• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36 
37 /**
38  * request_key returned an error instead of a valid key address;
39  * determine the type of error, make appropriate log entries, and
40  * return an error code.
41  */
process_request_key_err(long err_code)42 static int process_request_key_err(long err_code)
43 {
44 	int rc = 0;
45 
46 	switch (err_code) {
47 	case -ENOKEY:
48 		ecryptfs_printk(KERN_WARNING, "No key\n");
49 		rc = -ENOENT;
50 		break;
51 	case -EKEYEXPIRED:
52 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 		rc = -ETIME;
54 		break;
55 	case -EKEYREVOKED:
56 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 		rc = -EINVAL;
58 		break;
59 	default:
60 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 				"[0x%.16x]\n", err_code);
62 		rc = -EINVAL;
63 	}
64 	return rc;
65 }
66 
67 /**
68  * ecryptfs_parse_packet_length
69  * @data: Pointer to memory containing length at offset
70  * @size: This function writes the decoded size to this memory
71  *        address; zero on error
72  * @length_size: The number of bytes occupied by the encoded length
73  *
74  * Returns zero on success; non-zero on error
75  */
ecryptfs_parse_packet_length(unsigned char * data,size_t * size,size_t * length_size)76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77 				 size_t *length_size)
78 {
79 	int rc = 0;
80 
81 	(*length_size) = 0;
82 	(*size) = 0;
83 	if (data[0] < 192) {
84 		/* One-byte length */
85 		(*size) = (unsigned char)data[0];
86 		(*length_size) = 1;
87 	} else if (data[0] < 224) {
88 		/* Two-byte length */
89 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
90 		(*size) += ((unsigned char)(data[1]) + 192);
91 		(*length_size) = 2;
92 	} else if (data[0] == 255) {
93 		/* Five-byte length; we're not supposed to see this */
94 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95 				"supported\n");
96 		rc = -EINVAL;
97 		goto out;
98 	} else {
99 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100 		rc = -EINVAL;
101 		goto out;
102 	}
103 out:
104 	return rc;
105 }
106 
107 /**
108  * ecryptfs_write_packet_length
109  * @dest: The byte array target into which to write the length. Must
110  *        have at least 5 bytes allocated.
111  * @size: The length to write.
112  * @packet_size_length: The number of bytes used to encode the packet
113  *                      length is written to this address.
114  *
115  * Returns zero on success; non-zero on error.
116  */
ecryptfs_write_packet_length(char * dest,size_t size,size_t * packet_size_length)117 int ecryptfs_write_packet_length(char *dest, size_t size,
118 				 size_t *packet_size_length)
119 {
120 	int rc = 0;
121 
122 	if (size < 192) {
123 		dest[0] = size;
124 		(*packet_size_length) = 1;
125 	} else if (size < 65536) {
126 		dest[0] = (((size - 192) / 256) + 192);
127 		dest[1] = ((size - 192) % 256);
128 		(*packet_size_length) = 2;
129 	} else {
130 		rc = -EINVAL;
131 		ecryptfs_printk(KERN_WARNING,
132 				"Unsupported packet size: [%d]\n", size);
133 	}
134 	return rc;
135 }
136 
137 static int
write_tag_64_packet(char * signature,struct ecryptfs_session_key * session_key,char ** packet,size_t * packet_len)138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139 		    char **packet, size_t *packet_len)
140 {
141 	size_t i = 0;
142 	size_t data_len;
143 	size_t packet_size_len;
144 	char *message;
145 	int rc;
146 
147 	/*
148 	 *              ***** TAG 64 Packet Format *****
149 	 *    | Content Type                       | 1 byte       |
150 	 *    | Key Identifier Size                | 1 or 2 bytes |
151 	 *    | Key Identifier                     | arbitrary    |
152 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 	 *    | Encrypted File Encryption Key      | arbitrary    |
154 	 */
155 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156 		    + session_key->encrypted_key_size);
157 	*packet = kmalloc(data_len, GFP_KERNEL);
158 	message = *packet;
159 	if (!message) {
160 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161 		rc = -ENOMEM;
162 		goto out;
163 	}
164 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166 					  &packet_size_len);
167 	if (rc) {
168 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169 				"header; cannot generate packet length\n");
170 		goto out;
171 	}
172 	i += packet_size_len;
173 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174 	i += ECRYPTFS_SIG_SIZE_HEX;
175 	rc = ecryptfs_write_packet_length(&message[i],
176 					  session_key->encrypted_key_size,
177 					  &packet_size_len);
178 	if (rc) {
179 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180 				"header; cannot generate packet length\n");
181 		goto out;
182 	}
183 	i += packet_size_len;
184 	memcpy(&message[i], session_key->encrypted_key,
185 	       session_key->encrypted_key_size);
186 	i += session_key->encrypted_key_size;
187 	*packet_len = i;
188 out:
189 	return rc;
190 }
191 
192 static int
parse_tag_65_packet(struct ecryptfs_session_key * session_key,u8 * cipher_code,struct ecryptfs_message * msg)193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194 		    struct ecryptfs_message *msg)
195 {
196 	size_t i = 0;
197 	char *data;
198 	size_t data_len;
199 	size_t m_size;
200 	size_t message_len;
201 	u16 checksum = 0;
202 	u16 expected_checksum = 0;
203 	int rc;
204 
205 	/*
206 	 *              ***** TAG 65 Packet Format *****
207 	 *         | Content Type             | 1 byte       |
208 	 *         | Status Indicator         | 1 byte       |
209 	 *         | File Encryption Key Size | 1 or 2 bytes |
210 	 *         | File Encryption Key      | arbitrary    |
211 	 */
212 	message_len = msg->data_len;
213 	data = msg->data;
214 	if (message_len < 4) {
215 		rc = -EIO;
216 		goto out;
217 	}
218 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220 		rc = -EIO;
221 		goto out;
222 	}
223 	if (data[i++]) {
224 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225 				"[%d]\n", data[i-1]);
226 		rc = -EIO;
227 		goto out;
228 	}
229 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230 	if (rc) {
231 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232 				"rc = [%d]\n", rc);
233 		goto out;
234 	}
235 	i += data_len;
236 	if (message_len < (i + m_size)) {
237 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
238 				"is shorter than expected\n");
239 		rc = -EIO;
240 		goto out;
241 	}
242 	if (m_size < 3) {
243 		ecryptfs_printk(KERN_ERR,
244 				"The decrypted key is not long enough to "
245 				"include a cipher code and checksum\n");
246 		rc = -EIO;
247 		goto out;
248 	}
249 	*cipher_code = data[i++];
250 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251 	session_key->decrypted_key_size = m_size - 3;
252 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254 				"the maximum key size [%d]\n",
255 				session_key->decrypted_key_size,
256 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257 		rc = -EIO;
258 		goto out;
259 	}
260 	memcpy(session_key->decrypted_key, &data[i],
261 	       session_key->decrypted_key_size);
262 	i += session_key->decrypted_key_size;
263 	expected_checksum += (unsigned char)(data[i++]) << 8;
264 	expected_checksum += (unsigned char)(data[i++]);
265 	for (i = 0; i < session_key->decrypted_key_size; i++)
266 		checksum += session_key->decrypted_key[i];
267 	if (expected_checksum != checksum) {
268 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269 				"encryption  key; expected [%x]; calculated "
270 				"[%x]\n", expected_checksum, checksum);
271 		rc = -EIO;
272 	}
273 out:
274 	return rc;
275 }
276 
277 
278 static int
write_tag_66_packet(char * signature,u8 cipher_code,struct ecryptfs_crypt_stat * crypt_stat,char ** packet,size_t * packet_len)279 write_tag_66_packet(char *signature, u8 cipher_code,
280 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281 		    size_t *packet_len)
282 {
283 	size_t i = 0;
284 	size_t j;
285 	size_t data_len;
286 	size_t checksum = 0;
287 	size_t packet_size_len;
288 	char *message;
289 	int rc;
290 
291 	/*
292 	 *              ***** TAG 66 Packet Format *****
293 	 *         | Content Type             | 1 byte       |
294 	 *         | Key Identifier Size      | 1 or 2 bytes |
295 	 *         | Key Identifier           | arbitrary    |
296 	 *         | File Encryption Key Size | 1 or 2 bytes |
297 	 *         | File Encryption Key      | arbitrary    |
298 	 */
299 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300 	*packet = kmalloc(data_len, GFP_KERNEL);
301 	message = *packet;
302 	if (!message) {
303 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304 		rc = -ENOMEM;
305 		goto out;
306 	}
307 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309 					  &packet_size_len);
310 	if (rc) {
311 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312 				"header; cannot generate packet length\n");
313 		goto out;
314 	}
315 	i += packet_size_len;
316 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317 	i += ECRYPTFS_SIG_SIZE_HEX;
318 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320 					  &packet_size_len);
321 	if (rc) {
322 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323 				"header; cannot generate packet length\n");
324 		goto out;
325 	}
326 	i += packet_size_len;
327 	message[i++] = cipher_code;
328 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329 	i += crypt_stat->key_size;
330 	for (j = 0; j < crypt_stat->key_size; j++)
331 		checksum += crypt_stat->key[j];
332 	message[i++] = (checksum / 256) % 256;
333 	message[i++] = (checksum % 256);
334 	*packet_len = i;
335 out:
336 	return rc;
337 }
338 
339 static int
parse_tag_67_packet(struct ecryptfs_key_record * key_rec,struct ecryptfs_message * msg)340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341 		    struct ecryptfs_message *msg)
342 {
343 	size_t i = 0;
344 	char *data;
345 	size_t data_len;
346 	size_t message_len;
347 	int rc;
348 
349 	/*
350 	 *              ***** TAG 65 Packet Format *****
351 	 *    | Content Type                       | 1 byte       |
352 	 *    | Status Indicator                   | 1 byte       |
353 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
354 	 *    | Encrypted File Encryption Key      | arbitrary    |
355 	 */
356 	message_len = msg->data_len;
357 	data = msg->data;
358 	/* verify that everything through the encrypted FEK size is present */
359 	if (message_len < 4) {
360 		rc = -EIO;
361 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
362 		       "message length is [%d]\n", __func__, message_len, 4);
363 		goto out;
364 	}
365 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366 		rc = -EIO;
367 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368 		       __func__);
369 		goto out;
370 	}
371 	if (data[i++]) {
372 		rc = -EIO;
373 		printk(KERN_ERR "%s: Status indicator has non zero "
374 		       "value [%d]\n", __func__, data[i-1]);
375 
376 		goto out;
377 	}
378 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379 					  &data_len);
380 	if (rc) {
381 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382 				"rc = [%d]\n", rc);
383 		goto out;
384 	}
385 	i += data_len;
386 	if (message_len < (i + key_rec->enc_key_size)) {
387 		rc = -EIO;
388 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
389 		       __func__, message_len, (i + key_rec->enc_key_size));
390 		goto out;
391 	}
392 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393 		rc = -EIO;
394 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
395 		       "the maximum key size [%d]\n", __func__,
396 		       key_rec->enc_key_size,
397 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398 		goto out;
399 	}
400 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402 	return rc;
403 }
404 
405 static int
ecryptfs_find_global_auth_tok_for_sig(struct ecryptfs_global_auth_tok ** global_auth_tok,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig)406 ecryptfs_find_global_auth_tok_for_sig(
407 	struct ecryptfs_global_auth_tok **global_auth_tok,
408 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
409 {
410 	struct ecryptfs_global_auth_tok *walker;
411 	int rc = 0;
412 
413 	(*global_auth_tok) = NULL;
414 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
415 	list_for_each_entry(walker,
416 			    &mount_crypt_stat->global_auth_tok_list,
417 			    mount_crypt_stat_list) {
418 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
419 			(*global_auth_tok) = walker;
420 			goto out;
421 		}
422 	}
423 	rc = -EINVAL;
424 out:
425 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
426 	return rc;
427 }
428 
429 /**
430  * ecryptfs_find_auth_tok_for_sig
431  * @auth_tok: Set to the matching auth_tok; NULL if not found
432  * @crypt_stat: inode crypt_stat crypto context
433  * @sig: Sig of auth_tok to find
434  *
435  * For now, this function simply looks at the registered auth_tok's
436  * linked off the mount_crypt_stat, so all the auth_toks that can be
437  * used must be registered at mount time. This function could
438  * potentially try a lot harder to find auth_tok's (e.g., by calling
439  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
440  * that static registration of auth_tok's will no longer be necessary.
441  *
442  * Returns zero on no error; non-zero on error
443  */
444 static int
ecryptfs_find_auth_tok_for_sig(struct ecryptfs_auth_tok ** auth_tok,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig)445 ecryptfs_find_auth_tok_for_sig(
446 	struct ecryptfs_auth_tok **auth_tok,
447 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
448 	char *sig)
449 {
450 	struct ecryptfs_global_auth_tok *global_auth_tok;
451 	int rc = 0;
452 
453 	(*auth_tok) = NULL;
454 	if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
455 						  mount_crypt_stat, sig)) {
456 		struct key *auth_tok_key;
457 
458 		rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
459 						       sig);
460 	} else
461 		(*auth_tok) = global_auth_tok->global_auth_tok;
462 	return rc;
463 }
464 
465 /**
466  * write_tag_70_packet can gobble a lot of stack space. We stuff most
467  * of the function's parameters in a kmalloc'd struct to help reduce
468  * eCryptfs' overall stack usage.
469  */
470 struct ecryptfs_write_tag_70_packet_silly_stack {
471 	u8 cipher_code;
472 	size_t max_packet_size;
473 	size_t packet_size_len;
474 	size_t block_aligned_filename_size;
475 	size_t block_size;
476 	size_t i;
477 	size_t j;
478 	size_t num_rand_bytes;
479 	struct mutex *tfm_mutex;
480 	char *block_aligned_filename;
481 	struct ecryptfs_auth_tok *auth_tok;
482 	struct scatterlist src_sg;
483 	struct scatterlist dst_sg;
484 	struct blkcipher_desc desc;
485 	char iv[ECRYPTFS_MAX_IV_BYTES];
486 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
487 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
488 	struct hash_desc hash_desc;
489 	struct scatterlist hash_sg;
490 };
491 
492 /**
493  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
494  * @filename: NULL-terminated filename string
495  *
496  * This is the simplest mechanism for achieving filename encryption in
497  * eCryptfs. It encrypts the given filename with the mount-wide
498  * filename encryption key (FNEK) and stores it in a packet to @dest,
499  * which the callee will encode and write directly into the dentry
500  * name.
501  */
502 int
ecryptfs_write_tag_70_packet(char * dest,size_t * remaining_bytes,size_t * packet_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * filename,size_t filename_size)503 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
504 			     size_t *packet_size,
505 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
506 			     char *filename, size_t filename_size)
507 {
508 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
509 	int rc = 0;
510 
511 	s = kmalloc(sizeof(*s), GFP_KERNEL);
512 	if (!s) {
513 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
514 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
515 		goto out;
516 	}
517 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
518 	(*packet_size) = 0;
519 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
520 		&s->desc.tfm,
521 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
522 	if (unlikely(rc)) {
523 		printk(KERN_ERR "Internal error whilst attempting to get "
524 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
525 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
526 		goto out;
527 	}
528 	mutex_lock(s->tfm_mutex);
529 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
530 	/* Plus one for the \0 separator between the random prefix
531 	 * and the plaintext filename */
532 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
533 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
534 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
535 		s->num_rand_bytes += (s->block_size
536 				      - (s->block_aligned_filename_size
537 					 % s->block_size));
538 		s->block_aligned_filename_size = (s->num_rand_bytes
539 						  + filename_size);
540 	}
541 	/* Octet 0: Tag 70 identifier
542 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
543 	 *              and block-aligned encrypted filename size)
544 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
545 	 * Octet N2-N3: Cipher identifier (1 octet)
546 	 * Octets N3-N4: Block-aligned encrypted filename
547 	 *  - Consists of a minimum number of random characters, a \0
548 	 *    separator, and then the filename */
549 	s->max_packet_size = (1                   /* Tag 70 identifier */
550 			      + 3                 /* Max Tag 70 packet size */
551 			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
552 			      + 1                 /* Cipher identifier */
553 			      + s->block_aligned_filename_size);
554 	if (dest == NULL) {
555 		(*packet_size) = s->max_packet_size;
556 		goto out_unlock;
557 	}
558 	if (s->max_packet_size > (*remaining_bytes)) {
559 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
560 		       "[%zd] available\n", __func__, s->max_packet_size,
561 		       (*remaining_bytes));
562 		rc = -EINVAL;
563 		goto out_unlock;
564 	}
565 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
566 					    GFP_KERNEL);
567 	if (!s->block_aligned_filename) {
568 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
569 		       "kzalloc [%zd] bytes\n", __func__,
570 		       s->block_aligned_filename_size);
571 		rc = -ENOMEM;
572 		goto out_unlock;
573 	}
574 	s->i = 0;
575 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
576 	rc = ecryptfs_write_packet_length(&dest[s->i],
577 					  (ECRYPTFS_SIG_SIZE
578 					   + 1 /* Cipher code */
579 					   + s->block_aligned_filename_size),
580 					  &s->packet_size_len);
581 	if (rc) {
582 		printk(KERN_ERR "%s: Error generating tag 70 packet "
583 		       "header; cannot generate packet length; rc = [%d]\n",
584 		       __func__, rc);
585 		goto out_free_unlock;
586 	}
587 	s->i += s->packet_size_len;
588 	ecryptfs_from_hex(&dest[s->i],
589 			  mount_crypt_stat->global_default_fnek_sig,
590 			  ECRYPTFS_SIG_SIZE);
591 	s->i += ECRYPTFS_SIG_SIZE;
592 	s->cipher_code = ecryptfs_code_for_cipher_string(
593 		mount_crypt_stat->global_default_fn_cipher_name,
594 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
595 	if (s->cipher_code == 0) {
596 		printk(KERN_WARNING "%s: Unable to generate code for "
597 		       "cipher [%s] with key bytes [%zd]\n", __func__,
598 		       mount_crypt_stat->global_default_fn_cipher_name,
599 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
600 		rc = -EINVAL;
601 		goto out_free_unlock;
602 	}
603 	dest[s->i++] = s->cipher_code;
604 	rc = ecryptfs_find_auth_tok_for_sig(
605 		&s->auth_tok, mount_crypt_stat,
606 		mount_crypt_stat->global_default_fnek_sig);
607 	if (rc) {
608 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
609 		       "fnek sig [%s]; rc = [%d]\n", __func__,
610 		       mount_crypt_stat->global_default_fnek_sig, rc);
611 		goto out_free_unlock;
612 	}
613 	/* TODO: Support other key modules than passphrase for
614 	 * filename encryption */
615 	BUG_ON(s->auth_tok->token_type != ECRYPTFS_PASSWORD);
616 	sg_init_one(
617 		&s->hash_sg,
618 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
619 		s->auth_tok->token.password.session_key_encryption_key_bytes);
620 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
621 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
622 					     CRYPTO_ALG_ASYNC);
623 	if (IS_ERR(s->hash_desc.tfm)) {
624 			rc = PTR_ERR(s->hash_desc.tfm);
625 			printk(KERN_ERR "%s: Error attempting to "
626 			       "allocate hash crypto context; rc = [%d]\n",
627 			       __func__, rc);
628 			goto out_free_unlock;
629 	}
630 	rc = crypto_hash_init(&s->hash_desc);
631 	if (rc) {
632 		printk(KERN_ERR
633 		       "%s: Error initializing crypto hash; rc = [%d]\n",
634 		       __func__, rc);
635 		goto out_release_free_unlock;
636 	}
637 	rc = crypto_hash_update(
638 		&s->hash_desc, &s->hash_sg,
639 		s->auth_tok->token.password.session_key_encryption_key_bytes);
640 	if (rc) {
641 		printk(KERN_ERR
642 		       "%s: Error updating crypto hash; rc = [%d]\n",
643 		       __func__, rc);
644 		goto out_release_free_unlock;
645 	}
646 	rc = crypto_hash_final(&s->hash_desc, s->hash);
647 	if (rc) {
648 		printk(KERN_ERR
649 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
650 		       __func__, rc);
651 		goto out_release_free_unlock;
652 	}
653 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
654 		s->block_aligned_filename[s->j] =
655 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
656 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
657 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
658 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
659 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
660 			rc = crypto_hash_init(&s->hash_desc);
661 			if (rc) {
662 				printk(KERN_ERR
663 				       "%s: Error initializing crypto hash; "
664 				       "rc = [%d]\n", __func__, rc);
665 				goto out_release_free_unlock;
666 			}
667 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
668 						ECRYPTFS_TAG_70_DIGEST_SIZE);
669 			if (rc) {
670 				printk(KERN_ERR
671 				       "%s: Error updating crypto hash; "
672 				       "rc = [%d]\n", __func__, rc);
673 				goto out_release_free_unlock;
674 			}
675 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
676 			if (rc) {
677 				printk(KERN_ERR
678 				       "%s: Error finalizing crypto hash; "
679 				       "rc = [%d]\n", __func__, rc);
680 				goto out_release_free_unlock;
681 			}
682 			memcpy(s->hash, s->tmp_hash,
683 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
684 		}
685 		if (s->block_aligned_filename[s->j] == '\0')
686 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
687 	}
688 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
689 	       filename_size);
690 	rc = virt_to_scatterlist(s->block_aligned_filename,
691 				 s->block_aligned_filename_size, &s->src_sg, 1);
692 	if (rc != 1) {
693 		printk(KERN_ERR "%s: Internal error whilst attempting to "
694 		       "convert filename memory to scatterlist; "
695 		       "expected rc = 1; got rc = [%d]. "
696 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
697 		       s->block_aligned_filename_size);
698 		goto out_release_free_unlock;
699 	}
700 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
701 				 &s->dst_sg, 1);
702 	if (rc != 1) {
703 		printk(KERN_ERR "%s: Internal error whilst attempting to "
704 		       "convert encrypted filename memory to scatterlist; "
705 		       "expected rc = 1; got rc = [%d]. "
706 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
707 		       s->block_aligned_filename_size);
708 		goto out_release_free_unlock;
709 	}
710 	/* The characters in the first block effectively do the job
711 	 * of the IV here, so we just use 0's for the IV. Note the
712 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
713 	 * >= ECRYPTFS_MAX_IV_BYTES. */
714 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
715 	s->desc.info = s->iv;
716 	rc = crypto_blkcipher_setkey(
717 		s->desc.tfm,
718 		s->auth_tok->token.password.session_key_encryption_key,
719 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
720 	if (rc < 0) {
721 		printk(KERN_ERR "%s: Error setting key for crypto context; "
722 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
723 		       "encryption_key = [0x%p]; mount_crypt_stat->"
724 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
725 		       rc,
726 		       s->auth_tok->token.password.session_key_encryption_key,
727 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
728 		goto out_release_free_unlock;
729 	}
730 	rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
731 					 s->block_aligned_filename_size);
732 	if (rc) {
733 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
734 		       "rc = [%d]\n", __func__, rc);
735 		goto out_release_free_unlock;
736 	}
737 	s->i += s->block_aligned_filename_size;
738 	(*packet_size) = s->i;
739 	(*remaining_bytes) -= (*packet_size);
740 out_release_free_unlock:
741 	crypto_free_hash(s->hash_desc.tfm);
742 out_free_unlock:
743 	memset(s->block_aligned_filename, 0, s->block_aligned_filename_size);
744 	kfree(s->block_aligned_filename);
745 out_unlock:
746 	mutex_unlock(s->tfm_mutex);
747 out:
748 	kfree(s);
749 	return rc;
750 }
751 
752 struct ecryptfs_parse_tag_70_packet_silly_stack {
753 	u8 cipher_code;
754 	size_t max_packet_size;
755 	size_t packet_size_len;
756 	size_t parsed_tag_70_packet_size;
757 	size_t block_aligned_filename_size;
758 	size_t block_size;
759 	size_t i;
760 	struct mutex *tfm_mutex;
761 	char *decrypted_filename;
762 	struct ecryptfs_auth_tok *auth_tok;
763 	struct scatterlist src_sg;
764 	struct scatterlist dst_sg;
765 	struct blkcipher_desc desc;
766 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
767 	char iv[ECRYPTFS_MAX_IV_BYTES];
768 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
769 };
770 
771 /**
772  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
773  * @filename: This function kmalloc's the memory for the filename
774  * @filename_size: This function sets this to the amount of memory
775  *                 kmalloc'd for the filename
776  * @packet_size: This function sets this to the the number of octets
777  *               in the packet parsed
778  * @mount_crypt_stat: The mount-wide cryptographic context
779  * @data: The memory location containing the start of the tag 70
780  *        packet
781  * @max_packet_size: The maximum legal size of the packet to be parsed
782  *                   from @data
783  *
784  * Returns zero on success; non-zero otherwise
785  */
786 int
ecryptfs_parse_tag_70_packet(char ** filename,size_t * filename_size,size_t * packet_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * data,size_t max_packet_size)787 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
788 			     size_t *packet_size,
789 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
790 			     char *data, size_t max_packet_size)
791 {
792 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
793 	int rc = 0;
794 
795 	(*packet_size) = 0;
796 	(*filename_size) = 0;
797 	(*filename) = NULL;
798 	s = kmalloc(sizeof(*s), GFP_KERNEL);
799 	if (!s) {
800 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
801 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
802 		goto out;
803 	}
804 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
805 	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
806 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
807 		       "at least [%d]\n", __func__, max_packet_size,
808 			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
809 		rc = -EINVAL;
810 		goto out;
811 	}
812 	/* Octet 0: Tag 70 identifier
813 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
814 	 *              and block-aligned encrypted filename size)
815 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
816 	 * Octet N2-N3: Cipher identifier (1 octet)
817 	 * Octets N3-N4: Block-aligned encrypted filename
818 	 *  - Consists of a minimum number of random numbers, a \0
819 	 *    separator, and then the filename */
820 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
821 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
822 		       "tag [0x%.2x]\n", __func__,
823 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
824 		rc = -EINVAL;
825 		goto out;
826 	}
827 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
828 					  &s->parsed_tag_70_packet_size,
829 					  &s->packet_size_len);
830 	if (rc) {
831 		printk(KERN_WARNING "%s: Error parsing packet length; "
832 		       "rc = [%d]\n", __func__, rc);
833 		goto out;
834 	}
835 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
836 					  - ECRYPTFS_SIG_SIZE - 1);
837 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
838 	    > max_packet_size) {
839 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
840 		       "size is [%zd]\n", __func__, max_packet_size,
841 		       (1 + s->packet_size_len + 1
842 			+ s->block_aligned_filename_size));
843 		rc = -EINVAL;
844 		goto out;
845 	}
846 	(*packet_size) += s->packet_size_len;
847 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
848 			ECRYPTFS_SIG_SIZE);
849 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
850 	(*packet_size) += ECRYPTFS_SIG_SIZE;
851 	s->cipher_code = data[(*packet_size)++];
852 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
853 	if (rc) {
854 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
855 		       __func__, s->cipher_code);
856 		goto out;
857 	}
858 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
859 							&s->tfm_mutex,
860 							s->cipher_string);
861 	if (unlikely(rc)) {
862 		printk(KERN_ERR "Internal error whilst attempting to get "
863 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
864 		       s->cipher_string, rc);
865 		goto out;
866 	}
867 	mutex_lock(s->tfm_mutex);
868 	rc = virt_to_scatterlist(&data[(*packet_size)],
869 				 s->block_aligned_filename_size, &s->src_sg, 1);
870 	if (rc != 1) {
871 		printk(KERN_ERR "%s: Internal error whilst attempting to "
872 		       "convert encrypted filename memory to scatterlist; "
873 		       "expected rc = 1; got rc = [%d]. "
874 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
875 		       s->block_aligned_filename_size);
876 		goto out_unlock;
877 	}
878 	(*packet_size) += s->block_aligned_filename_size;
879 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
880 					GFP_KERNEL);
881 	if (!s->decrypted_filename) {
882 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
883 		       "kmalloc [%zd] bytes\n", __func__,
884 		       s->block_aligned_filename_size);
885 		rc = -ENOMEM;
886 		goto out_unlock;
887 	}
888 	rc = virt_to_scatterlist(s->decrypted_filename,
889 				 s->block_aligned_filename_size, &s->dst_sg, 1);
890 	if (rc != 1) {
891 		printk(KERN_ERR "%s: Internal error whilst attempting to "
892 		       "convert decrypted filename memory to scatterlist; "
893 		       "expected rc = 1; got rc = [%d]. "
894 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
895 		       s->block_aligned_filename_size);
896 		goto out_free_unlock;
897 	}
898 	/* The characters in the first block effectively do the job of
899 	 * the IV here, so we just use 0's for the IV. Note the
900 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
901 	 * >= ECRYPTFS_MAX_IV_BYTES. */
902 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
903 	s->desc.info = s->iv;
904 	rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
905 					    s->fnek_sig_hex);
906 	if (rc) {
907 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
908 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
909 		       rc);
910 		goto out_free_unlock;
911 	}
912 	/* TODO: Support other key modules than passphrase for
913 	 * filename encryption */
914 	BUG_ON(s->auth_tok->token_type != ECRYPTFS_PASSWORD);
915 	rc = crypto_blkcipher_setkey(
916 		s->desc.tfm,
917 		s->auth_tok->token.password.session_key_encryption_key,
918 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
919 	if (rc < 0) {
920 		printk(KERN_ERR "%s: Error setting key for crypto context; "
921 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
922 		       "encryption_key = [0x%p]; mount_crypt_stat->"
923 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
924 		       rc,
925 		       s->auth_tok->token.password.session_key_encryption_key,
926 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
927 		goto out_free_unlock;
928 	}
929 	rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
930 					 s->block_aligned_filename_size);
931 	if (rc) {
932 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
933 		       "rc = [%d]\n", __func__, rc);
934 		goto out_free_unlock;
935 	}
936 	s->i = 0;
937 	while (s->decrypted_filename[s->i] != '\0'
938 	       && s->i < s->block_aligned_filename_size)
939 		s->i++;
940 	if (s->i == s->block_aligned_filename_size) {
941 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
942 		       "find valid separator between random characters and "
943 		       "the filename\n", __func__);
944 		rc = -EINVAL;
945 		goto out_free_unlock;
946 	}
947 	s->i++;
948 	(*filename_size) = (s->block_aligned_filename_size - s->i);
949 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
950 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
951 		       "invalid\n", __func__, (*filename_size));
952 		rc = -EINVAL;
953 		goto out_free_unlock;
954 	}
955 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
956 	if (!(*filename)) {
957 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
958 		       "kmalloc [%zd] bytes\n", __func__,
959 		       ((*filename_size) + 1));
960 		rc = -ENOMEM;
961 		goto out_free_unlock;
962 	}
963 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
964 	(*filename)[(*filename_size)] = '\0';
965 out_free_unlock:
966 	kfree(s->decrypted_filename);
967 out_unlock:
968 	mutex_unlock(s->tfm_mutex);
969 out:
970 	if (rc) {
971 		(*packet_size) = 0;
972 		(*filename_size) = 0;
973 		(*filename) = NULL;
974 	}
975 	kfree(s);
976 	return rc;
977 }
978 
979 static int
ecryptfs_get_auth_tok_sig(char ** sig,struct ecryptfs_auth_tok * auth_tok)980 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
981 {
982 	int rc = 0;
983 
984 	(*sig) = NULL;
985 	switch (auth_tok->token_type) {
986 	case ECRYPTFS_PASSWORD:
987 		(*sig) = auth_tok->token.password.signature;
988 		break;
989 	case ECRYPTFS_PRIVATE_KEY:
990 		(*sig) = auth_tok->token.private_key.signature;
991 		break;
992 	default:
993 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
994 		       auth_tok->token_type);
995 		rc = -EINVAL;
996 	}
997 	return rc;
998 }
999 
1000 /**
1001  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1002  * @auth_tok: The key authentication token used to decrypt the session key
1003  * @crypt_stat: The cryptographic context
1004  *
1005  * Returns zero on success; non-zero error otherwise.
1006  */
1007 static int
decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat)1008 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1009 				  struct ecryptfs_crypt_stat *crypt_stat)
1010 {
1011 	u8 cipher_code = 0;
1012 	struct ecryptfs_msg_ctx *msg_ctx;
1013 	struct ecryptfs_message *msg = NULL;
1014 	char *auth_tok_sig;
1015 	char *payload;
1016 	size_t payload_len;
1017 	int rc;
1018 
1019 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1020 	if (rc) {
1021 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1022 		       auth_tok->token_type);
1023 		goto out;
1024 	}
1025 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1026 				 &payload, &payload_len);
1027 	if (rc) {
1028 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1029 		goto out;
1030 	}
1031 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1032 	if (rc) {
1033 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1034 				"ecryptfsd\n");
1035 		goto out;
1036 	}
1037 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1038 	if (rc) {
1039 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1040 				"from the user space daemon\n");
1041 		rc = -EIO;
1042 		goto out;
1043 	}
1044 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1045 				 &cipher_code, msg);
1046 	if (rc) {
1047 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1048 		       rc);
1049 		goto out;
1050 	}
1051 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1052 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1053 	       auth_tok->session_key.decrypted_key_size);
1054 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1055 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1056 	if (rc) {
1057 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1058 				cipher_code)
1059 		goto out;
1060 	}
1061 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1062 	if (ecryptfs_verbosity > 0) {
1063 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1064 		ecryptfs_dump_hex(crypt_stat->key,
1065 				  crypt_stat->key_size);
1066 	}
1067 out:
1068 	if (msg)
1069 		kfree(msg);
1070 	return rc;
1071 }
1072 
wipe_auth_tok_list(struct list_head * auth_tok_list_head)1073 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1074 {
1075 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1076 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1077 
1078 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1079 				 auth_tok_list_head, list) {
1080 		list_del(&auth_tok_list_item->list);
1081 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1082 				auth_tok_list_item);
1083 	}
1084 }
1085 
1086 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1087 
1088 /**
1089  * parse_tag_1_packet
1090  * @crypt_stat: The cryptographic context to modify based on packet contents
1091  * @data: The raw bytes of the packet.
1092  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1093  *                 a new authentication token will be placed at the
1094  *                 end of this list for this packet.
1095  * @new_auth_tok: Pointer to a pointer to memory that this function
1096  *                allocates; sets the memory address of the pointer to
1097  *                NULL on error. This object is added to the
1098  *                auth_tok_list.
1099  * @packet_size: This function writes the size of the parsed packet
1100  *               into this memory location; zero on error.
1101  * @max_packet_size: The maximum allowable packet size
1102  *
1103  * Returns zero on success; non-zero on error.
1104  */
1105 static int
parse_tag_1_packet(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * data,struct list_head * auth_tok_list,struct ecryptfs_auth_tok ** new_auth_tok,size_t * packet_size,size_t max_packet_size)1106 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1107 		   unsigned char *data, struct list_head *auth_tok_list,
1108 		   struct ecryptfs_auth_tok **new_auth_tok,
1109 		   size_t *packet_size, size_t max_packet_size)
1110 {
1111 	size_t body_size;
1112 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1113 	size_t length_size;
1114 	int rc = 0;
1115 
1116 	(*packet_size) = 0;
1117 	(*new_auth_tok) = NULL;
1118 	/**
1119 	 * This format is inspired by OpenPGP; see RFC 2440
1120 	 * packet tag 1
1121 	 *
1122 	 * Tag 1 identifier (1 byte)
1123 	 * Max Tag 1 packet size (max 3 bytes)
1124 	 * Version (1 byte)
1125 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1126 	 * Cipher identifier (1 byte)
1127 	 * Encrypted key size (arbitrary)
1128 	 *
1129 	 * 12 bytes minimum packet size
1130 	 */
1131 	if (unlikely(max_packet_size < 12)) {
1132 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1133 		rc = -EINVAL;
1134 		goto out;
1135 	}
1136 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1137 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1138 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1139 		rc = -EINVAL;
1140 		goto out;
1141 	}
1142 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1143 	 * at end of function upon failure */
1144 	auth_tok_list_item =
1145 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1146 				  GFP_KERNEL);
1147 	if (!auth_tok_list_item) {
1148 		printk(KERN_ERR "Unable to allocate memory\n");
1149 		rc = -ENOMEM;
1150 		goto out;
1151 	}
1152 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1153 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1154 					  &length_size);
1155 	if (rc) {
1156 		printk(KERN_WARNING "Error parsing packet length; "
1157 		       "rc = [%d]\n", rc);
1158 		goto out_free;
1159 	}
1160 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1161 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1162 		rc = -EINVAL;
1163 		goto out_free;
1164 	}
1165 	(*packet_size) += length_size;
1166 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1167 		printk(KERN_WARNING "Packet size exceeds max\n");
1168 		rc = -EINVAL;
1169 		goto out_free;
1170 	}
1171 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1172 		printk(KERN_WARNING "Unknown version number [%d]\n",
1173 		       data[(*packet_size) - 1]);
1174 		rc = -EINVAL;
1175 		goto out_free;
1176 	}
1177 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1178 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1179 	*packet_size += ECRYPTFS_SIG_SIZE;
1180 	/* This byte is skipped because the kernel does not need to
1181 	 * know which public key encryption algorithm was used */
1182 	(*packet_size)++;
1183 	(*new_auth_tok)->session_key.encrypted_key_size =
1184 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1185 	if ((*new_auth_tok)->session_key.encrypted_key_size
1186 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1187 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1188 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1189 		rc = -EINVAL;
1190 		goto out;
1191 	}
1192 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1193 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1194 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1195 	(*new_auth_tok)->session_key.flags &=
1196 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1197 	(*new_auth_tok)->session_key.flags |=
1198 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1199 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1200 	(*new_auth_tok)->flags = 0;
1201 	(*new_auth_tok)->session_key.flags &=
1202 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1203 	(*new_auth_tok)->session_key.flags &=
1204 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1205 	list_add(&auth_tok_list_item->list, auth_tok_list);
1206 	goto out;
1207 out_free:
1208 	(*new_auth_tok) = NULL;
1209 	memset(auth_tok_list_item, 0,
1210 	       sizeof(struct ecryptfs_auth_tok_list_item));
1211 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1212 			auth_tok_list_item);
1213 out:
1214 	if (rc)
1215 		(*packet_size) = 0;
1216 	return rc;
1217 }
1218 
1219 /**
1220  * parse_tag_3_packet
1221  * @crypt_stat: The cryptographic context to modify based on packet
1222  *              contents.
1223  * @data: The raw bytes of the packet.
1224  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1225  *                 a new authentication token will be placed at the end
1226  *                 of this list for this packet.
1227  * @new_auth_tok: Pointer to a pointer to memory that this function
1228  *                allocates; sets the memory address of the pointer to
1229  *                NULL on error. This object is added to the
1230  *                auth_tok_list.
1231  * @packet_size: This function writes the size of the parsed packet
1232  *               into this memory location; zero on error.
1233  * @max_packet_size: maximum number of bytes to parse
1234  *
1235  * Returns zero on success; non-zero on error.
1236  */
1237 static int
parse_tag_3_packet(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * data,struct list_head * auth_tok_list,struct ecryptfs_auth_tok ** new_auth_tok,size_t * packet_size,size_t max_packet_size)1238 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1239 		   unsigned char *data, struct list_head *auth_tok_list,
1240 		   struct ecryptfs_auth_tok **new_auth_tok,
1241 		   size_t *packet_size, size_t max_packet_size)
1242 {
1243 	size_t body_size;
1244 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1245 	size_t length_size;
1246 	int rc = 0;
1247 
1248 	(*packet_size) = 0;
1249 	(*new_auth_tok) = NULL;
1250 	/**
1251 	 *This format is inspired by OpenPGP; see RFC 2440
1252 	 * packet tag 3
1253 	 *
1254 	 * Tag 3 identifier (1 byte)
1255 	 * Max Tag 3 packet size (max 3 bytes)
1256 	 * Version (1 byte)
1257 	 * Cipher code (1 byte)
1258 	 * S2K specifier (1 byte)
1259 	 * Hash identifier (1 byte)
1260 	 * Salt (ECRYPTFS_SALT_SIZE)
1261 	 * Hash iterations (1 byte)
1262 	 * Encrypted key (arbitrary)
1263 	 *
1264 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1265 	 */
1266 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1267 		printk(KERN_ERR "Max packet size too large\n");
1268 		rc = -EINVAL;
1269 		goto out;
1270 	}
1271 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1272 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1273 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1274 		rc = -EINVAL;
1275 		goto out;
1276 	}
1277 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1278 	 * at end of function upon failure */
1279 	auth_tok_list_item =
1280 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1281 	if (!auth_tok_list_item) {
1282 		printk(KERN_ERR "Unable to allocate memory\n");
1283 		rc = -ENOMEM;
1284 		goto out;
1285 	}
1286 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1287 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1288 					  &length_size);
1289 	if (rc) {
1290 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1291 		       rc);
1292 		goto out_free;
1293 	}
1294 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1295 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1296 		rc = -EINVAL;
1297 		goto out_free;
1298 	}
1299 	(*packet_size) += length_size;
1300 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1301 		printk(KERN_ERR "Packet size exceeds max\n");
1302 		rc = -EINVAL;
1303 		goto out_free;
1304 	}
1305 	(*new_auth_tok)->session_key.encrypted_key_size =
1306 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1307 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1308 		printk(KERN_WARNING "Unknown version number [%d]\n",
1309 		       data[(*packet_size) - 1]);
1310 		rc = -EINVAL;
1311 		goto out_free;
1312 	}
1313 	ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1314 				       (u16)data[(*packet_size)]);
1315 	/* A little extra work to differentiate among the AES key
1316 	 * sizes; see RFC2440 */
1317 	switch(data[(*packet_size)++]) {
1318 	case RFC2440_CIPHER_AES_192:
1319 		crypt_stat->key_size = 24;
1320 		break;
1321 	default:
1322 		crypt_stat->key_size =
1323 			(*new_auth_tok)->session_key.encrypted_key_size;
1324 	}
1325 	ecryptfs_init_crypt_ctx(crypt_stat);
1326 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1327 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1328 		rc = -ENOSYS;
1329 		goto out_free;
1330 	}
1331 	/* TODO: finish the hash mapping */
1332 	switch (data[(*packet_size)++]) {
1333 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1334 		/* Choose MD5 */
1335 		memcpy((*new_auth_tok)->token.password.salt,
1336 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1337 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1338 		/* This conversion was taken straight from RFC2440 */
1339 		(*new_auth_tok)->token.password.hash_iterations =
1340 			((u32) 16 + (data[(*packet_size)] & 15))
1341 				<< ((data[(*packet_size)] >> 4) + 6);
1342 		(*packet_size)++;
1343 		/* Friendly reminder:
1344 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1345 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1346 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1347 		       &data[(*packet_size)],
1348 		       (*new_auth_tok)->session_key.encrypted_key_size);
1349 		(*packet_size) +=
1350 			(*new_auth_tok)->session_key.encrypted_key_size;
1351 		(*new_auth_tok)->session_key.flags &=
1352 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1353 		(*new_auth_tok)->session_key.flags |=
1354 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1355 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1356 		break;
1357 	default:
1358 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1359 				"[%d]\n", data[(*packet_size) - 1]);
1360 		rc = -ENOSYS;
1361 		goto out_free;
1362 	}
1363 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1364 	/* TODO: Parametarize; we might actually want userspace to
1365 	 * decrypt the session key. */
1366 	(*new_auth_tok)->session_key.flags &=
1367 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1368 	(*new_auth_tok)->session_key.flags &=
1369 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1370 	list_add(&auth_tok_list_item->list, auth_tok_list);
1371 	goto out;
1372 out_free:
1373 	(*new_auth_tok) = NULL;
1374 	memset(auth_tok_list_item, 0,
1375 	       sizeof(struct ecryptfs_auth_tok_list_item));
1376 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1377 			auth_tok_list_item);
1378 out:
1379 	if (rc)
1380 		(*packet_size) = 0;
1381 	return rc;
1382 }
1383 
1384 /**
1385  * parse_tag_11_packet
1386  * @data: The raw bytes of the packet
1387  * @contents: This function writes the data contents of the literal
1388  *            packet into this memory location
1389  * @max_contents_bytes: The maximum number of bytes that this function
1390  *                      is allowed to write into contents
1391  * @tag_11_contents_size: This function writes the size of the parsed
1392  *                        contents into this memory location; zero on
1393  *                        error
1394  * @packet_size: This function writes the size of the parsed packet
1395  *               into this memory location; zero on error
1396  * @max_packet_size: maximum number of bytes to parse
1397  *
1398  * Returns zero on success; non-zero on error.
1399  */
1400 static int
parse_tag_11_packet(unsigned char * data,unsigned char * contents,size_t max_contents_bytes,size_t * tag_11_contents_size,size_t * packet_size,size_t max_packet_size)1401 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1402 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1403 		    size_t *packet_size, size_t max_packet_size)
1404 {
1405 	size_t body_size;
1406 	size_t length_size;
1407 	int rc = 0;
1408 
1409 	(*packet_size) = 0;
1410 	(*tag_11_contents_size) = 0;
1411 	/* This format is inspired by OpenPGP; see RFC 2440
1412 	 * packet tag 11
1413 	 *
1414 	 * Tag 11 identifier (1 byte)
1415 	 * Max Tag 11 packet size (max 3 bytes)
1416 	 * Binary format specifier (1 byte)
1417 	 * Filename length (1 byte)
1418 	 * Filename ("_CONSOLE") (8 bytes)
1419 	 * Modification date (4 bytes)
1420 	 * Literal data (arbitrary)
1421 	 *
1422 	 * We need at least 16 bytes of data for the packet to even be
1423 	 * valid.
1424 	 */
1425 	if (max_packet_size < 16) {
1426 		printk(KERN_ERR "Maximum packet size too small\n");
1427 		rc = -EINVAL;
1428 		goto out;
1429 	}
1430 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1431 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1432 		rc = -EINVAL;
1433 		goto out;
1434 	}
1435 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1436 					  &length_size);
1437 	if (rc) {
1438 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1439 		goto out;
1440 	}
1441 	if (body_size < 14) {
1442 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1443 		rc = -EINVAL;
1444 		goto out;
1445 	}
1446 	(*packet_size) += length_size;
1447 	(*tag_11_contents_size) = (body_size - 14);
1448 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1449 		printk(KERN_ERR "Packet size exceeds max\n");
1450 		rc = -EINVAL;
1451 		goto out;
1452 	}
1453 	if (data[(*packet_size)++] != 0x62) {
1454 		printk(KERN_WARNING "Unrecognizable packet\n");
1455 		rc = -EINVAL;
1456 		goto out;
1457 	}
1458 	if (data[(*packet_size)++] != 0x08) {
1459 		printk(KERN_WARNING "Unrecognizable packet\n");
1460 		rc = -EINVAL;
1461 		goto out;
1462 	}
1463 	(*packet_size) += 12; /* Ignore filename and modification date */
1464 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1465 	(*packet_size) += (*tag_11_contents_size);
1466 out:
1467 	if (rc) {
1468 		(*packet_size) = 0;
1469 		(*tag_11_contents_size) = 0;
1470 	}
1471 	return rc;
1472 }
1473 
1474 /**
1475  * ecryptfs_verify_version
1476  * @version: The version number to confirm
1477  *
1478  * Returns zero on good version; non-zero otherwise
1479  */
ecryptfs_verify_version(u16 version)1480 static int ecryptfs_verify_version(u16 version)
1481 {
1482 	int rc = 0;
1483 	unsigned char major;
1484 	unsigned char minor;
1485 
1486 	major = ((version >> 8) & 0xFF);
1487 	minor = (version & 0xFF);
1488 	if (major != ECRYPTFS_VERSION_MAJOR) {
1489 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1490 				"Expected [%d]; got [%d]\n",
1491 				ECRYPTFS_VERSION_MAJOR, major);
1492 		rc = -EINVAL;
1493 		goto out;
1494 	}
1495 	if (minor != ECRYPTFS_VERSION_MINOR) {
1496 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1497 				"Expected [%d]; got [%d]\n",
1498 				ECRYPTFS_VERSION_MINOR, minor);
1499 		rc = -EINVAL;
1500 		goto out;
1501 	}
1502 out:
1503 	return rc;
1504 }
1505 
ecryptfs_keyring_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,char * sig)1506 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1507 				      struct ecryptfs_auth_tok **auth_tok,
1508 				      char *sig)
1509 {
1510 	int rc = 0;
1511 
1512 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1513 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1514 		printk(KERN_ERR "Could not find key with description: [%s]\n",
1515 		       sig);
1516 		rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1517 		goto out;
1518 	}
1519 	(*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1520 	if (ecryptfs_verify_version((*auth_tok)->version)) {
1521 		printk(KERN_ERR
1522 		       "Data structure version mismatch. "
1523 		       "Userspace tools must match eCryptfs "
1524 		       "kernel module with major version [%d] "
1525 		       "and minor version [%d]\n",
1526 		       ECRYPTFS_VERSION_MAJOR,
1527 		       ECRYPTFS_VERSION_MINOR);
1528 		rc = -EINVAL;
1529 		goto out;
1530 	}
1531 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1532 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1533 		printk(KERN_ERR "Invalid auth_tok structure "
1534 		       "returned from key query\n");
1535 		rc = -EINVAL;
1536 		goto out;
1537 	}
1538 out:
1539 	return rc;
1540 }
1541 
1542 /**
1543  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1544  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1545  * @crypt_stat: The cryptographic context
1546  *
1547  * Returns zero on success; non-zero error otherwise
1548  */
1549 static int
decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat)1550 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1551 					 struct ecryptfs_crypt_stat *crypt_stat)
1552 {
1553 	struct scatterlist dst_sg[2];
1554 	struct scatterlist src_sg[2];
1555 	struct mutex *tfm_mutex;
1556 	struct blkcipher_desc desc = {
1557 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1558 	};
1559 	int rc = 0;
1560 
1561 	if (unlikely(ecryptfs_verbosity > 0)) {
1562 		ecryptfs_printk(
1563 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1564 			auth_tok->token.password.session_key_encryption_key_bytes);
1565 		ecryptfs_dump_hex(
1566 			auth_tok->token.password.session_key_encryption_key,
1567 			auth_tok->token.password.session_key_encryption_key_bytes);
1568 	}
1569 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1570 							crypt_stat->cipher);
1571 	if (unlikely(rc)) {
1572 		printk(KERN_ERR "Internal error whilst attempting to get "
1573 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1574 		       crypt_stat->cipher, rc);
1575 		goto out;
1576 	}
1577 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1578 				 auth_tok->session_key.encrypted_key_size,
1579 				 src_sg, 2);
1580 	if (rc < 1 || rc > 2) {
1581 		printk(KERN_ERR "Internal error whilst attempting to convert "
1582 			"auth_tok->session_key.encrypted_key to scatterlist; "
1583 			"expected rc = 1; got rc = [%d]. "
1584 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1585 			auth_tok->session_key.encrypted_key_size);
1586 		goto out;
1587 	}
1588 	auth_tok->session_key.decrypted_key_size =
1589 		auth_tok->session_key.encrypted_key_size;
1590 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1591 				 auth_tok->session_key.decrypted_key_size,
1592 				 dst_sg, 2);
1593 	if (rc < 1 || rc > 2) {
1594 		printk(KERN_ERR "Internal error whilst attempting to convert "
1595 			"auth_tok->session_key.decrypted_key to scatterlist; "
1596 			"expected rc = 1; got rc = [%d]\n", rc);
1597 		goto out;
1598 	}
1599 	mutex_lock(tfm_mutex);
1600 	rc = crypto_blkcipher_setkey(
1601 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1602 		crypt_stat->key_size);
1603 	if (unlikely(rc < 0)) {
1604 		mutex_unlock(tfm_mutex);
1605 		printk(KERN_ERR "Error setting key for crypto context\n");
1606 		rc = -EINVAL;
1607 		goto out;
1608 	}
1609 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1610 				      auth_tok->session_key.encrypted_key_size);
1611 	mutex_unlock(tfm_mutex);
1612 	if (unlikely(rc)) {
1613 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1614 		goto out;
1615 	}
1616 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1617 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1618 	       auth_tok->session_key.decrypted_key_size);
1619 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1620 	if (unlikely(ecryptfs_verbosity > 0)) {
1621 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1622 				crypt_stat->key_size);
1623 		ecryptfs_dump_hex(crypt_stat->key,
1624 				  crypt_stat->key_size);
1625 	}
1626 out:
1627 	return rc;
1628 }
1629 
1630 /**
1631  * ecryptfs_parse_packet_set
1632  * @crypt_stat: The cryptographic context
1633  * @src: Virtual address of region of memory containing the packets
1634  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1635  *
1636  * Get crypt_stat to have the file's session key if the requisite key
1637  * is available to decrypt the session key.
1638  *
1639  * Returns Zero if a valid authentication token was retrieved and
1640  * processed; negative value for file not encrypted or for error
1641  * conditions.
1642  */
ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * src,struct dentry * ecryptfs_dentry)1643 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1644 			      unsigned char *src,
1645 			      struct dentry *ecryptfs_dentry)
1646 {
1647 	size_t i = 0;
1648 	size_t found_auth_tok;
1649 	size_t next_packet_is_auth_tok_packet;
1650 	struct list_head auth_tok_list;
1651 	struct ecryptfs_auth_tok *matching_auth_tok;
1652 	struct ecryptfs_auth_tok *candidate_auth_tok;
1653 	char *candidate_auth_tok_sig;
1654 	size_t packet_size;
1655 	struct ecryptfs_auth_tok *new_auth_tok;
1656 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1657 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1658 	size_t tag_11_contents_size;
1659 	size_t tag_11_packet_size;
1660 	int rc = 0;
1661 
1662 	INIT_LIST_HEAD(&auth_tok_list);
1663 	/* Parse the header to find as many packets as we can; these will be
1664 	 * added the our &auth_tok_list */
1665 	next_packet_is_auth_tok_packet = 1;
1666 	while (next_packet_is_auth_tok_packet) {
1667 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1668 
1669 		switch (src[i]) {
1670 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1671 			rc = parse_tag_3_packet(crypt_stat,
1672 						(unsigned char *)&src[i],
1673 						&auth_tok_list, &new_auth_tok,
1674 						&packet_size, max_packet_size);
1675 			if (rc) {
1676 				ecryptfs_printk(KERN_ERR, "Error parsing "
1677 						"tag 3 packet\n");
1678 				rc = -EIO;
1679 				goto out_wipe_list;
1680 			}
1681 			i += packet_size;
1682 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1683 						 sig_tmp_space,
1684 						 ECRYPTFS_SIG_SIZE,
1685 						 &tag_11_contents_size,
1686 						 &tag_11_packet_size,
1687 						 max_packet_size);
1688 			if (rc) {
1689 				ecryptfs_printk(KERN_ERR, "No valid "
1690 						"(ecryptfs-specific) literal "
1691 						"packet containing "
1692 						"authentication token "
1693 						"signature found after "
1694 						"tag 3 packet\n");
1695 				rc = -EIO;
1696 				goto out_wipe_list;
1697 			}
1698 			i += tag_11_packet_size;
1699 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1700 				ecryptfs_printk(KERN_ERR, "Expected "
1701 						"signature of size [%d]; "
1702 						"read size [%d]\n",
1703 						ECRYPTFS_SIG_SIZE,
1704 						tag_11_contents_size);
1705 				rc = -EIO;
1706 				goto out_wipe_list;
1707 			}
1708 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1709 					sig_tmp_space, tag_11_contents_size);
1710 			new_auth_tok->token.password.signature[
1711 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1712 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1713 			break;
1714 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1715 			rc = parse_tag_1_packet(crypt_stat,
1716 						(unsigned char *)&src[i],
1717 						&auth_tok_list, &new_auth_tok,
1718 						&packet_size, max_packet_size);
1719 			if (rc) {
1720 				ecryptfs_printk(KERN_ERR, "Error parsing "
1721 						"tag 1 packet\n");
1722 				rc = -EIO;
1723 				goto out_wipe_list;
1724 			}
1725 			i += packet_size;
1726 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1727 			break;
1728 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1729 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1730 					"(Tag 11 not allowed by itself)\n");
1731 			rc = -EIO;
1732 			goto out_wipe_list;
1733 			break;
1734 		default:
1735 			ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1736 					"[%d] of the file header; hex value of "
1737 					"character is [0x%.2x]\n", i, src[i]);
1738 			next_packet_is_auth_tok_packet = 0;
1739 		}
1740 	}
1741 	if (list_empty(&auth_tok_list)) {
1742 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1743 		       "eCryptfs file; this is not supported in this version "
1744 		       "of the eCryptfs kernel module\n");
1745 		rc = -EINVAL;
1746 		goto out;
1747 	}
1748 	/* auth_tok_list contains the set of authentication tokens
1749 	 * parsed from the metadata. We need to find a matching
1750 	 * authentication token that has the secret component(s)
1751 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1752 	 * the metadata. There may be several potential matches, but
1753 	 * just one will be sufficient to decrypt to get the FEK. */
1754 find_next_matching_auth_tok:
1755 	found_auth_tok = 0;
1756 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1757 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1758 		if (unlikely(ecryptfs_verbosity > 0)) {
1759 			ecryptfs_printk(KERN_DEBUG,
1760 					"Considering cadidate auth tok:\n");
1761 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1762 		}
1763 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1764 					       candidate_auth_tok);
1765 		if (rc) {
1766 			printk(KERN_ERR
1767 			       "Unrecognized candidate auth tok type: [%d]\n",
1768 			       candidate_auth_tok->token_type);
1769 			rc = -EINVAL;
1770 			goto out_wipe_list;
1771 		}
1772 		ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1773 					       crypt_stat->mount_crypt_stat,
1774 					       candidate_auth_tok_sig);
1775 		if (matching_auth_tok) {
1776 			found_auth_tok = 1;
1777 			goto found_matching_auth_tok;
1778 		}
1779 	}
1780 	if (!found_auth_tok) {
1781 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1782 				"authentication token\n");
1783 		rc = -EIO;
1784 		goto out_wipe_list;
1785 	}
1786 found_matching_auth_tok:
1787 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1788 		memcpy(&(candidate_auth_tok->token.private_key),
1789 		       &(matching_auth_tok->token.private_key),
1790 		       sizeof(struct ecryptfs_private_key));
1791 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1792 						       crypt_stat);
1793 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1794 		memcpy(&(candidate_auth_tok->token.password),
1795 		       &(matching_auth_tok->token.password),
1796 		       sizeof(struct ecryptfs_password));
1797 		rc = decrypt_passphrase_encrypted_session_key(
1798 			candidate_auth_tok, crypt_stat);
1799 	}
1800 	if (rc) {
1801 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1802 
1803 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1804 				"session key for authentication token with sig "
1805 				"[%.*s]; rc = [%d]. Removing auth tok "
1806 				"candidate from the list and searching for "
1807 				"the next match.\n", candidate_auth_tok_sig,
1808 				ECRYPTFS_SIG_SIZE_HEX, rc);
1809 		list_for_each_entry_safe(auth_tok_list_item,
1810 					 auth_tok_list_item_tmp,
1811 					 &auth_tok_list, list) {
1812 			if (candidate_auth_tok
1813 			    == &auth_tok_list_item->auth_tok) {
1814 				list_del(&auth_tok_list_item->list);
1815 				kmem_cache_free(
1816 					ecryptfs_auth_tok_list_item_cache,
1817 					auth_tok_list_item);
1818 				goto find_next_matching_auth_tok;
1819 			}
1820 		}
1821 		BUG();
1822 	}
1823 	rc = ecryptfs_compute_root_iv(crypt_stat);
1824 	if (rc) {
1825 		ecryptfs_printk(KERN_ERR, "Error computing "
1826 				"the root IV\n");
1827 		goto out_wipe_list;
1828 	}
1829 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1830 	if (rc) {
1831 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1832 				"context for cipher [%s]; rc = [%d]\n",
1833 				crypt_stat->cipher, rc);
1834 	}
1835 out_wipe_list:
1836 	wipe_auth_tok_list(&auth_tok_list);
1837 out:
1838 	return rc;
1839 }
1840 
1841 static int
pki_encrypt_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec)1842 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1843 			struct ecryptfs_crypt_stat *crypt_stat,
1844 			struct ecryptfs_key_record *key_rec)
1845 {
1846 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1847 	char *payload = NULL;
1848 	size_t payload_len;
1849 	struct ecryptfs_message *msg;
1850 	int rc;
1851 
1852 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1853 				 ecryptfs_code_for_cipher_string(
1854 					 crypt_stat->cipher,
1855 					 crypt_stat->key_size),
1856 				 crypt_stat, &payload, &payload_len);
1857 	if (rc) {
1858 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1859 		goto out;
1860 	}
1861 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1862 	if (rc) {
1863 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1864 				"ecryptfsd\n");
1865 		goto out;
1866 	}
1867 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1868 	if (rc) {
1869 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1870 				"from the user space daemon\n");
1871 		rc = -EIO;
1872 		goto out;
1873 	}
1874 	rc = parse_tag_67_packet(key_rec, msg);
1875 	if (rc)
1876 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1877 	kfree(msg);
1878 out:
1879 	kfree(payload);
1880 	return rc;
1881 }
1882 /**
1883  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1884  * @dest: Buffer into which to write the packet
1885  * @remaining_bytes: Maximum number of bytes that can be writtn
1886  * @auth_tok: The authentication token used for generating the tag 1 packet
1887  * @crypt_stat: The cryptographic context
1888  * @key_rec: The key record struct for the tag 1 packet
1889  * @packet_size: This function will write the number of bytes that end
1890  *               up constituting the packet; set to zero on error
1891  *
1892  * Returns zero on success; non-zero on error.
1893  */
1894 static int
write_tag_1_packet(char * dest,size_t * remaining_bytes,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec,size_t * packet_size)1895 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1896 		   struct ecryptfs_auth_tok *auth_tok,
1897 		   struct ecryptfs_crypt_stat *crypt_stat,
1898 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1899 {
1900 	size_t i;
1901 	size_t encrypted_session_key_valid = 0;
1902 	size_t packet_size_length;
1903 	size_t max_packet_size;
1904 	int rc = 0;
1905 
1906 	(*packet_size) = 0;
1907 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1908 			  ECRYPTFS_SIG_SIZE);
1909 	encrypted_session_key_valid = 0;
1910 	for (i = 0; i < crypt_stat->key_size; i++)
1911 		encrypted_session_key_valid |=
1912 			auth_tok->session_key.encrypted_key[i];
1913 	if (encrypted_session_key_valid) {
1914 		memcpy(key_rec->enc_key,
1915 		       auth_tok->session_key.encrypted_key,
1916 		       auth_tok->session_key.encrypted_key_size);
1917 		goto encrypted_session_key_set;
1918 	}
1919 	if (auth_tok->session_key.encrypted_key_size == 0)
1920 		auth_tok->session_key.encrypted_key_size =
1921 			auth_tok->token.private_key.key_size;
1922 	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1923 	if (rc) {
1924 		printk(KERN_ERR "Failed to encrypt session key via a key "
1925 		       "module; rc = [%d]\n", rc);
1926 		goto out;
1927 	}
1928 	if (ecryptfs_verbosity > 0) {
1929 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1930 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1931 	}
1932 encrypted_session_key_set:
1933 	/* This format is inspired by OpenPGP; see RFC 2440
1934 	 * packet tag 1 */
1935 	max_packet_size = (1                         /* Tag 1 identifier */
1936 			   + 3                       /* Max Tag 1 packet size */
1937 			   + 1                       /* Version */
1938 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
1939 			   + 1                       /* Cipher identifier */
1940 			   + key_rec->enc_key_size); /* Encrypted key size */
1941 	if (max_packet_size > (*remaining_bytes)) {
1942 		printk(KERN_ERR "Packet length larger than maximum allowable; "
1943 		       "need up to [%td] bytes, but there are only [%td] "
1944 		       "available\n", max_packet_size, (*remaining_bytes));
1945 		rc = -EINVAL;
1946 		goto out;
1947 	}
1948 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1949 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1950 					  (max_packet_size - 4),
1951 					  &packet_size_length);
1952 	if (rc) {
1953 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1954 				"header; cannot generate packet length\n");
1955 		goto out;
1956 	}
1957 	(*packet_size) += packet_size_length;
1958 	dest[(*packet_size)++] = 0x03; /* version 3 */
1959 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1960 	(*packet_size) += ECRYPTFS_SIG_SIZE;
1961 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1962 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
1963 	       key_rec->enc_key_size);
1964 	(*packet_size) += key_rec->enc_key_size;
1965 out:
1966 	if (rc)
1967 		(*packet_size) = 0;
1968 	else
1969 		(*remaining_bytes) -= (*packet_size);
1970 	return rc;
1971 }
1972 
1973 /**
1974  * write_tag_11_packet
1975  * @dest: Target into which Tag 11 packet is to be written
1976  * @remaining_bytes: Maximum packet length
1977  * @contents: Byte array of contents to copy in
1978  * @contents_length: Number of bytes in contents
1979  * @packet_length: Length of the Tag 11 packet written; zero on error
1980  *
1981  * Returns zero on success; non-zero on error.
1982  */
1983 static int
write_tag_11_packet(char * dest,size_t * remaining_bytes,char * contents,size_t contents_length,size_t * packet_length)1984 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
1985 		    size_t contents_length, size_t *packet_length)
1986 {
1987 	size_t packet_size_length;
1988 	size_t max_packet_size;
1989 	int rc = 0;
1990 
1991 	(*packet_length) = 0;
1992 	/* This format is inspired by OpenPGP; see RFC 2440
1993 	 * packet tag 11 */
1994 	max_packet_size = (1                   /* Tag 11 identifier */
1995 			   + 3                 /* Max Tag 11 packet size */
1996 			   + 1                 /* Binary format specifier */
1997 			   + 1                 /* Filename length */
1998 			   + 8                 /* Filename ("_CONSOLE") */
1999 			   + 4                 /* Modification date */
2000 			   + contents_length); /* Literal data */
2001 	if (max_packet_size > (*remaining_bytes)) {
2002 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2003 		       "need up to [%td] bytes, but there are only [%td] "
2004 		       "available\n", max_packet_size, (*remaining_bytes));
2005 		rc = -EINVAL;
2006 		goto out;
2007 	}
2008 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2009 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2010 					  (max_packet_size - 4),
2011 					  &packet_size_length);
2012 	if (rc) {
2013 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2014 		       "generate packet length. rc = [%d]\n", rc);
2015 		goto out;
2016 	}
2017 	(*packet_length) += packet_size_length;
2018 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2019 	dest[(*packet_length)++] = 8;
2020 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2021 	(*packet_length) += 8;
2022 	memset(&dest[(*packet_length)], 0x00, 4);
2023 	(*packet_length) += 4;
2024 	memcpy(&dest[(*packet_length)], contents, contents_length);
2025 	(*packet_length) += contents_length;
2026  out:
2027 	if (rc)
2028 		(*packet_length) = 0;
2029 	else
2030 		(*remaining_bytes) -= (*packet_length);
2031 	return rc;
2032 }
2033 
2034 /**
2035  * write_tag_3_packet
2036  * @dest: Buffer into which to write the packet
2037  * @remaining_bytes: Maximum number of bytes that can be written
2038  * @auth_tok: Authentication token
2039  * @crypt_stat: The cryptographic context
2040  * @key_rec: encrypted key
2041  * @packet_size: This function will write the number of bytes that end
2042  *               up constituting the packet; set to zero on error
2043  *
2044  * Returns zero on success; non-zero on error.
2045  */
2046 static int
write_tag_3_packet(char * dest,size_t * remaining_bytes,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec,size_t * packet_size)2047 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2048 		   struct ecryptfs_auth_tok *auth_tok,
2049 		   struct ecryptfs_crypt_stat *crypt_stat,
2050 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2051 {
2052 	size_t i;
2053 	size_t encrypted_session_key_valid = 0;
2054 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2055 	struct scatterlist dst_sg[2];
2056 	struct scatterlist src_sg[2];
2057 	struct mutex *tfm_mutex = NULL;
2058 	u8 cipher_code;
2059 	size_t packet_size_length;
2060 	size_t max_packet_size;
2061 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2062 		crypt_stat->mount_crypt_stat;
2063 	struct blkcipher_desc desc = {
2064 		.tfm = NULL,
2065 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2066 	};
2067 	int rc = 0;
2068 
2069 	(*packet_size) = 0;
2070 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2071 			  ECRYPTFS_SIG_SIZE);
2072 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2073 							crypt_stat->cipher);
2074 	if (unlikely(rc)) {
2075 		printk(KERN_ERR "Internal error whilst attempting to get "
2076 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2077 		       crypt_stat->cipher, rc);
2078 		goto out;
2079 	}
2080 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2081 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2082 
2083 		printk(KERN_WARNING "No key size specified at mount; "
2084 		       "defaulting to [%d]\n", alg->max_keysize);
2085 		mount_crypt_stat->global_default_cipher_key_size =
2086 			alg->max_keysize;
2087 	}
2088 	if (crypt_stat->key_size == 0)
2089 		crypt_stat->key_size =
2090 			mount_crypt_stat->global_default_cipher_key_size;
2091 	if (auth_tok->session_key.encrypted_key_size == 0)
2092 		auth_tok->session_key.encrypted_key_size =
2093 			crypt_stat->key_size;
2094 	if (crypt_stat->key_size == 24
2095 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2096 		memset((crypt_stat->key + 24), 0, 8);
2097 		auth_tok->session_key.encrypted_key_size = 32;
2098 	} else
2099 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2100 	key_rec->enc_key_size =
2101 		auth_tok->session_key.encrypted_key_size;
2102 	encrypted_session_key_valid = 0;
2103 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2104 		encrypted_session_key_valid |=
2105 			auth_tok->session_key.encrypted_key[i];
2106 	if (encrypted_session_key_valid) {
2107 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2108 				"using auth_tok->session_key.encrypted_key, "
2109 				"where key_rec->enc_key_size = [%d]\n",
2110 				key_rec->enc_key_size);
2111 		memcpy(key_rec->enc_key,
2112 		       auth_tok->session_key.encrypted_key,
2113 		       key_rec->enc_key_size);
2114 		goto encrypted_session_key_set;
2115 	}
2116 	if (auth_tok->token.password.flags &
2117 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2118 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2119 				"session key encryption key of size [%d]\n",
2120 				auth_tok->token.password.
2121 				session_key_encryption_key_bytes);
2122 		memcpy(session_key_encryption_key,
2123 		       auth_tok->token.password.session_key_encryption_key,
2124 		       crypt_stat->key_size);
2125 		ecryptfs_printk(KERN_DEBUG,
2126 				"Cached session key " "encryption key: \n");
2127 		if (ecryptfs_verbosity > 0)
2128 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2129 	}
2130 	if (unlikely(ecryptfs_verbosity > 0)) {
2131 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2132 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2133 	}
2134 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2135 				 src_sg, 2);
2136 	if (rc < 1 || rc > 2) {
2137 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2138 				"for crypt_stat session key; expected rc = 1; "
2139 				"got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2140 				rc, key_rec->enc_key_size);
2141 		rc = -ENOMEM;
2142 		goto out;
2143 	}
2144 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2145 				 dst_sg, 2);
2146 	if (rc < 1 || rc > 2) {
2147 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2148 				"for crypt_stat encrypted session key; "
2149 				"expected rc = 1; got rc = [%d]. "
2150 				"key_rec->enc_key_size = [%d]\n", rc,
2151 				key_rec->enc_key_size);
2152 		rc = -ENOMEM;
2153 		goto out;
2154 	}
2155 	mutex_lock(tfm_mutex);
2156 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2157 				     crypt_stat->key_size);
2158 	if (rc < 0) {
2159 		mutex_unlock(tfm_mutex);
2160 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2161 				"context; rc = [%d]\n", rc);
2162 		goto out;
2163 	}
2164 	rc = 0;
2165 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2166 			crypt_stat->key_size);
2167 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2168 				      (*key_rec).enc_key_size);
2169 	mutex_unlock(tfm_mutex);
2170 	if (rc) {
2171 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2172 		goto out;
2173 	}
2174 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2175 	if (ecryptfs_verbosity > 0) {
2176 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2177 				key_rec->enc_key_size);
2178 		ecryptfs_dump_hex(key_rec->enc_key,
2179 				  key_rec->enc_key_size);
2180 	}
2181 encrypted_session_key_set:
2182 	/* This format is inspired by OpenPGP; see RFC 2440
2183 	 * packet tag 3 */
2184 	max_packet_size = (1                         /* Tag 3 identifier */
2185 			   + 3                       /* Max Tag 3 packet size */
2186 			   + 1                       /* Version */
2187 			   + 1                       /* Cipher code */
2188 			   + 1                       /* S2K specifier */
2189 			   + 1                       /* Hash identifier */
2190 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2191 			   + 1                       /* Hash iterations */
2192 			   + key_rec->enc_key_size); /* Encrypted key size */
2193 	if (max_packet_size > (*remaining_bytes)) {
2194 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2195 		       "there are only [%td] available\n", max_packet_size,
2196 		       (*remaining_bytes));
2197 		rc = -EINVAL;
2198 		goto out;
2199 	}
2200 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2201 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2202 	 * to get the number of octets in the actual Tag 3 packet */
2203 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2204 					  (max_packet_size - 4),
2205 					  &packet_size_length);
2206 	if (rc) {
2207 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2208 		       "generate packet length. rc = [%d]\n", rc);
2209 		goto out;
2210 	}
2211 	(*packet_size) += packet_size_length;
2212 	dest[(*packet_size)++] = 0x04; /* version 4 */
2213 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2214 	 * specified with strings */
2215 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2216 						      crypt_stat->key_size);
2217 	if (cipher_code == 0) {
2218 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2219 				"cipher [%s]\n", crypt_stat->cipher);
2220 		rc = -EINVAL;
2221 		goto out;
2222 	}
2223 	dest[(*packet_size)++] = cipher_code;
2224 	dest[(*packet_size)++] = 0x03;	/* S2K */
2225 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2226 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2227 	       ECRYPTFS_SALT_SIZE);
2228 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2229 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2230 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2231 	       key_rec->enc_key_size);
2232 	(*packet_size) += key_rec->enc_key_size;
2233 out:
2234 	if (rc)
2235 		(*packet_size) = 0;
2236 	else
2237 		(*remaining_bytes) -= (*packet_size);
2238 	return rc;
2239 }
2240 
2241 struct kmem_cache *ecryptfs_key_record_cache;
2242 
2243 /**
2244  * ecryptfs_generate_key_packet_set
2245  * @dest_base: Virtual address from which to write the key record set
2246  * @crypt_stat: The cryptographic context from which the
2247  *              authentication tokens will be retrieved
2248  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2249  *                   for the global parameters
2250  * @len: The amount written
2251  * @max: The maximum amount of data allowed to be written
2252  *
2253  * Generates a key packet set and writes it to the virtual address
2254  * passed in.
2255  *
2256  * Returns zero on success; non-zero on error.
2257  */
2258 int
ecryptfs_generate_key_packet_set(char * dest_base,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,size_t * len,size_t max)2259 ecryptfs_generate_key_packet_set(char *dest_base,
2260 				 struct ecryptfs_crypt_stat *crypt_stat,
2261 				 struct dentry *ecryptfs_dentry, size_t *len,
2262 				 size_t max)
2263 {
2264 	struct ecryptfs_auth_tok *auth_tok;
2265 	struct ecryptfs_global_auth_tok *global_auth_tok;
2266 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2267 		&ecryptfs_superblock_to_private(
2268 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2269 	size_t written;
2270 	struct ecryptfs_key_record *key_rec;
2271 	struct ecryptfs_key_sig *key_sig;
2272 	int rc = 0;
2273 
2274 	(*len) = 0;
2275 	mutex_lock(&crypt_stat->keysig_list_mutex);
2276 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2277 	if (!key_rec) {
2278 		rc = -ENOMEM;
2279 		goto out;
2280 	}
2281 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2282 			    crypt_stat_list) {
2283 		memset(key_rec, 0, sizeof(*key_rec));
2284 		rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2285 							   mount_crypt_stat,
2286 							   key_sig->keysig);
2287 		if (rc) {
2288 			printk(KERN_ERR "Error attempting to get the global "
2289 			       "auth_tok; rc = [%d]\n", rc);
2290 			goto out_free;
2291 		}
2292 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2293 			printk(KERN_WARNING
2294 			       "Skipping invalid auth tok with sig = [%s]\n",
2295 			       global_auth_tok->sig);
2296 			continue;
2297 		}
2298 		auth_tok = global_auth_tok->global_auth_tok;
2299 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2300 			rc = write_tag_3_packet((dest_base + (*len)),
2301 						&max, auth_tok,
2302 						crypt_stat, key_rec,
2303 						&written);
2304 			if (rc) {
2305 				ecryptfs_printk(KERN_WARNING, "Error "
2306 						"writing tag 3 packet\n");
2307 				goto out_free;
2308 			}
2309 			(*len) += written;
2310 			/* Write auth tok signature packet */
2311 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2312 						 key_rec->sig,
2313 						 ECRYPTFS_SIG_SIZE, &written);
2314 			if (rc) {
2315 				ecryptfs_printk(KERN_ERR, "Error writing "
2316 						"auth tok signature packet\n");
2317 				goto out_free;
2318 			}
2319 			(*len) += written;
2320 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2321 			rc = write_tag_1_packet(dest_base + (*len),
2322 						&max, auth_tok,
2323 						crypt_stat, key_rec, &written);
2324 			if (rc) {
2325 				ecryptfs_printk(KERN_WARNING, "Error "
2326 						"writing tag 1 packet\n");
2327 				goto out_free;
2328 			}
2329 			(*len) += written;
2330 		} else {
2331 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2332 					"authentication token type\n");
2333 			rc = -EINVAL;
2334 			goto out_free;
2335 		}
2336 	}
2337 	if (likely(max > 0)) {
2338 		dest_base[(*len)] = 0x00;
2339 	} else {
2340 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2341 		rc = -EIO;
2342 	}
2343 out_free:
2344 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2345 out:
2346 	if (rc)
2347 		(*len) = 0;
2348 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2349 	return rc;
2350 }
2351 
2352 struct kmem_cache *ecryptfs_key_sig_cache;
2353 
ecryptfs_add_keysig(struct ecryptfs_crypt_stat * crypt_stat,char * sig)2354 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2355 {
2356 	struct ecryptfs_key_sig *new_key_sig;
2357 	int rc = 0;
2358 
2359 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2360 	if (!new_key_sig) {
2361 		rc = -ENOMEM;
2362 		printk(KERN_ERR
2363 		       "Error allocating from ecryptfs_key_sig_cache\n");
2364 		goto out;
2365 	}
2366 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2367 	mutex_lock(&crypt_stat->keysig_list_mutex);
2368 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2369 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2370 out:
2371 	return rc;
2372 }
2373 
2374 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2375 
2376 int
ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig,u32 global_auth_tok_flags)2377 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2378 			     char *sig, u32 global_auth_tok_flags)
2379 {
2380 	struct ecryptfs_global_auth_tok *new_auth_tok;
2381 	int rc = 0;
2382 
2383 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2384 					GFP_KERNEL);
2385 	if (!new_auth_tok) {
2386 		rc = -ENOMEM;
2387 		printk(KERN_ERR "Error allocating from "
2388 		       "ecryptfs_global_auth_tok_cache\n");
2389 		goto out;
2390 	}
2391 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2392 	new_auth_tok->flags = global_auth_tok_flags;
2393 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2394 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2395 	list_add(&new_auth_tok->mount_crypt_stat_list,
2396 		 &mount_crypt_stat->global_auth_tok_list);
2397 	mount_crypt_stat->num_global_auth_toks++;
2398 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2399 out:
2400 	return rc;
2401 }
2402 
2403