• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/jbd2/revoke.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks.  The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  *   transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  *   revoked blocks.  If there are multiple revoke records in the log
24  *   for a single block, only the last one counts, and if there is a log
25  *   entry for a block beyond the last revoke, then that log entry still
26  *   gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  *   The desired end result is the journaling of the new block, so we
33  *   cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  *   The revoke must take precedence over the write of the block, so we
37  *   need either to cancel the journal entry or to write the revoke
38  *   later in the log than the log block.  In this case, we choose the
39  *   latter: journaling a block cancels any revoke record for that block
40  *   in the current transaction, so any revoke for that block in the
41  *   transaction must have happened after the block was journaled and so
42  *   the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  *   The data write is allowed to succeed, but the revoke is _not_
46  *   cancelled.  We still need to prevent old log records from
47  *   overwriting the new data.  We don't even need to clear the revoke
48  *   bit here.
49  *
50  * Revoke information on buffers is a tri-state value:
51  *
52  * RevokeValid clear:	no cached revoke status, need to look it up
53  * RevokeValid set, Revoked clear:
54  *			buffer has not been revoked, and cancel_revoke
55  *			need do nothing.
56  * RevokeValid set, Revoked set:
57  *			buffer has been revoked.
58  */
59 
60 #ifndef __KERNEL__
61 #include "jfs_user.h"
62 #else
63 #include <linux/time.h>
64 #include <linux/fs.h>
65 #include <linux/jbd2.h>
66 #include <linux/errno.h>
67 #include <linux/slab.h>
68 #include <linux/list.h>
69 #include <linux/init.h>
70 #endif
71 #include <linux/log2.h>
72 
73 static struct kmem_cache *jbd2_revoke_record_cache;
74 static struct kmem_cache *jbd2_revoke_table_cache;
75 
76 /* Each revoke record represents one single revoked block.  During
77    journal replay, this involves recording the transaction ID of the
78    last transaction to revoke this block. */
79 
80 struct jbd2_revoke_record_s
81 {
82 	struct list_head  hash;
83 	tid_t		  sequence;	/* Used for recovery only */
84 	unsigned long long	  blocknr;
85 };
86 
87 
88 /* The revoke table is just a simple hash table of revoke records. */
89 struct jbd2_revoke_table_s
90 {
91 	/* It is conceivable that we might want a larger hash table
92 	 * for recovery.  Must be a power of two. */
93 	int		  hash_size;
94 	int		  hash_shift;
95 	struct list_head *hash_table;
96 };
97 
98 
99 #ifdef __KERNEL__
100 static void write_one_revoke_record(journal_t *, transaction_t *,
101 				    struct journal_head **, int *,
102 				    struct jbd2_revoke_record_s *);
103 static void flush_descriptor(journal_t *, struct journal_head *, int);
104 #endif
105 
106 /* Utility functions to maintain the revoke table */
107 
108 /* Borrowed from buffer.c: this is a tried and tested block hash function */
hash(journal_t * journal,unsigned long long block)109 static inline int hash(journal_t *journal, unsigned long long block)
110 {
111 	struct jbd2_revoke_table_s *table = journal->j_revoke;
112 	int hash_shift = table->hash_shift;
113 	int hash = (int)block ^ (int)((block >> 31) >> 1);
114 
115 	return ((hash << (hash_shift - 6)) ^
116 		(hash >> 13) ^
117 		(hash << (hash_shift - 12))) & (table->hash_size - 1);
118 }
119 
insert_revoke_hash(journal_t * journal,unsigned long long blocknr,tid_t seq)120 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
121 			      tid_t seq)
122 {
123 	struct list_head *hash_list;
124 	struct jbd2_revoke_record_s *record;
125 
126 repeat:
127 	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
128 	if (!record)
129 		goto oom;
130 
131 	record->sequence = seq;
132 	record->blocknr = blocknr;
133 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
134 	spin_lock(&journal->j_revoke_lock);
135 	list_add(&record->hash, hash_list);
136 	spin_unlock(&journal->j_revoke_lock);
137 	return 0;
138 
139 oom:
140 	if (!journal_oom_retry)
141 		return -ENOMEM;
142 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
143 	yield();
144 	goto repeat;
145 }
146 
147 /* Find a revoke record in the journal's hash table. */
148 
find_revoke_record(journal_t * journal,unsigned long long blocknr)149 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
150 						      unsigned long long blocknr)
151 {
152 	struct list_head *hash_list;
153 	struct jbd2_revoke_record_s *record;
154 
155 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
156 
157 	spin_lock(&journal->j_revoke_lock);
158 	record = (struct jbd2_revoke_record_s *) hash_list->next;
159 	while (&(record->hash) != hash_list) {
160 		if (record->blocknr == blocknr) {
161 			spin_unlock(&journal->j_revoke_lock);
162 			return record;
163 		}
164 		record = (struct jbd2_revoke_record_s *) record->hash.next;
165 	}
166 	spin_unlock(&journal->j_revoke_lock);
167 	return NULL;
168 }
169 
jbd2_journal_destroy_revoke_caches(void)170 void jbd2_journal_destroy_revoke_caches(void)
171 {
172 	if (jbd2_revoke_record_cache) {
173 		kmem_cache_destroy(jbd2_revoke_record_cache);
174 		jbd2_revoke_record_cache = NULL;
175 	}
176 	if (jbd2_revoke_table_cache) {
177 		kmem_cache_destroy(jbd2_revoke_table_cache);
178 		jbd2_revoke_table_cache = NULL;
179 	}
180 }
181 
jbd2_journal_init_revoke_caches(void)182 int __init jbd2_journal_init_revoke_caches(void)
183 {
184 	J_ASSERT(!jbd2_revoke_record_cache);
185 	J_ASSERT(!jbd2_revoke_table_cache);
186 
187 	jbd2_revoke_record_cache = kmem_cache_create("jbd2_revoke_record",
188 					   sizeof(struct jbd2_revoke_record_s),
189 					   0,
190 					   SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
191 					   NULL);
192 	if (!jbd2_revoke_record_cache)
193 		goto record_cache_failure;
194 
195 	jbd2_revoke_table_cache = kmem_cache_create("jbd2_revoke_table",
196 					   sizeof(struct jbd2_revoke_table_s),
197 					   0, SLAB_TEMPORARY, NULL);
198 	if (!jbd2_revoke_table_cache)
199 		goto table_cache_failure;
200 	return 0;
201 table_cache_failure:
202 	jbd2_journal_destroy_revoke_caches();
203 record_cache_failure:
204 		return -ENOMEM;
205 }
206 
jbd2_journal_init_revoke_table(int hash_size)207 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
208 {
209 	int shift = 0;
210 	int tmp = hash_size;
211 	struct jbd2_revoke_table_s *table;
212 
213 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
214 	if (!table)
215 		goto out;
216 
217 	while((tmp >>= 1UL) != 0UL)
218 		shift++;
219 
220 	table->hash_size = hash_size;
221 	table->hash_shift = shift;
222 	table->hash_table =
223 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
224 	if (!table->hash_table) {
225 		kmem_cache_free(jbd2_revoke_table_cache, table);
226 		table = NULL;
227 		goto out;
228 	}
229 
230 	for (tmp = 0; tmp < hash_size; tmp++)
231 		INIT_LIST_HEAD(&table->hash_table[tmp]);
232 
233 out:
234 	return table;
235 }
236 
jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s * table)237 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
238 {
239 	int i;
240 	struct list_head *hash_list;
241 
242 	for (i = 0; i < table->hash_size; i++) {
243 		hash_list = &table->hash_table[i];
244 		J_ASSERT(list_empty(hash_list));
245 	}
246 
247 	kfree(table->hash_table);
248 	kmem_cache_free(jbd2_revoke_table_cache, table);
249 }
250 
251 /* Initialise the revoke table for a given journal to a given size. */
jbd2_journal_init_revoke(journal_t * journal,int hash_size)252 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
253 {
254 	J_ASSERT(journal->j_revoke_table[0] == NULL);
255 	J_ASSERT(is_power_of_2(hash_size));
256 
257 	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
258 	if (!journal->j_revoke_table[0])
259 		goto fail0;
260 
261 	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
262 	if (!journal->j_revoke_table[1])
263 		goto fail1;
264 
265 	journal->j_revoke = journal->j_revoke_table[1];
266 
267 	spin_lock_init(&journal->j_revoke_lock);
268 
269 	return 0;
270 
271 fail1:
272 	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
273 fail0:
274 	return -ENOMEM;
275 }
276 
277 /* Destroy a journal's revoke table.  The table must already be empty! */
jbd2_journal_destroy_revoke(journal_t * journal)278 void jbd2_journal_destroy_revoke(journal_t *journal)
279 {
280 	journal->j_revoke = NULL;
281 	if (journal->j_revoke_table[0])
282 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
283 	if (journal->j_revoke_table[1])
284 		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
285 }
286 
287 
288 #ifdef __KERNEL__
289 
290 /*
291  * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
292  * prevents the block from being replayed during recovery if we take a
293  * crash after this current transaction commits.  Any subsequent
294  * metadata writes of the buffer in this transaction cancel the
295  * revoke.
296  *
297  * Note that this call may block --- it is up to the caller to make
298  * sure that there are no further calls to journal_write_metadata
299  * before the revoke is complete.  In ext3, this implies calling the
300  * revoke before clearing the block bitmap when we are deleting
301  * metadata.
302  *
303  * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
304  * parameter, but does _not_ forget the buffer_head if the bh was only
305  * found implicitly.
306  *
307  * bh_in may not be a journalled buffer - it may have come off
308  * the hash tables without an attached journal_head.
309  *
310  * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
311  * by one.
312  */
313 
jbd2_journal_revoke(handle_t * handle,unsigned long long blocknr,struct buffer_head * bh_in)314 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
315 		   struct buffer_head *bh_in)
316 {
317 	struct buffer_head *bh = NULL;
318 	journal_t *journal;
319 	struct block_device *bdev;
320 	int err;
321 
322 	might_sleep();
323 	if (bh_in)
324 		BUFFER_TRACE(bh_in, "enter");
325 
326 	journal = handle->h_transaction->t_journal;
327 	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
328 		J_ASSERT (!"Cannot set revoke feature!");
329 		return -EINVAL;
330 	}
331 
332 	bdev = journal->j_fs_dev;
333 	bh = bh_in;
334 
335 	if (!bh) {
336 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
337 		if (bh)
338 			BUFFER_TRACE(bh, "found on hash");
339 	}
340 #ifdef JBD2_EXPENSIVE_CHECKING
341 	else {
342 		struct buffer_head *bh2;
343 
344 		/* If there is a different buffer_head lying around in
345 		 * memory anywhere... */
346 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
347 		if (bh2) {
348 			/* ... and it has RevokeValid status... */
349 			if (bh2 != bh && buffer_revokevalid(bh2))
350 				/* ...then it better be revoked too,
351 				 * since it's illegal to create a revoke
352 				 * record against a buffer_head which is
353 				 * not marked revoked --- that would
354 				 * risk missing a subsequent revoke
355 				 * cancel. */
356 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
357 			put_bh(bh2);
358 		}
359 	}
360 #endif
361 
362 	/* We really ought not ever to revoke twice in a row without
363            first having the revoke cancelled: it's illegal to free a
364            block twice without allocating it in between! */
365 	if (bh) {
366 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
367 				 "inconsistent data on disk")) {
368 			if (!bh_in)
369 				brelse(bh);
370 			return -EIO;
371 		}
372 		set_buffer_revoked(bh);
373 		set_buffer_revokevalid(bh);
374 		if (bh_in) {
375 			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
376 			jbd2_journal_forget(handle, bh_in);
377 		} else {
378 			BUFFER_TRACE(bh, "call brelse");
379 			__brelse(bh);
380 		}
381 	}
382 
383 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
384 	err = insert_revoke_hash(journal, blocknr,
385 				handle->h_transaction->t_tid);
386 	BUFFER_TRACE(bh_in, "exit");
387 	return err;
388 }
389 
390 /*
391  * Cancel an outstanding revoke.  For use only internally by the
392  * journaling code (called from jbd2_journal_get_write_access).
393  *
394  * We trust buffer_revoked() on the buffer if the buffer is already
395  * being journaled: if there is no revoke pending on the buffer, then we
396  * don't do anything here.
397  *
398  * This would break if it were possible for a buffer to be revoked and
399  * discarded, and then reallocated within the same transaction.  In such
400  * a case we would have lost the revoked bit, but when we arrived here
401  * the second time we would still have a pending revoke to cancel.  So,
402  * do not trust the Revoked bit on buffers unless RevokeValid is also
403  * set.
404  *
405  * The caller must have the journal locked.
406  */
jbd2_journal_cancel_revoke(handle_t * handle,struct journal_head * jh)407 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
408 {
409 	struct jbd2_revoke_record_s *record;
410 	journal_t *journal = handle->h_transaction->t_journal;
411 	int need_cancel;
412 	int did_revoke = 0;	/* akpm: debug */
413 	struct buffer_head *bh = jh2bh(jh);
414 
415 	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
416 
417 	/* Is the existing Revoke bit valid?  If so, we trust it, and
418 	 * only perform the full cancel if the revoke bit is set.  If
419 	 * not, we can't trust the revoke bit, and we need to do the
420 	 * full search for a revoke record. */
421 	if (test_set_buffer_revokevalid(bh)) {
422 		need_cancel = test_clear_buffer_revoked(bh);
423 	} else {
424 		need_cancel = 1;
425 		clear_buffer_revoked(bh);
426 	}
427 
428 	if (need_cancel) {
429 		record = find_revoke_record(journal, bh->b_blocknr);
430 		if (record) {
431 			jbd_debug(4, "cancelled existing revoke on "
432 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
433 			spin_lock(&journal->j_revoke_lock);
434 			list_del(&record->hash);
435 			spin_unlock(&journal->j_revoke_lock);
436 			kmem_cache_free(jbd2_revoke_record_cache, record);
437 			did_revoke = 1;
438 		}
439 	}
440 
441 #ifdef JBD2_EXPENSIVE_CHECKING
442 	/* There better not be one left behind by now! */
443 	record = find_revoke_record(journal, bh->b_blocknr);
444 	J_ASSERT_JH(jh, record == NULL);
445 #endif
446 
447 	/* Finally, have we just cleared revoke on an unhashed
448 	 * buffer_head?  If so, we'd better make sure we clear the
449 	 * revoked status on any hashed alias too, otherwise the revoke
450 	 * state machine will get very upset later on. */
451 	if (need_cancel) {
452 		struct buffer_head *bh2;
453 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
454 		if (bh2) {
455 			if (bh2 != bh)
456 				clear_buffer_revoked(bh2);
457 			__brelse(bh2);
458 		}
459 	}
460 	return did_revoke;
461 }
462 
463 /* journal_switch_revoke table select j_revoke for next transaction
464  * we do not want to suspend any processing until all revokes are
465  * written -bzzz
466  */
jbd2_journal_switch_revoke_table(journal_t * journal)467 void jbd2_journal_switch_revoke_table(journal_t *journal)
468 {
469 	int i;
470 
471 	if (journal->j_revoke == journal->j_revoke_table[0])
472 		journal->j_revoke = journal->j_revoke_table[1];
473 	else
474 		journal->j_revoke = journal->j_revoke_table[0];
475 
476 	for (i = 0; i < journal->j_revoke->hash_size; i++)
477 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
478 }
479 
480 /*
481  * Write revoke records to the journal for all entries in the current
482  * revoke hash, deleting the entries as we go.
483  *
484  * Called with the journal lock held.
485  */
486 
jbd2_journal_write_revoke_records(journal_t * journal,transaction_t * transaction)487 void jbd2_journal_write_revoke_records(journal_t *journal,
488 				  transaction_t *transaction)
489 {
490 	struct journal_head *descriptor;
491 	struct jbd2_revoke_record_s *record;
492 	struct jbd2_revoke_table_s *revoke;
493 	struct list_head *hash_list;
494 	int i, offset, count;
495 
496 	descriptor = NULL;
497 	offset = 0;
498 	count = 0;
499 
500 	/* select revoke table for committing transaction */
501 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
502 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
503 
504 	for (i = 0; i < revoke->hash_size; i++) {
505 		hash_list = &revoke->hash_table[i];
506 
507 		while (!list_empty(hash_list)) {
508 			record = (struct jbd2_revoke_record_s *)
509 				hash_list->next;
510 			write_one_revoke_record(journal, transaction,
511 						&descriptor, &offset,
512 						record);
513 			count++;
514 			list_del(&record->hash);
515 			kmem_cache_free(jbd2_revoke_record_cache, record);
516 		}
517 	}
518 	if (descriptor)
519 		flush_descriptor(journal, descriptor, offset);
520 	jbd_debug(1, "Wrote %d revoke records\n", count);
521 }
522 
523 /*
524  * Write out one revoke record.  We need to create a new descriptor
525  * block if the old one is full or if we have not already created one.
526  */
527 
write_one_revoke_record(journal_t * journal,transaction_t * transaction,struct journal_head ** descriptorp,int * offsetp,struct jbd2_revoke_record_s * record)528 static void write_one_revoke_record(journal_t *journal,
529 				    transaction_t *transaction,
530 				    struct journal_head **descriptorp,
531 				    int *offsetp,
532 				    struct jbd2_revoke_record_s *record)
533 {
534 	struct journal_head *descriptor;
535 	int offset;
536 	journal_header_t *header;
537 
538 	/* If we are already aborting, this all becomes a noop.  We
539            still need to go round the loop in
540            jbd2_journal_write_revoke_records in order to free all of the
541            revoke records: only the IO to the journal is omitted. */
542 	if (is_journal_aborted(journal))
543 		return;
544 
545 	descriptor = *descriptorp;
546 	offset = *offsetp;
547 
548 	/* Make sure we have a descriptor with space left for the record */
549 	if (descriptor) {
550 		if (offset == journal->j_blocksize) {
551 			flush_descriptor(journal, descriptor, offset);
552 			descriptor = NULL;
553 		}
554 	}
555 
556 	if (!descriptor) {
557 		descriptor = jbd2_journal_get_descriptor_buffer(journal);
558 		if (!descriptor)
559 			return;
560 		header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
561 		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
562 		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
563 		header->h_sequence  = cpu_to_be32(transaction->t_tid);
564 
565 		/* Record it so that we can wait for IO completion later */
566 		JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
567 		jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl);
568 
569 		offset = sizeof(jbd2_journal_revoke_header_t);
570 		*descriptorp = descriptor;
571 	}
572 
573 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
574 		* ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) =
575 			cpu_to_be64(record->blocknr);
576 		offset += 8;
577 
578 	} else {
579 		* ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
580 			cpu_to_be32(record->blocknr);
581 		offset += 4;
582 	}
583 
584 	*offsetp = offset;
585 }
586 
587 /*
588  * Flush a revoke descriptor out to the journal.  If we are aborting,
589  * this is a noop; otherwise we are generating a buffer which needs to
590  * be waited for during commit, so it has to go onto the appropriate
591  * journal buffer list.
592  */
593 
flush_descriptor(journal_t * journal,struct journal_head * descriptor,int offset)594 static void flush_descriptor(journal_t *journal,
595 			     struct journal_head *descriptor,
596 			     int offset)
597 {
598 	jbd2_journal_revoke_header_t *header;
599 	struct buffer_head *bh = jh2bh(descriptor);
600 
601 	if (is_journal_aborted(journal)) {
602 		put_bh(bh);
603 		return;
604 	}
605 
606 	header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data;
607 	header->r_count = cpu_to_be32(offset);
608 	set_buffer_jwrite(bh);
609 	BUFFER_TRACE(bh, "write");
610 	set_buffer_dirty(bh);
611 	ll_rw_block(SWRITE, 1, &bh);
612 }
613 #endif
614 
615 /*
616  * Revoke support for recovery.
617  *
618  * Recovery needs to be able to:
619  *
620  *  record all revoke records, including the tid of the latest instance
621  *  of each revoke in the journal
622  *
623  *  check whether a given block in a given transaction should be replayed
624  *  (ie. has not been revoked by a revoke record in that or a subsequent
625  *  transaction)
626  *
627  *  empty the revoke table after recovery.
628  */
629 
630 /*
631  * First, setting revoke records.  We create a new revoke record for
632  * every block ever revoked in the log as we scan it for recovery, and
633  * we update the existing records if we find multiple revokes for a
634  * single block.
635  */
636 
jbd2_journal_set_revoke(journal_t * journal,unsigned long long blocknr,tid_t sequence)637 int jbd2_journal_set_revoke(journal_t *journal,
638 		       unsigned long long blocknr,
639 		       tid_t sequence)
640 {
641 	struct jbd2_revoke_record_s *record;
642 
643 	record = find_revoke_record(journal, blocknr);
644 	if (record) {
645 		/* If we have multiple occurrences, only record the
646 		 * latest sequence number in the hashed record */
647 		if (tid_gt(sequence, record->sequence))
648 			record->sequence = sequence;
649 		return 0;
650 	}
651 	return insert_revoke_hash(journal, blocknr, sequence);
652 }
653 
654 /*
655  * Test revoke records.  For a given block referenced in the log, has
656  * that block been revoked?  A revoke record with a given transaction
657  * sequence number revokes all blocks in that transaction and earlier
658  * ones, but later transactions still need replayed.
659  */
660 
jbd2_journal_test_revoke(journal_t * journal,unsigned long long blocknr,tid_t sequence)661 int jbd2_journal_test_revoke(journal_t *journal,
662 			unsigned long long blocknr,
663 			tid_t sequence)
664 {
665 	struct jbd2_revoke_record_s *record;
666 
667 	record = find_revoke_record(journal, blocknr);
668 	if (!record)
669 		return 0;
670 	if (tid_gt(sequence, record->sequence))
671 		return 0;
672 	return 1;
673 }
674 
675 /*
676  * Finally, once recovery is over, we need to clear the revoke table so
677  * that it can be reused by the running filesystem.
678  */
679 
jbd2_journal_clear_revoke(journal_t * journal)680 void jbd2_journal_clear_revoke(journal_t *journal)
681 {
682 	int i;
683 	struct list_head *hash_list;
684 	struct jbd2_revoke_record_s *record;
685 	struct jbd2_revoke_table_s *revoke;
686 
687 	revoke = journal->j_revoke;
688 
689 	for (i = 0; i < revoke->hash_size; i++) {
690 		hash_list = &revoke->hash_table[i];
691 		while (!list_empty(hash_list)) {
692 			record = (struct jbd2_revoke_record_s*) hash_list->next;
693 			list_del(&record->hash);
694 			kmem_cache_free(jbd2_revoke_record_cache, record);
695 		}
696 	}
697 }
698