• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/mount.h>
9 #include <linux/vfs.h>
10 #include <linux/mutex.h>
11 #include <linux/exportfs.h>
12 
13 #include <asm/uaccess.h>
14 
simple_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)15 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
16 		   struct kstat *stat)
17 {
18 	struct inode *inode = dentry->d_inode;
19 	generic_fillattr(inode, stat);
20 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
21 	return 0;
22 }
23 
simple_statfs(struct dentry * dentry,struct kstatfs * buf)24 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
25 {
26 	buf->f_type = dentry->d_sb->s_magic;
27 	buf->f_bsize = PAGE_CACHE_SIZE;
28 	buf->f_namelen = NAME_MAX;
29 	return 0;
30 }
31 
32 /*
33  * Retaining negative dentries for an in-memory filesystem just wastes
34  * memory and lookup time: arrange for them to be deleted immediately.
35  */
simple_delete_dentry(struct dentry * dentry)36 static int simple_delete_dentry(struct dentry *dentry)
37 {
38 	return 1;
39 }
40 
41 /*
42  * Lookup the data. This is trivial - if the dentry didn't already
43  * exist, we know it is negative.  Set d_op to delete negative dentries.
44  */
simple_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)45 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
46 {
47 	static struct dentry_operations simple_dentry_operations = {
48 		.d_delete = simple_delete_dentry,
49 	};
50 
51 	if (dentry->d_name.len > NAME_MAX)
52 		return ERR_PTR(-ENAMETOOLONG);
53 	dentry->d_op = &simple_dentry_operations;
54 	d_add(dentry, NULL);
55 	return NULL;
56 }
57 
simple_sync_file(struct file * file,struct dentry * dentry,int datasync)58 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
59 {
60 	return 0;
61 }
62 
dcache_dir_open(struct inode * inode,struct file * file)63 int dcache_dir_open(struct inode *inode, struct file *file)
64 {
65 	static struct qstr cursor_name = {.len = 1, .name = "."};
66 
67 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
68 
69 	return file->private_data ? 0 : -ENOMEM;
70 }
71 
dcache_dir_close(struct inode * inode,struct file * file)72 int dcache_dir_close(struct inode *inode, struct file *file)
73 {
74 	dput(file->private_data);
75 	return 0;
76 }
77 
dcache_dir_lseek(struct file * file,loff_t offset,int origin)78 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
79 {
80 	mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
81 	switch (origin) {
82 		case 1:
83 			offset += file->f_pos;
84 		case 0:
85 			if (offset >= 0)
86 				break;
87 		default:
88 			mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
89 			return -EINVAL;
90 	}
91 	if (offset != file->f_pos) {
92 		file->f_pos = offset;
93 		if (file->f_pos >= 2) {
94 			struct list_head *p;
95 			struct dentry *cursor = file->private_data;
96 			loff_t n = file->f_pos - 2;
97 
98 			spin_lock(&dcache_lock);
99 			list_del(&cursor->d_u.d_child);
100 			p = file->f_path.dentry->d_subdirs.next;
101 			while (n && p != &file->f_path.dentry->d_subdirs) {
102 				struct dentry *next;
103 				next = list_entry(p, struct dentry, d_u.d_child);
104 				if (!d_unhashed(next) && next->d_inode)
105 					n--;
106 				p = p->next;
107 			}
108 			list_add_tail(&cursor->d_u.d_child, p);
109 			spin_unlock(&dcache_lock);
110 		}
111 	}
112 	mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
113 	return offset;
114 }
115 
116 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)117 static inline unsigned char dt_type(struct inode *inode)
118 {
119 	return (inode->i_mode >> 12) & 15;
120 }
121 
122 /*
123  * Directory is locked and all positive dentries in it are safe, since
124  * for ramfs-type trees they can't go away without unlink() or rmdir(),
125  * both impossible due to the lock on directory.
126  */
127 
dcache_readdir(struct file * filp,void * dirent,filldir_t filldir)128 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
129 {
130 	struct dentry *dentry = filp->f_path.dentry;
131 	struct dentry *cursor = filp->private_data;
132 	struct list_head *p, *q = &cursor->d_u.d_child;
133 	ino_t ino;
134 	int i = filp->f_pos;
135 
136 	switch (i) {
137 		case 0:
138 			ino = dentry->d_inode->i_ino;
139 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
140 				break;
141 			filp->f_pos++;
142 			i++;
143 			/* fallthrough */
144 		case 1:
145 			ino = parent_ino(dentry);
146 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
147 				break;
148 			filp->f_pos++;
149 			i++;
150 			/* fallthrough */
151 		default:
152 			spin_lock(&dcache_lock);
153 			if (filp->f_pos == 2)
154 				list_move(q, &dentry->d_subdirs);
155 
156 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
157 				struct dentry *next;
158 				next = list_entry(p, struct dentry, d_u.d_child);
159 				if (d_unhashed(next) || !next->d_inode)
160 					continue;
161 
162 				spin_unlock(&dcache_lock);
163 				if (filldir(dirent, next->d_name.name,
164 					    next->d_name.len, filp->f_pos,
165 					    next->d_inode->i_ino,
166 					    dt_type(next->d_inode)) < 0)
167 					return 0;
168 				spin_lock(&dcache_lock);
169 				/* next is still alive */
170 				list_move(q, p);
171 				p = q;
172 				filp->f_pos++;
173 			}
174 			spin_unlock(&dcache_lock);
175 	}
176 	return 0;
177 }
178 
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)179 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
180 {
181 	return -EISDIR;
182 }
183 
184 const struct file_operations simple_dir_operations = {
185 	.open		= dcache_dir_open,
186 	.release	= dcache_dir_close,
187 	.llseek		= dcache_dir_lseek,
188 	.read		= generic_read_dir,
189 	.readdir	= dcache_readdir,
190 	.fsync		= simple_sync_file,
191 };
192 
193 const struct inode_operations simple_dir_inode_operations = {
194 	.lookup		= simple_lookup,
195 };
196 
197 static const struct super_operations simple_super_operations = {
198 	.statfs		= simple_statfs,
199 };
200 
201 /*
202  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
203  * will never be mountable)
204  */
get_sb_pseudo(struct file_system_type * fs_type,char * name,const struct super_operations * ops,unsigned long magic,struct vfsmount * mnt)205 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
206 	const struct super_operations *ops, unsigned long magic,
207 	struct vfsmount *mnt)
208 {
209 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
210 	struct dentry *dentry;
211 	struct inode *root;
212 	struct qstr d_name = {.name = name, .len = strlen(name)};
213 
214 	if (IS_ERR(s))
215 		return PTR_ERR(s);
216 
217 	s->s_flags = MS_NOUSER;
218 	s->s_maxbytes = ~0ULL;
219 	s->s_blocksize = PAGE_SIZE;
220 	s->s_blocksize_bits = PAGE_SHIFT;
221 	s->s_magic = magic;
222 	s->s_op = ops ? ops : &simple_super_operations;
223 	s->s_time_gran = 1;
224 	root = new_inode(s);
225 	if (!root)
226 		goto Enomem;
227 	/*
228 	 * since this is the first inode, make it number 1. New inodes created
229 	 * after this must take care not to collide with it (by passing
230 	 * max_reserved of 1 to iunique).
231 	 */
232 	root->i_ino = 1;
233 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
234 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
235 	dentry = d_alloc(NULL, &d_name);
236 	if (!dentry) {
237 		iput(root);
238 		goto Enomem;
239 	}
240 	dentry->d_sb = s;
241 	dentry->d_parent = dentry;
242 	d_instantiate(dentry, root);
243 	s->s_root = dentry;
244 	s->s_flags |= MS_ACTIVE;
245 	return simple_set_mnt(mnt, s);
246 
247 Enomem:
248 	up_write(&s->s_umount);
249 	deactivate_super(s);
250 	return -ENOMEM;
251 }
252 
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)253 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
254 {
255 	struct inode *inode = old_dentry->d_inode;
256 
257 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
258 	inc_nlink(inode);
259 	atomic_inc(&inode->i_count);
260 	dget(dentry);
261 	d_instantiate(dentry, inode);
262 	return 0;
263 }
264 
simple_positive(struct dentry * dentry)265 static inline int simple_positive(struct dentry *dentry)
266 {
267 	return dentry->d_inode && !d_unhashed(dentry);
268 }
269 
simple_empty(struct dentry * dentry)270 int simple_empty(struct dentry *dentry)
271 {
272 	struct dentry *child;
273 	int ret = 0;
274 
275 	spin_lock(&dcache_lock);
276 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
277 		if (simple_positive(child))
278 			goto out;
279 	ret = 1;
280 out:
281 	spin_unlock(&dcache_lock);
282 	return ret;
283 }
284 
simple_unlink(struct inode * dir,struct dentry * dentry)285 int simple_unlink(struct inode *dir, struct dentry *dentry)
286 {
287 	struct inode *inode = dentry->d_inode;
288 
289 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
290 	drop_nlink(inode);
291 	dput(dentry);
292 	return 0;
293 }
294 
simple_rmdir(struct inode * dir,struct dentry * dentry)295 int simple_rmdir(struct inode *dir, struct dentry *dentry)
296 {
297 	if (!simple_empty(dentry))
298 		return -ENOTEMPTY;
299 
300 	drop_nlink(dentry->d_inode);
301 	simple_unlink(dir, dentry);
302 	drop_nlink(dir);
303 	return 0;
304 }
305 
simple_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)306 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
307 		struct inode *new_dir, struct dentry *new_dentry)
308 {
309 	struct inode *inode = old_dentry->d_inode;
310 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
311 
312 	if (!simple_empty(new_dentry))
313 		return -ENOTEMPTY;
314 
315 	if (new_dentry->d_inode) {
316 		simple_unlink(new_dir, new_dentry);
317 		if (they_are_dirs)
318 			drop_nlink(old_dir);
319 	} else if (they_are_dirs) {
320 		drop_nlink(old_dir);
321 		inc_nlink(new_dir);
322 	}
323 
324 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
325 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
326 
327 	return 0;
328 }
329 
simple_readpage(struct file * file,struct page * page)330 int simple_readpage(struct file *file, struct page *page)
331 {
332 	clear_highpage(page);
333 	flush_dcache_page(page);
334 	SetPageUptodate(page);
335 	unlock_page(page);
336 	return 0;
337 }
338 
simple_prepare_write(struct file * file,struct page * page,unsigned from,unsigned to)339 int simple_prepare_write(struct file *file, struct page *page,
340 			unsigned from, unsigned to)
341 {
342 	if (!PageUptodate(page)) {
343 		if (to - from != PAGE_CACHE_SIZE)
344 			zero_user_segments(page,
345 				0, from,
346 				to, PAGE_CACHE_SIZE);
347 	}
348 	return 0;
349 }
350 
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)351 int simple_write_begin(struct file *file, struct address_space *mapping,
352 			loff_t pos, unsigned len, unsigned flags,
353 			struct page **pagep, void **fsdata)
354 {
355 	struct page *page;
356 	pgoff_t index;
357 	unsigned from;
358 
359 	index = pos >> PAGE_CACHE_SHIFT;
360 	from = pos & (PAGE_CACHE_SIZE - 1);
361 
362 	page = grab_cache_page_write_begin(mapping, index, flags);
363 	if (!page)
364 		return -ENOMEM;
365 
366 	*pagep = page;
367 
368 	return simple_prepare_write(file, page, from, from+len);
369 }
370 
simple_commit_write(struct file * file,struct page * page,unsigned from,unsigned to)371 static int simple_commit_write(struct file *file, struct page *page,
372 			       unsigned from, unsigned to)
373 {
374 	struct inode *inode = page->mapping->host;
375 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
376 
377 	if (!PageUptodate(page))
378 		SetPageUptodate(page);
379 	/*
380 	 * No need to use i_size_read() here, the i_size
381 	 * cannot change under us because we hold the i_mutex.
382 	 */
383 	if (pos > inode->i_size)
384 		i_size_write(inode, pos);
385 	set_page_dirty(page);
386 	return 0;
387 }
388 
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)389 int simple_write_end(struct file *file, struct address_space *mapping,
390 			loff_t pos, unsigned len, unsigned copied,
391 			struct page *page, void *fsdata)
392 {
393 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
394 
395 	/* zero the stale part of the page if we did a short copy */
396 	if (copied < len) {
397 		void *kaddr = kmap_atomic(page, KM_USER0);
398 		memset(kaddr + from + copied, 0, len - copied);
399 		flush_dcache_page(page);
400 		kunmap_atomic(kaddr, KM_USER0);
401 	}
402 
403 	simple_commit_write(file, page, from, from+copied);
404 
405 	unlock_page(page);
406 	page_cache_release(page);
407 
408 	return copied;
409 }
410 
411 /*
412  * the inodes created here are not hashed. If you use iunique to generate
413  * unique inode values later for this filesystem, then you must take care
414  * to pass it an appropriate max_reserved value to avoid collisions.
415  */
simple_fill_super(struct super_block * s,int magic,struct tree_descr * files)416 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
417 {
418 	struct inode *inode;
419 	struct dentry *root;
420 	struct dentry *dentry;
421 	int i;
422 
423 	s->s_blocksize = PAGE_CACHE_SIZE;
424 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
425 	s->s_magic = magic;
426 	s->s_op = &simple_super_operations;
427 	s->s_time_gran = 1;
428 
429 	inode = new_inode(s);
430 	if (!inode)
431 		return -ENOMEM;
432 	/*
433 	 * because the root inode is 1, the files array must not contain an
434 	 * entry at index 1
435 	 */
436 	inode->i_ino = 1;
437 	inode->i_mode = S_IFDIR | 0755;
438 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
439 	inode->i_op = &simple_dir_inode_operations;
440 	inode->i_fop = &simple_dir_operations;
441 	inode->i_nlink = 2;
442 	root = d_alloc_root(inode);
443 	if (!root) {
444 		iput(inode);
445 		return -ENOMEM;
446 	}
447 	for (i = 0; !files->name || files->name[0]; i++, files++) {
448 		if (!files->name)
449 			continue;
450 
451 		/* warn if it tries to conflict with the root inode */
452 		if (unlikely(i == 1))
453 			printk(KERN_WARNING "%s: %s passed in a files array"
454 				"with an index of 1!\n", __func__,
455 				s->s_type->name);
456 
457 		dentry = d_alloc_name(root, files->name);
458 		if (!dentry)
459 			goto out;
460 		inode = new_inode(s);
461 		if (!inode)
462 			goto out;
463 		inode->i_mode = S_IFREG | files->mode;
464 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
465 		inode->i_fop = files->ops;
466 		inode->i_ino = i;
467 		d_add(dentry, inode);
468 	}
469 	s->s_root = root;
470 	return 0;
471 out:
472 	d_genocide(root);
473 	dput(root);
474 	return -ENOMEM;
475 }
476 
477 static DEFINE_SPINLOCK(pin_fs_lock);
478 
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)479 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
480 {
481 	struct vfsmount *mnt = NULL;
482 	spin_lock(&pin_fs_lock);
483 	if (unlikely(!*mount)) {
484 		spin_unlock(&pin_fs_lock);
485 		mnt = vfs_kern_mount(type, 0, type->name, NULL);
486 		if (IS_ERR(mnt))
487 			return PTR_ERR(mnt);
488 		spin_lock(&pin_fs_lock);
489 		if (!*mount)
490 			*mount = mnt;
491 	}
492 	mntget(*mount);
493 	++*count;
494 	spin_unlock(&pin_fs_lock);
495 	mntput(mnt);
496 	return 0;
497 }
498 
simple_release_fs(struct vfsmount ** mount,int * count)499 void simple_release_fs(struct vfsmount **mount, int *count)
500 {
501 	struct vfsmount *mnt;
502 	spin_lock(&pin_fs_lock);
503 	mnt = *mount;
504 	if (!--*count)
505 		*mount = NULL;
506 	spin_unlock(&pin_fs_lock);
507 	mntput(mnt);
508 }
509 
510 /**
511  * simple_read_from_buffer - copy data from the buffer to user space
512  * @to: the user space buffer to read to
513  * @count: the maximum number of bytes to read
514  * @ppos: the current position in the buffer
515  * @from: the buffer to read from
516  * @available: the size of the buffer
517  *
518  * The simple_read_from_buffer() function reads up to @count bytes from the
519  * buffer @from at offset @ppos into the user space address starting at @to.
520  *
521  * On success, the number of bytes read is returned and the offset @ppos is
522  * advanced by this number, or negative value is returned on error.
523  **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)524 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
525 				const void *from, size_t available)
526 {
527 	loff_t pos = *ppos;
528 	if (pos < 0)
529 		return -EINVAL;
530 	if (pos >= available)
531 		return 0;
532 	if (count > available - pos)
533 		count = available - pos;
534 	if (copy_to_user(to, from + pos, count))
535 		return -EFAULT;
536 	*ppos = pos + count;
537 	return count;
538 }
539 
540 /**
541  * memory_read_from_buffer - copy data from the buffer
542  * @to: the kernel space buffer to read to
543  * @count: the maximum number of bytes to read
544  * @ppos: the current position in the buffer
545  * @from: the buffer to read from
546  * @available: the size of the buffer
547  *
548  * The memory_read_from_buffer() function reads up to @count bytes from the
549  * buffer @from at offset @ppos into the kernel space address starting at @to.
550  *
551  * On success, the number of bytes read is returned and the offset @ppos is
552  * advanced by this number, or negative value is returned on error.
553  **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)554 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
555 				const void *from, size_t available)
556 {
557 	loff_t pos = *ppos;
558 
559 	if (pos < 0)
560 		return -EINVAL;
561 	if (pos >= available)
562 		return 0;
563 	if (count > available - pos)
564 		count = available - pos;
565 	memcpy(to, from + pos, count);
566 	*ppos = pos + count;
567 
568 	return count;
569 }
570 
571 /*
572  * Transaction based IO.
573  * The file expects a single write which triggers the transaction, and then
574  * possibly a read which collects the result - which is stored in a
575  * file-local buffer.
576  */
simple_transaction_get(struct file * file,const char __user * buf,size_t size)577 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
578 {
579 	struct simple_transaction_argresp *ar;
580 	static DEFINE_SPINLOCK(simple_transaction_lock);
581 
582 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
583 		return ERR_PTR(-EFBIG);
584 
585 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
586 	if (!ar)
587 		return ERR_PTR(-ENOMEM);
588 
589 	spin_lock(&simple_transaction_lock);
590 
591 	/* only one write allowed per open */
592 	if (file->private_data) {
593 		spin_unlock(&simple_transaction_lock);
594 		free_page((unsigned long)ar);
595 		return ERR_PTR(-EBUSY);
596 	}
597 
598 	file->private_data = ar;
599 
600 	spin_unlock(&simple_transaction_lock);
601 
602 	if (copy_from_user(ar->data, buf, size))
603 		return ERR_PTR(-EFAULT);
604 
605 	return ar->data;
606 }
607 
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)608 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
609 {
610 	struct simple_transaction_argresp *ar = file->private_data;
611 
612 	if (!ar)
613 		return 0;
614 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
615 }
616 
simple_transaction_release(struct inode * inode,struct file * file)617 int simple_transaction_release(struct inode *inode, struct file *file)
618 {
619 	free_page((unsigned long)file->private_data);
620 	return 0;
621 }
622 
623 /* Simple attribute files */
624 
625 struct simple_attr {
626 	int (*get)(void *, u64 *);
627 	int (*set)(void *, u64);
628 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
629 	char set_buf[24];
630 	void *data;
631 	const char *fmt;	/* format for read operation */
632 	struct mutex mutex;	/* protects access to these buffers */
633 };
634 
635 /* simple_attr_open is called by an actual attribute open file operation
636  * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)637 int simple_attr_open(struct inode *inode, struct file *file,
638 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
639 		     const char *fmt)
640 {
641 	struct simple_attr *attr;
642 
643 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
644 	if (!attr)
645 		return -ENOMEM;
646 
647 	attr->get = get;
648 	attr->set = set;
649 	attr->data = inode->i_private;
650 	attr->fmt = fmt;
651 	mutex_init(&attr->mutex);
652 
653 	file->private_data = attr;
654 
655 	return nonseekable_open(inode, file);
656 }
657 
simple_attr_release(struct inode * inode,struct file * file)658 int simple_attr_release(struct inode *inode, struct file *file)
659 {
660 	kfree(file->private_data);
661 	return 0;
662 }
663 
664 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)665 ssize_t simple_attr_read(struct file *file, char __user *buf,
666 			 size_t len, loff_t *ppos)
667 {
668 	struct simple_attr *attr;
669 	size_t size;
670 	ssize_t ret;
671 
672 	attr = file->private_data;
673 
674 	if (!attr->get)
675 		return -EACCES;
676 
677 	ret = mutex_lock_interruptible(&attr->mutex);
678 	if (ret)
679 		return ret;
680 
681 	if (*ppos) {		/* continued read */
682 		size = strlen(attr->get_buf);
683 	} else {		/* first read */
684 		u64 val;
685 		ret = attr->get(attr->data, &val);
686 		if (ret)
687 			goto out;
688 
689 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
690 				 attr->fmt, (unsigned long long)val);
691 	}
692 
693 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
694 out:
695 	mutex_unlock(&attr->mutex);
696 	return ret;
697 }
698 
699 /* interpret the buffer as a number to call the set function with */
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)700 ssize_t simple_attr_write(struct file *file, const char __user *buf,
701 			  size_t len, loff_t *ppos)
702 {
703 	struct simple_attr *attr;
704 	u64 val;
705 	size_t size;
706 	ssize_t ret;
707 
708 	attr = file->private_data;
709 	if (!attr->set)
710 		return -EACCES;
711 
712 	ret = mutex_lock_interruptible(&attr->mutex);
713 	if (ret)
714 		return ret;
715 
716 	ret = -EFAULT;
717 	size = min(sizeof(attr->set_buf) - 1, len);
718 	if (copy_from_user(attr->set_buf, buf, size))
719 		goto out;
720 
721 	ret = len; /* claim we got the whole input */
722 	attr->set_buf[size] = '\0';
723 	val = simple_strtol(attr->set_buf, NULL, 0);
724 	attr->set(attr->data, val);
725 out:
726 	mutex_unlock(&attr->mutex);
727 	return ret;
728 }
729 
730 /**
731  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
732  * @sb:		filesystem to do the file handle conversion on
733  * @fid:	file handle to convert
734  * @fh_len:	length of the file handle in bytes
735  * @fh_type:	type of file handle
736  * @get_inode:	filesystem callback to retrieve inode
737  *
738  * This function decodes @fid as long as it has one of the well-known
739  * Linux filehandle types and calls @get_inode on it to retrieve the
740  * inode for the object specified in the file handle.
741  */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))742 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
743 		int fh_len, int fh_type, struct inode *(*get_inode)
744 			(struct super_block *sb, u64 ino, u32 gen))
745 {
746 	struct inode *inode = NULL;
747 
748 	if (fh_len < 2)
749 		return NULL;
750 
751 	switch (fh_type) {
752 	case FILEID_INO32_GEN:
753 	case FILEID_INO32_GEN_PARENT:
754 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
755 		break;
756 	}
757 
758 	return d_obtain_alias(inode);
759 }
760 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
761 
762 /**
763  * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
764  * @sb:		filesystem to do the file handle conversion on
765  * @fid:	file handle to convert
766  * @fh_len:	length of the file handle in bytes
767  * @fh_type:	type of file handle
768  * @get_inode:	filesystem callback to retrieve inode
769  *
770  * This function decodes @fid as long as it has one of the well-known
771  * Linux filehandle types and calls @get_inode on it to retrieve the
772  * inode for the _parent_ object specified in the file handle if it
773  * is specified in the file handle, or NULL otherwise.
774  */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))775 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
776 		int fh_len, int fh_type, struct inode *(*get_inode)
777 			(struct super_block *sb, u64 ino, u32 gen))
778 {
779 	struct inode *inode = NULL;
780 
781 	if (fh_len <= 2)
782 		return NULL;
783 
784 	switch (fh_type) {
785 	case FILEID_INO32_GEN_PARENT:
786 		inode = get_inode(sb, fid->i32.parent_ino,
787 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
788 		break;
789 	}
790 
791 	return d_obtain_alias(inode);
792 }
793 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
794 
795 EXPORT_SYMBOL(dcache_dir_close);
796 EXPORT_SYMBOL(dcache_dir_lseek);
797 EXPORT_SYMBOL(dcache_dir_open);
798 EXPORT_SYMBOL(dcache_readdir);
799 EXPORT_SYMBOL(generic_read_dir);
800 EXPORT_SYMBOL(get_sb_pseudo);
801 EXPORT_SYMBOL(simple_write_begin);
802 EXPORT_SYMBOL(simple_write_end);
803 EXPORT_SYMBOL(simple_dir_inode_operations);
804 EXPORT_SYMBOL(simple_dir_operations);
805 EXPORT_SYMBOL(simple_empty);
806 EXPORT_SYMBOL(d_alloc_name);
807 EXPORT_SYMBOL(simple_fill_super);
808 EXPORT_SYMBOL(simple_getattr);
809 EXPORT_SYMBOL(simple_link);
810 EXPORT_SYMBOL(simple_lookup);
811 EXPORT_SYMBOL(simple_pin_fs);
812 EXPORT_UNUSED_SYMBOL(simple_prepare_write);
813 EXPORT_SYMBOL(simple_readpage);
814 EXPORT_SYMBOL(simple_release_fs);
815 EXPORT_SYMBOL(simple_rename);
816 EXPORT_SYMBOL(simple_rmdir);
817 EXPORT_SYMBOL(simple_statfs);
818 EXPORT_SYMBOL(simple_sync_file);
819 EXPORT_SYMBOL(simple_unlink);
820 EXPORT_SYMBOL(simple_read_from_buffer);
821 EXPORT_SYMBOL(memory_read_from_buffer);
822 EXPORT_SYMBOL(simple_transaction_get);
823 EXPORT_SYMBOL(simple_transaction_read);
824 EXPORT_SYMBOL(simple_transaction_release);
825 EXPORT_SYMBOL_GPL(simple_attr_open);
826 EXPORT_SYMBOL_GPL(simple_attr_release);
827 EXPORT_SYMBOL_GPL(simple_attr_read);
828 EXPORT_SYMBOL_GPL(simple_attr_write);
829