• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/tlb.h>
59 #include "internal.h"
60 #ifdef CONFIG_QEMU_TRACE
61 	void qemu_trace_thread_name(char *name);
62 #endif
63 
64 int core_uses_pid;
65 char core_pattern[CORENAME_MAX_SIZE] = "core";
66 int suid_dumpable = 0;
67 
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69 
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72 
register_binfmt(struct linux_binfmt * fmt)73 int register_binfmt(struct linux_binfmt * fmt)
74 {
75 	if (!fmt)
76 		return -EINVAL;
77 	write_lock(&binfmt_lock);
78 	list_add(&fmt->lh, &formats);
79 	write_unlock(&binfmt_lock);
80 	return 0;
81 }
82 
83 EXPORT_SYMBOL(register_binfmt);
84 
unregister_binfmt(struct linux_binfmt * fmt)85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87 	write_lock(&binfmt_lock);
88 	list_del(&fmt->lh);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(unregister_binfmt);
93 
put_binfmt(struct linux_binfmt * fmt)94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96 	module_put(fmt->module);
97 }
98 
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
SYSCALL_DEFINE1(uselib,const char __user *,library)105 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 {
107 	struct file *file;
108 	struct nameidata nd;
109 	char *tmp = getname(library);
110 	int error = PTR_ERR(tmp);
111 
112 	if (!IS_ERR(tmp)) {
113 		error = path_lookup_open(AT_FDCWD, tmp,
114 					 LOOKUP_FOLLOW, &nd,
115 					 FMODE_READ|FMODE_EXEC);
116 		putname(tmp);
117 	}
118 	if (error)
119 		goto out;
120 
121 	error = -EINVAL;
122 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
123 		goto exit;
124 
125 	error = -EACCES;
126 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
127 		goto exit;
128 
129 	error = inode_permission(nd.path.dentry->d_inode,
130 				 MAY_READ | MAY_EXEC | MAY_OPEN);
131 	if (error)
132 		goto exit;
133 
134 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
135 	error = PTR_ERR(file);
136 	if (IS_ERR(file))
137 		goto out;
138 
139 	fsnotify_open(file->f_path.dentry);
140 
141 	error = -ENOEXEC;
142 	if(file->f_op) {
143 		struct linux_binfmt * fmt;
144 
145 		read_lock(&binfmt_lock);
146 		list_for_each_entry(fmt, &formats, lh) {
147 			if (!fmt->load_shlib)
148 				continue;
149 			if (!try_module_get(fmt->module))
150 				continue;
151 			read_unlock(&binfmt_lock);
152 			error = fmt->load_shlib(file);
153 			read_lock(&binfmt_lock);
154 			put_binfmt(fmt);
155 			if (error != -ENOEXEC)
156 				break;
157 		}
158 		read_unlock(&binfmt_lock);
159 	}
160 	fput(file);
161 out:
162   	return error;
163 exit:
164 	release_open_intent(&nd);
165 	path_put(&nd.path);
166 	goto out;
167 }
168 
169 #ifdef CONFIG_MMU
170 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)171 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
172 		int write)
173 {
174 	struct page *page;
175 	int ret;
176 
177 #ifdef CONFIG_STACK_GROWSUP
178 	if (write) {
179 		ret = expand_stack_downwards(bprm->vma, pos);
180 		if (ret < 0)
181 			return NULL;
182 	}
183 #endif
184 	ret = get_user_pages(current, bprm->mm, pos,
185 			1, write, 1, &page, NULL);
186 	if (ret <= 0)
187 		return NULL;
188 
189 	if (write) {
190 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
191 		struct rlimit *rlim;
192 
193 		/*
194 		 * We've historically supported up to 32 pages (ARG_MAX)
195 		 * of argument strings even with small stacks
196 		 */
197 		if (size <= ARG_MAX)
198 			return page;
199 
200 		/*
201 		 * Limit to 1/4-th the stack size for the argv+env strings.
202 		 * This ensures that:
203 		 *  - the remaining binfmt code will not run out of stack space,
204 		 *  - the program will have a reasonable amount of stack left
205 		 *    to work from.
206 		 */
207 		rlim = current->signal->rlim;
208 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
209 			put_page(page);
210 			return NULL;
211 		}
212 	}
213 
214 	return page;
215 }
216 
put_arg_page(struct page * page)217 static void put_arg_page(struct page *page)
218 {
219 	put_page(page);
220 }
221 
free_arg_page(struct linux_binprm * bprm,int i)222 static void free_arg_page(struct linux_binprm *bprm, int i)
223 {
224 }
225 
free_arg_pages(struct linux_binprm * bprm)226 static void free_arg_pages(struct linux_binprm *bprm)
227 {
228 }
229 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)230 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
231 		struct page *page)
232 {
233 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
234 }
235 
__bprm_mm_init(struct linux_binprm * bprm)236 static int __bprm_mm_init(struct linux_binprm *bprm)
237 {
238 	int err;
239 	struct vm_area_struct *vma = NULL;
240 	struct mm_struct *mm = bprm->mm;
241 
242 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
243 	if (!vma)
244 		return -ENOMEM;
245 
246 	down_write(&mm->mmap_sem);
247 	vma->vm_mm = mm;
248 
249 	/*
250 	 * Place the stack at the largest stack address the architecture
251 	 * supports. Later, we'll move this to an appropriate place. We don't
252 	 * use STACK_TOP because that can depend on attributes which aren't
253 	 * configured yet.
254 	 */
255 	vma->vm_end = STACK_TOP_MAX;
256 	vma->vm_start = vma->vm_end - PAGE_SIZE;
257 	vma->vm_flags = VM_STACK_FLAGS;
258 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
259 	err = insert_vm_struct(mm, vma);
260 	if (err)
261 		goto err;
262 
263 	mm->stack_vm = mm->total_vm = 1;
264 	up_write(&mm->mmap_sem);
265 	bprm->p = vma->vm_end - sizeof(void *);
266 	return 0;
267 err:
268 	up_write(&mm->mmap_sem);
269 	bprm->vma = NULL;
270 	kmem_cache_free(vm_area_cachep, vma);
271 	return err;
272 }
273 
valid_arg_len(struct linux_binprm * bprm,long len)274 static bool valid_arg_len(struct linux_binprm *bprm, long len)
275 {
276 	return len <= MAX_ARG_STRLEN;
277 }
278 
279 #else
280 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)281 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
282 		int write)
283 {
284 	struct page *page;
285 
286 	page = bprm->page[pos / PAGE_SIZE];
287 	if (!page && write) {
288 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
289 		if (!page)
290 			return NULL;
291 		bprm->page[pos / PAGE_SIZE] = page;
292 	}
293 
294 	return page;
295 }
296 
put_arg_page(struct page * page)297 static void put_arg_page(struct page *page)
298 {
299 }
300 
free_arg_page(struct linux_binprm * bprm,int i)301 static void free_arg_page(struct linux_binprm *bprm, int i)
302 {
303 	if (bprm->page[i]) {
304 		__free_page(bprm->page[i]);
305 		bprm->page[i] = NULL;
306 	}
307 }
308 
free_arg_pages(struct linux_binprm * bprm)309 static void free_arg_pages(struct linux_binprm *bprm)
310 {
311 	int i;
312 
313 	for (i = 0; i < MAX_ARG_PAGES; i++)
314 		free_arg_page(bprm, i);
315 }
316 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)317 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
318 		struct page *page)
319 {
320 }
321 
__bprm_mm_init(struct linux_binprm * bprm)322 static int __bprm_mm_init(struct linux_binprm *bprm)
323 {
324 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
325 	return 0;
326 }
327 
valid_arg_len(struct linux_binprm * bprm,long len)328 static bool valid_arg_len(struct linux_binprm *bprm, long len)
329 {
330 	return len <= bprm->p;
331 }
332 
333 #endif /* CONFIG_MMU */
334 
335 /*
336  * Create a new mm_struct and populate it with a temporary stack
337  * vm_area_struct.  We don't have enough context at this point to set the stack
338  * flags, permissions, and offset, so we use temporary values.  We'll update
339  * them later in setup_arg_pages().
340  */
bprm_mm_init(struct linux_binprm * bprm)341 int bprm_mm_init(struct linux_binprm *bprm)
342 {
343 	int err;
344 	struct mm_struct *mm = NULL;
345 
346 	bprm->mm = mm = mm_alloc();
347 	err = -ENOMEM;
348 	if (!mm)
349 		goto err;
350 
351 	err = init_new_context(current, mm);
352 	if (err)
353 		goto err;
354 
355 	err = __bprm_mm_init(bprm);
356 	if (err)
357 		goto err;
358 
359 	return 0;
360 
361 err:
362 	if (mm) {
363 		bprm->mm = NULL;
364 		mmdrop(mm);
365 	}
366 
367 	return err;
368 }
369 
370 /*
371  * count() counts the number of strings in array ARGV.
372  */
count(char __user * __user * argv,int max)373 static int count(char __user * __user * argv, int max)
374 {
375 	int i = 0;
376 
377 	if (argv != NULL) {
378 		for (;;) {
379 			char __user * p;
380 
381 			if (get_user(p, argv))
382 				return -EFAULT;
383 			if (!p)
384 				break;
385 			argv++;
386 			if (i++ >= max)
387 				return -E2BIG;
388 			cond_resched();
389 		}
390 	}
391 	return i;
392 }
393 
394 /*
395  * 'copy_strings()' copies argument/environment strings from the old
396  * processes's memory to the new process's stack.  The call to get_user_pages()
397  * ensures the destination page is created and not swapped out.
398  */
copy_strings(int argc,char __user * __user * argv,struct linux_binprm * bprm)399 static int copy_strings(int argc, char __user * __user * argv,
400 			struct linux_binprm *bprm)
401 {
402 	struct page *kmapped_page = NULL;
403 	char *kaddr = NULL;
404 	unsigned long kpos = 0;
405 	int ret;
406 
407 	while (argc-- > 0) {
408 		char __user *str;
409 		int len;
410 		unsigned long pos;
411 
412 		if (get_user(str, argv+argc) ||
413 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
414 			ret = -EFAULT;
415 			goto out;
416 		}
417 
418 		if (!valid_arg_len(bprm, len)) {
419 			ret = -E2BIG;
420 			goto out;
421 		}
422 
423 		/* We're going to work our way backwords. */
424 		pos = bprm->p;
425 		str += len;
426 		bprm->p -= len;
427 
428 		while (len > 0) {
429 			int offset, bytes_to_copy;
430 
431 			offset = pos % PAGE_SIZE;
432 			if (offset == 0)
433 				offset = PAGE_SIZE;
434 
435 			bytes_to_copy = offset;
436 			if (bytes_to_copy > len)
437 				bytes_to_copy = len;
438 
439 			offset -= bytes_to_copy;
440 			pos -= bytes_to_copy;
441 			str -= bytes_to_copy;
442 			len -= bytes_to_copy;
443 
444 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
445 				struct page *page;
446 
447 				page = get_arg_page(bprm, pos, 1);
448 				if (!page) {
449 					ret = -E2BIG;
450 					goto out;
451 				}
452 
453 				if (kmapped_page) {
454 					flush_kernel_dcache_page(kmapped_page);
455 					kunmap(kmapped_page);
456 					put_arg_page(kmapped_page);
457 				}
458 				kmapped_page = page;
459 				kaddr = kmap(kmapped_page);
460 				kpos = pos & PAGE_MASK;
461 				flush_arg_page(bprm, kpos, kmapped_page);
462 			}
463 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
464 				ret = -EFAULT;
465 				goto out;
466 			}
467 		}
468 	}
469 	ret = 0;
470 out:
471 	if (kmapped_page) {
472 		flush_kernel_dcache_page(kmapped_page);
473 		kunmap(kmapped_page);
474 		put_arg_page(kmapped_page);
475 	}
476 	return ret;
477 }
478 
479 /*
480  * Like copy_strings, but get argv and its values from kernel memory.
481  */
copy_strings_kernel(int argc,char ** argv,struct linux_binprm * bprm)482 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
483 {
484 	int r;
485 	mm_segment_t oldfs = get_fs();
486 	set_fs(KERNEL_DS);
487 	r = copy_strings(argc, (char __user * __user *)argv, bprm);
488 	set_fs(oldfs);
489 	return r;
490 }
491 EXPORT_SYMBOL(copy_strings_kernel);
492 
493 #ifdef CONFIG_MMU
494 
495 /*
496  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
497  * the binfmt code determines where the new stack should reside, we shift it to
498  * its final location.  The process proceeds as follows:
499  *
500  * 1) Use shift to calculate the new vma endpoints.
501  * 2) Extend vma to cover both the old and new ranges.  This ensures the
502  *    arguments passed to subsequent functions are consistent.
503  * 3) Move vma's page tables to the new range.
504  * 4) Free up any cleared pgd range.
505  * 5) Shrink the vma to cover only the new range.
506  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)507 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
508 {
509 	struct mm_struct *mm = vma->vm_mm;
510 	unsigned long old_start = vma->vm_start;
511 	unsigned long old_end = vma->vm_end;
512 	unsigned long length = old_end - old_start;
513 	unsigned long new_start = old_start - shift;
514 	unsigned long new_end = old_end - shift;
515 	struct mmu_gather *tlb;
516 
517 	BUG_ON(new_start > new_end);
518 
519 	/*
520 	 * ensure there are no vmas between where we want to go
521 	 * and where we are
522 	 */
523 	if (vma != find_vma(mm, new_start))
524 		return -EFAULT;
525 
526 	/*
527 	 * cover the whole range: [new_start, old_end)
528 	 */
529 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
530 
531 	/*
532 	 * move the page tables downwards, on failure we rely on
533 	 * process cleanup to remove whatever mess we made.
534 	 */
535 	if (length != move_page_tables(vma, old_start,
536 				       vma, new_start, length))
537 		return -ENOMEM;
538 
539 	lru_add_drain();
540 	tlb = tlb_gather_mmu(mm, 0);
541 	if (new_end > old_start) {
542 		/*
543 		 * when the old and new regions overlap clear from new_end.
544 		 */
545 		free_pgd_range(tlb, new_end, old_end, new_end,
546 			vma->vm_next ? vma->vm_next->vm_start : 0);
547 	} else {
548 		/*
549 		 * otherwise, clean from old_start; this is done to not touch
550 		 * the address space in [new_end, old_start) some architectures
551 		 * have constraints on va-space that make this illegal (IA64) -
552 		 * for the others its just a little faster.
553 		 */
554 		free_pgd_range(tlb, old_start, old_end, new_end,
555 			vma->vm_next ? vma->vm_next->vm_start : 0);
556 	}
557 	tlb_finish_mmu(tlb, new_end, old_end);
558 
559 	/*
560 	 * shrink the vma to just the new range.
561 	 */
562 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
563 
564 	return 0;
565 }
566 
567 #define EXTRA_STACK_VM_PAGES	20	/* random */
568 
569 /*
570  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
571  * the stack is optionally relocated, and some extra space is added.
572  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)573 int setup_arg_pages(struct linux_binprm *bprm,
574 		    unsigned long stack_top,
575 		    int executable_stack)
576 {
577 	unsigned long ret;
578 	unsigned long stack_shift;
579 	struct mm_struct *mm = current->mm;
580 	struct vm_area_struct *vma = bprm->vma;
581 	struct vm_area_struct *prev = NULL;
582 	unsigned long vm_flags;
583 	unsigned long stack_base;
584 
585 #ifdef CONFIG_STACK_GROWSUP
586 	/* Limit stack size to 1GB */
587 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
588 	if (stack_base > (1 << 30))
589 		stack_base = 1 << 30;
590 
591 	/* Make sure we didn't let the argument array grow too large. */
592 	if (vma->vm_end - vma->vm_start > stack_base)
593 		return -ENOMEM;
594 
595 	stack_base = PAGE_ALIGN(stack_top - stack_base);
596 
597 	stack_shift = vma->vm_start - stack_base;
598 	mm->arg_start = bprm->p - stack_shift;
599 	bprm->p = vma->vm_end - stack_shift;
600 #else
601 	stack_top = arch_align_stack(stack_top);
602 	stack_top = PAGE_ALIGN(stack_top);
603 	stack_shift = vma->vm_end - stack_top;
604 
605 	bprm->p -= stack_shift;
606 	mm->arg_start = bprm->p;
607 #endif
608 
609 	if (bprm->loader)
610 		bprm->loader -= stack_shift;
611 	bprm->exec -= stack_shift;
612 
613 	down_write(&mm->mmap_sem);
614 	vm_flags = VM_STACK_FLAGS;
615 
616 	/*
617 	 * Adjust stack execute permissions; explicitly enable for
618 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
619 	 * (arch default) otherwise.
620 	 */
621 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
622 		vm_flags |= VM_EXEC;
623 	else if (executable_stack == EXSTACK_DISABLE_X)
624 		vm_flags &= ~VM_EXEC;
625 	vm_flags |= mm->def_flags;
626 
627 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
628 			vm_flags);
629 	if (ret)
630 		goto out_unlock;
631 	BUG_ON(prev != vma);
632 
633 	/* Move stack pages down in memory. */
634 	if (stack_shift) {
635 		ret = shift_arg_pages(vma, stack_shift);
636 		if (ret) {
637 			up_write(&mm->mmap_sem);
638 			return ret;
639 		}
640 	}
641 
642 #ifdef CONFIG_STACK_GROWSUP
643 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
644 #else
645 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
646 #endif
647 	ret = expand_stack(vma, stack_base);
648 	if (ret)
649 		ret = -EFAULT;
650 
651 out_unlock:
652 	up_write(&mm->mmap_sem);
653 	return 0;
654 }
655 EXPORT_SYMBOL(setup_arg_pages);
656 
657 #endif /* CONFIG_MMU */
658 
open_exec(const char * name)659 struct file *open_exec(const char *name)
660 {
661 	struct nameidata nd;
662 	struct file *file;
663 	int err;
664 
665 	err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
666 				FMODE_READ|FMODE_EXEC);
667 	if (err)
668 		goto out;
669 
670 	err = -EACCES;
671 	if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
672 		goto out_path_put;
673 
674 	if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
675 		goto out_path_put;
676 
677 	err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
678 	if (err)
679 		goto out_path_put;
680 
681 	file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
682 	if (IS_ERR(file))
683 		return file;
684 
685 	fsnotify_open(file->f_path.dentry);
686 
687 	err = deny_write_access(file);
688 	if (err) {
689 		fput(file);
690 		goto out;
691 	}
692 
693 	return file;
694 
695  out_path_put:
696 	release_open_intent(&nd);
697 	path_put(&nd.path);
698  out:
699 	return ERR_PTR(err);
700 }
701 EXPORT_SYMBOL(open_exec);
702 
kernel_read(struct file * file,unsigned long offset,char * addr,unsigned long count)703 int kernel_read(struct file *file, unsigned long offset,
704 	char *addr, unsigned long count)
705 {
706 	mm_segment_t old_fs;
707 	loff_t pos = offset;
708 	int result;
709 
710 	old_fs = get_fs();
711 	set_fs(get_ds());
712 	/* The cast to a user pointer is valid due to the set_fs() */
713 	result = vfs_read(file, (void __user *)addr, count, &pos);
714 	set_fs(old_fs);
715 	return result;
716 }
717 
718 EXPORT_SYMBOL(kernel_read);
719 
exec_mmap(struct mm_struct * mm)720 static int exec_mmap(struct mm_struct *mm)
721 {
722 	struct task_struct *tsk;
723 	struct mm_struct * old_mm, *active_mm;
724 
725 	/* Notify parent that we're no longer interested in the old VM */
726 	tsk = current;
727 	old_mm = current->mm;
728 	mm_release(tsk, old_mm);
729 
730 	if (old_mm) {
731 		/*
732 		 * Make sure that if there is a core dump in progress
733 		 * for the old mm, we get out and die instead of going
734 		 * through with the exec.  We must hold mmap_sem around
735 		 * checking core_state and changing tsk->mm.
736 		 */
737 		down_read(&old_mm->mmap_sem);
738 		if (unlikely(old_mm->core_state)) {
739 			up_read(&old_mm->mmap_sem);
740 			return -EINTR;
741 		}
742 	}
743 	task_lock(tsk);
744 	active_mm = tsk->active_mm;
745 	tsk->mm = mm;
746 	tsk->active_mm = mm;
747 	activate_mm(active_mm, mm);
748 	task_unlock(tsk);
749 	arch_pick_mmap_layout(mm);
750 	if (old_mm) {
751 		up_read(&old_mm->mmap_sem);
752 		BUG_ON(active_mm != old_mm);
753 		mm_update_next_owner(old_mm);
754 		mmput(old_mm);
755 		return 0;
756 	}
757 	mmdrop(active_mm);
758 	return 0;
759 }
760 
761 /*
762  * This function makes sure the current process has its own signal table,
763  * so that flush_signal_handlers can later reset the handlers without
764  * disturbing other processes.  (Other processes might share the signal
765  * table via the CLONE_SIGHAND option to clone().)
766  */
de_thread(struct task_struct * tsk)767 static int de_thread(struct task_struct *tsk)
768 {
769 	struct signal_struct *sig = tsk->signal;
770 	struct sighand_struct *oldsighand = tsk->sighand;
771 	spinlock_t *lock = &oldsighand->siglock;
772 	int count;
773 
774 	if (thread_group_empty(tsk))
775 		goto no_thread_group;
776 
777 	/*
778 	 * Kill all other threads in the thread group.
779 	 */
780 	spin_lock_irq(lock);
781 	if (signal_group_exit(sig)) {
782 		/*
783 		 * Another group action in progress, just
784 		 * return so that the signal is processed.
785 		 */
786 		spin_unlock_irq(lock);
787 		return -EAGAIN;
788 	}
789 	sig->group_exit_task = tsk;
790 	zap_other_threads(tsk);
791 
792 	/* Account for the thread group leader hanging around: */
793 	count = thread_group_leader(tsk) ? 1 : 2;
794 	sig->notify_count = count;
795 	while (atomic_read(&sig->count) > count) {
796 		__set_current_state(TASK_UNINTERRUPTIBLE);
797 		spin_unlock_irq(lock);
798 		schedule();
799 		spin_lock_irq(lock);
800 	}
801 	spin_unlock_irq(lock);
802 
803 	/*
804 	 * At this point all other threads have exited, all we have to
805 	 * do is to wait for the thread group leader to become inactive,
806 	 * and to assume its PID:
807 	 */
808 	if (!thread_group_leader(tsk)) {
809 		struct task_struct *leader = tsk->group_leader;
810 
811 		sig->notify_count = -1;	/* for exit_notify() */
812 		for (;;) {
813 			write_lock_irq(&tasklist_lock);
814 			if (likely(leader->exit_state))
815 				break;
816 			__set_current_state(TASK_UNINTERRUPTIBLE);
817 			write_unlock_irq(&tasklist_lock);
818 			schedule();
819 		}
820 
821 		/*
822 		 * The only record we have of the real-time age of a
823 		 * process, regardless of execs it's done, is start_time.
824 		 * All the past CPU time is accumulated in signal_struct
825 		 * from sister threads now dead.  But in this non-leader
826 		 * exec, nothing survives from the original leader thread,
827 		 * whose birth marks the true age of this process now.
828 		 * When we take on its identity by switching to its PID, we
829 		 * also take its birthdate (always earlier than our own).
830 		 */
831 		tsk->start_time = leader->start_time;
832 
833 		BUG_ON(!same_thread_group(leader, tsk));
834 		BUG_ON(has_group_leader_pid(tsk));
835 		/*
836 		 * An exec() starts a new thread group with the
837 		 * TGID of the previous thread group. Rehash the
838 		 * two threads with a switched PID, and release
839 		 * the former thread group leader:
840 		 */
841 
842 		/* Become a process group leader with the old leader's pid.
843 		 * The old leader becomes a thread of the this thread group.
844 		 * Note: The old leader also uses this pid until release_task
845 		 *       is called.  Odd but simple and correct.
846 		 */
847 		detach_pid(tsk, PIDTYPE_PID);
848 		tsk->pid = leader->pid;
849 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
850 		transfer_pid(leader, tsk, PIDTYPE_PGID);
851 		transfer_pid(leader, tsk, PIDTYPE_SID);
852 		list_replace_rcu(&leader->tasks, &tsk->tasks);
853 
854 		tsk->group_leader = tsk;
855 		leader->group_leader = tsk;
856 
857 		tsk->exit_signal = SIGCHLD;
858 
859 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
860 		leader->exit_state = EXIT_DEAD;
861 		write_unlock_irq(&tasklist_lock);
862 
863 		release_task(leader);
864 	}
865 
866 	sig->group_exit_task = NULL;
867 	sig->notify_count = 0;
868 
869 no_thread_group:
870 	exit_itimers(sig);
871 	flush_itimer_signals();
872 
873 	if (atomic_read(&oldsighand->count) != 1) {
874 		struct sighand_struct *newsighand;
875 		/*
876 		 * This ->sighand is shared with the CLONE_SIGHAND
877 		 * but not CLONE_THREAD task, switch to the new one.
878 		 */
879 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
880 		if (!newsighand)
881 			return -ENOMEM;
882 
883 		atomic_set(&newsighand->count, 1);
884 		memcpy(newsighand->action, oldsighand->action,
885 		       sizeof(newsighand->action));
886 
887 		write_lock_irq(&tasklist_lock);
888 		spin_lock(&oldsighand->siglock);
889 		rcu_assign_pointer(tsk->sighand, newsighand);
890 		spin_unlock(&oldsighand->siglock);
891 		write_unlock_irq(&tasklist_lock);
892 
893 		__cleanup_sighand(oldsighand);
894 	}
895 
896 	BUG_ON(!thread_group_leader(tsk));
897 	return 0;
898 }
899 
900 /*
901  * These functions flushes out all traces of the currently running executable
902  * so that a new one can be started
903  */
flush_old_files(struct files_struct * files)904 static void flush_old_files(struct files_struct * files)
905 {
906 	long j = -1;
907 	struct fdtable *fdt;
908 
909 	spin_lock(&files->file_lock);
910 	for (;;) {
911 		unsigned long set, i;
912 
913 		j++;
914 		i = j * __NFDBITS;
915 		fdt = files_fdtable(files);
916 		if (i >= fdt->max_fds)
917 			break;
918 		set = fdt->close_on_exec->fds_bits[j];
919 		if (!set)
920 			continue;
921 		fdt->close_on_exec->fds_bits[j] = 0;
922 		spin_unlock(&files->file_lock);
923 		for ( ; set ; i++,set >>= 1) {
924 			if (set & 1) {
925 				sys_close(i);
926 			}
927 		}
928 		spin_lock(&files->file_lock);
929 
930 	}
931 	spin_unlock(&files->file_lock);
932 }
933 
get_task_comm(char * buf,struct task_struct * tsk)934 char *get_task_comm(char *buf, struct task_struct *tsk)
935 {
936 	/* buf must be at least sizeof(tsk->comm) in size */
937 	task_lock(tsk);
938 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
939 	task_unlock(tsk);
940 	return buf;
941 }
942 
set_task_comm(struct task_struct * tsk,char * buf)943 void set_task_comm(struct task_struct *tsk, char *buf)
944 {
945 	task_lock(tsk);
946 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
947 	task_unlock(tsk);
948 #ifdef CONFIG_QEMU_TRACE
949 	qemu_trace_thread_name(buf);
950 #endif
951 }
952 
flush_old_exec(struct linux_binprm * bprm)953 int flush_old_exec(struct linux_binprm * bprm)
954 {
955 	char * name;
956 	int i, ch, retval;
957 	char tcomm[sizeof(current->comm)];
958 
959 	/*
960 	 * Make sure we have a private signal table and that
961 	 * we are unassociated from the previous thread group.
962 	 */
963 	retval = de_thread(current);
964 	if (retval)
965 		goto out;
966 
967 	set_mm_exe_file(bprm->mm, bprm->file);
968 
969 	/*
970 	 * Release all of the old mmap stuff
971 	 */
972 	retval = exec_mmap(bprm->mm);
973 	if (retval)
974 		goto out;
975 
976 	bprm->mm = NULL;		/* We're using it now */
977 
978 	/* This is the point of no return */
979 	current->sas_ss_sp = current->sas_ss_size = 0;
980 
981 	if (current_euid() == current_uid() && current_egid() == current_gid())
982 		set_dumpable(current->mm, 1);
983 	else
984 		set_dumpable(current->mm, suid_dumpable);
985 
986 	name = bprm->filename;
987 
988 	/* Copies the binary name from after last slash */
989 	for (i=0; (ch = *(name++)) != '\0';) {
990 		if (ch == '/')
991 			i = 0; /* overwrite what we wrote */
992 		else
993 			if (i < (sizeof(tcomm) - 1))
994 				tcomm[i++] = ch;
995 	}
996 	tcomm[i] = '\0';
997 	set_task_comm(current, tcomm);
998 
999 	current->flags &= ~PF_RANDOMIZE;
1000 	flush_thread();
1001 
1002 	/* Set the new mm task size. We have to do that late because it may
1003 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1004 	 * some architectures like powerpc
1005 	 */
1006 	current->mm->task_size = TASK_SIZE;
1007 
1008 	/* install the new credentials */
1009 	if (bprm->cred->uid != current_euid() ||
1010 	    bprm->cred->gid != current_egid()) {
1011 		current->pdeath_signal = 0;
1012 	} else if (file_permission(bprm->file, MAY_READ) ||
1013 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1014 		set_dumpable(current->mm, suid_dumpable);
1015 	}
1016 
1017 	current->personality &= ~bprm->per_clear;
1018 
1019 	/* An exec changes our domain. We are no longer part of the thread
1020 	   group */
1021 
1022 	current->self_exec_id++;
1023 
1024 	flush_signal_handlers(current, 0);
1025 	flush_old_files(current->files);
1026 
1027 	return 0;
1028 
1029 out:
1030 	return retval;
1031 }
1032 
1033 EXPORT_SYMBOL(flush_old_exec);
1034 
1035 /*
1036  * install the new credentials for this executable
1037  */
install_exec_creds(struct linux_binprm * bprm)1038 void install_exec_creds(struct linux_binprm *bprm)
1039 {
1040 	security_bprm_committing_creds(bprm);
1041 
1042 	commit_creds(bprm->cred);
1043 	bprm->cred = NULL;
1044 
1045 	/* cred_exec_mutex must be held at least to this point to prevent
1046 	 * ptrace_attach() from altering our determination of the task's
1047 	 * credentials; any time after this it may be unlocked */
1048 
1049 	security_bprm_committed_creds(bprm);
1050 }
1051 EXPORT_SYMBOL(install_exec_creds);
1052 
1053 /*
1054  * determine how safe it is to execute the proposed program
1055  * - the caller must hold current->cred_exec_mutex to protect against
1056  *   PTRACE_ATTACH
1057  */
check_unsafe_exec(struct linux_binprm * bprm,struct files_struct * files)1058 void check_unsafe_exec(struct linux_binprm *bprm, struct files_struct *files)
1059 {
1060 	struct task_struct *p = current, *t;
1061 	unsigned long flags;
1062 	unsigned n_fs, n_files, n_sighand;
1063 
1064 	bprm->unsafe = tracehook_unsafe_exec(p);
1065 
1066 	n_fs = 1;
1067 	n_files = 1;
1068 	n_sighand = 1;
1069 	lock_task_sighand(p, &flags);
1070 	for (t = next_thread(p); t != p; t = next_thread(t)) {
1071 		if (t->fs == p->fs)
1072 			n_fs++;
1073 		if (t->files == files)
1074 			n_files++;
1075 		n_sighand++;
1076 	}
1077 
1078 	if (atomic_read(&p->fs->count) > n_fs ||
1079 	    atomic_read(&p->files->count) > n_files ||
1080 	    atomic_read(&p->sighand->count) > n_sighand)
1081 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1082 
1083 	unlock_task_sighand(p, &flags);
1084 }
1085 
1086 /*
1087  * Fill the binprm structure from the inode.
1088  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1089  *
1090  * This may be called multiple times for binary chains (scripts for example).
1091  */
prepare_binprm(struct linux_binprm * bprm)1092 int prepare_binprm(struct linux_binprm *bprm)
1093 {
1094 	umode_t mode;
1095 	struct inode * inode = bprm->file->f_path.dentry->d_inode;
1096 	int retval;
1097 
1098 	mode = inode->i_mode;
1099 	if (bprm->file->f_op == NULL)
1100 		return -EACCES;
1101 
1102 	/* clear any previous set[ug]id data from a previous binary */
1103 	bprm->cred->euid = current_euid();
1104 	bprm->cred->egid = current_egid();
1105 
1106 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1107 		/* Set-uid? */
1108 		if (mode & S_ISUID) {
1109 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1110 			bprm->cred->euid = inode->i_uid;
1111 		}
1112 
1113 		/* Set-gid? */
1114 		/*
1115 		 * If setgid is set but no group execute bit then this
1116 		 * is a candidate for mandatory locking, not a setgid
1117 		 * executable.
1118 		 */
1119 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1120 			bprm->per_clear |= PER_CLEAR_ON_SETID;
1121 			bprm->cred->egid = inode->i_gid;
1122 		}
1123 	}
1124 
1125 	/* fill in binprm security blob */
1126 	retval = security_bprm_set_creds(bprm);
1127 	if (retval)
1128 		return retval;
1129 	bprm->cred_prepared = 1;
1130 
1131 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1132 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1133 }
1134 
1135 EXPORT_SYMBOL(prepare_binprm);
1136 
1137 /*
1138  * Arguments are '\0' separated strings found at the location bprm->p
1139  * points to; chop off the first by relocating brpm->p to right after
1140  * the first '\0' encountered.
1141  */
remove_arg_zero(struct linux_binprm * bprm)1142 int remove_arg_zero(struct linux_binprm *bprm)
1143 {
1144 	int ret = 0;
1145 	unsigned long offset;
1146 	char *kaddr;
1147 	struct page *page;
1148 
1149 	if (!bprm->argc)
1150 		return 0;
1151 
1152 	do {
1153 		offset = bprm->p & ~PAGE_MASK;
1154 		page = get_arg_page(bprm, bprm->p, 0);
1155 		if (!page) {
1156 			ret = -EFAULT;
1157 			goto out;
1158 		}
1159 		kaddr = kmap_atomic(page, KM_USER0);
1160 
1161 		for (; offset < PAGE_SIZE && kaddr[offset];
1162 				offset++, bprm->p++)
1163 			;
1164 
1165 		kunmap_atomic(kaddr, KM_USER0);
1166 		put_arg_page(page);
1167 
1168 		if (offset == PAGE_SIZE)
1169 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1170 	} while (offset == PAGE_SIZE);
1171 
1172 	bprm->p++;
1173 	bprm->argc--;
1174 	ret = 0;
1175 
1176 out:
1177 	return ret;
1178 }
1179 EXPORT_SYMBOL(remove_arg_zero);
1180 
1181 /*
1182  * cycle the list of binary formats handler, until one recognizes the image
1183  */
search_binary_handler(struct linux_binprm * bprm,struct pt_regs * regs)1184 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1185 {
1186 	unsigned int depth = bprm->recursion_depth;
1187 	int try,retval;
1188 	struct linux_binfmt *fmt;
1189 
1190 	retval = security_bprm_check(bprm);
1191 	if (retval)
1192 		return retval;
1193 
1194 	/* kernel module loader fixup */
1195 	/* so we don't try to load run modprobe in kernel space. */
1196 	set_fs(USER_DS);
1197 
1198 	retval = audit_bprm(bprm);
1199 	if (retval)
1200 		return retval;
1201 
1202 	retval = -ENOENT;
1203 	for (try=0; try<2; try++) {
1204 		read_lock(&binfmt_lock);
1205 		list_for_each_entry(fmt, &formats, lh) {
1206 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1207 			if (!fn)
1208 				continue;
1209 			if (!try_module_get(fmt->module))
1210 				continue;
1211 			read_unlock(&binfmt_lock);
1212 			retval = fn(bprm, regs);
1213 			/*
1214 			 * Restore the depth counter to its starting value
1215 			 * in this call, so we don't have to rely on every
1216 			 * load_binary function to restore it on return.
1217 			 */
1218 			bprm->recursion_depth = depth;
1219 			if (retval >= 0) {
1220 				if (depth == 0)
1221 					tracehook_report_exec(fmt, bprm, regs);
1222 				put_binfmt(fmt);
1223 				allow_write_access(bprm->file);
1224 				if (bprm->file)
1225 					fput(bprm->file);
1226 				bprm->file = NULL;
1227 				current->did_exec = 1;
1228 				proc_exec_connector(current);
1229 				return retval;
1230 			}
1231 			read_lock(&binfmt_lock);
1232 			put_binfmt(fmt);
1233 			if (retval != -ENOEXEC || bprm->mm == NULL)
1234 				break;
1235 			if (!bprm->file) {
1236 				read_unlock(&binfmt_lock);
1237 				return retval;
1238 			}
1239 		}
1240 		read_unlock(&binfmt_lock);
1241 		if (retval != -ENOEXEC || bprm->mm == NULL) {
1242 			break;
1243 #ifdef CONFIG_MODULES
1244 		} else {
1245 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1246 			if (printable(bprm->buf[0]) &&
1247 			    printable(bprm->buf[1]) &&
1248 			    printable(bprm->buf[2]) &&
1249 			    printable(bprm->buf[3]))
1250 				break; /* -ENOEXEC */
1251 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1252 #endif
1253 		}
1254 	}
1255 	return retval;
1256 }
1257 
1258 EXPORT_SYMBOL(search_binary_handler);
1259 
free_bprm(struct linux_binprm * bprm)1260 void free_bprm(struct linux_binprm *bprm)
1261 {
1262 	free_arg_pages(bprm);
1263 	if (bprm->cred)
1264 		abort_creds(bprm->cred);
1265 	kfree(bprm);
1266 }
1267 
1268 #ifdef CONFIG_QEMU_TRACE
1269 extern void qemu_trace_execve(int argc, char __user * __user * argv);
1270 #endif
1271 
1272 /*
1273  * sys_execve() executes a new program.
1274  */
do_execve(char * filename,char __user * __user * argv,char __user * __user * envp,struct pt_regs * regs)1275 int do_execve(char * filename,
1276 	char __user *__user *argv,
1277 	char __user *__user *envp,
1278 	struct pt_regs * regs)
1279 {
1280 	struct linux_binprm *bprm;
1281 	struct file *file;
1282 	struct files_struct *displaced;
1283 	int retval;
1284 
1285 	retval = unshare_files(&displaced);
1286 	if (retval)
1287 		goto out_ret;
1288 
1289 	retval = -ENOMEM;
1290 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1291 	if (!bprm)
1292 		goto out_files;
1293 
1294 	retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1295 	if (retval < 0)
1296 		goto out_free;
1297 
1298 	retval = -ENOMEM;
1299 	bprm->cred = prepare_exec_creds();
1300 	if (!bprm->cred)
1301 		goto out_unlock;
1302 	check_unsafe_exec(bprm, displaced);
1303 
1304 	file = open_exec(filename);
1305 	retval = PTR_ERR(file);
1306 	if (IS_ERR(file))
1307 		goto out_unlock;
1308 
1309 	sched_exec();
1310 
1311 	bprm->file = file;
1312 	bprm->filename = filename;
1313 	bprm->interp = filename;
1314 
1315 	retval = bprm_mm_init(bprm);
1316 	if (retval)
1317 		goto out_file;
1318 
1319 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1320 	if ((retval = bprm->argc) < 0)
1321 		goto out;
1322 
1323 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1324 	if ((retval = bprm->envc) < 0)
1325 		goto out;
1326 
1327 	retval = prepare_binprm(bprm);
1328 	if (retval < 0)
1329 		goto out;
1330 
1331 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1332 	if (retval < 0)
1333 		goto out;
1334 
1335 	bprm->exec = bprm->p;
1336 	retval = copy_strings(bprm->envc, envp, bprm);
1337 	if (retval < 0)
1338 		goto out;
1339 
1340 	retval = copy_strings(bprm->argc, argv, bprm);
1341 	if (retval < 0)
1342 		goto out;
1343 
1344 	current->flags &= ~PF_KTHREAD;
1345 #ifdef CONFIG_QEMU_TRACE
1346         qemu_trace_execve(bprm->argc, argv);
1347 #endif
1348 
1349 	retval = search_binary_handler(bprm,regs);
1350 	if (retval < 0)
1351 		goto out;
1352 
1353 	/* execve succeeded */
1354 	mutex_unlock(&current->cred_exec_mutex);
1355 	acct_update_integrals(current);
1356 	free_bprm(bprm);
1357 	if (displaced)
1358 		put_files_struct(displaced);
1359 	return retval;
1360 
1361 out:
1362 	if (bprm->mm)
1363 		mmput (bprm->mm);
1364 
1365 out_file:
1366 	if (bprm->file) {
1367 		allow_write_access(bprm->file);
1368 		fput(bprm->file);
1369 	}
1370 
1371 out_unlock:
1372 	mutex_unlock(&current->cred_exec_mutex);
1373 
1374 out_free:
1375 	free_bprm(bprm);
1376 
1377 out_files:
1378 	if (displaced)
1379 		reset_files_struct(displaced);
1380 out_ret:
1381 	return retval;
1382 }
1383 
set_binfmt(struct linux_binfmt * new)1384 int set_binfmt(struct linux_binfmt *new)
1385 {
1386 	struct linux_binfmt *old = current->binfmt;
1387 
1388 	if (new) {
1389 		if (!try_module_get(new->module))
1390 			return -1;
1391 	}
1392 	current->binfmt = new;
1393 	if (old)
1394 		module_put(old->module);
1395 	return 0;
1396 }
1397 
1398 EXPORT_SYMBOL(set_binfmt);
1399 
1400 /* format_corename will inspect the pattern parameter, and output a
1401  * name into corename, which must have space for at least
1402  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1403  */
format_corename(char * corename,long signr)1404 static int format_corename(char *corename, long signr)
1405 {
1406 	const struct cred *cred = current_cred();
1407 	const char *pat_ptr = core_pattern;
1408 	int ispipe = (*pat_ptr == '|');
1409 	char *out_ptr = corename;
1410 	char *const out_end = corename + CORENAME_MAX_SIZE;
1411 	int rc;
1412 	int pid_in_pattern = 0;
1413 
1414 	/* Repeat as long as we have more pattern to process and more output
1415 	   space */
1416 	while (*pat_ptr) {
1417 		if (*pat_ptr != '%') {
1418 			if (out_ptr == out_end)
1419 				goto out;
1420 			*out_ptr++ = *pat_ptr++;
1421 		} else {
1422 			switch (*++pat_ptr) {
1423 			case 0:
1424 				goto out;
1425 			/* Double percent, output one percent */
1426 			case '%':
1427 				if (out_ptr == out_end)
1428 					goto out;
1429 				*out_ptr++ = '%';
1430 				break;
1431 			/* pid */
1432 			case 'p':
1433 				pid_in_pattern = 1;
1434 				rc = snprintf(out_ptr, out_end - out_ptr,
1435 					      "%d", task_tgid_vnr(current));
1436 				if (rc > out_end - out_ptr)
1437 					goto out;
1438 				out_ptr += rc;
1439 				break;
1440 			/* uid */
1441 			case 'u':
1442 				rc = snprintf(out_ptr, out_end - out_ptr,
1443 					      "%d", cred->uid);
1444 				if (rc > out_end - out_ptr)
1445 					goto out;
1446 				out_ptr += rc;
1447 				break;
1448 			/* gid */
1449 			case 'g':
1450 				rc = snprintf(out_ptr, out_end - out_ptr,
1451 					      "%d", cred->gid);
1452 				if (rc > out_end - out_ptr)
1453 					goto out;
1454 				out_ptr += rc;
1455 				break;
1456 			/* signal that caused the coredump */
1457 			case 's':
1458 				rc = snprintf(out_ptr, out_end - out_ptr,
1459 					      "%ld", signr);
1460 				if (rc > out_end - out_ptr)
1461 					goto out;
1462 				out_ptr += rc;
1463 				break;
1464 			/* UNIX time of coredump */
1465 			case 't': {
1466 				struct timeval tv;
1467 				do_gettimeofday(&tv);
1468 				rc = snprintf(out_ptr, out_end - out_ptr,
1469 					      "%lu", tv.tv_sec);
1470 				if (rc > out_end - out_ptr)
1471 					goto out;
1472 				out_ptr += rc;
1473 				break;
1474 			}
1475 			/* hostname */
1476 			case 'h':
1477 				down_read(&uts_sem);
1478 				rc = snprintf(out_ptr, out_end - out_ptr,
1479 					      "%s", utsname()->nodename);
1480 				up_read(&uts_sem);
1481 				if (rc > out_end - out_ptr)
1482 					goto out;
1483 				out_ptr += rc;
1484 				break;
1485 			/* executable */
1486 			case 'e':
1487 				rc = snprintf(out_ptr, out_end - out_ptr,
1488 					      "%s", current->comm);
1489 				if (rc > out_end - out_ptr)
1490 					goto out;
1491 				out_ptr += rc;
1492 				break;
1493 			/* core limit size */
1494 			case 'c':
1495 				rc = snprintf(out_ptr, out_end - out_ptr,
1496 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1497 				if (rc > out_end - out_ptr)
1498 					goto out;
1499 				out_ptr += rc;
1500 				break;
1501 			default:
1502 				break;
1503 			}
1504 			++pat_ptr;
1505 		}
1506 	}
1507 	/* Backward compatibility with core_uses_pid:
1508 	 *
1509 	 * If core_pattern does not include a %p (as is the default)
1510 	 * and core_uses_pid is set, then .%pid will be appended to
1511 	 * the filename. Do not do this for piped commands. */
1512 	if (!ispipe && !pid_in_pattern && core_uses_pid) {
1513 		rc = snprintf(out_ptr, out_end - out_ptr,
1514 			      ".%d", task_tgid_vnr(current));
1515 		if (rc > out_end - out_ptr)
1516 			goto out;
1517 		out_ptr += rc;
1518 	}
1519 out:
1520 	*out_ptr = 0;
1521 	return ispipe;
1522 }
1523 
zap_process(struct task_struct * start)1524 static int zap_process(struct task_struct *start)
1525 {
1526 	struct task_struct *t;
1527 	int nr = 0;
1528 
1529 	start->signal->flags = SIGNAL_GROUP_EXIT;
1530 	start->signal->group_stop_count = 0;
1531 
1532 	t = start;
1533 	do {
1534 		if (t != current && t->mm) {
1535 			sigaddset(&t->pending.signal, SIGKILL);
1536 			signal_wake_up(t, 1);
1537 			nr++;
1538 		}
1539 	} while_each_thread(start, t);
1540 
1541 	return nr;
1542 }
1543 
zap_threads(struct task_struct * tsk,struct mm_struct * mm,struct core_state * core_state,int exit_code)1544 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1545 				struct core_state *core_state, int exit_code)
1546 {
1547 	struct task_struct *g, *p;
1548 	unsigned long flags;
1549 	int nr = -EAGAIN;
1550 
1551 	spin_lock_irq(&tsk->sighand->siglock);
1552 	if (!signal_group_exit(tsk->signal)) {
1553 		mm->core_state = core_state;
1554 		tsk->signal->group_exit_code = exit_code;
1555 		nr = zap_process(tsk);
1556 	}
1557 	spin_unlock_irq(&tsk->sighand->siglock);
1558 	if (unlikely(nr < 0))
1559 		return nr;
1560 
1561 	if (atomic_read(&mm->mm_users) == nr + 1)
1562 		goto done;
1563 	/*
1564 	 * We should find and kill all tasks which use this mm, and we should
1565 	 * count them correctly into ->nr_threads. We don't take tasklist
1566 	 * lock, but this is safe wrt:
1567 	 *
1568 	 * fork:
1569 	 *	None of sub-threads can fork after zap_process(leader). All
1570 	 *	processes which were created before this point should be
1571 	 *	visible to zap_threads() because copy_process() adds the new
1572 	 *	process to the tail of init_task.tasks list, and lock/unlock
1573 	 *	of ->siglock provides a memory barrier.
1574 	 *
1575 	 * do_exit:
1576 	 *	The caller holds mm->mmap_sem. This means that the task which
1577 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear
1578 	 *	its ->mm.
1579 	 *
1580 	 * de_thread:
1581 	 *	It does list_replace_rcu(&leader->tasks, &current->tasks),
1582 	 *	we must see either old or new leader, this does not matter.
1583 	 *	However, it can change p->sighand, so lock_task_sighand(p)
1584 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem
1585 	 *	it can't fail.
1586 	 *
1587 	 *	Note also that "g" can be the old leader with ->mm == NULL
1588 	 *	and already unhashed and thus removed from ->thread_group.
1589 	 *	This is OK, __unhash_process()->list_del_rcu() does not
1590 	 *	clear the ->next pointer, we will find the new leader via
1591 	 *	next_thread().
1592 	 */
1593 	rcu_read_lock();
1594 	for_each_process(g) {
1595 		if (g == tsk->group_leader)
1596 			continue;
1597 		if (g->flags & PF_KTHREAD)
1598 			continue;
1599 		p = g;
1600 		do {
1601 			if (p->mm) {
1602 				if (unlikely(p->mm == mm)) {
1603 					lock_task_sighand(p, &flags);
1604 					nr += zap_process(p);
1605 					unlock_task_sighand(p, &flags);
1606 				}
1607 				break;
1608 			}
1609 		} while_each_thread(g, p);
1610 	}
1611 	rcu_read_unlock();
1612 done:
1613 	atomic_set(&core_state->nr_threads, nr);
1614 	return nr;
1615 }
1616 
coredump_wait(int exit_code,struct core_state * core_state)1617 static int coredump_wait(int exit_code, struct core_state *core_state)
1618 {
1619 	struct task_struct *tsk = current;
1620 	struct mm_struct *mm = tsk->mm;
1621 	struct completion *vfork_done;
1622 	int core_waiters;
1623 
1624 	init_completion(&core_state->startup);
1625 	core_state->dumper.task = tsk;
1626 	core_state->dumper.next = NULL;
1627 	core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1628 	up_write(&mm->mmap_sem);
1629 
1630 	if (unlikely(core_waiters < 0))
1631 		goto fail;
1632 
1633 	/*
1634 	 * Make sure nobody is waiting for us to release the VM,
1635 	 * otherwise we can deadlock when we wait on each other
1636 	 */
1637 	vfork_done = tsk->vfork_done;
1638 	if (vfork_done) {
1639 		tsk->vfork_done = NULL;
1640 		complete(vfork_done);
1641 	}
1642 
1643 	if (core_waiters)
1644 		wait_for_completion(&core_state->startup);
1645 fail:
1646 	return core_waiters;
1647 }
1648 
coredump_finish(struct mm_struct * mm)1649 static void coredump_finish(struct mm_struct *mm)
1650 {
1651 	struct core_thread *curr, *next;
1652 	struct task_struct *task;
1653 
1654 	next = mm->core_state->dumper.next;
1655 	while ((curr = next) != NULL) {
1656 		next = curr->next;
1657 		task = curr->task;
1658 		/*
1659 		 * see exit_mm(), curr->task must not see
1660 		 * ->task == NULL before we read ->next.
1661 		 */
1662 		smp_mb();
1663 		curr->task = NULL;
1664 		wake_up_process(task);
1665 	}
1666 
1667 	mm->core_state = NULL;
1668 }
1669 
1670 /*
1671  * set_dumpable converts traditional three-value dumpable to two flags and
1672  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1673  * these bits are not changed atomically.  So get_dumpable can observe the
1674  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1675  * return either old dumpable or new one by paying attention to the order of
1676  * modifying the bits.
1677  *
1678  * dumpable |   mm->flags (binary)
1679  * old  new | initial interim  final
1680  * ---------+-----------------------
1681  *  0    1  |   00      01      01
1682  *  0    2  |   00      10(*)   11
1683  *  1    0  |   01      00      00
1684  *  1    2  |   01      11      11
1685  *  2    0  |   11      10(*)   00
1686  *  2    1  |   11      11      01
1687  *
1688  * (*) get_dumpable regards interim value of 10 as 11.
1689  */
set_dumpable(struct mm_struct * mm,int value)1690 void set_dumpable(struct mm_struct *mm, int value)
1691 {
1692 	switch (value) {
1693 	case 0:
1694 		clear_bit(MMF_DUMPABLE, &mm->flags);
1695 		smp_wmb();
1696 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1697 		break;
1698 	case 1:
1699 		set_bit(MMF_DUMPABLE, &mm->flags);
1700 		smp_wmb();
1701 		clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1702 		break;
1703 	case 2:
1704 		set_bit(MMF_DUMP_SECURELY, &mm->flags);
1705 		smp_wmb();
1706 		set_bit(MMF_DUMPABLE, &mm->flags);
1707 		break;
1708 	}
1709 }
1710 
get_dumpable(struct mm_struct * mm)1711 int get_dumpable(struct mm_struct *mm)
1712 {
1713 	int ret;
1714 
1715 	ret = mm->flags & 0x3;
1716 	return (ret >= 2) ? 2 : ret;
1717 }
1718 
do_coredump(long signr,int exit_code,struct pt_regs * regs)1719 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1720 {
1721 	struct core_state core_state;
1722 	char corename[CORENAME_MAX_SIZE + 1];
1723 	struct mm_struct *mm = current->mm;
1724 	struct linux_binfmt * binfmt;
1725 	struct inode * inode;
1726 	struct file * file;
1727 	const struct cred *old_cred;
1728 	struct cred *cred;
1729 	int retval = 0;
1730 	int flag = 0;
1731 	int ispipe = 0;
1732 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1733 	char **helper_argv = NULL;
1734 	int helper_argc = 0;
1735 	char *delimit;
1736 
1737 	audit_core_dumps(signr);
1738 
1739 	binfmt = current->binfmt;
1740 	if (!binfmt || !binfmt->core_dump)
1741 		goto fail;
1742 
1743 	cred = prepare_creds();
1744 	if (!cred) {
1745 		retval = -ENOMEM;
1746 		goto fail;
1747 	}
1748 
1749 	down_write(&mm->mmap_sem);
1750 	/*
1751 	 * If another thread got here first, or we are not dumpable, bail out.
1752 	 */
1753 	if (mm->core_state || !get_dumpable(mm)) {
1754 		up_write(&mm->mmap_sem);
1755 		put_cred(cred);
1756 		goto fail;
1757 	}
1758 
1759 	/*
1760 	 *	We cannot trust fsuid as being the "true" uid of the
1761 	 *	process nor do we know its entire history. We only know it
1762 	 *	was tainted so we dump it as root in mode 2.
1763 	 */
1764 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */
1765 		flag = O_EXCL;		/* Stop rewrite attacks */
1766 		cred->fsuid = 0;	/* Dump root private */
1767 	}
1768 
1769 	retval = coredump_wait(exit_code, &core_state);
1770 	if (retval < 0) {
1771 		put_cred(cred);
1772 		goto fail;
1773 	}
1774 
1775 	old_cred = override_creds(cred);
1776 
1777 	/*
1778 	 * Clear any false indication of pending signals that might
1779 	 * be seen by the filesystem code called to write the core file.
1780 	 */
1781 	clear_thread_flag(TIF_SIGPENDING);
1782 
1783 	/*
1784 	 * lock_kernel() because format_corename() is controlled by sysctl, which
1785 	 * uses lock_kernel()
1786 	 */
1787  	lock_kernel();
1788 	ispipe = format_corename(corename, signr);
1789 	unlock_kernel();
1790 	/*
1791 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1792 	 * to a pipe.  Since we're not writing directly to the filesystem
1793 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1794 	 * created unless the pipe reader choses to write out the core file
1795 	 * at which point file size limits and permissions will be imposed
1796 	 * as it does with any other process
1797 	 */
1798 	if ((!ispipe) && (core_limit < binfmt->min_coredump))
1799 		goto fail_unlock;
1800 
1801  	if (ispipe) {
1802 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1803 		if (!helper_argv) {
1804 			printk(KERN_WARNING "%s failed to allocate memory\n",
1805 			       __func__);
1806 			goto fail_unlock;
1807 		}
1808 		/* Terminate the string before the first option */
1809 		delimit = strchr(corename, ' ');
1810 		if (delimit)
1811 			*delimit = '\0';
1812 		delimit = strrchr(helper_argv[0], '/');
1813 		if (delimit)
1814 			delimit++;
1815 		else
1816 			delimit = helper_argv[0];
1817 		if (!strcmp(delimit, current->comm)) {
1818 			printk(KERN_NOTICE "Recursive core dump detected, "
1819 					"aborting\n");
1820 			goto fail_unlock;
1821 		}
1822 
1823 		core_limit = RLIM_INFINITY;
1824 
1825 		/* SIGPIPE can happen, but it's just never processed */
1826  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1827 				&file)) {
1828  			printk(KERN_INFO "Core dump to %s pipe failed\n",
1829 			       corename);
1830  			goto fail_unlock;
1831  		}
1832  	} else
1833  		file = filp_open(corename,
1834 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1835 				 0600);
1836 	if (IS_ERR(file))
1837 		goto fail_unlock;
1838 	inode = file->f_path.dentry->d_inode;
1839 	if (inode->i_nlink > 1)
1840 		goto close_fail;	/* multiple links - don't dump */
1841 	if (!ispipe && d_unhashed(file->f_path.dentry))
1842 		goto close_fail;
1843 
1844 	/* AK: actually i see no reason to not allow this for named pipes etc.,
1845 	   but keep the previous behaviour for now. */
1846 	if (!ispipe && !S_ISREG(inode->i_mode))
1847 		goto close_fail;
1848 	/*
1849 	 * Dont allow local users get cute and trick others to coredump
1850 	 * into their pre-created files:
1851 	 */
1852 	if (inode->i_uid != current_fsuid())
1853 		goto close_fail;
1854 	if (!file->f_op)
1855 		goto close_fail;
1856 	if (!file->f_op->write)
1857 		goto close_fail;
1858 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1859 		goto close_fail;
1860 
1861 	retval = binfmt->core_dump(signr, regs, file, core_limit);
1862 
1863 	if (retval)
1864 		current->signal->group_exit_code |= 0x80;
1865 close_fail:
1866 	filp_close(file, NULL);
1867 fail_unlock:
1868 	if (helper_argv)
1869 		argv_free(helper_argv);
1870 
1871 	revert_creds(old_cred);
1872 	put_cred(cred);
1873 	coredump_finish(mm);
1874 fail:
1875 	return;
1876 }
1877