• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/hfsplus/btree.c
3  *
4  * Copyright (C) 2001
5  * Brad Boyer (flar@allandria.com)
6  * (C) 2003 Ardis Technologies <roman@ardistech.com>
7  *
8  * Handle opening/closing btree
9  */
10 
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/log2.h>
14 
15 #include "hfsplus_fs.h"
16 #include "hfsplus_raw.h"
17 
18 
19 /* Get a reference to a B*Tree and do some initial checks */
hfs_btree_open(struct super_block * sb,u32 id)20 struct hfs_btree *hfs_btree_open(struct super_block *sb, u32 id)
21 {
22 	struct hfs_btree *tree;
23 	struct hfs_btree_header_rec *head;
24 	struct address_space *mapping;
25 	struct inode *inode;
26 	struct page *page;
27 	unsigned int size;
28 
29 	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
30 	if (!tree)
31 		return NULL;
32 
33 	init_MUTEX(&tree->tree_lock);
34 	spin_lock_init(&tree->hash_lock);
35 	tree->sb = sb;
36 	tree->cnid = id;
37 	inode = hfsplus_iget(sb, id);
38 	if (IS_ERR(inode))
39 		goto free_tree;
40 	tree->inode = inode;
41 
42 	mapping = tree->inode->i_mapping;
43 	page = read_mapping_page(mapping, 0, NULL);
44 	if (IS_ERR(page))
45 		goto free_tree;
46 
47 	/* Load the header */
48 	head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
49 	tree->root = be32_to_cpu(head->root);
50 	tree->leaf_count = be32_to_cpu(head->leaf_count);
51 	tree->leaf_head = be32_to_cpu(head->leaf_head);
52 	tree->leaf_tail = be32_to_cpu(head->leaf_tail);
53 	tree->node_count = be32_to_cpu(head->node_count);
54 	tree->free_nodes = be32_to_cpu(head->free_nodes);
55 	tree->attributes = be32_to_cpu(head->attributes);
56 	tree->node_size = be16_to_cpu(head->node_size);
57 	tree->max_key_len = be16_to_cpu(head->max_key_len);
58 	tree->depth = be16_to_cpu(head->depth);
59 
60 	/* Set the correct compare function */
61 	if (id == HFSPLUS_EXT_CNID) {
62 		tree->keycmp = hfsplus_ext_cmp_key;
63 	} else if (id == HFSPLUS_CAT_CNID) {
64 		if ((HFSPLUS_SB(sb).flags & HFSPLUS_SB_HFSX) &&
65 		    (head->key_type == HFSPLUS_KEY_BINARY))
66 			tree->keycmp = hfsplus_cat_bin_cmp_key;
67 		else {
68 			tree->keycmp = hfsplus_cat_case_cmp_key;
69 			HFSPLUS_SB(sb).flags |= HFSPLUS_SB_CASEFOLD;
70 		}
71 	} else {
72 		printk(KERN_ERR "hfs: unknown B*Tree requested\n");
73 		goto fail_page;
74 	}
75 
76 	size = tree->node_size;
77 	if (!is_power_of_2(size))
78 		goto fail_page;
79 	if (!tree->node_count)
80 		goto fail_page;
81 	tree->node_size_shift = ffs(size) - 1;
82 
83 	tree->pages_per_bnode = (tree->node_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
84 
85 	kunmap(page);
86 	page_cache_release(page);
87 	return tree;
88 
89  fail_page:
90 	tree->inode->i_mapping->a_ops = &hfsplus_aops;
91 	page_cache_release(page);
92  free_tree:
93 	iput(tree->inode);
94 	kfree(tree);
95 	return NULL;
96 }
97 
98 /* Release resources used by a btree */
hfs_btree_close(struct hfs_btree * tree)99 void hfs_btree_close(struct hfs_btree *tree)
100 {
101 	struct hfs_bnode *node;
102 	int i;
103 
104 	if (!tree)
105 		return;
106 
107 	for (i = 0; i < NODE_HASH_SIZE; i++) {
108 		while ((node = tree->node_hash[i])) {
109 			tree->node_hash[i] = node->next_hash;
110 			if (atomic_read(&node->refcnt))
111 				printk(KERN_CRIT "hfs: node %d:%d still has %d user(s)!\n",
112 					node->tree->cnid, node->this, atomic_read(&node->refcnt));
113 			hfs_bnode_free(node);
114 			tree->node_hash_cnt--;
115 		}
116 	}
117 	iput(tree->inode);
118 	kfree(tree);
119 }
120 
hfs_btree_write(struct hfs_btree * tree)121 void hfs_btree_write(struct hfs_btree *tree)
122 {
123 	struct hfs_btree_header_rec *head;
124 	struct hfs_bnode *node;
125 	struct page *page;
126 
127 	node = hfs_bnode_find(tree, 0);
128 	if (IS_ERR(node))
129 		/* panic? */
130 		return;
131 	/* Load the header */
132 	page = node->page[0];
133 	head = (struct hfs_btree_header_rec *)(kmap(page) + sizeof(struct hfs_bnode_desc));
134 
135 	head->root = cpu_to_be32(tree->root);
136 	head->leaf_count = cpu_to_be32(tree->leaf_count);
137 	head->leaf_head = cpu_to_be32(tree->leaf_head);
138 	head->leaf_tail = cpu_to_be32(tree->leaf_tail);
139 	head->node_count = cpu_to_be32(tree->node_count);
140 	head->free_nodes = cpu_to_be32(tree->free_nodes);
141 	head->attributes = cpu_to_be32(tree->attributes);
142 	head->depth = cpu_to_be16(tree->depth);
143 
144 	kunmap(page);
145 	set_page_dirty(page);
146 	hfs_bnode_put(node);
147 }
148 
hfs_bmap_new_bmap(struct hfs_bnode * prev,u32 idx)149 static struct hfs_bnode *hfs_bmap_new_bmap(struct hfs_bnode *prev, u32 idx)
150 {
151 	struct hfs_btree *tree = prev->tree;
152 	struct hfs_bnode *node;
153 	struct hfs_bnode_desc desc;
154 	__be32 cnid;
155 
156 	node = hfs_bnode_create(tree, idx);
157 	if (IS_ERR(node))
158 		return node;
159 
160 	tree->free_nodes--;
161 	prev->next = idx;
162 	cnid = cpu_to_be32(idx);
163 	hfs_bnode_write(prev, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
164 
165 	node->type = HFS_NODE_MAP;
166 	node->num_recs = 1;
167 	hfs_bnode_clear(node, 0, tree->node_size);
168 	desc.next = 0;
169 	desc.prev = 0;
170 	desc.type = HFS_NODE_MAP;
171 	desc.height = 0;
172 	desc.num_recs = cpu_to_be16(1);
173 	desc.reserved = 0;
174 	hfs_bnode_write(node, &desc, 0, sizeof(desc));
175 	hfs_bnode_write_u16(node, 14, 0x8000);
176 	hfs_bnode_write_u16(node, tree->node_size - 2, 14);
177 	hfs_bnode_write_u16(node, tree->node_size - 4, tree->node_size - 6);
178 
179 	return node;
180 }
181 
hfs_bmap_alloc(struct hfs_btree * tree)182 struct hfs_bnode *hfs_bmap_alloc(struct hfs_btree *tree)
183 {
184 	struct hfs_bnode *node, *next_node;
185 	struct page **pagep;
186 	u32 nidx, idx;
187 	unsigned off;
188 	u16 off16;
189 	u16 len;
190 	u8 *data, byte, m;
191 	int i;
192 
193 	while (!tree->free_nodes) {
194 		struct inode *inode = tree->inode;
195 		u32 count;
196 		int res;
197 
198 		res = hfsplus_file_extend(inode);
199 		if (res)
200 			return ERR_PTR(res);
201 		HFSPLUS_I(inode).phys_size = inode->i_size =
202 				(loff_t)HFSPLUS_I(inode).alloc_blocks <<
203 				HFSPLUS_SB(tree->sb).alloc_blksz_shift;
204 		HFSPLUS_I(inode).fs_blocks = HFSPLUS_I(inode).alloc_blocks <<
205 					     HFSPLUS_SB(tree->sb).fs_shift;
206 		inode_set_bytes(inode, inode->i_size);
207 		count = inode->i_size >> tree->node_size_shift;
208 		tree->free_nodes = count - tree->node_count;
209 		tree->node_count = count;
210 	}
211 
212 	nidx = 0;
213 	node = hfs_bnode_find(tree, nidx);
214 	if (IS_ERR(node))
215 		return node;
216 	len = hfs_brec_lenoff(node, 2, &off16);
217 	off = off16;
218 
219 	off += node->page_offset;
220 	pagep = node->page + (off >> PAGE_CACHE_SHIFT);
221 	data = kmap(*pagep);
222 	off &= ~PAGE_CACHE_MASK;
223 	idx = 0;
224 
225 	for (;;) {
226 		while (len) {
227 			byte = data[off];
228 			if (byte != 0xff) {
229 				for (m = 0x80, i = 0; i < 8; m >>= 1, i++) {
230 					if (!(byte & m)) {
231 						idx += i;
232 						data[off] |= m;
233 						set_page_dirty(*pagep);
234 						kunmap(*pagep);
235 						tree->free_nodes--;
236 						mark_inode_dirty(tree->inode);
237 						hfs_bnode_put(node);
238 						return hfs_bnode_create(tree, idx);
239 					}
240 				}
241 			}
242 			if (++off >= PAGE_CACHE_SIZE) {
243 				kunmap(*pagep);
244 				data = kmap(*++pagep);
245 				off = 0;
246 			}
247 			idx += 8;
248 			len--;
249 		}
250 		kunmap(*pagep);
251 		nidx = node->next;
252 		if (!nidx) {
253 			printk(KERN_DEBUG "hfs: create new bmap node...\n");
254 			next_node = hfs_bmap_new_bmap(node, idx);
255 		} else
256 			next_node = hfs_bnode_find(tree, nidx);
257 		hfs_bnode_put(node);
258 		if (IS_ERR(next_node))
259 			return next_node;
260 		node = next_node;
261 
262 		len = hfs_brec_lenoff(node, 0, &off16);
263 		off = off16;
264 		off += node->page_offset;
265 		pagep = node->page + (off >> PAGE_CACHE_SHIFT);
266 		data = kmap(*pagep);
267 		off &= ~PAGE_CACHE_MASK;
268 	}
269 }
270 
hfs_bmap_free(struct hfs_bnode * node)271 void hfs_bmap_free(struct hfs_bnode *node)
272 {
273 	struct hfs_btree *tree;
274 	struct page *page;
275 	u16 off, len;
276 	u32 nidx;
277 	u8 *data, byte, m;
278 
279 	dprint(DBG_BNODE_MOD, "btree_free_node: %u\n", node->this);
280 	BUG_ON(!node->this);
281 	tree = node->tree;
282 	nidx = node->this;
283 	node = hfs_bnode_find(tree, 0);
284 	if (IS_ERR(node))
285 		return;
286 	len = hfs_brec_lenoff(node, 2, &off);
287 	while (nidx >= len * 8) {
288 		u32 i;
289 
290 		nidx -= len * 8;
291 		i = node->next;
292 		hfs_bnode_put(node);
293 		if (!i) {
294 			/* panic */;
295 			printk(KERN_CRIT "hfs: unable to free bnode %u. bmap not found!\n", node->this);
296 			return;
297 		}
298 		node = hfs_bnode_find(tree, i);
299 		if (IS_ERR(node))
300 			return;
301 		if (node->type != HFS_NODE_MAP) {
302 			/* panic */;
303 			printk(KERN_CRIT "hfs: invalid bmap found! (%u,%d)\n", node->this, node->type);
304 			hfs_bnode_put(node);
305 			return;
306 		}
307 		len = hfs_brec_lenoff(node, 0, &off);
308 	}
309 	off += node->page_offset + nidx / 8;
310 	page = node->page[off >> PAGE_CACHE_SHIFT];
311 	data = kmap(page);
312 	off &= ~PAGE_CACHE_MASK;
313 	m = 1 << (~nidx & 7);
314 	byte = data[off];
315 	if (!(byte & m)) {
316 		printk(KERN_CRIT "hfs: trying to free free bnode %u(%d)\n", node->this, node->type);
317 		kunmap(page);
318 		hfs_bnode_put(node);
319 		return;
320 	}
321 	data[off] = byte & ~m;
322 	set_page_dirty(page);
323 	kunmap(page);
324 	hfs_bnode_put(node);
325 	tree->free_nodes++;
326 	mark_inode_dirty(tree->inode);
327 }
328