);
902 bh->b_assoc_map = mapping;
903 }
904 spin_unlock(lock);
905 wait_on_buffer(bh);
906 if (!buffer_uptodate(bh))
907 err = -EIO;
908 brelse(bh);
909 spin_lock(lock);
910 }
911
912 spin_unlock(lock);
913 err2 = osync_buffers_list(lock, list);
914 if (err)
915 return err;
916 else
917 return err2;
918 }
919
920 /*
921 * Invalidate any and all dirty buffers on a given inode. We are
922 * probably unmounting the fs, but that doesn't mean we have already
923 * done a sync(). Just drop the buffers from the inode list.
924 *
925 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
926 * assumes that all the buffers are against the blockdev. Not true
927 * for reiserfs.
928 */
invalidate_inode_buffers(struct inode * inode)929 void invalidate_inode_buffers(struct inode *inode)
930 {
931 if (inode_has_buffers(inode)) {
932 struct address_space *mapping = &inode->i_data;
933 struct list_head *list = &mapping->private_list;
934 struct address_space *buffer_mapping = mapping->assoc_mapping;
935
936 spin_lock(&buffer_mapping->private_lock);
937 while (!list_empty(list))
938 __remove_assoc_queue(BH_ENTRY(list->next));
939 spin_unlock(&buffer_mapping->private_lock);
940 }
941 }
942 EXPORT_SYMBOL(invalidate_inode_buffers);
943
944 /*
945 * Remove any clean buffers from the inode's buffer list. This is called
946 * when we're trying to free the inode itself. Those buffers can pin it.
947 *
948 * Returns true if all buffers were removed.
949 */
remove_inode_buffers(struct inode * inode)950 int remove_inode_buffers(struct inode *inode)
951 {
952 int ret = 1;
953
954 if (inode_has_buffers(inode)) {
955 struct address_space *mapping = &inode->i_data;
956 struct list_head *list = &mapping->private_list;
957 struct address_space *buffer_mapping = mapping->assoc_mapping;
958
959 spin_lock(&buffer_mapping->private_lock);
960 while (!list_empty(list)) {
961 struct buffer_head *bh = BH_ENTRY(list->next);
962 if (buffer_dirty(bh)) {
963 ret = 0;
964 break;
965 }
966 __remove_assoc_queue(bh);
967 }
968 spin_unlock(&buffer_mapping->private_lock);
969 }
970 return ret;
971 }
972
973 /*
974 * Create the appropriate buffers when given a page for data area and
975 * the size of each buffer.. Use the bh->b_this_page linked list to
976 * follow the buffers created. Return NULL if unable to create more
977 * buffers.
978 *
979 * The retry flag is used to differentiate async IO (paging, swapping)
980 * which may not fail from ordinary buffer allocations.
981 */
alloc_page_buffers(struct page * page,unsigned long size,int retry)982 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
983 int retry)
984 {
985 struct buffer_head *bh, *head;
986 long offset;
987
988 try_again:
989 head = NULL;
990 offset = PAGE_SIZE;
991 while ((offset -= size) >= 0) {
992 bh = alloc_buffer_head(GFP_NOFS);
993 if (!bh)
994 goto no_grow;
995
996 bh->b_bdev = NULL;
997 bh->b_this_page = head;
998 bh->b_blocknr = -1;
999 head = bh;
1000
1001 bh->b_state = 0;
1002 atomic_set(&bh->b_count, 0);
1003 bh->b_private = NULL;
1004 bh->b_size = size;
1005
1006 /* Link the buffer to its page */
1007 set_bh_page(bh, page, offset);
1008
1009 init_buffer(bh, NULL, NULL);
1010 }
1011 return head;
1012 /*
1013 * In case anything failed, we just free everything we got.
1014 */
1015 no_grow:
1016 if (head) {
1017 do {
1018 bh = head;
1019 head = head->b_this_page;
1020 free_buffer_head(bh);
1021 } while (head);
1022 }
1023
1024 /*
1025 * Return failure for non-async IO requests. Async IO requests
1026 * are not allowed to fail, so we have to wait until buffer heads
1027 * become available. But we don't want tasks sleeping with
1028 * partially complete buffers, so all were released above.
1029 */
1030 if (!retry)
1031 return NULL;
1032
1033 /* We're _really_ low on memory. Now we just
1034 * wait for old buffer heads to become free due to
1035 * finishing IO. Since this is an async request and
1036 * the reserve list is empty, we're sure there are
1037 * async buffer heads in use.
1038 */
1039 free_more_memory();
1040 goto try_again;
1041 }
1042 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1043
1044 static inline void
link_dev_buffers(struct page * page,struct buffer_head * head)1045 link_dev_buffers(struct page *page, struct buffer_head *head)
1046 {
1047 struct buffer_head *bh, *tail;
1048
1049 bh = head;
1050 do {
1051 tail = bh;
1052 bh = bh->b_this_page;
1053 } while (bh);
1054 tail->b_this_page = head;
1055 attach_page_buffers(page, head);
1056 }
1057
1058 /*
1059 * Initialise the state of a blockdev page's buffers.
1060 */
1061 static void
init_page_buffers(struct page * page,struct block_device * bdev,sector_t block,int size)1062 init_page_buffers(struct page *page, struct block_device *bdev,
1063 sector_t block, int size)
1064 {
1065 struct buffer_head *head = page_buffers(page);
1066 struct buffer_head *bh = head;
1067 int uptodate = PageUptodate(page);
1068
1069 do {
1070 if (!buffer_mapped(bh)) {
1071 init_buffer(bh, NULL, NULL);
1072 bh->b_bdev = bdev;
1073 bh->b_blocknr = block;
1074 if (uptodate)
1075 set_buffer_uptodate(bh);
1076 set_buffer_mapped(bh);
1077 }
1078 block++;
1079 bh = bh->b_this_page;
1080 } while (bh != head);
1081 }
1082
1083 /*
1084 * Create the page-cache page that contains the requested block.
1085 *
1086 * This is user purely for blockdev mappings.
1087 */
1088 static struct page *
grow_dev_page(struct block_device * bdev,sector_t block,pgoff_t index,int size)1089 grow_dev_page(struct block_device *bdev, sector_t block,
1090 pgoff_t index, int size)
1091 {
1092 struct inode *inode = bdev->bd_inode;
1093 struct page *page;
1094 struct buffer_head *bh;
1095
1096 page = find_or_create_page(inode->i_mapping, index,
1097 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1098 if (!page)
1099 return NULL;
1100
1101 BUG_ON(!PageLocked(page));
1102
1103 if (page_has_buffers(page)) {
1104 bh = page_buffers(page);
1105 if (bh->b_size == size) {
1106 init_page_buffers(page, bdev, block, size);
1107 return page;
1108 }
1109 if (!try_to_free_buffers(page))
1110 goto failed;
1111 }
1112
1113 /*
1114 * Allocate some buffers for this page
1115 */
1116 bh = alloc_page_buffers(page, size, 0);
1117 if (!bh)
1118 goto failed;
1119
1120 /*
1121 * Link the page to the buffers and initialise them. Take the
1122 * lock to be atomic wrt __find_get_block(), which does not
1123 * run under the page lock.
1124 */
1125 spin_lock(&inode->i_mapping->private_lock);
1126 link_dev_buffers(page, bh);
1127 init_page_buffers(page, bdev, block, size);
1128 spin_unlock(&inode->i_mapping->private_lock);
1129 return page;
1130
1131 failed:
1132 BUG();
1133 unlock_page(page);
1134 page_cache_release(page);
1135 return NULL;
1136 }
1137
1138 /*
1139 * Create buffers for the specified block device block's page. If
1140 * that page was dirty, the buffers are set dirty also.
1141 */
1142 static int
grow_buffers(struct block_device * bdev,sector_t block,int size)1143 grow_buffers(struct block_device *bdev, sector_t block, int size)
1144 {
1145 struct page *page;
1146 pgoff_t index;
1147 int sizebits;
1148
1149 sizebits = -1;
1150 do {
1151 sizebits++;
1152 } while ((size << sizebits) < PAGE_SIZE);
1153
1154 index = block >> sizebits;
1155
1156 /*
1157 * Check for a block which wants to lie outside our maximum possible
1158 * pagecache index. (this comparison is done using sector_t types).
1159 */
1160 if (unlikely(index != block >> sizebits)) {
1161 char b[BDEVNAME_SIZE];
1162
1163 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1164 "device %s\n",
1165 __func__, (unsigned long long)block,
1166 bdevname(bdev, b));
1167 return -EIO;
1168 }
1169 block = index << sizebits;
1170 /* Create a page with the proper size buffers.. */
1171 page = grow_dev_page(bdev, block, index, size);
1172 if (!page)
1173 return 0;
1174 unlock_page(page);
1175 page_cache_release(page);
1176 return 1;
1177 }
1178
1179 static struct buffer_head *
__getblk_slow(struct block_device * bdev,sector_t block,int size)1180 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1181 {
1182 /* Size must be multiple of hard sectorsize */
1183 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1184 (size < 512 || size > PAGE_SIZE))) {
1185 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1186 size);
1187 printk(KERN_ERR "hardsect size: %d\n",
1188 bdev_hardsect_size(bdev));
1189
1190 dump_stack();
1191 return NULL;
1192 }
1193
1194 for (;;) {
1195 struct buffer_head * bh;
1196 int ret;
1197
1198 bh = __find_get_block(bdev, block, size);
1199 if (bh)
1200 return bh;
1201
1202 ret = grow_buffers(bdev, block, size);
1203 if (ret < 0)
1204 return NULL;
1205 if (ret == 0)
1206 free_more_memory();
1207 }
1208 }
1209
1210 /*
1211 * The relationship between dirty buffers and dirty pages:
1212 *
1213 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1214 * the page is tagged dirty in its radix tree.
1215 *
1216 * At all times, the dirtiness of the buffers represents the dirtiness of
1217 * subsections of the page. If the page has buffers, the page dirty bit is
1218 * merely a hint about the true dirty state.
1219 *
1220 * When a page is set dirty in its entirety, all its buffers are marked dirty
1221 * (if the page has buffers).
1222 *
1223 * When a buffer is marked dirty, its page is dirtied, but the page's other
1224 * buffers are not.
1225 *
1226 * Also. When blockdev buffers are explicitly read with bread(), they
1227 * individually become uptodate. But their backing page remains not
1228 * uptodate - even if all of its buffers are uptodate. A subsequent
1229 * block_read_full_page() against that page will discover all the uptodate
1230 * buffers, will set the page uptodate and will perform no I/O.
1231 */
1232
1233 /**
1234 * mark_buffer_dirty - mark a buffer_head as needing writeout
1235 * @bh: the buffer_head to mark dirty
1236 *
1237 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1238 * backing page dirty, then tag the page as dirty in its address_space's radix
1239 * tree and then attach the address_space's inode to its superblock's dirty
1240 * inode list.
1241 *
1242 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1243 * mapping->tree_lock and the global inode_lock.
1244 */
mark_buffer_dirty(struct buffer_head * bh)1245 void mark_buffer_dirty(struct buffer_head *bh)
1246 {
1247 WARN_ON_ONCE(!buffer_uptodate(bh));
1248
1249 /*
1250 * Very *carefully* optimize the it-is-already-dirty case.
1251 *
1252 * Don't let the final "is it dirty" escape to before we
1253 * perhaps modified the buffer.
1254 */
1255 if (buffer_dirty(bh)) {
1256 smp_mb();
1257 if (buffer_dirty(bh))
1258 return;
1259 }
1260
1261 if (!test_set_buffer_dirty(bh)) {
1262 struct page *page = bh->b_page;
1263 if (!TestSetPageDirty(page))
1264 __set_page_dirty(page, page_mapping(page), 0);
1265 }
1266 }
1267
1268 /*
1269 * Decrement a buffer_head's reference count. If all buffers against a page
1270 * have zero reference count, are clean and unlocked, and if the page is clean
1271 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1272 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1273 * a page but it ends up not being freed, and buffers may later be reattached).
1274 */
__brelse(struct buffer_head * buf)1275 void __brelse(struct buffer_head * buf)
1276 {
1277 if (atomic_read(&buf->b_count)) {
1278 put_bh(buf);
1279 return;
1280 }
1281 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1282 }
1283
1284 /*
1285 * bforget() is like brelse(), except it discards any
1286 * potentially dirty data.
1287 */
__bforget(struct buffer_head * bh)1288 void __bforget(struct buffer_head *bh)
1289 {
1290 clear_buffer_dirty(bh);
1291 if (bh->b_assoc_map) {
1292 struct address_space *buffer_mapping = bh->b_page->mapping;
1293
1294 spin_lock(&buffer_mapping->private_lock);
1295 list_del_init(&bh->b_assoc_buffers);
1296 bh->b_assoc_map = NULL;
1297 spin_unlock(&buffer_mapping->private_lock);
1298 }
1299 __brelse(bh);
1300 }
1301
__bread_slow(struct buffer_head * bh)1302 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1303 {
1304 lock_buffer(bh);
1305 if (buffer_uptodate(bh)) {
1306 unlock_buffer(bh);
1307 return bh;
1308 } else {
1309 get_bh(bh);
1310 bh->b_end_io = end_buffer_read_sync;
1311 submit_bh(READ, bh);
1312 wait_on_buffer(bh);
1313 if (buffer_uptodate(bh))
1314 return bh;
1315 }
1316 brelse(bh);
1317 return NULL;
1318 }
1319
1320 /*
1321 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1322 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1323 * refcount elevated by one when they're in an LRU. A buffer can only appear
1324 * once in a particular CPU's LRU. A single buffer can be present in multiple
1325 * CPU's LRUs at the same time.
1326 *
1327 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1328 * sb_find_get_block().
1329 *
1330 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1331 * a local interrupt disable for that.
1332 */
1333
1334 #define BH_LRU_SIZE 8
1335
1336 struct bh_lru {
1337 struct buffer_head *bhs[BH_LRU_SIZE];
1338 };
1339
1340 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1341
1342 #ifdef CONFIG_SMP
1343 #define bh_lru_lock() local_irq_disable()
1344 #define bh_lru_unlock() local_irq_enable()
1345 #else
1346 #define bh_lru_lock() preempt_disable()
1347 #define bh_lru_unlock() preempt_enable()
1348 #endif
1349
check_irqs_on(void)1350 static inline void check_irqs_on(void)
1351 {
1352 #ifdef irqs_disabled
1353 BUG_ON(irqs_disabled());
1354 #endif
1355 }
1356
1357 /*
1358 * The LRU management algorithm is dopey-but-simple. Sorry.
1359 */
bh_lru_install(struct buffer_head * bh)1360 static void bh_lru_install(struct buffer_head *bh)
1361 {
1362 struct buffer_head *evictee = NULL;
1363 struct bh_lru *lru;
1364
1365 check_irqs_on();
1366 bh_lru_lock();
1367 lru = &__get_cpu_var(bh_lrus);
1368 if (lru->bhs[0] != bh) {
1369 struct buffer_head *bhs[BH_LRU_SIZE];
1370 int in;
1371 int out = 0;
1372
1373 get_bh(bh);
1374 bhs[out++] = bh;
1375 for (in = 0; in < BH_LRU_SIZE; in++) {
1376 struct buffer_head *bh2 = lru->bhs[in];
1377
1378 if (bh2 == bh) {
1379 __brelse(bh2);
1380 } else {
1381 if (out >= BH_LRU_SIZE) {
1382 BUG_ON(evictee != NULL);
1383 evictee = bh2;
1384 } else {
1385 bhs[out++] = bh2;
1386 }
1387 }
1388 }
1389 while (out < BH_LRU_SIZE)
1390 bhs[out++] = NULL;
1391 memcpy(lru->bhs, bhs, sizeof(bhs));
1392 }
1393 bh_lru_unlock();
1394
1395 if (evictee)
1396 __brelse(evictee);
1397 }
1398
1399 /*
1400 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1401 */
1402 static struct buffer_head *
lookup_bh_lru(struct block_device * bdev,sector_t block,unsigned size)1403 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1404 {
1405 struct buffer_head *ret = NULL;
1406 struct bh_lru *lru;
1407 unsigned int i;
1408
1409 check_irqs_on();
1410 bh_lru_lock();
1411 lru = &__get_cpu_var(bh_lrus);
1412 for (i = 0; i < BH_LRU_SIZE; i++) {
1413 struct buffer_head *bh = lru->bhs[i];
1414
1415 if (bh && bh->b_bdev == bdev &&
1416 bh->b_blocknr == block && bh->b_size == size) {
1417 if (i) {
1418 while (i) {
1419 lru->bhs[i] = lru->bhs[i - 1];
1420 i--;
1421 }
1422 lru->bhs[0] = bh;
1423 }
1424 get_bh(bh);
1425 ret = bh;
1426 break;
1427 }
1428 }
1429 bh_lru_unlock();
1430 return ret;
1431 }
1432
1433 /*
1434 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1435 * it in the LRU and mark it as accessed. If it is not present then return
1436 * NULL
1437 */
1438 struct buffer_head *
__find_get_block(struct block_device * bdev,sector_t block,unsigned size)1439 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1440 {
1441 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1442
1443 if (bh == NULL) {
1444 bh = __find_get_block_slow(bdev, block);
1445 if (bh)
1446 bh_lru_install(bh);
1447 }
1448 if (bh)
1449 touch_buffer(bh);
1450 return bh;
1451 }
1452 EXPORT_SYMBOL(__find_get_block);
1453
1454 /*
1455 * __getblk will locate (and, if necessary, create) the buffer_head
1456 * which corresponds to the passed block_device, block and size. The
1457 * returned buffer has its reference count incremented.
1458 *
1459 * __getblk() cannot fail - it just keeps trying. If you pass it an
1460 * illegal block number, __getblk() will happily return a buffer_head
1461 * which represents the non-existent block. Very weird.
1462 *
1463 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1464 * attempt is failing. FIXME, perhaps?
1465 */
1466 struct buffer_head *
__getblk(struct block_device * bdev,sector_t block,unsigned size)1467 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1468 {
1469 struct buffer_head *bh = __find_get_block(bdev, block, size);
1470
1471 might_sleep();
1472 if (bh == NULL)
1473 bh = __getblk_slow(bdev, block, size);
1474 return bh;
1475 }
1476 EXPORT_SYMBOL(__getblk);
1477
1478 /*
1479 * Do async read-ahead on a buffer..
1480 */
__breadahead(struct block_device * bdev,sector_t block,unsigned size)1481 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1482 {
1483 struct buffer_head *bh = __getblk(bdev, block, size);
1484 if (likely(bh)) {
1485 ll_rw_block(READA, 1, &bh);
1486 brelse(bh);
1487 }
1488 }
1489 EXPORT_SYMBOL(__breadahead);
1490
1491 /**
1492 * __bread() - reads a specified block and returns the bh
1493 * @bdev: the block_device to read from
1494 * @block: number of block
1495 * @size: size (in bytes) to read
1496 *
1497 * Reads a specified block, and returns buffer head that contains it.
1498 * It returns NULL if the block was unreadable.
1499 */
1500 struct buffer_head *
__bread(struct block_device * bdev,sector_t block,unsigned size)1501 __bread(struct block_device *bdev, sector_t block, unsigned size)
1502 {
1503 struct buffer_head *bh = __getblk(bdev, block, size);
1504
1505 if (likely(bh) && !buffer_uptodate(bh))
1506 bh = __bread_slow(bh);
1507 return bh;
1508 }
1509 EXPORT_SYMBOL(__bread);
1510
1511 /*
1512 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1513 * This doesn't race because it runs in each cpu either in irq
1514 * or with preempt disabled.
1515 */
invalidate_bh_lru(void * arg)1516 static void invalidate_bh_lru(void *arg)
1517 {
1518 struct bh_lru *b = &get_cpu_var(bh_lrus);
1519 int i;
1520
1521 for (i = 0; i < BH_LRU_SIZE; i++) {
1522 brelse(b->bhs[i]);
1523 b->bhs[i] = NULL;
1524 }
1525 put_cpu_var(bh_lrus);
1526 }
1527
invalidate_bh_lrus(void)1528 void invalidate_bh_lrus(void)
1529 {
1530 on_each_cpu(invalidate_bh_lru, NULL, 1);
1531 }
1532 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1533
set_bh_page(struct buffer_head * bh,struct page * page,unsigned long offset)1534 void set_bh_page(struct buffer_head *bh,
1535 struct page *page, unsigned long offset)
1536 {
1537 bh->b_page = page;
1538 BUG_ON(offset >= PAGE_SIZE);
1539 if (PageHighMem(page))
1540 /*
1541 * This catches illegal uses and preserves the offset:
1542 */
1543 bh->b_data = (char *)(0 + offset);
1544 else
1545 bh->b_data = page_address(page) + offset;
1546 }
1547 EXPORT_SYMBOL(set_bh_page);
1548
1549 /*
1550 * Called when truncating a buffer on a page completely.
1551 */
discard_buffer(struct buffer_head * bh)1552 static void discard_buffer(struct buffer_head * bh)
1553 {
1554 lock_buffer(bh);
1555 clear_buffer_dirty(bh);
1556 bh->b_bdev = NULL;
1557 clear_buffer_mapped(bh);
1558 clear_buffer_req(bh);
1559 clear_buffer_new(bh);
1560 clear_buffer_delay(bh);
1561 clear_buffer_unwritten(bh);
1562 unlock_buffer(bh);
1563 }
1564
1565 /**
1566 * block_invalidatepage - invalidate part of all of a buffer-backed page
1567 *
1568 * @page: the page which is affected
1569 * @offset: the index of the truncation point
1570 *
1571 * block_invalidatepage() is called when all or part of the page has become
1572 * invalidatedby a truncate operation.
1573 *
1574 * block_invalidatepage() does not have to release all buffers, but it must
1575 * ensure that no dirty buffer is left outside @offset and that no I/O
1576 * is underway against any of the blocks which are outside the truncation
1577 * point. Because the caller is about to free (and possibly reuse) those
1578 * blocks on-disk.
1579 */
block_invalidatepage(struct page * page,unsigned long offset)1580 void block_invalidatepage(struct page *page, unsigned long offset)
1581 {
1582 struct buffer_head *head, *bh, *next;
1583 unsigned int curr_off = 0;
1584
1585 BUG_ON(!PageLocked(page));
1586 if (!page_has_buffers(page))
1587 goto out;
1588
1589 head = page_buffers(page);
1590 bh = head;
1591 do {
1592 unsigned int next_off = curr_off + bh->b_size;
1593 next = bh->b_this_page;
1594
1595 /*
1596 * is this block fully invalidated?
1597 */
1598 if (offset <= curr_off)
1599 discard_buffer(bh);
1600 curr_off = next_off;
1601 bh = next;
1602 } while (bh != head);
1603
1604 /*
1605 * We release buffers only if the entire page is being invalidated.
1606 * The get_block cached value has been unconditionally invalidated,
1607 * so real IO is not possible anymore.
1608 */
1609 if (offset == 0)
1610 try_to_release_page(page, 0);
1611 out:
1612 return;
1613 }
1614 EXPORT_SYMBOL(block_invalidatepage);
1615
1616 /*
1617 * We attach and possibly dirty the buffers atomically wrt
1618 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1619 * is already excluded via the page lock.
1620 */
create_empty_buffers(struct page * page,unsigned long blocksize,unsigned long b_state)1621 void create_empty_buffers(struct page *page,
1622 unsigned long blocksize, unsigned long b_state)
1623 {
1624 struct buffer_head *bh, *head, *tail;
1625
1626 head = alloc_page_buffers(page, blocksize, 1);
1627 bh = head;
1628 do {
1629 bh->b_state |= b_state;
1630 tail = bh;
1631 bh = bh->b_this_page;
1632 } while (bh);
1633 tail->b_this_page = head;
1634
1635 spin_lock(&page->mapping->private_lock);
1636 if (PageUptodate(page) || PageDirty(page)) {
1637 bh = head;
1638 do {
1639 if (PageDirty(page))
1640 set_buffer_dirty(bh);
1641 if (PageUptodate(page))
1642 set_buffer_uptodate(bh);
1643 bh = bh->b_this_page;
1644 } while (bh != head);
1645 }
1646 attach_page_buffers(page, head);
1647 spin_unlock(&page->mapping->private_lock);
1648 }
1649 EXPORT_SYMBOL(create_empty_buffers);
1650
1651 /*
1652 * We are taking a block for data and we don't want any output from any
1653 * buffer-cache aliases starting from return from that function and
1654 * until the moment when something will explicitly mark the buffer
1655 * dirty (hopefully that will not happen until we will free that block ;-)
1656 * We don't even need to mark it not-uptodate - nobody can expect
1657 * anything from a newly allocated buffer anyway. We used to used
1658 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1659 * don't want to mark the alias unmapped, for example - it would confuse
1660 * anyone who might pick it with bread() afterwards...
1661 *
1662 * Also.. Note that bforget() doesn't lock the buffer. So there can
1663 * be writeout I/O going on against recently-freed buffers. We don't
1664 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1665 * only if we really need to. That happens here.
1666 */
unmap_underlying_metadata(struct block_device * bdev,sector_t block)1667 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1668 {
1669 struct buffer_head *old_bh;
1670
1671 might_sleep();
1672
1673 old_bh = __find_get_block_slow(bdev, block);
1674 if (old_bh) {
1675 clear_buffer_dirty(old_bh);
1676 wait_on_buffer(old_bh);
1677 clear_buffer_req(old_bh);
1678 __brelse(old_bh);
1679 }
1680 }
1681 EXPORT_SYMBOL(unmap_underlying_metadata);
1682
1683 /*
1684 * NOTE! All mapped/uptodate combinations are valid:
1685 *
1686 * Mapped Uptodate Meaning
1687 *
1688 * No No "unknown" - must do get_block()
1689 * No Yes "hole" - zero-filled
1690 * Yes No "allocated" - allocated on disk, not read in
1691 * Yes Yes "valid" - allocated and up-to-date in memory.
1692 *
1693 * "Dirty" is valid only with the last case (mapped+uptodate).
1694 */
1695
1696 /*
1697 * While block_write_full_page is writing back the dirty buffers under
1698 * the page lock, whoever dirtied the buffers may decide to clean them
1699 * again at any time. We handle that by only looking at the buffer
1700 * state inside lock_buffer().
1701 *
1702 * If block_write_full_page() is called for regular writeback
1703 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1704 * locked buffer. This only can happen if someone has written the buffer
1705 * directly, with submit_bh(). At the address_space level PageWriteback
1706 * prevents this contention from occurring.
1707 */
__block_write_full_page(struct inode * inode,struct page * page,get_block_t * get_block,struct writeback_control * wbc)1708 static int __block_write_full_page(struct inode *inode, struct page *page,
1709 get_block_t *get_block, struct writeback_control *wbc)
1710 {
1711 int err;
1712 sector_t block;
1713 sector_t last_block;
1714 struct buffer_head *bh, *head;
1715 const unsigned blocksize = 1 << inode->i_blkbits;
1716 int nr_underway = 0;
1717
1718 BUG_ON(!PageLocked(page));
1719
1720 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1721
1722 if (!page_has_buffers(page)) {
1723 create_empty_buffers(page, blocksize,
1724 (1 << BH_Dirty)|(1 << BH_Uptodate));
1725 }
1726
1727 /*
1728 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1729 * here, and the (potentially unmapped) buffers may become dirty at
1730 * any time. If a buffer becomes dirty here after we've inspected it
1731 * then we just miss that fact, and the page stays dirty.
1732 *
1733 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1734 * handle that here by just cleaning them.
1735 */
1736
1737 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1738 head = page_buffers(page);
1739 bh = head;
1740
1741 /*
1742 * Get all the dirty buffers mapped to disk addresses and
1743 * handle any aliases from the underlying blockdev's mapping.
1744 */
1745 do {
1746 if (block > last_block) {
1747 /*
1748 * mapped buffers outside i_size will occur, because
1749 * this page can be outside i_size when there is a
1750 * truncate in progress.
1751 */
1752 /*
1753 * The buffer was zeroed by block_write_full_page()
1754 */
1755 clear_buffer_dirty(bh);
1756 set_buffer_uptodate(bh);
1757 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1758 buffer_dirty(bh)) {
1759 WARN_ON(bh->b_size != blocksize);
1760 err = get_block(inode, block, bh, 1);
1761 if (err)
1762 goto recover;
1763 clear_buffer_delay(bh);
1764 if (buffer_new(bh)) {
1765 /* blockdev mappings never come here */
1766 clear_buffer_new(bh);
1767 unmap_underlying_metadata(bh->b_bdev,
1768 bh->b_blocknr);
1769 }
1770 }
1771 bh = bh->b_this_page;
1772 block++;
1773 } while (bh != head);
1774
1775 do {
1776 if (!buffer_mapped(bh))
1777 continue;
1778 /*
1779 * If it's a fully non-blocking write attempt and we cannot
1780 * lock the buffer then redirty the page. Note that this can
1781 * potentially cause a busy-wait loop from pdflush and kswapd
1782 * activity, but those code paths have their own higher-level
1783 * throttling.
1784 */
1785 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1786 lock_buffer(bh);
1787 } else if (!trylock_buffer(bh)) {
1788 redirty_page_for_writepage(wbc, page);
1789 continue;
1790 }
1791 if (test_clear_buffer_dirty(bh)) {
1792 mark_buffer_async_write(bh);
1793 } else {
1794 unlock_buffer(bh);
1795 }
1796 } while ((bh = bh->b_this_page) != head);
1797
1798 /*
1799 * The page and its buffers are protected by PageWriteback(), so we can
1800 * drop the bh refcounts early.
1801 */
1802 BUG_ON(PageWriteback(page));
1803 set_page_writeback(page);
1804
1805 do {
1806 struct buffer_head *next = bh->b_this_page;
1807 if (buffer_async_write(bh)) {
1808 submit_bh(WRITE, bh);
1809 nr_underway++;
1810 }
1811 bh = next;
1812 } while (bh != head);
1813 unlock_page(page);
1814
1815 err = 0;
1816 done:
1817 if (nr_underway == 0) {
1818 /*
1819 * The page was marked dirty, but the buffers were
1820 * clean. Someone wrote them back by hand with
1821 * ll_rw_block/submit_bh. A rare case.
1822 */
1823 end_page_writeback(page);
1824
1825 /*
1826 * The page and buffer_heads can be released at any time from
1827 * here on.
1828 */
1829 }
1830 return err;
1831
1832 recover:
1833 /*
1834 * ENOSPC, or some other error. We may already have added some
1835 * blocks to the file, so we need to write these out to avoid
1836 * exposing stale data.
1837 * The page is currently locked and not marked for writeback
1838 */
1839 bh = head;
1840 /* Recovery: lock and submit the mapped buffers */
1841 do {
1842 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1843 !buffer_delay(bh)) {
1844 lock_buffer(bh);
1845 mark_buffer_async_write(bh);
1846 } else {
1847 /*
1848 * The buffer may have been set dirty during
1849 * attachment to a dirty page.
1850 */
1851 clear_buffer_dirty(bh);
1852 }
1853 } while ((bh = bh->b_this_page) != head);
1854 SetPageError(page);
1855 BUG_ON(PageWriteback(page));
1856 mapping_set_error(page->mapping, err);
1857 set_page_writeback(page);
1858 do {
1859 struct buffer_head *next = bh->b_this_page;
1860 if (buffer_async_write(bh)) {
1861 clear_buffer_dirty(bh);
1862 submit_bh(WRITE, bh);
1863 nr_underway++;
1864 }
1865 bh = next;
1866 } while (bh != head);
1867 unlock_page(page);
1868 goto done;
1869 }
1870
1871 /*
1872 * If a page has any new buffers, zero them out here, and mark them uptodate
1873 * and dirty so they'll be written out (in order to prevent uninitialised
1874 * block data from leaking). And clear the new bit.
1875 */
page_zero_new_buffers(struct page * page,unsigned from,unsigned to)1876 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1877 {
1878 unsigned int block_start, block_end;
1879 struct buffer_head *head, *bh;
1880
1881 BUG_ON(!PageLocked(page));
1882 if (!page_has_buffers(page))
1883 return;
1884
1885 bh = head = page_buffers(page);
1886 block_start = 0;
1887 do {
1888 block_end = block_start + bh->b_size;
1889
1890 if (buffer_new(bh)) {
1891 if (block_end > from && block_start < to) {
1892 if (!PageUptodate(page)) {
1893 unsigned start, size;
1894
1895 start = max(from, block_start);
1896 size = min(to, block_end) - start;
1897
1898 zero_user(page, start, size);
1899 set_buffer_uptodate(bh);
1900 }
1901
1902 clear_buffer_new(bh);
1903 mark_buffer_dirty(bh);
1904 }
1905 }
1906
1907 block_start = block_end;
1908 bh = bh->b_this_page;
1909 } while (bh != head);
1910 }
1911 EXPORT_SYMBOL(page_zero_new_buffers);
1912
__block_prepare_write(struct inode * inode,struct page * page,unsigned from,unsigned to,get_block_t * get_block)1913 static int __block_prepare_write(struct inode *inode, struct page *page,
1914 unsigned from, unsigned to, get_block_t *get_block)
1915 {
1916 unsigned block_start, block_end;
1917 sector_t block;
1918 int err = 0;
1919 unsigned blocksize, bbits;
1920 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1921
1922 BUG_ON(!PageLocked(page));
1923 BUG_ON(from > PAGE_CACHE_SIZE);
1924 BUG_ON(to > PAGE_CACHE_SIZE);
1925 BUG_ON(from > to);
1926
1927 blocksize = 1 << inode->i_blkbits;
1928 if (!page_has_buffers(page))
1929 create_empty_buffers(page, blocksize, 0);
1930 head = page_buffers(page);
1931
1932 bbits = inode->i_blkbits;
1933 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1934
1935 for(bh = head, block_start = 0; bh != head || !block_start;
1936 block++, block_start=block_end, bh = bh->b_this_page) {
1937 block_end = block_start + blocksize;
1938 if (block_end <= from || block_start >= to) {
1939 if (PageUptodate(page)) {
1940 if (!buffer_uptodate(bh))
1941 set_buffer_uptodate(bh);
1942 }
1943 continue;
1944 }
1945 if (buffer_new(bh))
1946 clear_buffer_new(bh);
1947 if (!buffer_mapped(bh)) {
1948 WARN_ON(bh->b_size != blocksize);
1949 err = get_block(inode, block, bh, 1);
1950 if (err)
1951 break;
1952 if (buffer_new(bh)) {
1953 unmap_underlying_metadata(bh->b_bdev,
1954 bh->b_blocknr);
1955 if (PageUptodate(page)) {
1956 clear_buffer_new(bh);
1957 set_buffer_uptodate(bh);
1958 mark_buffer_dirty(bh);
1959 continue;
1960 }
1961 if (block_end > to || block_start < from)
1962 zero_user_segments(page,
1963 to, block_end,
1964 block_start, from);
1965 continue;
1966 }
1967 }
1968 if (PageUptodate(page)) {
1969 if (!buffer_uptodate(bh))
1970 set_buffer_uptodate(bh);
1971 continue;
1972 }
1973 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1974 !buffer_unwritten(bh) &&
1975 (block_start < from || block_end > to)) {
1976 ll_rw_block(READ, 1, &bh);
1977 *wait_bh++=bh;
1978 }
1979 }
1980 /*
1981 * If we issued read requests - let them complete.
1982 */
1983 while(wait_bh > wait) {
1984 wait_on_buffer(*--wait_bh);
1985 if (!buffer_uptodate(*wait_bh))
1986 err = -EIO;
1987 }
1988 if (unlikely(err))
1989 page_zero_new_buffers(page, from, to);
1990 return err;
1991 }
1992
__block_commit_write(struct inode * inode,struct page * page,unsigned from,unsigned to)1993 static int __block_commit_write(struct inode *inode, struct page *page,
1994 unsigned from, unsigned to)
1995 {
1996 unsigned block_start, block_end;
1997 int partial = 0;
1998 unsigned blocksize;
1999 struct buffer_head *bh, *head;
2000
2001 blocksize = 1 << inode->i_blkbits;
2002
2003 for(bh = head = page_buffers(page), block_start = 0;
2004 bh != head || !block_start;
2005 block_start=block_end, bh = bh->b_this_page) {
2006 block_end = block_start + blocksize;
2007 if (block_end <= from || block_start >= to) {
2008 if (!buffer_uptodate(bh))
2009 partial = 1;
2010 } else {
2011 set_buffer_uptodate(bh);
2012 mark_buffer_dirty(bh);
2013 }
2014 clear_buffer_new(bh);
2015 }
2016
2017 /*
2018 * If this is a partial write which happened to make all buffers
2019 * uptodate then we can optimize away a bogus readpage() for
2020 * the next read(). Here we 'discover' whether the page went
2021 * uptodate as a result of this (potentially partial) write.
2022 */
2023 if (!partial)
2024 SetPageUptodate(page);
2025 return 0;
2026 }
2027
2028 /*
2029 * block_write_begin takes care of the basic task of block allocation and
2030 * bringing partial write blocks uptodate first.
2031 *
2032 * If *pagep is not NULL, then block_write_begin uses the locked page
2033 * at *pagep rather than allocating its own. In this case, the page will
2034 * not be unlocked or deallocated on failure.
2035 */
block_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2036 int block_write_begin(struct file *file, struct address_space *mapping,
2037 loff_t pos, unsigned len, unsigned flags,
2038 struct page **pagep, void **fsdata,
2039 get_block_t *get_block)
2040 {
2041 struct inode *inode = mapping->host;
2042 int status = 0;
2043 struct page *page;
2044 pgoff_t index;
2045 unsigned start, end;
2046 int ownpage = 0;
2047
2048 index = pos >> PAGE_CACHE_SHIFT;
2049 start = pos & (PAGE_CACHE_SIZE - 1);
2050 end = start + len;
2051
2052 page = *pagep;
2053 if (page == NULL) {
2054 ownpage = 1;
2055 page = grab_cache_page_write_begin(mapping, index, flags);
2056 if (!page) {
2057 status = -ENOMEM;
2058 goto out;
2059 }
2060 *pagep = page;
2061 } else
2062 BUG_ON(!PageLocked(page));
2063
2064 status = __block_prepare_write(inode, page, start, end, get_block);
2065 if (unlikely(status)) {
2066 ClearPageUptodate(page);
2067
2068 if (ownpage) {
2069 unlock_page(page);
2070 page_cache_release(page);
2071 *pagep = NULL;
2072
2073 /*
2074 * prepare_write() may have instantiated a few blocks
2075 * outside i_size. Trim these off again. Don't need
2076 * i_size_read because we hold i_mutex.
2077 */
2078 if (pos + len > inode->i_size)
2079 vmtruncate(inode, inode->i_size);
2080 }
2081 }
2082
2083 out:
2084 return status;
2085 }
2086 EXPORT_SYMBOL(block_write_begin);
2087
block_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2088 int block_write_end(struct file *file, struct address_space *mapping,
2089 loff_t pos, unsigned len, unsigned copied,
2090 struct page *page, void *fsdata)
2091 {
2092 struct inode *inode = mapping->host;
2093 unsigned start;
2094
2095 start = pos & (PAGE_CACHE_SIZE - 1);
2096
2097 if (unlikely(copied < len)) {
2098 /*
2099 * The buffers that were written will now be uptodate, so we
2100 * don't have to worry about a readpage reading them and
2101 * overwriting a partial write. However if we have encountered
2102 * a short write and only partially written into a buffer, it
2103 * will not be marked uptodate, so a readpage might come in and
2104 * destroy our partial write.
2105 *
2106 * Do the simplest thing, and just treat any short write to a
2107 * non uptodate page as a zero-length write, and force the
2108 * caller to redo the whole thing.
2109 */
2110 if (!PageUptodate(page))
2111 copied = 0;
2112
2113 page_zero_new_buffers(page, start+copied, start+len);
2114 }
2115 flush_dcache_page(page);
2116
2117 /* This could be a short (even 0-length) commit */
2118 __block_commit_write(inode, page, start, start+copied);
2119
2120 return copied;
2121 }
2122 EXPORT_SYMBOL(block_write_end);
2123
generic_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2124 int generic_write_end(struct file *file, struct address_space *mapping,
2125 loff_t pos, unsigned len, unsigned copied,
2126 struct page *page, void *fsdata)
2127 {
2128 struct inode *inode = mapping->host;
2129 int i_size_changed = 0;
2130
2131 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2132
2133 /*
2134 * No need to use i_size_read() here, the i_size
2135 * cannot change under us because we hold i_mutex.
2136 *
2137 * But it's important to update i_size while still holding page lock:
2138 * page writeout could otherwise come in and zero beyond i_size.
2139 */
2140 if (pos+copied > inode->i_size) {
2141 i_size_write(inode, pos+copied);
2142 i_size_changed = 1;
2143 }
2144
2145 unlock_page(page);
2146 page_cache_release(page);
2147
2148 /*
2149 * Don't mark the inode dirty under page lock. First, it unnecessarily
2150 * makes the holding time of page lock longer. Second, it forces lock
2151 * ordering of page lock and transaction start for journaling
2152 * filesystems.
2153 */
2154 if (i_size_changed)
2155 mark_inode_dirty(inode);
2156
2157 return copied;
2158 }
2159 EXPORT_SYMBOL(generic_write_end);
2160
2161 /*
2162 * block_is_partially_uptodate checks whether buffers within a page are
2163 * uptodate or not.
2164 *
2165 * Returns true if all buffers which correspond to a file portion
2166 * we want to read are uptodate.
2167 */
block_is_partially_uptodate(struct page * page,read_descriptor_t * desc,unsigned long from)2168 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2169 unsigned long from)
2170 {
2171 struct inode *inode = page->mapping->host;
2172 unsigned block_start, block_end, blocksize;
2173 unsigned to;
2174 struct buffer_head *bh, *head;
2175 int ret = 1;
2176
2177 if (!page_has_buffers(page))
2178 return 0;
2179
2180 blocksize = 1 << inode->i_blkbits;
2181 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2182 to = from + to;
2183 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2184 return 0;
2185
2186 head = page_buffers(page);
2187 bh = head;
2188 block_start = 0;
2189 do {
2190 block_end = block_start + blocksize;
2191 if (block_end > from && block_start < to) {
2192 if (!buffer_uptodate(bh)) {
2193 ret = 0;
2194 break;
2195 }
2196 if (block_end >= to)
2197 break;
2198 }
2199 block_start = block_end;
2200 bh = bh->b_this_page;
2201 } while (bh != head);
2202
2203 return ret;
2204 }
2205 EXPORT_SYMBOL(block_is_partially_uptodate);
2206
2207 /*
2208 * Generic "read page" function for block devices that have the normal
2209 * get_block functionality. This is most of the block device filesystems.
2210 * Reads the page asynchronously --- the unlock_buffer() and
2211 * set/clear_buffer_uptodate() functions propagate buffer state into the
2212 * page struct once IO has completed.
2213 */
block_read_full_page(struct page * page,get_block_t * get_block)2214 int block_read_full_page(struct page *page, get_block_t *get_block)
2215 {
2216 struct inode *inode = page->mapping->host;
2217 sector_t iblock, lblock;
2218 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2219 unsigned int blocksize;
2220 int nr, i;
2221 int fully_mapped = 1;
2222
2223 BUG_ON(!PageLocked(page));
2224 blocksize = 1 << inode->i_blkbits;
2225 if (!page_has_buffers(page))
2226 create_empty_buffers(page, blocksize, 0);
2227 head = page_buffers(page);
2228
2229 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2230 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2231 bh = head;
2232 nr = 0;
2233 i = 0;
2234
2235 do {
2236 if (buffer_uptodate(bh))
2237 continue;
2238
2239 if (!buffer_mapped(bh)) {
2240 int err = 0;
2241
2242 fully_mapped = 0;
2243 if (iblock < lblock) {
2244 WARN_ON(bh->b_size != blocksize);
2245 err = get_block(inode, iblock, bh, 0);
2246 if (err)
2247 SetPageError(page);
2248 }
2249 if (!buffer_mapped(bh)) {
2250 zero_user(page, i * blocksize, blocksize);
2251 if (!err)
2252 set_buffer_uptodate(bh);
2253 continue;
2254 }
2255 /*
2256 * get_block() might have updated the buffer
2257 * synchronously
2258 */
2259 if (buffer_uptodate(bh))
2260 continue;
2261 }
2262 arr[nr++] = bh;
2263 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2264
2265 if (fully_mapped)
2266 SetPageMappedToDisk(page);
2267
2268 if (!nr) {
2269 /*
2270 * All buffers are uptodate - we can set the page uptodate
2271 * as well. But not if get_block() returned an error.
2272 */
2273 if (!PageError(page))
2274 SetPageUptodate(page);
2275 unlock_page(page);
2276 return 0;
2277 }
2278
2279 /* Stage two: lock the buffers */
2280 for (i = 0; i < nr; i++) {
2281 bh = arr[i];
2282 lock_buffer(bh);
2283 mark_buffer_async_read(bh);
2284 }
2285
2286 /*
2287 * Stage 3: start the IO. Check for uptodateness
2288 * inside the buffer lock in case another process reading
2289 * the underlying blockdev brought it uptodate (the sct fix).
2290 */
2291 for (i = 0; i < nr; i++) {
2292 bh = arr[i];
2293 if (buffer_uptodate(bh))
2294 end_buffer_async_read(bh, 1);
2295 else
2296 submit_bh(READ, bh);
2297 }
2298 return 0;
2299 }
2300
2301 /* utility function for filesystems that need to do work on expanding
2302 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2303 * deal with the hole.
2304 */
generic_cont_expand_simple(struct inode * inode,loff_t size)2305 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2306 {
2307 struct address_space *mapping = inode->i_mapping;
2308 struct page *page;
2309 void *fsdata;
2310 unsigned long limit;
2311 int err;
2312
2313 err = -EFBIG;
2314 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2315 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2316 send_sig(SIGXFSZ, current, 0);
2317 goto out;
2318 }
2319 if (size > inode->i_sb->s_maxbytes)
2320 goto out;
2321
2322 err = pagecache_write_begin(NULL, mapping, size, 0,
2323 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2324 &page, &fsdata);
2325 if (err)
2326 goto out;
2327
2328 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2329 BUG_ON(err > 0);
2330
2331 out:
2332 return err;
2333 }
2334
cont_expand_zero(struct file * file,struct address_space * mapping,loff_t pos,loff_t * bytes)2335 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2336 loff_t pos, loff_t *bytes)
2337 {
2338 struct inode *inode = mapping->host;
2339 unsigned blocksize = 1 << inode->i_blkbits;
2340 struct page *page;
2341 void *fsdata;
2342 pgoff_t index, curidx;
2343 loff_t curpos;
2344 unsigned zerofrom, offset, len;
2345 int err = 0;
2346
2347 index = pos >> PAGE_CACHE_SHIFT;
2348 offset = pos & ~PAGE_CACHE_MASK;
2349
2350 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2351 zerofrom = curpos & ~PAGE_CACHE_MASK;
2352 if (zerofrom & (blocksize-1)) {
2353 *bytes |= (blocksize-1);
2354 (*bytes)++;
2355 }
2356 len = PAGE_CACHE_SIZE - zerofrom;
2357
2358 err = pagecache_write_begin(file, mapping, curpos, len,
2359 AOP_FLAG_UNINTERRUPTIBLE,
2360 &page, &fsdata);
2361 if (err)
2362 goto out;
2363 zero_user(page, zerofrom, len);
2364 err = pagecache_write_end(file, mapping, curpos, len, len,
2365 page, fsdata);
2366 if (err < 0)
2367 goto out;
2368 BUG_ON(err != len);
2369 err = 0;
2370
2371 balance_dirty_pages_ratelimited(mapping);
2372 }
2373
2374 /* page covers the boundary, find the boundary offset */
2375 if (index == curidx) {
2376 zerofrom = curpos & ~PAGE_CACHE_MASK;
2377 /* if we will expand the thing last block will be filled */
2378 if (offset <= zerofrom) {
2379 goto out;
2380 }
2381 if (zerofrom & (blocksize-1)) {
2382 *bytes |= (blocksize-1);
2383 (*bytes)++;
2384 }
2385 len = offset - zerofrom;
2386
2387 err = pagecache_write_begin(file, mapping, curpos, len,
2388 AOP_FLAG_UNINTERRUPTIBLE,
2389 &page, &fsdata);
2390 if (err)
2391 goto out;
2392 zero_user(page, zerofrom, len);
2393 err = pagecache_write_end(file, mapping, curpos, len, len,
2394 page, fsdata);
2395 if (err < 0)
2396 goto out;
2397 BUG_ON(err != len);
2398 err = 0;
2399 }
2400 out:
2401 return err;
2402 }
2403
2404 /*
2405 * For moronic filesystems that do not allow holes in file.
2406 * We may have to extend the file.
2407 */
cont_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block,loff_t * bytes)2408 int cont_write_begin(struct file *file, struct address_space *mapping,
2409 loff_t pos, unsigned len, unsigned flags,
2410 struct page **pagep, void **fsdata,
2411 get_block_t *get_block, loff_t *bytes)
2412 {
2413 struct inode *inode = mapping->host;
2414 unsigned blocksize = 1 << inode->i_blkbits;
2415 unsigned zerofrom;
2416 int err;
2417
2418 err = cont_expand_zero(file, mapping, pos, bytes);
2419 if (err)
2420 goto out;
2421
2422 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2423 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2424 *bytes |= (blocksize-1);
2425 (*bytes)++;
2426 }
2427
2428 *pagep = NULL;
2429 err = block_write_begin(file, mapping, pos, len,
2430 flags, pagep, fsdata, get_block);
2431 out:
2432 return err;
2433 }
2434
block_prepare_write(struct page * page,unsigned from,unsigned to,get_block_t * get_block)2435 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2436 get_block_t *get_block)
2437 {
2438 struct inode *inode = page->mapping->host;
2439 int err = __block_prepare_write(inode, page, from, to, get_block);
2440 if (err)
2441 ClearPageUptodate(page);
2442 return err;
2443 }
2444
block_commit_write(struct page * page,unsigned from,unsigned to)2445 int block_commit_write(struct page *page, unsigned from, unsigned to)
2446 {
2447 struct inode *inode = page->mapping->host;
2448 __block_commit_write(inode,page,from,to);
2449 return 0;
2450 }
2451
2452 /*
2453 * block_page_mkwrite() is not allowed to change the file size as it gets
2454 * called from a page fault handler when a page is first dirtied. Hence we must
2455 * be careful to check for EOF conditions here. We set the page up correctly
2456 * for a written page which means we get ENOSPC checking when writing into
2457 * holes and correct delalloc and unwritten extent mapping on filesystems that
2458 * support these features.
2459 *
2460 * We are not allowed to take the i_mutex here so we have to play games to
2461 * protect against truncate races as the page could now be beyond EOF. Because
2462 * vmtruncate() writes the inode size before removing pages, once we have the
2463 * page lock we can determine safely if the page is beyond EOF. If it is not
2464 * beyond EOF, then the page is guaranteed safe against truncation until we
2465 * unlock the page.
2466 */
2467 int
block_page_mkwrite(struct vm_area_struct * vma,struct page * page,get_block_t get_block)2468 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2469 get_block_t get_block)
2470 {
2471 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2472 unsigned long end;
2473 loff_t size;
2474 int ret = -EINVAL;
2475
2476 lock_page(page);
2477 size = i_size_read(inode);
2478 if ((page->mapping != inode->i_mapping) ||
2479 (page_offset(page) > size)) {
2480 /* page got truncated out from underneath us */
2481 goto out_unlock;
2482 }
2483
2484 /* page is wholly or partially inside EOF */
2485 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2486 end = size & ~PAGE_CACHE_MASK;
2487 else
2488 end = PAGE_CACHE_SIZE;
2489
2490 ret = block_prepare_write(page, 0, end, get_block);
2491 if (!ret)
2492 ret = block_commit_write(page, 0, end);
2493
2494 out_unlock:
2495 unlock_page(page);
2496 return ret;
2497 }
2498
2499 /*
2500 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2501 * immediately, while under the page lock. So it needs a special end_io
2502 * handler which does not touch the bh after unlocking it.
2503 */
end_buffer_read_nobh(struct buffer_head * bh,int uptodate)2504 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2505 {
2506 __end_buffer_read_notouch(bh, uptodate);
2507 }
2508
2509 /*
2510 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2511 * the page (converting it to circular linked list and taking care of page
2512 * dirty races).
2513 */
attach_nobh_buffers(struct page * page,struct buffer_head * head)2514 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2515 {
2516 struct buffer_head *bh;
2517
2518 BUG_ON(!PageLocked(page));
2519
2520 spin_lock(&page->mapping->private_lock);
2521 bh = head;
2522 do {
2523 if (PageDirty(page))
2524 set_buffer_dirty(bh);
2525 if (!bh->b_this_page)
2526 bh->b_this_page = head;
2527 bh = bh->b_this_page;
2528 } while (bh != head);
2529 attach_page_buffers(page, head);
2530 spin_unlock(&page->mapping->private_lock);
2531 }
2532
2533 /*
2534 * On entry, the page is fully not uptodate.
2535 * On exit the page is fully uptodate in the areas outside (from,to)
2536 */
nobh_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata,get_block_t * get_block)2537 int nobh_write_begin(struct file *file, struct address_space *mapping,
2538 loff_t pos, unsigned len, unsigned flags,
2539 struct page **pagep, void **fsdata,
2540 get_block_t *get_block)
2541 {
2542 struct inode *inode = mapping->host;
2543 const unsigned blkbits = inode->i_blkbits;
2544 const unsigned blocksize = 1 << blkbits;
2545 struct buffer_head *head, *bh;
2546 struct page *page;
2547 pgoff_t index;
2548 unsigned from, to;
2549 unsigned block_in_page;
2550 unsigned block_start, block_end;
2551 sector_t block_in_file;
2552 int nr_reads = 0;
2553 int ret = 0;
2554 int is_mapped_to_disk = 1;
2555
2556 index = pos >> PAGE_CACHE_SHIFT;
2557 from = pos & (PAGE_CACHE_SIZE - 1);
2558 to = from + len;
2559
2560 page = grab_cache_page_write_begin(mapping, index, flags);
2561 if (!page)
2562 return -ENOMEM;
2563 *pagep = page;
2564 *fsdata = NULL;
2565
2566 if (page_has_buffers(page)) {
2567 unlock_page(page);
2568 page_cache_release(page);
2569 *pagep = NULL;
2570 return block_write_begin(file, mapping, pos, len, flags, pagep,
2571 fsdata, get_block);
2572 }
2573
2574 if (PageMappedToDisk(page))
2575 return 0;
2576
2577 /*
2578 * Allocate buffers so that we can keep track of state, and potentially
2579 * attach them to the page if an error occurs. In the common case of
2580 * no error, they will just be freed again without ever being attached
2581 * to the page (which is all OK, because we're under the page lock).
2582 *
2583 * Be careful: the buffer linked list is a NULL terminated one, rather
2584 * than the circular one we're used to.
2585 */
2586 head = alloc_page_buffers(page, blocksize, 0);
2587 if (!head) {
2588 ret = -ENOMEM;
2589 goto out_release;
2590 }
2591
2592 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2593
2594 /*
2595 * We loop across all blocks in the page, whether or not they are
2596 * part of the affected region. This is so we can discover if the
2597 * page is fully mapped-to-disk.
2598 */
2599 for (block_start = 0, block_in_page = 0, bh = head;
2600 block_start < PAGE_CACHE_SIZE;
2601 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2602 int create;
2603
2604 block_end = block_start + blocksize;
2605 bh->b_state = 0;
2606 create = 1;
2607 if (block_start >= to)
2608 create = 0;
2609 ret = get_block(inode, block_in_file + block_in_page,
2610 bh, create);
2611 if (ret)
2612 goto failed;
2613 if (!buffer_mapped(bh))
2614 is_mapped_to_disk = 0;
2615 if (buffer_new(bh))
2616 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2617 if (PageUptodate(page)) {
2618 set_buffer_uptodate(bh);
2619 continue;
2620 }
2621 if (buffer_new(bh) || !buffer_mapped(bh)) {
2622 zero_user_segments(page, block_start, from,
2623 to, block_end);
2624 continue;
2625 }
2626 if (buffer_uptodate(bh))
2627 continue; /* reiserfs does this */
2628 if (block_start < from || block_end > to) {
2629 lock_buffer(bh);
2630 bh->b_end_io = end_buffer_read_nobh;
2631 submit_bh(READ, bh);
2632 nr_reads++;
2633 }
2634 }
2635
2636 if (nr_reads) {
2637 /*
2638 * The page is locked, so these buffers are protected from
2639 * any VM or truncate activity. Hence we don't need to care
2640 * for the buffer_head refcounts.
2641 */
2642 for (bh = head; bh; bh = bh->b_this_page) {
2643 wait_on_buffer(bh);
2644 if (!buffer_uptodate(bh))
2645 ret = -EIO;
2646 }
2647 if (ret)
2648 goto failed;
2649 }
2650
2651 if (is_mapped_to_disk)
2652 SetPageMappedToDisk(page);
2653
2654 *fsdata = head; /* to be released by nobh_write_end */
2655
2656 return 0;
2657
2658 failed:
2659 BUG_ON(!ret);
2660 /*
2661 * Error recovery is a bit difficult. We need to zero out blocks that
2662 * were newly allocated, and dirty them to ensure they get written out.
2663 * Buffers need to be attached to the page at this point, otherwise
2664 * the handling of potential IO errors during writeout would be hard
2665 * (could try doing synchronous writeout, but what if that fails too?)
2666 */
2667 attach_nobh_buffers(page, head);
2668 page_zero_new_buffers(page, from, to);
2669
2670 out_release:
2671 unlock_page(page);
2672 page_cache_release(page);
2673 *pagep = NULL;
2674
2675 if (pos + len > inode->i_size)
2676 vmtruncate(inode, inode->i_size);
2677
2678 return ret;
2679 }
2680 EXPORT_SYMBOL(nobh_write_begin);
2681
nobh_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2682 int nobh_write_end(struct file *file, struct address_space *mapping,
2683 loff_t pos, unsigned len, unsigned copied,
2684 struct page *page, void *fsdata)
2685 {
2686 struct inode *inode = page->mapping->host;
2687 struct buffer_head *head = fsdata;
2688 struct buffer_head *bh;
2689 BUG_ON(fsdata != NULL && page_has_buffers(page));
2690
2691 if (unlikely(copied < len) && head)
2692 attach_nobh_buffers(page, head);
2693 if (page_has_buffers(page))
2694 return generic_write_end(file, mapping, pos, len,
2695 copied, page, fsdata);
2696
2697 SetPageUptodate(page);
2698 set_page_dirty(page);
2699 if (pos+copied > inode->i_size) {
2700 i_size_write(inode, pos+copied);
2701 mark_inode_dirty(inode);
2702 }
2703
2704 unlock_page(page);
2705 page_cache_release(page);
2706
2707 while (head) {
2708 bh = head;
2709 head = head->b_this_page;
2710 free_buffer_head(bh);
2711 }
2712
2713 return copied;
2714 }
2715 EXPORT_SYMBOL(nobh_write_end);
2716
2717 /*
2718 * nobh_writepage() - based on block_full_write_page() except
2719 * that it tries to operate without attaching bufferheads to
2720 * the page.
2721 */
nobh_writepage(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2722 int nobh_writepage(struct page *page, get_block_t *get_block,
2723 struct writeback_control *wbc)
2724 {
2725 struct inode * const inode = page->mapping->host;
2726 loff_t i_size = i_size_read(inode);
2727 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2728 unsigned offset;
2729 int ret;
2730
2731 /* Is the page fully inside i_size? */
2732 if (page->index < end_index)
2733 goto out;
2734
2735 /* Is the page fully outside i_size? (truncate in progress) */
2736 offset = i_size & (PAGE_CACHE_SIZE-1);
2737 if (page->index >= end_index+1 || !offset) {
2738 /*
2739 * The page may have dirty, unmapped buffers. For example,
2740 * they may have been added in ext3_writepage(). Make them
2741 * freeable here, so the page does not leak.
2742 */
2743 #if 0
2744 /* Not really sure about this - do we need this ? */
2745 if (page->mapping->a_ops->invalidatepage)
2746 page->mapping->a_ops->invalidatepage(page, offset);
2747 #endif
2748 unlock_page(page);
2749 return 0; /* don't care */
2750 }
2751
2752 /*
2753 * The page straddles i_size. It must be zeroed out on each and every
2754 * writepage invocation because it may be mmapped. "A file is mapped
2755 * in multiples of the page size. For a file that is not a multiple of
2756 * the page size, the remaining memory is zeroed when mapped, and
2757 * writes to that region are not written out to the file."
2758 */
2759 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2760 out:
2761 ret = mpage_writepage(page, get_block, wbc);
2762 if (ret == -EAGAIN)
2763 ret = __block_write_full_page(inode, page, get_block, wbc);
2764 return ret;
2765 }
2766 EXPORT_SYMBOL(nobh_writepage);
2767
nobh_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2768 int nobh_truncate_page(struct address_space *mapping,
2769 loff_t from, get_block_t *get_block)
2770 {
2771 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2772 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2773 unsigned blocksize;
2774 sector_t iblock;
2775 unsigned length, pos;
2776 struct inode *inode = mapping->host;
2777 struct page *page;
2778 struct buffer_head map_bh;
2779 int err;
2780
2781 blocksize = 1 << inode->i_blkbits;
2782 length = offset & (blocksize - 1);
2783
2784 /* Block boundary? Nothing to do */
2785 if (!length)
2786 return 0;
2787
2788 length = blocksize - length;
2789 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2790
2791 page = grab_cache_page(mapping, index);
2792 err = -ENOMEM;
2793 if (!page)
2794 goto out;
2795
2796 if (page_has_buffers(page)) {
2797 has_buffers:
2798 unlock_page(page);
2799 page_cache_release(page);
2800 return block_truncate_page(mapping, from, get_block);
2801 }
2802
2803 /* Find the buffer that contains "offset" */
2804 pos = blocksize;
2805 while (offset >= pos) {
2806 iblock++;
2807 pos += blocksize;
2808 }
2809
2810 err = get_block(inode, iblock, &map_bh, 0);
2811 if (err)
2812 goto unlock;
2813 /* unmapped? It's a hole - nothing to do */
2814 if (!buffer_mapped(&map_bh))
2815 goto unlock;
2816
2817 /* Ok, it's mapped. Make sure it's up-to-date */
2818 if (!PageUptodate(page)) {
2819 err = mapping->a_ops->readpage(NULL, page);
2820 if (err) {
2821 page_cache_release(page);
2822 goto out;
2823 }
2824 lock_page(page);
2825 if (!PageUptodate(page)) {
2826 err = -EIO;
2827 goto unlock;
2828 }
2829 if (page_has_buffers(page))
2830 goto has_buffers;
2831 }
2832 zero_user(page, offset, length);
2833 set_page_dirty(page);
2834 err = 0;
2835
2836 unlock:
2837 unlock_page(page);
2838 page_cache_release(page);
2839 out:
2840 return err;
2841 }
2842 EXPORT_SYMBOL(nobh_truncate_page);
2843
block_truncate_page(struct address_space * mapping,loff_t from,get_block_t * get_block)2844 int block_truncate_page(struct address_space *mapping,
2845 loff_t from, get_block_t *get_block)
2846 {
2847 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2848 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2849 unsigned blocksize;
2850 sector_t iblock;
2851 unsigned length, pos;
2852 struct inode *inode = mapping->host;
2853 struct page *page;
2854 struct buffer_head *bh;
2855 int err;
2856
2857 blocksize = 1 << inode->i_blkbits;
2858 length = offset & (blocksize - 1);
2859
2860 /* Block boundary? Nothing to do */
2861 if (!length)
2862 return 0;
2863
2864 length = blocksize - length;
2865 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2866
2867 page = grab_cache_page(mapping, index);
2868 err = -ENOMEM;
2869 if (!page)
2870 goto out;
2871
2872 if (!page_has_buffers(page))
2873 create_empty_buffers(page, blocksize, 0);
2874
2875 /* Find the buffer that contains "offset" */
2876 bh = page_buffers(page);
2877 pos = blocksize;
2878 while (offset >= pos) {
2879 bh = bh->b_this_page;
2880 iblock++;
2881 pos += blocksize;
2882 }
2883
2884 err = 0;
2885 if (!buffer_mapped(bh)) {
2886 WARN_ON(bh->b_size != blocksize);
2887 err = get_block(inode, iblock, bh, 0);
2888 if (err)
2889 goto unlock;
2890 /* unmapped? It's a hole - nothing to do */
2891 if (!buffer_mapped(bh))
2892 goto unlock;
2893 }
2894
2895 /* Ok, it's mapped. Make sure it's up-to-date */
2896 if (PageUptodate(page))
2897 set_buffer_uptodate(bh);
2898
2899 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2900 err = -EIO;
2901 ll_rw_block(READ, 1, &bh);
2902 wait_on_buffer(bh);
2903 /* Uhhuh. Read error. Complain and punt. */
2904 if (!buffer_uptodate(bh))
2905 goto unlock;
2906 }
2907
2908 zero_user(page, offset, length);
2909 mark_buffer_dirty(bh);
2910 err = 0;
2911
2912 unlock:
2913 unlock_page(page);
2914 page_cache_release(page);
2915 out:
2916 return err;
2917 }
2918
2919 /*
2920 * The generic ->writepage function for buffer-backed address_spaces
2921 */
block_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)2922 int block_write_full_page(struct page *page, get_block_t *get_block,
2923 struct writeback_control *wbc)
2924 {
2925 struct inode * const inode = page->mapping->host;
2926 loff_t i_size = i_size_read(inode);
2927 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2928 unsigned offset;
2929
2930 /* Is the page fully inside i_size? */
2931 if (page->index < end_index)
2932 return __block_write_full_page(inode, page, get_block, wbc);
2933
2934 /* Is the page fully outside i_size? (truncate in progress) */
2935 offset = i_size & (PAGE_CACHE_SIZE-1);
2936 if (page->index >= end_index+1 || !offset) {
2937 /*
2938 * The page may have dirty, unmapped buffers. For example,
2939 * they may have been added in ext3_writepage(). Make them
2940 * freeable here, so the page does not leak.
2941 */
2942 do_invalidatepage(page, 0);
2943 unlock_page(page);
2944 return 0; /* don't care */
2945 }
2946
2947 /*
2948 * The page straddles i_size. It must be zeroed out on each and every
2949 * writepage invokation because it may be mmapped. "A file is mapped
2950 * in multiples of the page size. For a file that is not a multiple of
2951 * the page size, the remaining memory is zeroed when mapped, and
2952 * writes to that region are not written out to the file."
2953 */
2954 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2955 return __block_write_full_page(inode, page, get_block, wbc);
2956 }
2957
generic_block_bmap(struct address_space * mapping,sector_t block,get_block_t * get_block)2958 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2959 get_block_t *get_block)
2960 {
2961 struct buffer_head tmp;
2962 struct inode *inode = mapping->host;
2963 tmp.b_state = 0;
2964 tmp.b_blocknr = 0;
2965 tmp.b_size = 1 << inode->i_blkbits;
2966 get_block(inode, block, &tmp, 0);
2967 return tmp.b_blocknr;
2968 }
2969
end_bio_bh_io_sync(struct bio * bio,int err)2970 static void end_bio_bh_io_sync(struct bio *bio, int err)
2971 {
2972 struct buffer_head *bh = bio->bi_private;
2973
2974 if (err == -EOPNOTSUPP) {
2975 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2976 set_bit(BH_Eopnotsupp, &bh->b_state);
2977 }
2978
2979 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2980 set_bit(BH_Quiet, &bh->b_state);
2981
2982 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2983 bio_put(bio);
2984 }
2985
submit_bh(int rw,struct buffer_head * bh)2986 int submit_bh(int rw, struct buffer_head * bh)
2987 {
2988 struct bio *bio;
2989 int ret = 0;
2990
2991 BUG_ON(!buffer_locked(bh));
2992 BUG_ON(!buffer_mapped(bh));
2993 BUG_ON(!bh->b_end_io);
2994
2995 /*
2996 * Mask in barrier bit for a write (could be either a WRITE or a
2997 * WRITE_SYNC
2998 */
2999 if (buffer_ordered(bh) && (rw & WRITE))
3000 rw |= WRITE_BARRIER;
3001
3002 /*
3003 * Only clear out a write error when rewriting
3004 */
3005 if (test_set_buffer_req(bh) && (rw & WRITE))
3006 clear_buffer_write_io_error(bh);
3007
3008 /*
3009 * from here on down, it's all bio -- do the initial mapping,
3010 * submit_bio -> generic_make_request may further map this bio around
3011 */
3012 bio = bio_alloc(GFP_NOIO, 1);
3013
3014 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3015 bio->bi_bdev = bh->b_bdev;
3016 bio->bi_io_vec[0].bv_page = bh->b_page;
3017 bio->bi_io_vec[0].bv_len = bh->b_size;
3018 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3019
3020 bio->bi_vcnt = 1;
3021 bio->bi_idx = 0;
3022 bio->bi_size = bh->b_size;
3023
3024 bio->bi_end_io = end_bio_bh_io_sync;
3025 bio->bi_private = bh;
3026
3027 bio_get(bio);
3028 submit_bio(rw, bio);
3029
3030 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3031 ret = -EOPNOTSUPP;
3032
3033 bio_put(bio);
3034 return ret;
3035 }
3036
3037 /**
3038 * ll_rw_block: low-level access to block devices (DEPRECATED)
3039 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
3040 * @nr: number of &struct buffer_heads in the array
3041 * @bhs: array of pointers to &struct buffer_head
3042 *
3043 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3044 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3045 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3046 * are sent to disk. The fourth %READA option is described in the documentation
3047 * for generic_make_request() which ll_rw_block() calls.
3048 *
3049 * This function drops any buffer that it cannot get a lock on (with the
3050 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3051 * clean when doing a write request, and any buffer that appears to be
3052 * up-to-date when doing read request. Further it marks as clean buffers that
3053 * are processed for writing (the buffer cache won't assume that they are
3054 * actually clean until the buffer gets unlocked).
3055 *
3056 * ll_rw_block sets b_end_io to simple completion handler that marks
3057 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3058 * any waiters.
3059 *
3060 * All of the buffers must be for the same device, and must also be a
3061 * multiple of the current approved size for the device.
3062 */
ll_rw_block(int rw,int nr,struct buffer_head * bhs[])3063 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3064 {
3065 int i;
3066
3067 for (i = 0; i < nr; i++) {
3068 struct buffer_head *bh = bhs[i];
3069
3070 if (rw == SWRITE || rw == SWRITE_SYNC)
3071 lock_buffer(bh);
3072 else if (!trylock_buffer(bh))
3073 continue;
3074
3075 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) {
3076 if (test_clear_buffer_dirty(bh)) {
3077 bh->b_end_io = end_buffer_write_sync;
3078 get_bh(bh);
3079 if (rw == SWRITE_SYNC)
3080 submit_bh(WRITE_SYNC, bh);
3081 else
3082 submit_bh(WRITE, bh);
3083 continue;
3084 }
3085 } else {
3086 if (!buffer_uptodate(bh)) {
3087 bh->b_end_io = end_buffer_read_sync;
3088 get_bh(bh);
3089 submit_bh(rw, bh);
3090 continue;
3091 }
3092 }
3093 unlock_buffer(bh);
3094 }
3095 }
3096
3097 /*
3098 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3099 * and then start new I/O and then wait upon it. The caller must have a ref on
3100 * the buffer_head.
3101 */
sync_dirty_buffer(struct buffer_head * bh)3102 int sync_dirty_buffer(struct buffer_head *bh)
3103 {
3104 int ret = 0;
3105
3106 WARN_ON(atomic_read(&bh->b_count) < 1);
3107 lock_buffer(bh);
3108 if (test_clear_buffer_dirty(bh)) {
3109 get_bh(bh);
3110 bh->b_end_io = end_buffer_write_sync;
3111 ret = submit_bh(WRITE, bh);
3112 wait_on_buffer(bh);
3113 if (buffer_eopnotsupp(bh)) {
3114 clear_buffer_eopnotsupp(bh);
3115 ret = -EOPNOTSUPP;
3116 }
3117 if (!ret && !buffer_uptodate(bh))
3118 ret = -EIO;
3119 } else {
3120 unlock_buffer(bh);
3121 }
3122 return ret;
3123 }
3124
3125 /*
3126 * try_to_free_buffers() checks if all the buffers on this particular page
3127 * are unused, and releases them if so.
3128 *
3129 * Exclusion against try_to_free_buffers may be obtained by either
3130 * locking the page or by holding its mapping's private_lock.
3131 *
3132 * If the page is dirty but all the buffers are clean then we need to
3133 * be sure to mark the page clean as well. This is because the page
3134 * may be against a block device, and a later reattachment of buffers
3135 * to a dirty page will set *all* buffers dirty. Which would corrupt
3136 * filesystem data on the same device.
3137 *
3138 * The same applies to regular filesystem pages: if all the buffers are
3139 * clean then we set the page clean and proceed. To do that, we require
3140 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3141 * private_lock.
3142 *
3143 * try_to_free_buffers() is non-blocking.
3144 */
buffer_busy(struct buffer_head * bh)3145 static inline int buffer_busy(struct buffer_head *bh)
3146 {
3147 return atomic_read(&bh->b_count) |
3148 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3149 }
3150
3151 static int
drop_buffers(struct page * page,struct buffer_head ** buffers_to_free)3152 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3153 {
3154 struct buffer_head *head = page_buffers(page);
3155 struct buffer_head *bh;
3156
3157 bh = head;
3158 do {
3159 if (buffer_write_io_error(bh) && page->mapping)
3160 set_bit(AS_EIO, &page->mapping->flags);
3161 if (buffer_busy(bh))
3162 goto failed;
3163 bh = bh->b_this_page;
3164 } while (bh != head);
3165
3166 do {
3167 struct buffer_head *next = bh->b_this_page;
3168
3169 if (bh->b_assoc_map)
3170 __remove_assoc_queue(bh);
3171 bh = next;
3172 } while (bh != head);
3173 *buffers_to_free = head;
3174 __clear_page_buffers(page);
3175 return 1;
3176 failed:
3177 return 0;
3178 }
3179
try_to_free_buffers(struct page * page)3180 int try_to_free_buffers(struct page *page)
3181 {
3182 struct address_space * const mapping = page->mapping;
3183 struct buffer_head *buffers_to_free = NULL;
3184 int ret = 0;
3185
3186 BUG_ON(!PageLocked(page));
3187 if (PageWriteback(page))
3188 return 0;
3189
3190 if (mapping == NULL) { /* can this still happen? */
3191 ret = drop_buffers(page, &buffers_to_free);
3192 goto out;
3193 }
3194
3195 spin_lock(&mapping->private_lock);
3196 ret = drop_buffers(page, &buffers_to_free);
3197
3198 /*
3199 * If the filesystem writes its buffers by hand (eg ext3)
3200 * then we can have clean buffers against a dirty page. We
3201 * clean the page here; otherwise the VM will never notice
3202 * that the filesystem did any IO at all.
3203 *
3204 * Also, during truncate, discard_buffer will have marked all
3205 * the page's buffers clean. We discover that here and clean
3206 * the page also.
3207 *
3208 * private_lock must be held over this entire operation in order
3209 * to synchronise against __set_page_dirty_buffers and prevent the
3210 * dirty bit from being lost.
3211 */
3212 if (ret)
3213 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3214 spin_unlock(&mapping->private_lock);
3215 out:
3216 if (buffers_to_free) {
3217 struct buffer_head *bh = buffers_to_free;
3218
3219 do {
3220 struct buffer_head *next = bh->b_this_page;
3221 free_buffer_head(bh);
3222 bh = next;
3223 } while (bh != buffers_to_free);
3224 }
3225 return ret;
3226 }
3227 EXPORT_SYMBOL(try_to_free_buffers);
3228
block_sync_page(struct page * page)3229 void block_sync_page(struct page *page)
3230 {
3231 struct address_space *mapping;
3232
3233 smp_mb();
3234 mapping = page_mapping(page);
3235 if (mapping)
3236 blk_run_backing_dev(mapping->backing_dev_info, page);
3237 }
3238
3239 /*
3240 * There are no bdflush tunables left. But distributions are
3241 * still running obsolete flush daemons, so we terminate them here.
3242 *
3243 * Use of bdflush() is deprecated and will be removed in a future kernel.
3244 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3245 */
SYSCALL_DEFINE2(bdflush,int,func,long,data)3246 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3247 {
3248 static int msg_count;
3249
3250 if (!capable(CAP_SYS_ADMIN))
3251 return -EPERM;
3252
3253 if (msg_count < 5) {
3254 msg_count++;
3255 printk(KERN_INFO
3256 "warning: process `%s' used the obsolete bdflush"
3257 " system call\n", current->comm);
3258 printk(KERN_INFO "Fix your initscripts?\n");
3259 }
3260
3261 if (func == 1)
3262 do_exit(0);
3263 return 0;
3264 }
3265
3266 /*
3267 * Buffer-head allocation
3268 */
3269 static struct kmem_cache *bh_cachep;
3270
3271 /*
3272 * Once the number of bh's in the machine exceeds this level, we start
3273 * stripping them in writeback.
3274 */
3275 static int max_buffer_heads;
3276
3277 int buffer_heads_over_limit;
3278
3279 struct bh_accounting {
3280 int nr; /* Number of live bh's */
3281 int ratelimit; /* Limit cacheline bouncing */
3282 };
3283
3284 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3285
recalc_bh_state(void)3286 static void recalc_bh_state(void)
3287 {
3288 int i;
3289 int tot = 0;
3290
3291 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3292 return;
3293 __get_cpu_var(bh_accounting).ratelimit = 0;
3294 for_each_online_cpu(i)
3295 tot += per_cpu(bh_accounting, i).nr;
3296 buffer_heads_over_limit = (tot > max_buffer_heads);
3297 }
3298
alloc_buffer_head(gfp_t gfp_flags)3299 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3300 {
3301 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3302 if (ret) {
3303 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3304 get_cpu_var(bh_accounting).nr++;
3305 recalc_bh_state();
3306 put_cpu_var(bh_accounting);
3307 }
3308 return ret;
3309 }
3310 EXPORT_SYMBOL(alloc_buffer_head);
3311
free_buffer_head(struct buffer_head * bh)3312 void free_buffer_head(struct buffer_head *bh)
3313 {
3314 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3315 kmem_cache_free(bh_cachep, bh);
3316 get_cpu_var(bh_accounting).nr--;
3317 recalc_bh_state();
3318 put_cpu_var(bh_accounting);
3319 }
3320 EXPORT_SYMBOL(free_buffer_head);
3321
buffer_exit_cpu(int cpu)3322 static void buffer_exit_cpu(int cpu)
3323 {
3324 int i;
3325 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3326
3327 for (i = 0; i < BH_LRU_SIZE; i++) {
3328 brelse(b->bhs[i]);
3329 b->bhs[i] = NULL;
3330 }
3331 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3332 per_cpu(bh_accounting, cpu).nr = 0;
3333 put_cpu_var(bh_accounting);
3334 }
3335
buffer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)3336 static int buffer_cpu_notify(struct notifier_block *self,
3337 unsigned long action, void *hcpu)
3338 {
3339 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3340 buffer_exit_cpu((unsigned long)hcpu);
3341 return NOTIFY_OK;
3342 }
3343
3344 /**
3345 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3346 * @bh: struct buffer_head
3347 *
3348 * Return true if the buffer is up-to-date and false,
3349 * with the buffer locked, if not.
3350 */
bh_uptodate_or_lock(struct buffer_head * bh)3351 int bh_uptodate_or_lock(struct buffer_head *bh)
3352 {
3353 if (!buffer_uptodate(bh)) {
3354 lock_buffer(bh);
3355 if (!buffer_uptodate(bh))
3356 return 0;
3357 unlock_buffer(bh);
3358 }
3359 return 1;
3360 }
3361 EXPORT_SYMBOL(bh_uptodate_or_lock);
3362
3363 /**
3364 * bh_submit_read - Submit a locked buffer for reading
3365 * @bh: struct buffer_head
3366 *
3367 * Returns zero on success and -EIO on error.
3368 */
bh_submit_read(struct buffer_head * bh)3369 int bh_submit_read(struct buffer_head *bh)
3370 {
3371 BUG_ON(!buffer_locked(bh));
3372
3373 if (buffer_uptodate(bh)) {
3374 unlock_buffer(bh);
3375 return 0;
3376 }
3377
3378 get_bh(bh);
3379 bh->b_end_io = end_buffer_read_sync;
3380 submit_bh(READ, bh);
3381 wait_on_buffer(bh);
3382 if (buffer_uptodate(bh))
3383 return 0;
3384 return -EIO;
3385 }
3386 EXPORT_SYMBOL(bh_submit_read);
3387
3388 static void
init_buffer_head(void * data)3389 init_buffer_head(void *data)
3390 {
3391 struct buffer_head *bh = data;
3392
3393 memset(bh, 0, sizeof(*bh));
3394 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3395 }
3396
buffer_init(void)3397 void __init buffer_init(void)
3398 {
3399 int nrpages;
3400
3401 bh_cachep = kmem_cache_create("buffer_head",
3402 sizeof(struct buffer_head), 0,
3403 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3404 SLAB_MEM_SPREAD),
3405 init_buffer_head);
3406
3407 /*
3408 * Limit the bh occupancy to 10% of ZONE_NORMAL
3409 */
3410 nrpages = (nr_free_buffer_pages() * 10) / 100;
3411 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3412 hotcpu_notifier(buffer_cpu_notify, 0);
3413 }
3414
3415 EXPORT_SYMBOL(__bforget);
3416 EXPORT_SYMBOL(__brelse);
3417 EXPORT_SYMBOL(__wait_on_buffer);
3418 EXPORT_SYMBOL(block_commit_write);
3419 EXPORT_SYMBOL(block_prepare_write);
3420 EXPORT_SYMBOL(block_page_mkwrite);
3421 EXPORT_SYMBOL(block_read_full_page);
3422 EXPORT_SYMBOL(block_sync_page);
3423 EXPORT_SYMBOL(block_truncate_page);
3424 EXPORT_SYMBOL(block_write_full_page);
3425 EXPORT_SYMBOL(cont_write_begin);
3426 EXPORT_SYMBOL(end_buffer_read_sync);
3427 EXPORT_SYMBOL(end_buffer_write_sync);
3428 EXPORT_SYMBOL(file_fsync);
3429 EXPORT_SYMBOL(fsync_bdev);
3430 EXPORT_SYMBOL(generic_block_bmap);
3431 EXPORT_SYMBOL(generic_cont_expand_simple);
3432 EXPORT_SYMBOL(init_buffer);
3433 EXPORT_SYMBOL(invalidate_bdev);
3434 EXPORT_SYMBOL(ll_rw_block);
3435 EXPORT_SYMBOL(mark_buffer_dirty);
3436 EXPORT_SYMBOL(submit_bh);
3437 EXPORT_SYMBOL(sync_dirty_buffer);
3438 EXPORT_SYMBOL(unlock_buffer);
3439