• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2007 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2 of the
10  * License, or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include "ecryptfs_kernel.h"
26 
27 /**
28  * ecryptfs_write_lower
29  * @ecryptfs_inode: The eCryptfs inode
30  * @data: Data to write
31  * @offset: Byte offset in the lower file to which to write the data
32  * @size: Number of bytes from @data to write at @offset in the lower
33  *        file
34  *
35  * Write data to the lower file.
36  *
37  * Returns zero on success; non-zero on error
38  */
ecryptfs_write_lower(struct inode * ecryptfs_inode,char * data,loff_t offset,size_t size)39 int ecryptfs_write_lower(struct inode *ecryptfs_inode, char *data,
40 			 loff_t offset, size_t size)
41 {
42 	struct ecryptfs_inode_info *inode_info;
43 	ssize_t octets_written;
44 	mm_segment_t fs_save;
45 	int rc = 0;
46 
47 	inode_info = ecryptfs_inode_to_private(ecryptfs_inode);
48 	mutex_lock(&inode_info->lower_file_mutex);
49 	BUG_ON(!inode_info->lower_file);
50 	inode_info->lower_file->f_pos = offset;
51 	fs_save = get_fs();
52 	set_fs(get_ds());
53 	octets_written = vfs_write(inode_info->lower_file, data, size,
54 				   &inode_info->lower_file->f_pos);
55 	set_fs(fs_save);
56 	if (octets_written < 0) {
57 		printk(KERN_ERR "%s: octets_written = [%td]; "
58 		       "expected [%td]\n", __func__, octets_written, size);
59 		rc = -EINVAL;
60 	}
61 	mutex_unlock(&inode_info->lower_file_mutex);
62 	mark_inode_dirty_sync(ecryptfs_inode);
63 	return rc;
64 }
65 
66 /**
67  * ecryptfs_write_lower_page_segment
68  * @ecryptfs_inode: The eCryptfs inode
69  * @page_for_lower: The page containing the data to be written to the
70  *                  lower file
71  * @offset_in_page: The offset in the @page_for_lower from which to
72  *                  start writing the data
73  * @size: The amount of data from @page_for_lower to write to the
74  *        lower file
75  *
76  * Determines the byte offset in the file for the given page and
77  * offset within the page, maps the page, and makes the call to write
78  * the contents of @page_for_lower to the lower inode.
79  *
80  * Returns zero on success; non-zero otherwise
81  */
ecryptfs_write_lower_page_segment(struct inode * ecryptfs_inode,struct page * page_for_lower,size_t offset_in_page,size_t size)82 int ecryptfs_write_lower_page_segment(struct inode *ecryptfs_inode,
83 				      struct page *page_for_lower,
84 				      size_t offset_in_page, size_t size)
85 {
86 	char *virt;
87 	loff_t offset;
88 	int rc;
89 
90 	offset = ((((loff_t)page_for_lower->index) << PAGE_CACHE_SHIFT)
91 		  + offset_in_page);
92 	virt = kmap(page_for_lower);
93 	rc = ecryptfs_write_lower(ecryptfs_inode, virt, offset, size);
94 	kunmap(page_for_lower);
95 	return rc;
96 }
97 
98 /**
99  * ecryptfs_write
100  * @ecryptfs_file: The eCryptfs file into which to write
101  * @data: Virtual address where data to write is located
102  * @offset: Offset in the eCryptfs file at which to begin writing the
103  *          data from @data
104  * @size: The number of bytes to write from @data
105  *
106  * Write an arbitrary amount of data to an arbitrary location in the
107  * eCryptfs inode page cache. This is done on a page-by-page, and then
108  * by an extent-by-extent, basis; individual extents are encrypted and
109  * written to the lower page cache (via VFS writes). This function
110  * takes care of all the address translation to locations in the lower
111  * filesystem; it also handles truncate events, writing out zeros
112  * where necessary.
113  *
114  * Returns zero on success; non-zero otherwise
115  */
ecryptfs_write(struct file * ecryptfs_file,char * data,loff_t offset,size_t size)116 int ecryptfs_write(struct file *ecryptfs_file, char *data, loff_t offset,
117 		   size_t size)
118 {
119 	struct page *ecryptfs_page;
120 	char *ecryptfs_page_virt;
121 	loff_t ecryptfs_file_size =
122 		i_size_read(ecryptfs_file->f_dentry->d_inode);
123 	loff_t data_offset = 0;
124 	loff_t pos;
125 	int rc = 0;
126 
127 	/*
128 	 * if we are writing beyond current size, then start pos
129 	 * at the current size - we'll fill in zeros from there.
130 	 */
131 	if (offset > ecryptfs_file_size)
132 		pos = ecryptfs_file_size;
133 	else
134 		pos = offset;
135 	while (pos < (offset + size)) {
136 		pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
137 		size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
138 		size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
139 		size_t total_remaining_bytes = ((offset + size) - pos);
140 
141 		if (num_bytes > total_remaining_bytes)
142 			num_bytes = total_remaining_bytes;
143 		if (pos < offset) {
144 			/* remaining zeros to write, up to destination offset */
145 			size_t total_remaining_zeros = (offset - pos);
146 
147 			if (num_bytes > total_remaining_zeros)
148 				num_bytes = total_remaining_zeros;
149 		}
150 		ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file,
151 							 ecryptfs_page_idx);
152 		if (IS_ERR(ecryptfs_page)) {
153 			rc = PTR_ERR(ecryptfs_page);
154 			printk(KERN_ERR "%s: Error getting page at "
155 			       "index [%ld] from eCryptfs inode "
156 			       "mapping; rc = [%d]\n", __func__,
157 			       ecryptfs_page_idx, rc);
158 			goto out;
159 		}
160 		ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
161 
162 		/*
163 		 * pos: where we're now writing, offset: where the request was
164 		 * If current pos is before request, we are filling zeros
165 		 * If we are at or beyond request, we are writing the *data*
166 		 * If we're in a fresh page beyond eof, zero it in either case
167 		 */
168 		if (pos < offset || !start_offset_in_page) {
169 			/* We are extending past the previous end of the file.
170 			 * Fill in zero values to the end of the page */
171 			memset(((char *)ecryptfs_page_virt
172 				+ start_offset_in_page), 0,
173 				PAGE_CACHE_SIZE - start_offset_in_page);
174 		}
175 
176 		/* pos >= offset, we are now writing the data request */
177 		if (pos >= offset) {
178 			memcpy(((char *)ecryptfs_page_virt
179 				+ start_offset_in_page),
180 			       (data + data_offset), num_bytes);
181 			data_offset += num_bytes;
182 		}
183 		kunmap_atomic(ecryptfs_page_virt, KM_USER0);
184 		flush_dcache_page(ecryptfs_page);
185 		SetPageUptodate(ecryptfs_page);
186 		unlock_page(ecryptfs_page);
187 		rc = ecryptfs_encrypt_page(ecryptfs_page);
188 		page_cache_release(ecryptfs_page);
189 		if (rc) {
190 			printk(KERN_ERR "%s: Error encrypting "
191 			       "page; rc = [%d]\n", __func__, rc);
192 			goto out;
193 		}
194 		pos += num_bytes;
195 	}
196 	if ((offset + size) > ecryptfs_file_size) {
197 		i_size_write(ecryptfs_file->f_dentry->d_inode, (offset + size));
198 		rc = ecryptfs_write_inode_size_to_metadata(
199 			ecryptfs_file->f_dentry->d_inode);
200 		if (rc) {
201 			printk(KERN_ERR	"Problem with "
202 			       "ecryptfs_write_inode_size_to_metadata; "
203 			       "rc = [%d]\n", rc);
204 			goto out;
205 		}
206 	}
207 out:
208 	return rc;
209 }
210 
211 /**
212  * ecryptfs_read_lower
213  * @data: The read data is stored here by this function
214  * @offset: Byte offset in the lower file from which to read the data
215  * @size: Number of bytes to read from @offset of the lower file and
216  *        store into @data
217  * @ecryptfs_inode: The eCryptfs inode
218  *
219  * Read @size bytes of data at byte offset @offset from the lower
220  * inode into memory location @data.
221  *
222  * Returns zero on success; non-zero on error
223  */
ecryptfs_read_lower(char * data,loff_t offset,size_t size,struct inode * ecryptfs_inode)224 int ecryptfs_read_lower(char *data, loff_t offset, size_t size,
225 			struct inode *ecryptfs_inode)
226 {
227 	struct ecryptfs_inode_info *inode_info =
228 		ecryptfs_inode_to_private(ecryptfs_inode);
229 	ssize_t octets_read;
230 	mm_segment_t fs_save;
231 	int rc = 0;
232 
233 	mutex_lock(&inode_info->lower_file_mutex);
234 	BUG_ON(!inode_info->lower_file);
235 	inode_info->lower_file->f_pos = offset;
236 	fs_save = get_fs();
237 	set_fs(get_ds());
238 	octets_read = vfs_read(inode_info->lower_file, data, size,
239 			       &inode_info->lower_file->f_pos);
240 	set_fs(fs_save);
241 	if (octets_read < 0) {
242 		printk(KERN_ERR "%s: octets_read = [%td]; "
243 		       "expected [%td]\n", __func__, octets_read, size);
244 		rc = -EINVAL;
245 	}
246 	mutex_unlock(&inode_info->lower_file_mutex);
247 	return rc;
248 }
249 
250 /**
251  * ecryptfs_read_lower_page_segment
252  * @page_for_ecryptfs: The page into which data for eCryptfs will be
253  *                     written
254  * @offset_in_page: Offset in @page_for_ecryptfs from which to start
255  *                  writing
256  * @size: The number of bytes to write into @page_for_ecryptfs
257  * @ecryptfs_inode: The eCryptfs inode
258  *
259  * Determines the byte offset in the file for the given page and
260  * offset within the page, maps the page, and makes the call to read
261  * the contents of @page_for_ecryptfs from the lower inode.
262  *
263  * Returns zero on success; non-zero otherwise
264  */
ecryptfs_read_lower_page_segment(struct page * page_for_ecryptfs,pgoff_t page_index,size_t offset_in_page,size_t size,struct inode * ecryptfs_inode)265 int ecryptfs_read_lower_page_segment(struct page *page_for_ecryptfs,
266 				     pgoff_t page_index,
267 				     size_t offset_in_page, size_t size,
268 				     struct inode *ecryptfs_inode)
269 {
270 	char *virt;
271 	loff_t offset;
272 	int rc;
273 
274 	offset = ((((loff_t)page_index) << PAGE_CACHE_SHIFT) + offset_in_page);
275 	virt = kmap(page_for_ecryptfs);
276 	rc = ecryptfs_read_lower(virt, offset, size, ecryptfs_inode);
277 	kunmap(page_for_ecryptfs);
278 	flush_dcache_page(page_for_ecryptfs);
279 	return rc;
280 }
281 
282 #if 0
283 /**
284  * ecryptfs_read
285  * @data: The virtual address into which to write the data read (and
286  *        possibly decrypted) from the lower file
287  * @offset: The offset in the decrypted view of the file from which to
288  *          read into @data
289  * @size: The number of bytes to read into @data
290  * @ecryptfs_file: The eCryptfs file from which to read
291  *
292  * Read an arbitrary amount of data from an arbitrary location in the
293  * eCryptfs page cache. This is done on an extent-by-extent basis;
294  * individual extents are decrypted and read from the lower page
295  * cache (via VFS reads). This function takes care of all the
296  * address translation to locations in the lower filesystem.
297  *
298  * Returns zero on success; non-zero otherwise
299  */
300 int ecryptfs_read(char *data, loff_t offset, size_t size,
301 		  struct file *ecryptfs_file)
302 {
303 	struct page *ecryptfs_page;
304 	char *ecryptfs_page_virt;
305 	loff_t ecryptfs_file_size =
306 		i_size_read(ecryptfs_file->f_dentry->d_inode);
307 	loff_t data_offset = 0;
308 	loff_t pos;
309 	int rc = 0;
310 
311 	if ((offset + size) > ecryptfs_file_size) {
312 		rc = -EINVAL;
313 		printk(KERN_ERR "%s: Attempt to read data past the end of the "
314 			"file; offset = [%lld]; size = [%td]; "
315 		       "ecryptfs_file_size = [%lld]\n",
316 		       __func__, offset, size, ecryptfs_file_size);
317 		goto out;
318 	}
319 	pos = offset;
320 	while (pos < (offset + size)) {
321 		pgoff_t ecryptfs_page_idx = (pos >> PAGE_CACHE_SHIFT);
322 		size_t start_offset_in_page = (pos & ~PAGE_CACHE_MASK);
323 		size_t num_bytes = (PAGE_CACHE_SIZE - start_offset_in_page);
324 		size_t total_remaining_bytes = ((offset + size) - pos);
325 
326 		if (num_bytes > total_remaining_bytes)
327 			num_bytes = total_remaining_bytes;
328 		ecryptfs_page = ecryptfs_get_locked_page(ecryptfs_file,
329 							 ecryptfs_page_idx);
330 		if (IS_ERR(ecryptfs_page)) {
331 			rc = PTR_ERR(ecryptfs_page);
332 			printk(KERN_ERR "%s: Error getting page at "
333 			       "index [%ld] from eCryptfs inode "
334 			       "mapping; rc = [%d]\n", __func__,
335 			       ecryptfs_page_idx, rc);
336 			goto out;
337 		}
338 		ecryptfs_page_virt = kmap_atomic(ecryptfs_page, KM_USER0);
339 		memcpy((data + data_offset),
340 		       ((char *)ecryptfs_page_virt + start_offset_in_page),
341 		       num_bytes);
342 		kunmap_atomic(ecryptfs_page_virt, KM_USER0);
343 		flush_dcache_page(ecryptfs_page);
344 		SetPageUptodate(ecryptfs_page);
345 		unlock_page(ecryptfs_page);
346 		page_cache_release(ecryptfs_page);
347 		pos += num_bytes;
348 		data_offset += num_bytes;
349 	}
350 out:
351 	return rc;
352 }
353 #endif  /*  0  */
354