• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2004-2008 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6  *		Tyler Hicks <tyhicks@ou.edu>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 #include <linux/sched.h>
23 #include <linux/user_namespace.h>
24 #include <linux/nsproxy.h>
25 #include "ecryptfs_kernel.h"
26 
27 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
28 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
29 static struct mutex ecryptfs_msg_ctx_lists_mux;
30 
31 static struct hlist_head *ecryptfs_daemon_hash;
32 struct mutex ecryptfs_daemon_hash_mux;
33 static int ecryptfs_hash_buckets;
34 #define ecryptfs_uid_hash(uid) \
35         hash_long((unsigned long)uid, ecryptfs_hash_buckets)
36 
37 static u32 ecryptfs_msg_counter;
38 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
39 
40 /**
41  * ecryptfs_acquire_free_msg_ctx
42  * @msg_ctx: The context that was acquired from the free list
43  *
44  * Acquires a context element from the free list and locks the mutex
45  * on the context.  Sets the msg_ctx task to current.  Returns zero on
46  * success; non-zero on error or upon failure to acquire a free
47  * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
48  * held.
49  */
ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx ** msg_ctx)50 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
51 {
52 	struct list_head *p;
53 	int rc;
54 
55 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
56 		printk(KERN_WARNING "%s: The eCryptfs free "
57 		       "context list is empty.  It may be helpful to "
58 		       "specify the ecryptfs_message_buf_len "
59 		       "parameter to be greater than the current "
60 		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
61 		rc = -ENOMEM;
62 		goto out;
63 	}
64 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
65 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
66 		if (mutex_trylock(&(*msg_ctx)->mux)) {
67 			(*msg_ctx)->task = current;
68 			rc = 0;
69 			goto out;
70 		}
71 	}
72 	rc = -ENOMEM;
73 out:
74 	return rc;
75 }
76 
77 /**
78  * ecryptfs_msg_ctx_free_to_alloc
79  * @msg_ctx: The context to move from the free list to the alloc list
80  *
81  * Must be called with ecryptfs_msg_ctx_lists_mux held.
82  */
ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx * msg_ctx)83 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
84 {
85 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
86 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
87 	msg_ctx->counter = ++ecryptfs_msg_counter;
88 }
89 
90 /**
91  * ecryptfs_msg_ctx_alloc_to_free
92  * @msg_ctx: The context to move from the alloc list to the free list
93  *
94  * Must be called with ecryptfs_msg_ctx_lists_mux held.
95  */
ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx * msg_ctx)96 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
97 {
98 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
99 	if (msg_ctx->msg)
100 		kfree(msg_ctx->msg);
101 	msg_ctx->msg = NULL;
102 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
103 }
104 
105 /**
106  * ecryptfs_find_daemon_by_euid
107  * @euid: The effective user id which maps to the desired daemon id
108  * @user_ns: The namespace in which @euid applies
109  * @daemon: If return value is zero, points to the desired daemon pointer
110  *
111  * Must be called with ecryptfs_daemon_hash_mux held.
112  *
113  * Search the hash list for the given user id.
114  *
115  * Returns zero if the user id exists in the list; non-zero otherwise.
116  */
ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon ** daemon,uid_t euid,struct user_namespace * user_ns)117 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon, uid_t euid,
118 				 struct user_namespace *user_ns)
119 {
120 	struct hlist_node *elem;
121 	int rc;
122 
123 	hlist_for_each_entry(*daemon, elem,
124 			     &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)],
125 			     euid_chain) {
126 		if ((*daemon)->euid == euid && (*daemon)->user_ns == user_ns) {
127 			rc = 0;
128 			goto out;
129 		}
130 	}
131 	rc = -EINVAL;
132 out:
133 	return rc;
134 }
135 
136 static int
137 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
138 			     struct ecryptfs_msg_ctx **msg_ctx);
139 
140 /**
141  * ecryptfs_send_raw_message
142  * @msg_type: Message type
143  * @daemon: Daemon struct for recipient of message
144  *
145  * A raw message is one that does not include an ecryptfs_message
146  * struct. It simply has a type.
147  *
148  * Must be called with ecryptfs_daemon_hash_mux held.
149  *
150  * Returns zero on success; non-zero otherwise
151  */
ecryptfs_send_raw_message(u8 msg_type,struct ecryptfs_daemon * daemon)152 static int ecryptfs_send_raw_message(u8 msg_type,
153 				     struct ecryptfs_daemon *daemon)
154 {
155 	struct ecryptfs_msg_ctx *msg_ctx;
156 	int rc;
157 
158 	rc = ecryptfs_send_message_locked(NULL, 0, msg_type, &msg_ctx);
159 	if (rc) {
160 		printk(KERN_ERR "%s: Error whilst attempting to send "
161 		       "message to ecryptfsd; rc = [%d]\n", __func__, rc);
162 		goto out;
163 	}
164 	/* Raw messages are logically context-free (e.g., no
165 	 * reply is expected), so we set the state of the
166 	 * ecryptfs_msg_ctx object to indicate that it should
167 	 * be freed as soon as the message is sent. */
168 	mutex_lock(&msg_ctx->mux);
169 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_NO_REPLY;
170 	mutex_unlock(&msg_ctx->mux);
171 out:
172 	return rc;
173 }
174 
175 /**
176  * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
177  * @daemon: Pointer to set to newly allocated daemon struct
178  * @euid: Effective user id for the daemon
179  * @user_ns: The namespace in which @euid applies
180  * @pid: Process id for the daemon
181  *
182  * Must be called ceremoniously while in possession of
183  * ecryptfs_sacred_daemon_hash_mux
184  *
185  * Returns zero on success; non-zero otherwise
186  */
187 int
ecryptfs_spawn_daemon(struct ecryptfs_daemon ** daemon,uid_t euid,struct user_namespace * user_ns,struct pid * pid)188 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, uid_t euid,
189 		      struct user_namespace *user_ns, struct pid *pid)
190 {
191 	int rc = 0;
192 
193 	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
194 	if (!(*daemon)) {
195 		rc = -ENOMEM;
196 		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
197 		       "GFP_KERNEL memory\n", __func__, sizeof(**daemon));
198 		goto out;
199 	}
200 	(*daemon)->euid = euid;
201 	(*daemon)->user_ns = get_user_ns(user_ns);
202 	(*daemon)->pid = get_pid(pid);
203 	(*daemon)->task = current;
204 	mutex_init(&(*daemon)->mux);
205 	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
206 	init_waitqueue_head(&(*daemon)->wait);
207 	(*daemon)->num_queued_msg_ctx = 0;
208 	hlist_add_head(&(*daemon)->euid_chain,
209 		       &ecryptfs_daemon_hash[ecryptfs_uid_hash(euid)]);
210 out:
211 	return rc;
212 }
213 
214 /**
215  * ecryptfs_process_helo
216  * @euid: The user ID owner of the message
217  * @user_ns: The namespace in which @euid applies
218  * @pid: The process ID for the userspace program that sent the
219  *       message
220  *
221  * Adds the euid and pid values to the daemon euid hash.  If an euid
222  * already has a daemon pid registered, the daemon will be
223  * unregistered before the new daemon is put into the hash list.
224  * Returns zero after adding a new daemon to the hash list;
225  * non-zero otherwise.
226  */
ecryptfs_process_helo(uid_t euid,struct user_namespace * user_ns,struct pid * pid)227 int ecryptfs_process_helo(uid_t euid, struct user_namespace *user_ns,
228 			  struct pid *pid)
229 {
230 	struct ecryptfs_daemon *new_daemon;
231 	struct ecryptfs_daemon *old_daemon;
232 	int rc;
233 
234 	mutex_lock(&ecryptfs_daemon_hash_mux);
235 	rc = ecryptfs_find_daemon_by_euid(&old_daemon, euid, user_ns);
236 	if (rc != 0) {
237 		printk(KERN_WARNING "Received request from user [%d] "
238 		       "to register daemon [0x%p]; unregistering daemon "
239 		       "[0x%p]\n", euid, pid, old_daemon->pid);
240 		rc = ecryptfs_send_raw_message(ECRYPTFS_MSG_QUIT, old_daemon);
241 		if (rc)
242 			printk(KERN_WARNING "Failed to send QUIT "
243 			       "message to daemon [0x%p]; rc = [%d]\n",
244 			       old_daemon->pid, rc);
245 		hlist_del(&old_daemon->euid_chain);
246 		kfree(old_daemon);
247 	}
248 	rc = ecryptfs_spawn_daemon(&new_daemon, euid, user_ns, pid);
249 	if (rc)
250 		printk(KERN_ERR "%s: The gods are displeased with this attempt "
251 		       "to create a new daemon object for euid [%d]; pid "
252 		       "[0x%p]; rc = [%d]\n", __func__, euid, pid, rc);
253 	mutex_unlock(&ecryptfs_daemon_hash_mux);
254 	return rc;
255 }
256 
257 /**
258  * ecryptfs_exorcise_daemon - Destroy the daemon struct
259  *
260  * Must be called ceremoniously while in possession of
261  * ecryptfs_daemon_hash_mux and the daemon's own mux.
262  */
ecryptfs_exorcise_daemon(struct ecryptfs_daemon * daemon)263 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
264 {
265 	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
266 	int rc = 0;
267 
268 	mutex_lock(&daemon->mux);
269 	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
270 	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
271 		rc = -EBUSY;
272 		printk(KERN_WARNING "%s: Attempt to destroy daemon with pid "
273 		       "[0x%p], but it is in the midst of a read or a poll\n",
274 		       __func__, daemon->pid);
275 		mutex_unlock(&daemon->mux);
276 		goto out;
277 	}
278 	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
279 				 &daemon->msg_ctx_out_queue, daemon_out_list) {
280 		list_del(&msg_ctx->daemon_out_list);
281 		daemon->num_queued_msg_ctx--;
282 		printk(KERN_WARNING "%s: Warning: dropping message that is in "
283 		       "the out queue of a dying daemon\n", __func__);
284 		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
285 	}
286 	hlist_del(&daemon->euid_chain);
287 	if (daemon->task)
288 		wake_up_process(daemon->task);
289 	if (daemon->pid)
290 		put_pid(daemon->pid);
291 	if (daemon->user_ns)
292 		put_user_ns(daemon->user_ns);
293 	mutex_unlock(&daemon->mux);
294 	memset(daemon, 0, sizeof(*daemon));
295 	kfree(daemon);
296 out:
297 	return rc;
298 }
299 
300 /**
301  * ecryptfs_process_quit
302  * @euid: The user ID owner of the message
303  * @user_ns: The namespace in which @euid applies
304  * @pid: The process ID for the userspace program that sent the
305  *       message
306  *
307  * Deletes the corresponding daemon for the given euid and pid, if
308  * it is the registered that is requesting the deletion. Returns zero
309  * after deleting the desired daemon; non-zero otherwise.
310  */
ecryptfs_process_quit(uid_t euid,struct user_namespace * user_ns,struct pid * pid)311 int ecryptfs_process_quit(uid_t euid, struct user_namespace *user_ns,
312 			  struct pid *pid)
313 {
314 	struct ecryptfs_daemon *daemon;
315 	int rc;
316 
317 	mutex_lock(&ecryptfs_daemon_hash_mux);
318 	rc = ecryptfs_find_daemon_by_euid(&daemon, euid, user_ns);
319 	if (rc || !daemon) {
320 		rc = -EINVAL;
321 		printk(KERN_ERR "Received request from user [%d] to "
322 		       "unregister unrecognized daemon [0x%p]\n", euid, pid);
323 		goto out_unlock;
324 	}
325 	rc = ecryptfs_exorcise_daemon(daemon);
326 out_unlock:
327 	mutex_unlock(&ecryptfs_daemon_hash_mux);
328 	return rc;
329 }
330 
331 /**
332  * ecryptfs_process_reponse
333  * @msg: The ecryptfs message received; the caller should sanity check
334  *       msg->data_len and free the memory
335  * @pid: The process ID of the userspace application that sent the
336  *       message
337  * @seq: The sequence number of the message; must match the sequence
338  *       number for the existing message context waiting for this
339  *       response
340  *
341  * Processes a response message after sending an operation request to
342  * userspace. Some other process is awaiting this response. Before
343  * sending out its first communications, the other process allocated a
344  * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
345  * response message contains this index so that we can copy over the
346  * response message into the msg_ctx that the process holds a
347  * reference to. The other process is going to wake up, check to see
348  * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
349  * proceed to read off and process the response message. Returns zero
350  * upon delivery to desired context element; non-zero upon delivery
351  * failure or error.
352  *
353  * Returns zero on success; non-zero otherwise
354  */
ecryptfs_process_response(struct ecryptfs_message * msg,uid_t euid,struct user_namespace * user_ns,struct pid * pid,u32 seq)355 int ecryptfs_process_response(struct ecryptfs_message *msg, uid_t euid,
356 			      struct user_namespace *user_ns, struct pid *pid,
357 			      u32 seq)
358 {
359 	struct ecryptfs_daemon *daemon;
360 	struct ecryptfs_msg_ctx *msg_ctx;
361 	size_t msg_size;
362 	struct nsproxy *nsproxy;
363 	struct user_namespace *tsk_user_ns;
364 	uid_t ctx_euid;
365 	int rc;
366 
367 	if (msg->index >= ecryptfs_message_buf_len) {
368 		rc = -EINVAL;
369 		printk(KERN_ERR "%s: Attempt to reference "
370 		       "context buffer at index [%d]; maximum "
371 		       "allowable is [%d]\n", __func__, msg->index,
372 		       (ecryptfs_message_buf_len - 1));
373 		goto out;
374 	}
375 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
376 	mutex_lock(&msg_ctx->mux);
377 	mutex_lock(&ecryptfs_daemon_hash_mux);
378 	rcu_read_lock();
379 	nsproxy = task_nsproxy(msg_ctx->task);
380 	if (nsproxy == NULL) {
381 		rc = -EBADMSG;
382 		printk(KERN_ERR "%s: Receiving process is a zombie. Dropping "
383 		       "message.\n", __func__);
384 		rcu_read_unlock();
385 		mutex_unlock(&ecryptfs_daemon_hash_mux);
386 		goto wake_up;
387 	}
388 	tsk_user_ns = __task_cred(msg_ctx->task)->user->user_ns;
389 	ctx_euid = task_euid(msg_ctx->task);
390 	rc = ecryptfs_find_daemon_by_euid(&daemon, ctx_euid, tsk_user_ns);
391 	rcu_read_unlock();
392 	mutex_unlock(&ecryptfs_daemon_hash_mux);
393 	if (rc) {
394 		rc = -EBADMSG;
395 		printk(KERN_WARNING "%s: User [%d] received a "
396 		       "message response from process [0x%p] but does "
397 		       "not have a registered daemon\n", __func__,
398 		       ctx_euid, pid);
399 		goto wake_up;
400 	}
401 	if (ctx_euid != euid) {
402 		rc = -EBADMSG;
403 		printk(KERN_WARNING "%s: Received message from user "
404 		       "[%d]; expected message from user [%d]\n", __func__,
405 		       euid, ctx_euid);
406 		goto unlock;
407 	}
408 	if (tsk_user_ns != user_ns) {
409 		rc = -EBADMSG;
410 		printk(KERN_WARNING "%s: Received message from user_ns "
411 		       "[0x%p]; expected message from user_ns [0x%p]\n",
412 		       __func__, user_ns, tsk_user_ns);
413 		goto unlock;
414 	}
415 	if (daemon->pid != pid) {
416 		rc = -EBADMSG;
417 		printk(KERN_ERR "%s: User [%d] sent a message response "
418 		       "from an unrecognized process [0x%p]\n",
419 		       __func__, ctx_euid, pid);
420 		goto unlock;
421 	}
422 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
423 		rc = -EINVAL;
424 		printk(KERN_WARNING "%s: Desired context element is not "
425 		       "pending a response\n", __func__);
426 		goto unlock;
427 	} else if (msg_ctx->counter != seq) {
428 		rc = -EINVAL;
429 		printk(KERN_WARNING "%s: Invalid message sequence; "
430 		       "expected [%d]; received [%d]\n", __func__,
431 		       msg_ctx->counter, seq);
432 		goto unlock;
433 	}
434 	msg_size = (sizeof(*msg) + msg->data_len);
435 	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
436 	if (!msg_ctx->msg) {
437 		rc = -ENOMEM;
438 		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
439 		       "GFP_KERNEL memory\n", __func__, msg_size);
440 		goto unlock;
441 	}
442 	memcpy(msg_ctx->msg, msg, msg_size);
443 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
444 	rc = 0;
445 wake_up:
446 	wake_up_process(msg_ctx->task);
447 unlock:
448 	mutex_unlock(&msg_ctx->mux);
449 out:
450 	return rc;
451 }
452 
453 /**
454  * ecryptfs_send_message_locked
455  * @data: The data to send
456  * @data_len: The length of data
457  * @msg_ctx: The message context allocated for the send
458  *
459  * Must be called with ecryptfs_daemon_hash_mux held.
460  *
461  * Returns zero on success; non-zero otherwise
462  */
463 static int
ecryptfs_send_message_locked(char * data,int data_len,u8 msg_type,struct ecryptfs_msg_ctx ** msg_ctx)464 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
465 			     struct ecryptfs_msg_ctx **msg_ctx)
466 {
467 	struct ecryptfs_daemon *daemon;
468 	uid_t euid = current_euid();
469 	int rc;
470 
471 	rc = ecryptfs_find_daemon_by_euid(&daemon, euid, current_user_ns());
472 	if (rc || !daemon) {
473 		rc = -ENOTCONN;
474 		printk(KERN_ERR "%s: User [%d] does not have a daemon "
475 		       "registered\n", __func__, euid);
476 		goto out;
477 	}
478 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
479 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
480 	if (rc) {
481 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
482 		printk(KERN_WARNING "%s: Could not claim a free "
483 		       "context element\n", __func__);
484 		goto out;
485 	}
486 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
487 	mutex_unlock(&(*msg_ctx)->mux);
488 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
489 	rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
490 				   daemon);
491 	if (rc)
492 		printk(KERN_ERR "%s: Error attempting to send message to "
493 		       "userspace daemon; rc = [%d]\n", __func__, rc);
494 out:
495 	return rc;
496 }
497 
498 /**
499  * ecryptfs_send_message
500  * @data: The data to send
501  * @data_len: The length of data
502  * @msg_ctx: The message context allocated for the send
503  *
504  * Grabs ecryptfs_daemon_hash_mux.
505  *
506  * Returns zero on success; non-zero otherwise
507  */
ecryptfs_send_message(char * data,int data_len,struct ecryptfs_msg_ctx ** msg_ctx)508 int ecryptfs_send_message(char *data, int data_len,
509 			  struct ecryptfs_msg_ctx **msg_ctx)
510 {
511 	int rc;
512 
513 	mutex_lock(&ecryptfs_daemon_hash_mux);
514 	rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
515 					  msg_ctx);
516 	mutex_unlock(&ecryptfs_daemon_hash_mux);
517 	return rc;
518 }
519 
520 /**
521  * ecryptfs_wait_for_response
522  * @msg_ctx: The context that was assigned when sending a message
523  * @msg: The incoming message from userspace; not set if rc != 0
524  *
525  * Sleeps until awaken by ecryptfs_receive_message or until the amount
526  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
527  * returned, msg will point to a valid message from userspace; a
528  * non-zero value is returned upon failure to receive a message or an
529  * error occurs. Callee must free @msg on success.
530  */
ecryptfs_wait_for_response(struct ecryptfs_msg_ctx * msg_ctx,struct ecryptfs_message ** msg)531 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
532 			       struct ecryptfs_message **msg)
533 {
534 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
535 	int rc = 0;
536 
537 sleep:
538 	timeout = schedule_timeout_interruptible(timeout);
539 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
540 	mutex_lock(&msg_ctx->mux);
541 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
542 		if (timeout) {
543 			mutex_unlock(&msg_ctx->mux);
544 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
545 			goto sleep;
546 		}
547 		rc = -ENOMSG;
548 	} else {
549 		*msg = msg_ctx->msg;
550 		msg_ctx->msg = NULL;
551 	}
552 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
553 	mutex_unlock(&msg_ctx->mux);
554 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
555 	return rc;
556 }
557 
ecryptfs_init_messaging(void)558 int ecryptfs_init_messaging(void)
559 {
560 	int i;
561 	int rc = 0;
562 
563 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
564 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
565 		printk(KERN_WARNING "%s: Specified number of users is "
566 		       "too large, defaulting to [%d] users\n", __func__,
567 		       ecryptfs_number_of_users);
568 	}
569 	mutex_init(&ecryptfs_daemon_hash_mux);
570 	mutex_lock(&ecryptfs_daemon_hash_mux);
571 	ecryptfs_hash_buckets = 1;
572 	while (ecryptfs_number_of_users >> ecryptfs_hash_buckets)
573 		ecryptfs_hash_buckets++;
574 	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
575 					* ecryptfs_hash_buckets), GFP_KERNEL);
576 	if (!ecryptfs_daemon_hash) {
577 		rc = -ENOMEM;
578 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
579 		mutex_unlock(&ecryptfs_daemon_hash_mux);
580 		goto out;
581 	}
582 	for (i = 0; i < ecryptfs_hash_buckets; i++)
583 		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
584 	mutex_unlock(&ecryptfs_daemon_hash_mux);
585 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
586 					* ecryptfs_message_buf_len),
587 				       GFP_KERNEL);
588 	if (!ecryptfs_msg_ctx_arr) {
589 		rc = -ENOMEM;
590 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
591 		goto out;
592 	}
593 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
594 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
595 	ecryptfs_msg_counter = 0;
596 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
597 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
598 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
599 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
600 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
601 		ecryptfs_msg_ctx_arr[i].index = i;
602 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
603 		ecryptfs_msg_ctx_arr[i].counter = 0;
604 		ecryptfs_msg_ctx_arr[i].task = NULL;
605 		ecryptfs_msg_ctx_arr[i].msg = NULL;
606 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
607 			      &ecryptfs_msg_ctx_free_list);
608 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
609 	}
610 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
611 	rc = ecryptfs_init_ecryptfs_miscdev();
612 	if (rc)
613 		ecryptfs_release_messaging();
614 out:
615 	return rc;
616 }
617 
ecryptfs_release_messaging(void)618 void ecryptfs_release_messaging(void)
619 {
620 	if (ecryptfs_msg_ctx_arr) {
621 		int i;
622 
623 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
624 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
625 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
626 			if (ecryptfs_msg_ctx_arr[i].msg)
627 				kfree(ecryptfs_msg_ctx_arr[i].msg);
628 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
629 		}
630 		kfree(ecryptfs_msg_ctx_arr);
631 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
632 	}
633 	if (ecryptfs_daemon_hash) {
634 		struct hlist_node *elem;
635 		struct ecryptfs_daemon *daemon;
636 		int i;
637 
638 		mutex_lock(&ecryptfs_daemon_hash_mux);
639 		for (i = 0; i < ecryptfs_hash_buckets; i++) {
640 			int rc;
641 
642 			hlist_for_each_entry(daemon, elem,
643 					     &ecryptfs_daemon_hash[i],
644 					     euid_chain) {
645 				rc = ecryptfs_exorcise_daemon(daemon);
646 				if (rc)
647 					printk(KERN_ERR "%s: Error whilst "
648 					       "attempting to destroy daemon; "
649 					       "rc = [%d]. Dazed and confused, "
650 					       "but trying to continue.\n",
651 					       __func__, rc);
652 			}
653 		}
654 		kfree(ecryptfs_daemon_hash);
655 		mutex_unlock(&ecryptfs_daemon_hash_mux);
656 	}
657 	ecryptfs_destroy_ecryptfs_miscdev();
658 	return;
659 }
660