• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <asm/uaccess.h>
35 
36 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
37 
38 /* [Feb-1997 T. Schoebel-Theuer]
39  * Fundamental changes in the pathname lookup mechanisms (namei)
40  * were necessary because of omirr.  The reason is that omirr needs
41  * to know the _real_ pathname, not the user-supplied one, in case
42  * of symlinks (and also when transname replacements occur).
43  *
44  * The new code replaces the old recursive symlink resolution with
45  * an iterative one (in case of non-nested symlink chains).  It does
46  * this with calls to <fs>_follow_link().
47  * As a side effect, dir_namei(), _namei() and follow_link() are now
48  * replaced with a single function lookup_dentry() that can handle all
49  * the special cases of the former code.
50  *
51  * With the new dcache, the pathname is stored at each inode, at least as
52  * long as the refcount of the inode is positive.  As a side effect, the
53  * size of the dcache depends on the inode cache and thus is dynamic.
54  *
55  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
56  * resolution to correspond with current state of the code.
57  *
58  * Note that the symlink resolution is not *completely* iterative.
59  * There is still a significant amount of tail- and mid- recursion in
60  * the algorithm.  Also, note that <fs>_readlink() is not used in
61  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
62  * may return different results than <fs>_follow_link().  Many virtual
63  * filesystems (including /proc) exhibit this behavior.
64  */
65 
66 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
67  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
68  * and the name already exists in form of a symlink, try to create the new
69  * name indicated by the symlink. The old code always complained that the
70  * name already exists, due to not following the symlink even if its target
71  * is nonexistent.  The new semantics affects also mknod() and link() when
72  * the name is a symlink pointing to a non-existant name.
73  *
74  * I don't know which semantics is the right one, since I have no access
75  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
76  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
77  * "old" one. Personally, I think the new semantics is much more logical.
78  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
79  * file does succeed in both HP-UX and SunOs, but not in Solaris
80  * and in the old Linux semantics.
81  */
82 
83 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
84  * semantics.  See the comments in "open_namei" and "do_link" below.
85  *
86  * [10-Sep-98 Alan Modra] Another symlink change.
87  */
88 
89 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
90  *	inside the path - always follow.
91  *	in the last component in creation/removal/renaming - never follow.
92  *	if LOOKUP_FOLLOW passed - follow.
93  *	if the pathname has trailing slashes - follow.
94  *	otherwise - don't follow.
95  * (applied in that order).
96  *
97  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
98  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
99  * During the 2.4 we need to fix the userland stuff depending on it -
100  * hopefully we will be able to get rid of that wart in 2.5. So far only
101  * XEmacs seems to be relying on it...
102  */
103 /*
104  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
105  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
106  * any extra contention...
107  */
108 
109 static int __link_path_walk(const char *name, struct nameidata *nd);
110 
111 /* In order to reduce some races, while at the same time doing additional
112  * checking and hopefully speeding things up, we copy filenames to the
113  * kernel data space before using them..
114  *
115  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
116  * PATH_MAX includes the nul terminator --RR.
117  */
do_getname(const char __user * filename,char * page)118 static int do_getname(const char __user *filename, char *page)
119 {
120 	int retval;
121 	unsigned long len = PATH_MAX;
122 
123 	if (!segment_eq(get_fs(), KERNEL_DS)) {
124 		if ((unsigned long) filename >= TASK_SIZE)
125 			return -EFAULT;
126 		if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
127 			len = TASK_SIZE - (unsigned long) filename;
128 	}
129 
130 	retval = strncpy_from_user(page, filename, len);
131 	if (retval > 0) {
132 		if (retval < len)
133 			return 0;
134 		return -ENAMETOOLONG;
135 	} else if (!retval)
136 		retval = -ENOENT;
137 	return retval;
138 }
139 
getname(const char __user * filename)140 char * getname(const char __user * filename)
141 {
142 	char *tmp, *result;
143 
144 	result = ERR_PTR(-ENOMEM);
145 	tmp = __getname();
146 	if (tmp)  {
147 		int retval = do_getname(filename, tmp);
148 
149 		result = tmp;
150 		if (retval < 0) {
151 			__putname(tmp);
152 			result = ERR_PTR(retval);
153 		}
154 	}
155 	audit_getname(result);
156 	return result;
157 }
158 
159 #ifdef CONFIG_AUDITSYSCALL
putname(const char * name)160 void putname(const char *name)
161 {
162 	if (unlikely(!audit_dummy_context()))
163 		audit_putname(name);
164 	else
165 		__putname(name);
166 }
167 EXPORT_SYMBOL(putname);
168 #endif
169 
170 
171 /**
172  * generic_permission  -  check for access rights on a Posix-like filesystem
173  * @inode:	inode to check access rights for
174  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
175  * @check_acl:	optional callback to check for Posix ACLs
176  *
177  * Used to check for read/write/execute permissions on a file.
178  * We use "fsuid" for this, letting us set arbitrary permissions
179  * for filesystem access without changing the "normal" uids which
180  * are used for other things..
181  */
generic_permission(struct inode * inode,int mask,int (* check_acl)(struct inode * inode,int mask))182 int generic_permission(struct inode *inode, int mask,
183 		int (*check_acl)(struct inode *inode, int mask))
184 {
185 	umode_t			mode = inode->i_mode;
186 
187 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
188 
189 	if (current_fsuid() == inode->i_uid)
190 		mode >>= 6;
191 	else {
192 		if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 			int error = check_acl(inode, mask);
194 			if (error == -EACCES)
195 				goto check_capabilities;
196 			else if (error != -EAGAIN)
197 				return error;
198 		}
199 
200 		if (in_group_p(inode->i_gid))
201 			mode >>= 3;
202 	}
203 
204 	/*
205 	 * If the DACs are ok we don't need any capability check.
206 	 */
207 	if ((mask & ~mode) == 0)
208 		return 0;
209 
210  check_capabilities:
211 	/*
212 	 * Read/write DACs are always overridable.
213 	 * Executable DACs are overridable if at least one exec bit is set.
214 	 */
215 	if (!(mask & MAY_EXEC) || execute_ok(inode))
216 		if (capable(CAP_DAC_OVERRIDE))
217 			return 0;
218 
219 	/*
220 	 * Searching includes executable on directories, else just read.
221 	 */
222 	if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
223 		if (capable(CAP_DAC_READ_SEARCH))
224 			return 0;
225 
226 	return -EACCES;
227 }
228 
229 /**
230  * inode_permission  -  check for access rights to a given inode
231  * @inode:	inode to check permission on
232  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
233  *
234  * Used to check for read/write/execute permissions on an inode.
235  * We use "fsuid" for this, letting us set arbitrary permissions
236  * for filesystem access without changing the "normal" uids which
237  * are used for other things.
238  */
inode_permission(struct inode * inode,int mask)239 int inode_permission(struct inode *inode, int mask)
240 {
241 	int retval;
242 
243 	if (mask & MAY_WRITE) {
244 		umode_t mode = inode->i_mode;
245 
246 		/*
247 		 * Nobody gets write access to a read-only fs.
248 		 */
249 		if (IS_RDONLY(inode) &&
250 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
251 			return -EROFS;
252 
253 		/*
254 		 * Nobody gets write access to an immutable file.
255 		 */
256 		if (IS_IMMUTABLE(inode))
257 			return -EACCES;
258 	}
259 
260 	if (inode->i_op->permission)
261 		retval = inode->i_op->permission(inode, mask);
262 	else
263 		retval = generic_permission(inode, mask, NULL);
264 
265 	if (retval)
266 		return retval;
267 
268 	retval = devcgroup_inode_permission(inode, mask);
269 	if (retval)
270 		return retval;
271 
272 	return security_inode_permission(inode,
273 			mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
274 }
275 
276 /**
277  * file_permission  -  check for additional access rights to a given file
278  * @file:	file to check access rights for
279  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
280  *
281  * Used to check for read/write/execute permissions on an already opened
282  * file.
283  *
284  * Note:
285  *	Do not use this function in new code.  All access checks should
286  *	be done using inode_permission().
287  */
file_permission(struct file * file,int mask)288 int file_permission(struct file *file, int mask)
289 {
290 	return inode_permission(file->f_path.dentry->d_inode, mask);
291 }
292 
293 /*
294  * get_write_access() gets write permission for a file.
295  * put_write_access() releases this write permission.
296  * This is used for regular files.
297  * We cannot support write (and maybe mmap read-write shared) accesses and
298  * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
299  * can have the following values:
300  * 0: no writers, no VM_DENYWRITE mappings
301  * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
302  * > 0: (i_writecount) users are writing to the file.
303  *
304  * Normally we operate on that counter with atomic_{inc,dec} and it's safe
305  * except for the cases where we don't hold i_writecount yet. Then we need to
306  * use {get,deny}_write_access() - these functions check the sign and refuse
307  * to do the change if sign is wrong. Exclusion between them is provided by
308  * the inode->i_lock spinlock.
309  */
310 
get_write_access(struct inode * inode)311 int get_write_access(struct inode * inode)
312 {
313 	spin_lock(&inode->i_lock);
314 	if (atomic_read(&inode->i_writecount) < 0) {
315 		spin_unlock(&inode->i_lock);
316 		return -ETXTBSY;
317 	}
318 	atomic_inc(&inode->i_writecount);
319 	spin_unlock(&inode->i_lock);
320 
321 	return 0;
322 }
323 
deny_write_access(struct file * file)324 int deny_write_access(struct file * file)
325 {
326 	struct inode *inode = file->f_path.dentry->d_inode;
327 
328 	spin_lock(&inode->i_lock);
329 	if (atomic_read(&inode->i_writecount) > 0) {
330 		spin_unlock(&inode->i_lock);
331 		return -ETXTBSY;
332 	}
333 	atomic_dec(&inode->i_writecount);
334 	spin_unlock(&inode->i_lock);
335 
336 	return 0;
337 }
338 
339 /**
340  * path_get - get a reference to a path
341  * @path: path to get the reference to
342  *
343  * Given a path increment the reference count to the dentry and the vfsmount.
344  */
path_get(struct path * path)345 void path_get(struct path *path)
346 {
347 	mntget(path->mnt);
348 	dget(path->dentry);
349 }
350 EXPORT_SYMBOL(path_get);
351 
352 /**
353  * path_put - put a reference to a path
354  * @path: path to put the reference to
355  *
356  * Given a path decrement the reference count to the dentry and the vfsmount.
357  */
path_put(struct path * path)358 void path_put(struct path *path)
359 {
360 	dput(path->dentry);
361 	mntput(path->mnt);
362 }
363 EXPORT_SYMBOL(path_put);
364 
365 /**
366  * release_open_intent - free up open intent resources
367  * @nd: pointer to nameidata
368  */
release_open_intent(struct nameidata * nd)369 void release_open_intent(struct nameidata *nd)
370 {
371 	if (nd->intent.open.file->f_path.dentry == NULL)
372 		put_filp(nd->intent.open.file);
373 	else
374 		fput(nd->intent.open.file);
375 }
376 
377 static inline struct dentry *
do_revalidate(struct dentry * dentry,struct nameidata * nd)378 do_revalidate(struct dentry *dentry, struct nameidata *nd)
379 {
380 	int status = dentry->d_op->d_revalidate(dentry, nd);
381 	if (unlikely(status <= 0)) {
382 		/*
383 		 * The dentry failed validation.
384 		 * If d_revalidate returned 0 attempt to invalidate
385 		 * the dentry otherwise d_revalidate is asking us
386 		 * to return a fail status.
387 		 */
388 		if (!status) {
389 			if (!d_invalidate(dentry)) {
390 				dput(dentry);
391 				dentry = NULL;
392 			}
393 		} else {
394 			dput(dentry);
395 			dentry = ERR_PTR(status);
396 		}
397 	}
398 	return dentry;
399 }
400 
401 /*
402  * Internal lookup() using the new generic dcache.
403  * SMP-safe
404  */
cached_lookup(struct dentry * parent,struct qstr * name,struct nameidata * nd)405 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
406 {
407 	struct dentry * dentry = __d_lookup(parent, name);
408 
409 	/* lockess __d_lookup may fail due to concurrent d_move()
410 	 * in some unrelated directory, so try with d_lookup
411 	 */
412 	if (!dentry)
413 		dentry = d_lookup(parent, name);
414 
415 	if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
416 		dentry = do_revalidate(dentry, nd);
417 
418 	return dentry;
419 }
420 
421 /*
422  * Short-cut version of permission(), for calling by
423  * path_walk(), when dcache lock is held.  Combines parts
424  * of permission() and generic_permission(), and tests ONLY for
425  * MAY_EXEC permission.
426  *
427  * If appropriate, check DAC only.  If not appropriate, or
428  * short-cut DAC fails, then call permission() to do more
429  * complete permission check.
430  */
exec_permission_lite(struct inode * inode)431 static int exec_permission_lite(struct inode *inode)
432 {
433 	umode_t	mode = inode->i_mode;
434 
435 	if (inode->i_op->permission)
436 		return -EAGAIN;
437 
438 	if (current_fsuid() == inode->i_uid)
439 		mode >>= 6;
440 	else if (in_group_p(inode->i_gid))
441 		mode >>= 3;
442 
443 	if (mode & MAY_EXEC)
444 		goto ok;
445 
446 	if ((inode->i_mode & S_IXUGO) && capable(CAP_DAC_OVERRIDE))
447 		goto ok;
448 
449 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_OVERRIDE))
450 		goto ok;
451 
452 	if (S_ISDIR(inode->i_mode) && capable(CAP_DAC_READ_SEARCH))
453 		goto ok;
454 
455 	return -EACCES;
456 ok:
457 	return security_inode_permission(inode, MAY_EXEC);
458 }
459 
460 /*
461  * This is called when everything else fails, and we actually have
462  * to go to the low-level filesystem to find out what we should do..
463  *
464  * We get the directory semaphore, and after getting that we also
465  * make sure that nobody added the entry to the dcache in the meantime..
466  * SMP-safe
467  */
real_lookup(struct dentry * parent,struct qstr * name,struct nameidata * nd)468 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
469 {
470 	struct dentry * result;
471 	struct inode *dir = parent->d_inode;
472 
473 	mutex_lock(&dir->i_mutex);
474 	/*
475 	 * First re-do the cached lookup just in case it was created
476 	 * while we waited for the directory semaphore..
477 	 *
478 	 * FIXME! This could use version numbering or similar to
479 	 * avoid unnecessary cache lookups.
480 	 *
481 	 * The "dcache_lock" is purely to protect the RCU list walker
482 	 * from concurrent renames at this point (we mustn't get false
483 	 * negatives from the RCU list walk here, unlike the optimistic
484 	 * fast walk).
485 	 *
486 	 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
487 	 */
488 	result = d_lookup(parent, name);
489 	if (!result) {
490 		struct dentry *dentry;
491 
492 		/* Don't create child dentry for a dead directory. */
493 		result = ERR_PTR(-ENOENT);
494 		if (IS_DEADDIR(dir))
495 			goto out_unlock;
496 
497 		dentry = d_alloc(parent, name);
498 		result = ERR_PTR(-ENOMEM);
499 		if (dentry) {
500 			result = dir->i_op->lookup(dir, dentry, nd);
501 			if (result)
502 				dput(dentry);
503 			else
504 				result = dentry;
505 		}
506 out_unlock:
507 		mutex_unlock(&dir->i_mutex);
508 		return result;
509 	}
510 
511 	/*
512 	 * Uhhuh! Nasty case: the cache was re-populated while
513 	 * we waited on the semaphore. Need to revalidate.
514 	 */
515 	mutex_unlock(&dir->i_mutex);
516 	if (result->d_op && result->d_op->d_revalidate) {
517 		result = do_revalidate(result, nd);
518 		if (!result)
519 			result = ERR_PTR(-ENOENT);
520 	}
521 	return result;
522 }
523 
524 /*
525  * Wrapper to retry pathname resolution whenever the underlying
526  * file system returns an ESTALE.
527  *
528  * Retry the whole path once, forcing real lookup requests
529  * instead of relying on the dcache.
530  */
link_path_walk(const char * name,struct nameidata * nd)531 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
532 {
533 	struct path save = nd->path;
534 	int result;
535 
536 	/* make sure the stuff we saved doesn't go away */
537 	path_get(&save);
538 
539 	result = __link_path_walk(name, nd);
540 	if (result == -ESTALE) {
541 		/* nd->path had been dropped */
542 		nd->path = save;
543 		path_get(&nd->path);
544 		nd->flags |= LOOKUP_REVAL;
545 		result = __link_path_walk(name, nd);
546 	}
547 
548 	path_put(&save);
549 
550 	return result;
551 }
552 
__vfs_follow_link(struct nameidata * nd,const char * link)553 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
554 {
555 	int res = 0;
556 	char *name;
557 	if (IS_ERR(link))
558 		goto fail;
559 
560 	if (*link == '/') {
561 		struct fs_struct *fs = current->fs;
562 
563 		path_put(&nd->path);
564 
565 		read_lock(&fs->lock);
566 		nd->path = fs->root;
567 		path_get(&fs->root);
568 		read_unlock(&fs->lock);
569 	}
570 
571 	res = link_path_walk(link, nd);
572 	if (nd->depth || res || nd->last_type!=LAST_NORM)
573 		return res;
574 	/*
575 	 * If it is an iterative symlinks resolution in open_namei() we
576 	 * have to copy the last component. And all that crap because of
577 	 * bloody create() on broken symlinks. Furrfu...
578 	 */
579 	name = __getname();
580 	if (unlikely(!name)) {
581 		path_put(&nd->path);
582 		return -ENOMEM;
583 	}
584 	strcpy(name, nd->last.name);
585 	nd->last.name = name;
586 	return 0;
587 fail:
588 	path_put(&nd->path);
589 	return PTR_ERR(link);
590 }
591 
path_put_conditional(struct path * path,struct nameidata * nd)592 static void path_put_conditional(struct path *path, struct nameidata *nd)
593 {
594 	dput(path->dentry);
595 	if (path->mnt != nd->path.mnt)
596 		mntput(path->mnt);
597 }
598 
path_to_nameidata(struct path * path,struct nameidata * nd)599 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
600 {
601 	dput(nd->path.dentry);
602 	if (nd->path.mnt != path->mnt)
603 		mntput(nd->path.mnt);
604 	nd->path.mnt = path->mnt;
605 	nd->path.dentry = path->dentry;
606 }
607 
__do_follow_link(struct path * path,struct nameidata * nd)608 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
609 {
610 	int error;
611 	void *cookie;
612 	struct dentry *dentry = path->dentry;
613 
614 	touch_atime(path->mnt, dentry);
615 	nd_set_link(nd, NULL);
616 
617 	if (path->mnt != nd->path.mnt) {
618 		path_to_nameidata(path, nd);
619 		dget(dentry);
620 	}
621 	mntget(path->mnt);
622 	cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
623 	error = PTR_ERR(cookie);
624 	if (!IS_ERR(cookie)) {
625 		char *s = nd_get_link(nd);
626 		error = 0;
627 		if (s)
628 			error = __vfs_follow_link(nd, s);
629 		if (dentry->d_inode->i_op->put_link)
630 			dentry->d_inode->i_op->put_link(dentry, nd, cookie);
631 	}
632 	path_put(path);
633 
634 	return error;
635 }
636 
637 /*
638  * This limits recursive symlink follows to 8, while
639  * limiting consecutive symlinks to 40.
640  *
641  * Without that kind of total limit, nasty chains of consecutive
642  * symlinks can cause almost arbitrarily long lookups.
643  */
do_follow_link(struct path * path,struct nameidata * nd)644 static inline int do_follow_link(struct path *path, struct nameidata *nd)
645 {
646 	int err = -ELOOP;
647 	if (current->link_count >= MAX_NESTED_LINKS)
648 		goto loop;
649 	if (current->total_link_count >= 40)
650 		goto loop;
651 	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
652 	cond_resched();
653 	err = security_inode_follow_link(path->dentry, nd);
654 	if (err)
655 		goto loop;
656 	current->link_count++;
657 	current->total_link_count++;
658 	nd->depth++;
659 	err = __do_follow_link(path, nd);
660 	current->link_count--;
661 	nd->depth--;
662 	return err;
663 loop:
664 	path_put_conditional(path, nd);
665 	path_put(&nd->path);
666 	return err;
667 }
668 
follow_up(struct vfsmount ** mnt,struct dentry ** dentry)669 int follow_up(struct vfsmount **mnt, struct dentry **dentry)
670 {
671 	struct vfsmount *parent;
672 	struct dentry *mountpoint;
673 	spin_lock(&vfsmount_lock);
674 	parent=(*mnt)->mnt_parent;
675 	if (parent == *mnt) {
676 		spin_unlock(&vfsmount_lock);
677 		return 0;
678 	}
679 	mntget(parent);
680 	mountpoint=dget((*mnt)->mnt_mountpoint);
681 	spin_unlock(&vfsmount_lock);
682 	dput(*dentry);
683 	*dentry = mountpoint;
684 	mntput(*mnt);
685 	*mnt = parent;
686 	return 1;
687 }
688 
689 /* no need for dcache_lock, as serialization is taken care in
690  * namespace.c
691  */
__follow_mount(struct path * path)692 static int __follow_mount(struct path *path)
693 {
694 	int res = 0;
695 	while (d_mountpoint(path->dentry)) {
696 		struct vfsmount *mounted = lookup_mnt(path->mnt, path->dentry);
697 		if (!mounted)
698 			break;
699 		dput(path->dentry);
700 		if (res)
701 			mntput(path->mnt);
702 		path->mnt = mounted;
703 		path->dentry = dget(mounted->mnt_root);
704 		res = 1;
705 	}
706 	return res;
707 }
708 
follow_mount(struct vfsmount ** mnt,struct dentry ** dentry)709 static void follow_mount(struct vfsmount **mnt, struct dentry **dentry)
710 {
711 	while (d_mountpoint(*dentry)) {
712 		struct vfsmount *mounted = lookup_mnt(*mnt, *dentry);
713 		if (!mounted)
714 			break;
715 		dput(*dentry);
716 		mntput(*mnt);
717 		*mnt = mounted;
718 		*dentry = dget(mounted->mnt_root);
719 	}
720 }
721 
722 /* no need for dcache_lock, as serialization is taken care in
723  * namespace.c
724  */
follow_down(struct vfsmount ** mnt,struct dentry ** dentry)725 int follow_down(struct vfsmount **mnt, struct dentry **dentry)
726 {
727 	struct vfsmount *mounted;
728 
729 	mounted = lookup_mnt(*mnt, *dentry);
730 	if (mounted) {
731 		dput(*dentry);
732 		mntput(*mnt);
733 		*mnt = mounted;
734 		*dentry = dget(mounted->mnt_root);
735 		return 1;
736 	}
737 	return 0;
738 }
739 
follow_dotdot(struct nameidata * nd)740 static __always_inline void follow_dotdot(struct nameidata *nd)
741 {
742 	struct fs_struct *fs = current->fs;
743 
744 	while(1) {
745 		struct vfsmount *parent;
746 		struct dentry *old = nd->path.dentry;
747 
748                 read_lock(&fs->lock);
749 		if (nd->path.dentry == fs->root.dentry &&
750 		    nd->path.mnt == fs->root.mnt) {
751                         read_unlock(&fs->lock);
752 			break;
753 		}
754                 read_unlock(&fs->lock);
755 		spin_lock(&dcache_lock);
756 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
757 			nd->path.dentry = dget(nd->path.dentry->d_parent);
758 			spin_unlock(&dcache_lock);
759 			dput(old);
760 			break;
761 		}
762 		spin_unlock(&dcache_lock);
763 		spin_lock(&vfsmount_lock);
764 		parent = nd->path.mnt->mnt_parent;
765 		if (parent == nd->path.mnt) {
766 			spin_unlock(&vfsmount_lock);
767 			break;
768 		}
769 		mntget(parent);
770 		nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
771 		spin_unlock(&vfsmount_lock);
772 		dput(old);
773 		mntput(nd->path.mnt);
774 		nd->path.mnt = parent;
775 	}
776 	follow_mount(&nd->path.mnt, &nd->path.dentry);
777 }
778 
779 /*
780  *  It's more convoluted than I'd like it to be, but... it's still fairly
781  *  small and for now I'd prefer to have fast path as straight as possible.
782  *  It _is_ time-critical.
783  */
do_lookup(struct nameidata * nd,struct qstr * name,struct path * path)784 static int do_lookup(struct nameidata *nd, struct qstr *name,
785 		     struct path *path)
786 {
787 	struct vfsmount *mnt = nd->path.mnt;
788 	struct dentry *dentry = __d_lookup(nd->path.dentry, name);
789 
790 	if (!dentry)
791 		goto need_lookup;
792 	if (dentry->d_op && dentry->d_op->d_revalidate)
793 		goto need_revalidate;
794 done:
795 	path->mnt = mnt;
796 	path->dentry = dentry;
797 	__follow_mount(path);
798 	return 0;
799 
800 need_lookup:
801 	dentry = real_lookup(nd->path.dentry, name, nd);
802 	if (IS_ERR(dentry))
803 		goto fail;
804 	goto done;
805 
806 need_revalidate:
807 	dentry = do_revalidate(dentry, nd);
808 	if (!dentry)
809 		goto need_lookup;
810 	if (IS_ERR(dentry))
811 		goto fail;
812 	goto done;
813 
814 fail:
815 	return PTR_ERR(dentry);
816 }
817 
818 /*
819  * Name resolution.
820  * This is the basic name resolution function, turning a pathname into
821  * the final dentry. We expect 'base' to be positive and a directory.
822  *
823  * Returns 0 and nd will have valid dentry and mnt on success.
824  * Returns error and drops reference to input namei data on failure.
825  */
__link_path_walk(const char * name,struct nameidata * nd)826 static int __link_path_walk(const char *name, struct nameidata *nd)
827 {
828 	struct path next;
829 	struct inode *inode;
830 	int err;
831 	unsigned int lookup_flags = nd->flags;
832 
833 	while (*name=='/')
834 		name++;
835 	if (!*name)
836 		goto return_reval;
837 
838 	inode = nd->path.dentry->d_inode;
839 	if (nd->depth)
840 		lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
841 
842 	/* At this point we know we have a real path component. */
843 	for(;;) {
844 		unsigned long hash;
845 		struct qstr this;
846 		unsigned int c;
847 
848 		nd->flags |= LOOKUP_CONTINUE;
849 		err = exec_permission_lite(inode);
850 		if (err == -EAGAIN)
851 			err = inode_permission(nd->path.dentry->d_inode,
852 					       MAY_EXEC);
853  		if (err)
854 			break;
855 
856 		this.name = name;
857 		c = *(const unsigned char *)name;
858 
859 		hash = init_name_hash();
860 		do {
861 			name++;
862 			hash = partial_name_hash(c, hash);
863 			c = *(const unsigned char *)name;
864 		} while (c && (c != '/'));
865 		this.len = name - (const char *) this.name;
866 		this.hash = end_name_hash(hash);
867 
868 		/* remove trailing slashes? */
869 		if (!c)
870 			goto last_component;
871 		while (*++name == '/');
872 		if (!*name)
873 			goto last_with_slashes;
874 
875 		/*
876 		 * "." and ".." are special - ".." especially so because it has
877 		 * to be able to know about the current root directory and
878 		 * parent relationships.
879 		 */
880 		if (this.name[0] == '.') switch (this.len) {
881 			default:
882 				break;
883 			case 2:
884 				if (this.name[1] != '.')
885 					break;
886 				follow_dotdot(nd);
887 				inode = nd->path.dentry->d_inode;
888 				/* fallthrough */
889 			case 1:
890 				continue;
891 		}
892 		/*
893 		 * See if the low-level filesystem might want
894 		 * to use its own hash..
895 		 */
896 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
897 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
898 							    &this);
899 			if (err < 0)
900 				break;
901 		}
902 		/* This does the actual lookups.. */
903 		err = do_lookup(nd, &this, &next);
904 		if (err)
905 			break;
906 
907 		err = -ENOENT;
908 		inode = next.dentry->d_inode;
909 		if (!inode)
910 			goto out_dput;
911 
912 		if (inode->i_op->follow_link) {
913 			err = do_follow_link(&next, nd);
914 			if (err)
915 				goto return_err;
916 			err = -ENOENT;
917 			inode = nd->path.dentry->d_inode;
918 			if (!inode)
919 				break;
920 		} else
921 			path_to_nameidata(&next, nd);
922 		err = -ENOTDIR;
923 		if (!inode->i_op->lookup)
924 			break;
925 		continue;
926 		/* here ends the main loop */
927 
928 last_with_slashes:
929 		lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
930 last_component:
931 		/* Clear LOOKUP_CONTINUE iff it was previously unset */
932 		nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
933 		if (lookup_flags & LOOKUP_PARENT)
934 			goto lookup_parent;
935 		if (this.name[0] == '.') switch (this.len) {
936 			default:
937 				break;
938 			case 2:
939 				if (this.name[1] != '.')
940 					break;
941 				follow_dotdot(nd);
942 				inode = nd->path.dentry->d_inode;
943 				/* fallthrough */
944 			case 1:
945 				goto return_reval;
946 		}
947 		if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
948 			err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
949 							    &this);
950 			if (err < 0)
951 				break;
952 		}
953 		err = do_lookup(nd, &this, &next);
954 		if (err)
955 			break;
956 		inode = next.dentry->d_inode;
957 		if ((lookup_flags & LOOKUP_FOLLOW)
958 		    && inode && inode->i_op->follow_link) {
959 			err = do_follow_link(&next, nd);
960 			if (err)
961 				goto return_err;
962 			inode = nd->path.dentry->d_inode;
963 		} else
964 			path_to_nameidata(&next, nd);
965 		err = -ENOENT;
966 		if (!inode)
967 			break;
968 		if (lookup_flags & LOOKUP_DIRECTORY) {
969 			err = -ENOTDIR;
970 			if (!inode->i_op->lookup)
971 				break;
972 		}
973 		goto return_base;
974 lookup_parent:
975 		nd->last = this;
976 		nd->last_type = LAST_NORM;
977 		if (this.name[0] != '.')
978 			goto return_base;
979 		if (this.len == 1)
980 			nd->last_type = LAST_DOT;
981 		else if (this.len == 2 && this.name[1] == '.')
982 			nd->last_type = LAST_DOTDOT;
983 		else
984 			goto return_base;
985 return_reval:
986 		/*
987 		 * We bypassed the ordinary revalidation routines.
988 		 * We may need to check the cached dentry for staleness.
989 		 */
990 		if (nd->path.dentry && nd->path.dentry->d_sb &&
991 		    (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
992 			err = -ESTALE;
993 			/* Note: we do not d_invalidate() */
994 			if (!nd->path.dentry->d_op->d_revalidate(
995 					nd->path.dentry, nd))
996 				break;
997 		}
998 return_base:
999 		return 0;
1000 out_dput:
1001 		path_put_conditional(&next, nd);
1002 		break;
1003 	}
1004 	path_put(&nd->path);
1005 return_err:
1006 	return err;
1007 }
1008 
path_walk(const char * name,struct nameidata * nd)1009 static int path_walk(const char *name, struct nameidata *nd)
1010 {
1011 	current->total_link_count = 0;
1012 	return link_path_walk(name, nd);
1013 }
1014 
1015 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
do_path_lookup(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1016 static int do_path_lookup(int dfd, const char *name,
1017 				unsigned int flags, struct nameidata *nd)
1018 {
1019 	int retval = 0;
1020 	int fput_needed;
1021 	struct file *file;
1022 	struct fs_struct *fs = current->fs;
1023 
1024 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1025 	nd->flags = flags;
1026 	nd->depth = 0;
1027 
1028 	if (*name=='/') {
1029 		read_lock(&fs->lock);
1030 		nd->path = fs->root;
1031 		path_get(&fs->root);
1032 		read_unlock(&fs->lock);
1033 	} else if (dfd == AT_FDCWD) {
1034 		read_lock(&fs->lock);
1035 		nd->path = fs->pwd;
1036 		path_get(&fs->pwd);
1037 		read_unlock(&fs->lock);
1038 	} else {
1039 		struct dentry *dentry;
1040 
1041 		file = fget_light(dfd, &fput_needed);
1042 		retval = -EBADF;
1043 		if (!file)
1044 			goto out_fail;
1045 
1046 		dentry = file->f_path.dentry;
1047 
1048 		retval = -ENOTDIR;
1049 		if (!S_ISDIR(dentry->d_inode->i_mode))
1050 			goto fput_fail;
1051 
1052 		retval = file_permission(file, MAY_EXEC);
1053 		if (retval)
1054 			goto fput_fail;
1055 
1056 		nd->path = file->f_path;
1057 		path_get(&file->f_path);
1058 
1059 		fput_light(file, fput_needed);
1060 	}
1061 
1062 	retval = path_walk(name, nd);
1063 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1064 				nd->path.dentry->d_inode))
1065 		audit_inode(name, nd->path.dentry);
1066 out_fail:
1067 	return retval;
1068 
1069 fput_fail:
1070 	fput_light(file, fput_needed);
1071 	goto out_fail;
1072 }
1073 
path_lookup(const char * name,unsigned int flags,struct nameidata * nd)1074 int path_lookup(const char *name, unsigned int flags,
1075 			struct nameidata *nd)
1076 {
1077 	return do_path_lookup(AT_FDCWD, name, flags, nd);
1078 }
1079 
kern_path(const char * name,unsigned int flags,struct path * path)1080 int kern_path(const char *name, unsigned int flags, struct path *path)
1081 {
1082 	struct nameidata nd;
1083 	int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1084 	if (!res)
1085 		*path = nd.path;
1086 	return res;
1087 }
1088 
1089 /**
1090  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1091  * @dentry:  pointer to dentry of the base directory
1092  * @mnt: pointer to vfs mount of the base directory
1093  * @name: pointer to file name
1094  * @flags: lookup flags
1095  * @nd: pointer to nameidata
1096  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct nameidata * nd)1097 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1098 		    const char *name, unsigned int flags,
1099 		    struct nameidata *nd)
1100 {
1101 	int retval;
1102 
1103 	/* same as do_path_lookup */
1104 	nd->last_type = LAST_ROOT;
1105 	nd->flags = flags;
1106 	nd->depth = 0;
1107 
1108 	nd->path.dentry = dentry;
1109 	nd->path.mnt = mnt;
1110 	path_get(&nd->path);
1111 
1112 	retval = path_walk(name, nd);
1113 	if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1114 				nd->path.dentry->d_inode))
1115 		audit_inode(name, nd->path.dentry);
1116 
1117 	return retval;
1118 
1119 }
1120 
1121 /**
1122  * path_lookup_open - lookup a file path with open intent
1123  * @dfd: the directory to use as base, or AT_FDCWD
1124  * @name: pointer to file name
1125  * @lookup_flags: lookup intent flags
1126  * @nd: pointer to nameidata
1127  * @open_flags: open intent flags
1128  */
path_lookup_open(int dfd,const char * name,unsigned int lookup_flags,struct nameidata * nd,int open_flags)1129 int path_lookup_open(int dfd, const char *name, unsigned int lookup_flags,
1130 		struct nameidata *nd, int open_flags)
1131 {
1132 	struct file *filp = get_empty_filp();
1133 	int err;
1134 
1135 	if (filp == NULL)
1136 		return -ENFILE;
1137 	nd->intent.open.file = filp;
1138 	nd->intent.open.flags = open_flags;
1139 	nd->intent.open.create_mode = 0;
1140 	err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1141 	if (IS_ERR(nd->intent.open.file)) {
1142 		if (err == 0) {
1143 			err = PTR_ERR(nd->intent.open.file);
1144 			path_put(&nd->path);
1145 		}
1146 	} else if (err != 0)
1147 		release_open_intent(nd);
1148 	return err;
1149 }
1150 
__lookup_hash(struct qstr * name,struct dentry * base,struct nameidata * nd)1151 static struct dentry *__lookup_hash(struct qstr *name,
1152 		struct dentry *base, struct nameidata *nd)
1153 {
1154 	struct dentry *dentry;
1155 	struct inode *inode;
1156 	int err;
1157 
1158 	inode = base->d_inode;
1159 
1160 	/*
1161 	 * See if the low-level filesystem might want
1162 	 * to use its own hash..
1163 	 */
1164 	if (base->d_op && base->d_op->d_hash) {
1165 		err = base->d_op->d_hash(base, name);
1166 		dentry = ERR_PTR(err);
1167 		if (err < 0)
1168 			goto out;
1169 	}
1170 
1171 	dentry = cached_lookup(base, name, nd);
1172 	if (!dentry) {
1173 		struct dentry *new;
1174 
1175 		/* Don't create child dentry for a dead directory. */
1176 		dentry = ERR_PTR(-ENOENT);
1177 		if (IS_DEADDIR(inode))
1178 			goto out;
1179 
1180 		new = d_alloc(base, name);
1181 		dentry = ERR_PTR(-ENOMEM);
1182 		if (!new)
1183 			goto out;
1184 		dentry = inode->i_op->lookup(inode, new, nd);
1185 		if (!dentry)
1186 			dentry = new;
1187 		else
1188 			dput(new);
1189 	}
1190 out:
1191 	return dentry;
1192 }
1193 
1194 /*
1195  * Restricted form of lookup. Doesn't follow links, single-component only,
1196  * needs parent already locked. Doesn't follow mounts.
1197  * SMP-safe.
1198  */
lookup_hash(struct nameidata * nd)1199 static struct dentry *lookup_hash(struct nameidata *nd)
1200 {
1201 	int err;
1202 
1203 	err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1204 	if (err)
1205 		return ERR_PTR(err);
1206 	return __lookup_hash(&nd->last, nd->path.dentry, nd);
1207 }
1208 
__lookup_one_len(const char * name,struct qstr * this,struct dentry * base,int len)1209 static int __lookup_one_len(const char *name, struct qstr *this,
1210 		struct dentry *base, int len)
1211 {
1212 	unsigned long hash;
1213 	unsigned int c;
1214 
1215 	this->name = name;
1216 	this->len = len;
1217 	if (!len)
1218 		return -EACCES;
1219 
1220 	hash = init_name_hash();
1221 	while (len--) {
1222 		c = *(const unsigned char *)name++;
1223 		if (c == '/' || c == '\0')
1224 			return -EACCES;
1225 		hash = partial_name_hash(c, hash);
1226 	}
1227 	this->hash = end_name_hash(hash);
1228 	return 0;
1229 }
1230 
1231 /**
1232  * lookup_one_len - filesystem helper to lookup single pathname component
1233  * @name:	pathname component to lookup
1234  * @base:	base directory to lookup from
1235  * @len:	maximum length @len should be interpreted to
1236  *
1237  * Note that this routine is purely a helper for filesystem usage and should
1238  * not be called by generic code.  Also note that by using this function the
1239  * nameidata argument is passed to the filesystem methods and a filesystem
1240  * using this helper needs to be prepared for that.
1241  */
lookup_one_len(const char * name,struct dentry * base,int len)1242 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1243 {
1244 	int err;
1245 	struct qstr this;
1246 
1247 	err = __lookup_one_len(name, &this, base, len);
1248 	if (err)
1249 		return ERR_PTR(err);
1250 
1251 	err = inode_permission(base->d_inode, MAY_EXEC);
1252 	if (err)
1253 		return ERR_PTR(err);
1254 	return __lookup_hash(&this, base, NULL);
1255 }
1256 
1257 /**
1258  * lookup_one_noperm - bad hack for sysfs
1259  * @name:	pathname component to lookup
1260  * @base:	base directory to lookup from
1261  *
1262  * This is a variant of lookup_one_len that doesn't perform any permission
1263  * checks.   It's a horrible hack to work around the braindead sysfs
1264  * architecture and should not be used anywhere else.
1265  *
1266  * DON'T USE THIS FUNCTION EVER, thanks.
1267  */
lookup_one_noperm(const char * name,struct dentry * base)1268 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1269 {
1270 	int err;
1271 	struct qstr this;
1272 
1273 	err = __lookup_one_len(name, &this, base, strlen(name));
1274 	if (err)
1275 		return ERR_PTR(err);
1276 	return __lookup_hash(&this, base, NULL);
1277 }
1278 
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)1279 int user_path_at(int dfd, const char __user *name, unsigned flags,
1280 		 struct path *path)
1281 {
1282 	struct nameidata nd;
1283 	char *tmp = getname(name);
1284 	int err = PTR_ERR(tmp);
1285 	if (!IS_ERR(tmp)) {
1286 
1287 		BUG_ON(flags & LOOKUP_PARENT);
1288 
1289 		err = do_path_lookup(dfd, tmp, flags, &nd);
1290 		putname(tmp);
1291 		if (!err)
1292 			*path = nd.path;
1293 	}
1294 	return err;
1295 }
1296 
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,char ** name)1297 static int user_path_parent(int dfd, const char __user *path,
1298 			struct nameidata *nd, char **name)
1299 {
1300 	char *s = getname(path);
1301 	int error;
1302 
1303 	if (IS_ERR(s))
1304 		return PTR_ERR(s);
1305 
1306 	error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1307 	if (error)
1308 		putname(s);
1309 	else
1310 		*name = s;
1311 
1312 	return error;
1313 }
1314 
1315 /*
1316  * It's inline, so penalty for filesystems that don't use sticky bit is
1317  * minimal.
1318  */
check_sticky(struct inode * dir,struct inode * inode)1319 static inline int check_sticky(struct inode *dir, struct inode *inode)
1320 {
1321 	uid_t fsuid = current_fsuid();
1322 
1323 	if (!(dir->i_mode & S_ISVTX))
1324 		return 0;
1325 	if (inode->i_uid == fsuid)
1326 		return 0;
1327 	if (dir->i_uid == fsuid)
1328 		return 0;
1329 	return !capable(CAP_FOWNER);
1330 }
1331 
1332 /*
1333  *	Check whether we can remove a link victim from directory dir, check
1334  *  whether the type of victim is right.
1335  *  1. We can't do it if dir is read-only (done in permission())
1336  *  2. We should have write and exec permissions on dir
1337  *  3. We can't remove anything from append-only dir
1338  *  4. We can't do anything with immutable dir (done in permission())
1339  *  5. If the sticky bit on dir is set we should either
1340  *	a. be owner of dir, or
1341  *	b. be owner of victim, or
1342  *	c. have CAP_FOWNER capability
1343  *  6. If the victim is append-only or immutable we can't do antyhing with
1344  *     links pointing to it.
1345  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1346  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1347  *  9. We can't remove a root or mountpoint.
1348  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1349  *     nfs_async_unlink().
1350  */
may_delete(struct inode * dir,struct dentry * victim,int isdir)1351 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1352 {
1353 	int error;
1354 
1355 	if (!victim->d_inode)
1356 		return -ENOENT;
1357 
1358 	BUG_ON(victim->d_parent->d_inode != dir);
1359 	audit_inode_child(victim->d_name.name, victim, dir);
1360 
1361 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1362 	if (error)
1363 		return error;
1364 	if (IS_APPEND(dir))
1365 		return -EPERM;
1366 	if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1367 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1368 		return -EPERM;
1369 	if (isdir) {
1370 		if (!S_ISDIR(victim->d_inode->i_mode))
1371 			return -ENOTDIR;
1372 		if (IS_ROOT(victim))
1373 			return -EBUSY;
1374 	} else if (S_ISDIR(victim->d_inode->i_mode))
1375 		return -EISDIR;
1376 	if (IS_DEADDIR(dir))
1377 		return -ENOENT;
1378 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1379 		return -EBUSY;
1380 	return 0;
1381 }
1382 
1383 /*	Check whether we can create an object with dentry child in directory
1384  *  dir.
1385  *  1. We can't do it if child already exists (open has special treatment for
1386  *     this case, but since we are inlined it's OK)
1387  *  2. We can't do it if dir is read-only (done in permission())
1388  *  3. We should have write and exec permissions on dir
1389  *  4. We can't do it if dir is immutable (done in permission())
1390  */
may_create(struct inode * dir,struct dentry * child)1391 static inline int may_create(struct inode *dir, struct dentry *child)
1392 {
1393 	if (child->d_inode)
1394 		return -EEXIST;
1395 	if (IS_DEADDIR(dir))
1396 		return -ENOENT;
1397 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1398 }
1399 
1400 /*
1401  * O_DIRECTORY translates into forcing a directory lookup.
1402  */
lookup_flags(unsigned int f)1403 static inline int lookup_flags(unsigned int f)
1404 {
1405 	unsigned long retval = LOOKUP_FOLLOW;
1406 
1407 	if (f & O_NOFOLLOW)
1408 		retval &= ~LOOKUP_FOLLOW;
1409 
1410 	if (f & O_DIRECTORY)
1411 		retval |= LOOKUP_DIRECTORY;
1412 
1413 	return retval;
1414 }
1415 
1416 /*
1417  * p1 and p2 should be directories on the same fs.
1418  */
lock_rename(struct dentry * p1,struct dentry * p2)1419 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1420 {
1421 	struct dentry *p;
1422 
1423 	if (p1 == p2) {
1424 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1425 		return NULL;
1426 	}
1427 
1428 	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1429 
1430 	p = d_ancestor(p2, p1);
1431 	if (p) {
1432 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1433 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1434 		return p;
1435 	}
1436 
1437 	p = d_ancestor(p1, p2);
1438 	if (p) {
1439 		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1440 		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1441 		return p;
1442 	}
1443 
1444 	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1445 	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1446 	return NULL;
1447 }
1448 
unlock_rename(struct dentry * p1,struct dentry * p2)1449 void unlock_rename(struct dentry *p1, struct dentry *p2)
1450 {
1451 	mutex_unlock(&p1->d_inode->i_mutex);
1452 	if (p1 != p2) {
1453 		mutex_unlock(&p2->d_inode->i_mutex);
1454 		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1455 	}
1456 }
1457 
vfs_create(struct inode * dir,struct dentry * dentry,int mode,struct nameidata * nd)1458 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1459 		struct nameidata *nd)
1460 {
1461 	int error = may_create(dir, dentry);
1462 
1463 	if (error)
1464 		return error;
1465 
1466 	if (!dir->i_op->create)
1467 		return -EACCES;	/* shouldn't it be ENOSYS? */
1468 	mode &= S_IALLUGO;
1469 	mode |= S_IFREG;
1470 	error = security_inode_create(dir, dentry, mode);
1471 	if (error)
1472 		return error;
1473 	DQUOT_INIT(dir);
1474 	error = dir->i_op->create(dir, dentry, mode, nd);
1475 	if (!error)
1476 		fsnotify_create(dir, dentry);
1477 	return error;
1478 }
1479 
may_open(struct path * path,int acc_mode,int flag)1480 int may_open(struct path *path, int acc_mode, int flag)
1481 {
1482 	struct dentry *dentry = path->dentry;
1483 	struct inode *inode = dentry->d_inode;
1484 	int error;
1485 
1486 	if (!inode)
1487 		return -ENOENT;
1488 
1489 	if (S_ISLNK(inode->i_mode))
1490 		return -ELOOP;
1491 
1492 	if (S_ISDIR(inode->i_mode) && (acc_mode & MAY_WRITE))
1493 		return -EISDIR;
1494 
1495 	/*
1496 	 * FIFO's, sockets and device files are special: they don't
1497 	 * actually live on the filesystem itself, and as such you
1498 	 * can write to them even if the filesystem is read-only.
1499 	 */
1500 	if (S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
1501 	    	flag &= ~O_TRUNC;
1502 	} else if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
1503 		if (path->mnt->mnt_flags & MNT_NODEV)
1504 			return -EACCES;
1505 
1506 		flag &= ~O_TRUNC;
1507 	}
1508 
1509 	error = inode_permission(inode, acc_mode);
1510 	if (error)
1511 		return error;
1512 	/*
1513 	 * An append-only file must be opened in append mode for writing.
1514 	 */
1515 	if (IS_APPEND(inode)) {
1516 		if  ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1517 			return -EPERM;
1518 		if (flag & O_TRUNC)
1519 			return -EPERM;
1520 	}
1521 
1522 	/* O_NOATIME can only be set by the owner or superuser */
1523 	if (flag & O_NOATIME)
1524 		if (!is_owner_or_cap(inode))
1525 			return -EPERM;
1526 
1527 	/*
1528 	 * Ensure there are no outstanding leases on the file.
1529 	 */
1530 	error = break_lease(inode, flag);
1531 	if (error)
1532 		return error;
1533 
1534 	if (flag & O_TRUNC) {
1535 		error = get_write_access(inode);
1536 		if (error)
1537 			return error;
1538 
1539 		/*
1540 		 * Refuse to truncate files with mandatory locks held on them.
1541 		 */
1542 		error = locks_verify_locked(inode);
1543 		if (!error)
1544 			error = security_path_truncate(path, 0,
1545 					       ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1546 		if (!error) {
1547 			DQUOT_INIT(inode);
1548 
1549 			error = do_truncate(dentry, 0,
1550 					    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1551 					    NULL);
1552 		}
1553 		put_write_access(inode);
1554 		if (error)
1555 			return error;
1556 	} else
1557 		if (flag & FMODE_WRITE)
1558 			DQUOT_INIT(inode);
1559 
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Be careful about ever adding any more callers of this
1565  * function.  Its flags must be in the namei format, not
1566  * what get passed to sys_open().
1567  */
__open_namei_create(struct nameidata * nd,struct path * path,int flag,int mode)1568 static int __open_namei_create(struct nameidata *nd, struct path *path,
1569 				int flag, int mode)
1570 {
1571 	int error;
1572 	struct dentry *dir = nd->path.dentry;
1573 
1574 	if (!IS_POSIXACL(dir->d_inode))
1575 		mode &= ~current->fs->umask;
1576 	error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1577 	if (error)
1578 		goto out_unlock;
1579 	error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1580 out_unlock:
1581 	mutex_unlock(&dir->d_inode->i_mutex);
1582 	dput(nd->path.dentry);
1583 	nd->path.dentry = path->dentry;
1584 	if (error)
1585 		return error;
1586 	/* Don't check for write permission, don't truncate */
1587 	return may_open(&nd->path, 0, flag & ~O_TRUNC);
1588 }
1589 
1590 /*
1591  * Note that while the flag value (low two bits) for sys_open means:
1592  *	00 - read-only
1593  *	01 - write-only
1594  *	10 - read-write
1595  *	11 - special
1596  * it is changed into
1597  *	00 - no permissions needed
1598  *	01 - read-permission
1599  *	10 - write-permission
1600  *	11 - read-write
1601  * for the internal routines (ie open_namei()/follow_link() etc)
1602  * This is more logical, and also allows the 00 "no perm needed"
1603  * to be used for symlinks (where the permissions are checked
1604  * later).
1605  *
1606 */
open_to_namei_flags(int flag)1607 static inline int open_to_namei_flags(int flag)
1608 {
1609 	if ((flag+1) & O_ACCMODE)
1610 		flag++;
1611 	return flag;
1612 }
1613 
open_will_write_to_fs(int flag,struct inode * inode)1614 static int open_will_write_to_fs(int flag, struct inode *inode)
1615 {
1616 	/*
1617 	 * We'll never write to the fs underlying
1618 	 * a device file.
1619 	 */
1620 	if (special_file(inode->i_mode))
1621 		return 0;
1622 	return (flag & O_TRUNC);
1623 }
1624 
1625 /*
1626  * Note that the low bits of the passed in "open_flag"
1627  * are not the same as in the local variable "flag". See
1628  * open_to_namei_flags() for more details.
1629  */
do_filp_open(int dfd,const char * pathname,int open_flag,int mode)1630 struct file *do_filp_open(int dfd, const char *pathname,
1631 		int open_flag, int mode)
1632 {
1633 	struct file *filp;
1634 	struct nameidata nd;
1635 	int acc_mode, error;
1636 	struct path path;
1637 	struct dentry *dir;
1638 	int count = 0;
1639 	int will_write;
1640 	int flag = open_to_namei_flags(open_flag);
1641 
1642 	acc_mode = MAY_OPEN | ACC_MODE(flag);
1643 
1644 	/* O_TRUNC implies we need access checks for write permissions */
1645 	if (flag & O_TRUNC)
1646 		acc_mode |= MAY_WRITE;
1647 
1648 	/* Allow the LSM permission hook to distinguish append
1649 	   access from general write access. */
1650 	if (flag & O_APPEND)
1651 		acc_mode |= MAY_APPEND;
1652 
1653 	/*
1654 	 * The simplest case - just a plain lookup.
1655 	 */
1656 	if (!(flag & O_CREAT)) {
1657 		error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1658 					 &nd, flag);
1659 		if (error)
1660 			return ERR_PTR(error);
1661 		goto ok;
1662 	}
1663 
1664 	/*
1665 	 * Create - we need to know the parent.
1666 	 */
1667 	error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
1668 	if (error)
1669 		return ERR_PTR(error);
1670 
1671 	/*
1672 	 * We have the parent and last component. First of all, check
1673 	 * that we are not asked to creat(2) an obvious directory - that
1674 	 * will not do.
1675 	 */
1676 	error = -EISDIR;
1677 	if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1678 		goto exit_parent;
1679 
1680 	error = -ENFILE;
1681 	filp = get_empty_filp();
1682 	if (filp == NULL)
1683 		goto exit_parent;
1684 	nd.intent.open.file = filp;
1685 	nd.intent.open.flags = flag;
1686 	nd.intent.open.create_mode = mode;
1687 	dir = nd.path.dentry;
1688 	nd.flags &= ~LOOKUP_PARENT;
1689 	nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1690 	if (flag & O_EXCL)
1691 		nd.flags |= LOOKUP_EXCL;
1692 	mutex_lock(&dir->d_inode->i_mutex);
1693 	path.dentry = lookup_hash(&nd);
1694 	path.mnt = nd.path.mnt;
1695 
1696 do_last:
1697 	error = PTR_ERR(path.dentry);
1698 	if (IS_ERR(path.dentry)) {
1699 		mutex_unlock(&dir->d_inode->i_mutex);
1700 		goto exit;
1701 	}
1702 
1703 	if (IS_ERR(nd.intent.open.file)) {
1704 		error = PTR_ERR(nd.intent.open.file);
1705 		goto exit_mutex_unlock;
1706 	}
1707 
1708 	/* Negative dentry, just create the file */
1709 	if (!path.dentry->d_inode) {
1710 		/*
1711 		 * This write is needed to ensure that a
1712 		 * ro->rw transition does not occur between
1713 		 * the time when the file is created and when
1714 		 * a permanent write count is taken through
1715 		 * the 'struct file' in nameidata_to_filp().
1716 		 */
1717 		error = mnt_want_write(nd.path.mnt);
1718 		if (error)
1719 			goto exit_mutex_unlock;
1720 		error = __open_namei_create(&nd, &path, flag, mode);
1721 		if (error) {
1722 			mnt_drop_write(nd.path.mnt);
1723 			goto exit;
1724 		}
1725 		filp = nameidata_to_filp(&nd, open_flag);
1726 		mnt_drop_write(nd.path.mnt);
1727 		return filp;
1728 	}
1729 
1730 	/*
1731 	 * It already exists.
1732 	 */
1733 	mutex_unlock(&dir->d_inode->i_mutex);
1734 	audit_inode(pathname, path.dentry);
1735 
1736 	error = -EEXIST;
1737 	if (flag & O_EXCL)
1738 		goto exit_dput;
1739 
1740 	if (__follow_mount(&path)) {
1741 		error = -ELOOP;
1742 		if (flag & O_NOFOLLOW)
1743 			goto exit_dput;
1744 	}
1745 
1746 	error = -ENOENT;
1747 	if (!path.dentry->d_inode)
1748 		goto exit_dput;
1749 	if (path.dentry->d_inode->i_op->follow_link)
1750 		goto do_link;
1751 
1752 	path_to_nameidata(&path, &nd);
1753 	error = -EISDIR;
1754 	if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1755 		goto exit;
1756 ok:
1757 	/*
1758 	 * Consider:
1759 	 * 1. may_open() truncates a file
1760 	 * 2. a rw->ro mount transition occurs
1761 	 * 3. nameidata_to_filp() fails due to
1762 	 *    the ro mount.
1763 	 * That would be inconsistent, and should
1764 	 * be avoided. Taking this mnt write here
1765 	 * ensures that (2) can not occur.
1766 	 */
1767 	will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1768 	if (will_write) {
1769 		error = mnt_want_write(nd.path.mnt);
1770 		if (error)
1771 			goto exit;
1772 	}
1773 	error = may_open(&nd.path, acc_mode, flag);
1774 	if (error) {
1775 		if (will_write)
1776 			mnt_drop_write(nd.path.mnt);
1777 		goto exit;
1778 	}
1779 	filp = nameidata_to_filp(&nd, open_flag);
1780 	/*
1781 	 * It is now safe to drop the mnt write
1782 	 * because the filp has had a write taken
1783 	 * on its behalf.
1784 	 */
1785 	if (will_write)
1786 		mnt_drop_write(nd.path.mnt);
1787 	return filp;
1788 
1789 exit_mutex_unlock:
1790 	mutex_unlock(&dir->d_inode->i_mutex);
1791 exit_dput:
1792 	path_put_conditional(&path, &nd);
1793 exit:
1794 	if (!IS_ERR(nd.intent.open.file))
1795 		release_open_intent(&nd);
1796 exit_parent:
1797 	path_put(&nd.path);
1798 	return ERR_PTR(error);
1799 
1800 do_link:
1801 	error = -ELOOP;
1802 	if (flag & O_NOFOLLOW)
1803 		goto exit_dput;
1804 	/*
1805 	 * This is subtle. Instead of calling do_follow_link() we do the
1806 	 * thing by hands. The reason is that this way we have zero link_count
1807 	 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1808 	 * After that we have the parent and last component, i.e.
1809 	 * we are in the same situation as after the first path_walk().
1810 	 * Well, almost - if the last component is normal we get its copy
1811 	 * stored in nd->last.name and we will have to putname() it when we
1812 	 * are done. Procfs-like symlinks just set LAST_BIND.
1813 	 */
1814 	nd.flags |= LOOKUP_PARENT;
1815 	error = security_inode_follow_link(path.dentry, &nd);
1816 	if (error)
1817 		goto exit_dput;
1818 	error = __do_follow_link(&path, &nd);
1819 	if (error) {
1820 		/* Does someone understand code flow here? Or it is only
1821 		 * me so stupid? Anathema to whoever designed this non-sense
1822 		 * with "intent.open".
1823 		 */
1824 		release_open_intent(&nd);
1825 		return ERR_PTR(error);
1826 	}
1827 	nd.flags &= ~LOOKUP_PARENT;
1828 	if (nd.last_type == LAST_BIND)
1829 		goto ok;
1830 	error = -EISDIR;
1831 	if (nd.last_type != LAST_NORM)
1832 		goto exit;
1833 	if (nd.last.name[nd.last.len]) {
1834 		__putname(nd.last.name);
1835 		goto exit;
1836 	}
1837 	error = -ELOOP;
1838 	if (count++==32) {
1839 		__putname(nd.last.name);
1840 		goto exit;
1841 	}
1842 	dir = nd.path.dentry;
1843 	mutex_lock(&dir->d_inode->i_mutex);
1844 	path.dentry = lookup_hash(&nd);
1845 	path.mnt = nd.path.mnt;
1846 	__putname(nd.last.name);
1847 	goto do_last;
1848 }
1849 
1850 /**
1851  * filp_open - open file and return file pointer
1852  *
1853  * @filename:	path to open
1854  * @flags:	open flags as per the open(2) second argument
1855  * @mode:	mode for the new file if O_CREAT is set, else ignored
1856  *
1857  * This is the helper to open a file from kernelspace if you really
1858  * have to.  But in generally you should not do this, so please move
1859  * along, nothing to see here..
1860  */
filp_open(const char * filename,int flags,int mode)1861 struct file *filp_open(const char *filename, int flags, int mode)
1862 {
1863 	return do_filp_open(AT_FDCWD, filename, flags, mode);
1864 }
1865 EXPORT_SYMBOL(filp_open);
1866 
1867 /**
1868  * lookup_create - lookup a dentry, creating it if it doesn't exist
1869  * @nd: nameidata info
1870  * @is_dir: directory flag
1871  *
1872  * Simple function to lookup and return a dentry and create it
1873  * if it doesn't exist.  Is SMP-safe.
1874  *
1875  * Returns with nd->path.dentry->d_inode->i_mutex locked.
1876  */
lookup_create(struct nameidata * nd,int is_dir)1877 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1878 {
1879 	struct dentry *dentry = ERR_PTR(-EEXIST);
1880 
1881 	mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1882 	/*
1883 	 * Yucky last component or no last component at all?
1884 	 * (foo/., foo/.., /////)
1885 	 */
1886 	if (nd->last_type != LAST_NORM)
1887 		goto fail;
1888 	nd->flags &= ~LOOKUP_PARENT;
1889 	nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1890 	nd->intent.open.flags = O_EXCL;
1891 
1892 	/*
1893 	 * Do the final lookup.
1894 	 */
1895 	dentry = lookup_hash(nd);
1896 	if (IS_ERR(dentry))
1897 		goto fail;
1898 
1899 	if (dentry->d_inode)
1900 		goto eexist;
1901 	/*
1902 	 * Special case - lookup gave negative, but... we had foo/bar/
1903 	 * From the vfs_mknod() POV we just have a negative dentry -
1904 	 * all is fine. Let's be bastards - you had / on the end, you've
1905 	 * been asking for (non-existent) directory. -ENOENT for you.
1906 	 */
1907 	if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1908 		dput(dentry);
1909 		dentry = ERR_PTR(-ENOENT);
1910 	}
1911 	return dentry;
1912 eexist:
1913 	dput(dentry);
1914 	dentry = ERR_PTR(-EEXIST);
1915 fail:
1916 	return dentry;
1917 }
1918 EXPORT_SYMBOL_GPL(lookup_create);
1919 
vfs_mknod(struct inode * dir,struct dentry * dentry,int mode,dev_t dev)1920 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1921 {
1922 	int error = may_create(dir, dentry);
1923 
1924 	if (error)
1925 		return error;
1926 
1927 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1928 		return -EPERM;
1929 
1930 	if (!dir->i_op->mknod)
1931 		return -EPERM;
1932 
1933 	error = devcgroup_inode_mknod(mode, dev);
1934 	if (error)
1935 		return error;
1936 
1937 	error = security_inode_mknod(dir, dentry, mode, dev);
1938 	if (error)
1939 		return error;
1940 
1941 	DQUOT_INIT(dir);
1942 	error = dir->i_op->mknod(dir, dentry, mode, dev);
1943 	if (!error)
1944 		fsnotify_create(dir, dentry);
1945 	return error;
1946 }
1947 
may_mknod(mode_t mode)1948 static int may_mknod(mode_t mode)
1949 {
1950 	switch (mode & S_IFMT) {
1951 	case S_IFREG:
1952 	case S_IFCHR:
1953 	case S_IFBLK:
1954 	case S_IFIFO:
1955 	case S_IFSOCK:
1956 	case 0: /* zero mode translates to S_IFREG */
1957 		return 0;
1958 	case S_IFDIR:
1959 		return -EPERM;
1960 	default:
1961 		return -EINVAL;
1962 	}
1963 }
1964 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,int,mode,unsigned,dev)1965 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
1966 		unsigned, dev)
1967 {
1968 	int error;
1969 	char *tmp;
1970 	struct dentry *dentry;
1971 	struct nameidata nd;
1972 
1973 	if (S_ISDIR(mode))
1974 		return -EPERM;
1975 
1976 	error = user_path_parent(dfd, filename, &nd, &tmp);
1977 	if (error)
1978 		return error;
1979 
1980 	dentry = lookup_create(&nd, 0);
1981 	if (IS_ERR(dentry)) {
1982 		error = PTR_ERR(dentry);
1983 		goto out_unlock;
1984 	}
1985 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
1986 		mode &= ~current->fs->umask;
1987 	error = may_mknod(mode);
1988 	if (error)
1989 		goto out_dput;
1990 	error = mnt_want_write(nd.path.mnt);
1991 	if (error)
1992 		goto out_dput;
1993 	error = security_path_mknod(&nd.path, dentry, mode, dev);
1994 	if (error)
1995 		goto out_drop_write;
1996 	switch (mode & S_IFMT) {
1997 		case 0: case S_IFREG:
1998 			error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
1999 			break;
2000 		case S_IFCHR: case S_IFBLK:
2001 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2002 					new_decode_dev(dev));
2003 			break;
2004 		case S_IFIFO: case S_IFSOCK:
2005 			error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2006 			break;
2007 	}
2008 out_drop_write:
2009 	mnt_drop_write(nd.path.mnt);
2010 out_dput:
2011 	dput(dentry);
2012 out_unlock:
2013 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2014 	path_put(&nd.path);
2015 	putname(tmp);
2016 
2017 	return error;
2018 }
2019 
SYSCALL_DEFINE3(mknod,const char __user *,filename,int,mode,unsigned,dev)2020 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2021 {
2022 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
2023 }
2024 
vfs_mkdir(struct inode * dir,struct dentry * dentry,int mode)2025 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2026 {
2027 	int error = may_create(dir, dentry);
2028 
2029 	if (error)
2030 		return error;
2031 
2032 	if (!dir->i_op->mkdir)
2033 		return -EPERM;
2034 
2035 	mode &= (S_IRWXUGO|S_ISVTX);
2036 	error = security_inode_mkdir(dir, dentry, mode);
2037 	if (error)
2038 		return error;
2039 
2040 	DQUOT_INIT(dir);
2041 	error = dir->i_op->mkdir(dir, dentry, mode);
2042 	if (!error)
2043 		fsnotify_mkdir(dir, dentry);
2044 	return error;
2045 }
2046 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,int,mode)2047 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2048 {
2049 	int error = 0;
2050 	char * tmp;
2051 	struct dentry *dentry;
2052 	struct nameidata nd;
2053 
2054 	error = user_path_parent(dfd, pathname, &nd, &tmp);
2055 	if (error)
2056 		goto out_err;
2057 
2058 	dentry = lookup_create(&nd, 1);
2059 	error = PTR_ERR(dentry);
2060 	if (IS_ERR(dentry))
2061 		goto out_unlock;
2062 
2063 	if (!IS_POSIXACL(nd.path.dentry->d_inode))
2064 		mode &= ~current->fs->umask;
2065 	error = mnt_want_write(nd.path.mnt);
2066 	if (error)
2067 		goto out_dput;
2068 	error = security_path_mkdir(&nd.path, dentry, mode);
2069 	if (error)
2070 		goto out_drop_write;
2071 	error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2072 out_drop_write:
2073 	mnt_drop_write(nd.path.mnt);
2074 out_dput:
2075 	dput(dentry);
2076 out_unlock:
2077 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2078 	path_put(&nd.path);
2079 	putname(tmp);
2080 out_err:
2081 	return error;
2082 }
2083 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,int,mode)2084 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2085 {
2086 	return sys_mkdirat(AT_FDCWD, pathname, mode);
2087 }
2088 
2089 /*
2090  * We try to drop the dentry early: we should have
2091  * a usage count of 2 if we're the only user of this
2092  * dentry, and if that is true (possibly after pruning
2093  * the dcache), then we drop the dentry now.
2094  *
2095  * A low-level filesystem can, if it choses, legally
2096  * do a
2097  *
2098  *	if (!d_unhashed(dentry))
2099  *		return -EBUSY;
2100  *
2101  * if it cannot handle the case of removing a directory
2102  * that is still in use by something else..
2103  */
dentry_unhash(struct dentry * dentry)2104 void dentry_unhash(struct dentry *dentry)
2105 {
2106 	dget(dentry);
2107 	shrink_dcache_parent(dentry);
2108 	spin_lock(&dcache_lock);
2109 	spin_lock(&dentry->d_lock);
2110 	if (atomic_read(&dentry->d_count) == 2)
2111 		__d_drop(dentry);
2112 	spin_unlock(&dentry->d_lock);
2113 	spin_unlock(&dcache_lock);
2114 }
2115 
vfs_rmdir(struct inode * dir,struct dentry * dentry)2116 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2117 {
2118 	int error = may_delete(dir, dentry, 1);
2119 
2120 	if (error)
2121 		return error;
2122 
2123 	if (!dir->i_op->rmdir)
2124 		return -EPERM;
2125 
2126 	DQUOT_INIT(dir);
2127 
2128 	mutex_lock(&dentry->d_inode->i_mutex);
2129 	dentry_unhash(dentry);
2130 	if (d_mountpoint(dentry))
2131 		error = -EBUSY;
2132 	else {
2133 		error = security_inode_rmdir(dir, dentry);
2134 		if (!error) {
2135 			error = dir->i_op->rmdir(dir, dentry);
2136 			if (!error)
2137 				dentry->d_inode->i_flags |= S_DEAD;
2138 		}
2139 	}
2140 	mutex_unlock(&dentry->d_inode->i_mutex);
2141 	if (!error) {
2142 		d_delete(dentry);
2143 	}
2144 	dput(dentry);
2145 
2146 	return error;
2147 }
2148 
do_rmdir(int dfd,const char __user * pathname)2149 static long do_rmdir(int dfd, const char __user *pathname)
2150 {
2151 	int error = 0;
2152 	char * name;
2153 	struct dentry *dentry;
2154 	struct nameidata nd;
2155 
2156 	error = user_path_parent(dfd, pathname, &nd, &name);
2157 	if (error)
2158 		return error;
2159 
2160 	switch(nd.last_type) {
2161 	case LAST_DOTDOT:
2162 		error = -ENOTEMPTY;
2163 		goto exit1;
2164 	case LAST_DOT:
2165 		error = -EINVAL;
2166 		goto exit1;
2167 	case LAST_ROOT:
2168 		error = -EBUSY;
2169 		goto exit1;
2170 	}
2171 
2172 	nd.flags &= ~LOOKUP_PARENT;
2173 
2174 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2175 	dentry = lookup_hash(&nd);
2176 	error = PTR_ERR(dentry);
2177 	if (IS_ERR(dentry))
2178 		goto exit2;
2179 	error = mnt_want_write(nd.path.mnt);
2180 	if (error)
2181 		goto exit3;
2182 	error = security_path_rmdir(&nd.path, dentry);
2183 	if (error)
2184 		goto exit4;
2185 	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2186 exit4:
2187 	mnt_drop_write(nd.path.mnt);
2188 exit3:
2189 	dput(dentry);
2190 exit2:
2191 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2192 exit1:
2193 	path_put(&nd.path);
2194 	putname(name);
2195 	return error;
2196 }
2197 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)2198 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2199 {
2200 	return do_rmdir(AT_FDCWD, pathname);
2201 }
2202 
vfs_unlink(struct inode * dir,struct dentry * dentry)2203 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2204 {
2205 	int error = may_delete(dir, dentry, 0);
2206 
2207 	if (error)
2208 		return error;
2209 
2210 	if (!dir->i_op->unlink)
2211 		return -EPERM;
2212 
2213 	DQUOT_INIT(dir);
2214 
2215 	mutex_lock(&dentry->d_inode->i_mutex);
2216 	if (d_mountpoint(dentry))
2217 		error = -EBUSY;
2218 	else {
2219 		error = security_inode_unlink(dir, dentry);
2220 		if (!error)
2221 			error = dir->i_op->unlink(dir, dentry);
2222 	}
2223 	mutex_unlock(&dentry->d_inode->i_mutex);
2224 
2225 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
2226 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2227 		fsnotify_link_count(dentry->d_inode);
2228 		d_delete(dentry);
2229 	}
2230 
2231 	return error;
2232 }
2233 
2234 /*
2235  * Make sure that the actual truncation of the file will occur outside its
2236  * directory's i_mutex.  Truncate can take a long time if there is a lot of
2237  * writeout happening, and we don't want to prevent access to the directory
2238  * while waiting on the I/O.
2239  */
do_unlinkat(int dfd,const char __user * pathname)2240 static long do_unlinkat(int dfd, const char __user *pathname)
2241 {
2242 	int error;
2243 	char *name;
2244 	struct dentry *dentry;
2245 	struct nameidata nd;
2246 	struct inode *inode = NULL;
2247 
2248 	error = user_path_parent(dfd, pathname, &nd, &name);
2249 	if (error)
2250 		return error;
2251 
2252 	error = -EISDIR;
2253 	if (nd.last_type != LAST_NORM)
2254 		goto exit1;
2255 
2256 	nd.flags &= ~LOOKUP_PARENT;
2257 
2258 	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2259 	dentry = lookup_hash(&nd);
2260 	error = PTR_ERR(dentry);
2261 	if (!IS_ERR(dentry)) {
2262 		/* Why not before? Because we want correct error value */
2263 		if (nd.last.name[nd.last.len])
2264 			goto slashes;
2265 		inode = dentry->d_inode;
2266 		if (inode)
2267 			atomic_inc(&inode->i_count);
2268 		error = mnt_want_write(nd.path.mnt);
2269 		if (error)
2270 			goto exit2;
2271 		error = security_path_unlink(&nd.path, dentry);
2272 		if (error)
2273 			goto exit3;
2274 		error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2275 exit3:
2276 		mnt_drop_write(nd.path.mnt);
2277 	exit2:
2278 		dput(dentry);
2279 	}
2280 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2281 	if (inode)
2282 		iput(inode);	/* truncate the inode here */
2283 exit1:
2284 	path_put(&nd.path);
2285 	putname(name);
2286 	return error;
2287 
2288 slashes:
2289 	error = !dentry->d_inode ? -ENOENT :
2290 		S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2291 	goto exit2;
2292 }
2293 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)2294 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2295 {
2296 	if ((flag & ~AT_REMOVEDIR) != 0)
2297 		return -EINVAL;
2298 
2299 	if (flag & AT_REMOVEDIR)
2300 		return do_rmdir(dfd, pathname);
2301 
2302 	return do_unlinkat(dfd, pathname);
2303 }
2304 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)2305 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2306 {
2307 	return do_unlinkat(AT_FDCWD, pathname);
2308 }
2309 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)2310 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2311 {
2312 	int error = may_create(dir, dentry);
2313 
2314 	if (error)
2315 		return error;
2316 
2317 	if (!dir->i_op->symlink)
2318 		return -EPERM;
2319 
2320 	error = security_inode_symlink(dir, dentry, oldname);
2321 	if (error)
2322 		return error;
2323 
2324 	DQUOT_INIT(dir);
2325 	error = dir->i_op->symlink(dir, dentry, oldname);
2326 	if (!error)
2327 		fsnotify_create(dir, dentry);
2328 	return error;
2329 }
2330 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)2331 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2332 		int, newdfd, const char __user *, newname)
2333 {
2334 	int error;
2335 	char *from;
2336 	char *to;
2337 	struct dentry *dentry;
2338 	struct nameidata nd;
2339 
2340 	from = getname(oldname);
2341 	if (IS_ERR(from))
2342 		return PTR_ERR(from);
2343 
2344 	error = user_path_parent(newdfd, newname, &nd, &to);
2345 	if (error)
2346 		goto out_putname;
2347 
2348 	dentry = lookup_create(&nd, 0);
2349 	error = PTR_ERR(dentry);
2350 	if (IS_ERR(dentry))
2351 		goto out_unlock;
2352 
2353 	error = mnt_want_write(nd.path.mnt);
2354 	if (error)
2355 		goto out_dput;
2356 	error = security_path_symlink(&nd.path, dentry, from);
2357 	if (error)
2358 		goto out_drop_write;
2359 	error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2360 out_drop_write:
2361 	mnt_drop_write(nd.path.mnt);
2362 out_dput:
2363 	dput(dentry);
2364 out_unlock:
2365 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2366 	path_put(&nd.path);
2367 	putname(to);
2368 out_putname:
2369 	putname(from);
2370 	return error;
2371 }
2372 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)2373 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2374 {
2375 	return sys_symlinkat(oldname, AT_FDCWD, newname);
2376 }
2377 
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)2378 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2379 {
2380 	struct inode *inode = old_dentry->d_inode;
2381 	int error;
2382 
2383 	if (!inode)
2384 		return -ENOENT;
2385 
2386 	error = may_create(dir, new_dentry);
2387 	if (error)
2388 		return error;
2389 
2390 	if (dir->i_sb != inode->i_sb)
2391 		return -EXDEV;
2392 
2393 	/*
2394 	 * A link to an append-only or immutable file cannot be created.
2395 	 */
2396 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2397 		return -EPERM;
2398 	if (!dir->i_op->link)
2399 		return -EPERM;
2400 	if (S_ISDIR(inode->i_mode))
2401 		return -EPERM;
2402 
2403 	error = security_inode_link(old_dentry, dir, new_dentry);
2404 	if (error)
2405 		return error;
2406 
2407 	mutex_lock(&inode->i_mutex);
2408 	DQUOT_INIT(dir);
2409 	error = dir->i_op->link(old_dentry, dir, new_dentry);
2410 	mutex_unlock(&inode->i_mutex);
2411 	if (!error)
2412 		fsnotify_link(dir, inode, new_dentry);
2413 	return error;
2414 }
2415 
2416 /*
2417  * Hardlinks are often used in delicate situations.  We avoid
2418  * security-related surprises by not following symlinks on the
2419  * newname.  --KAB
2420  *
2421  * We don't follow them on the oldname either to be compatible
2422  * with linux 2.0, and to avoid hard-linking to directories
2423  * and other special files.  --ADM
2424  */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)2425 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2426 		int, newdfd, const char __user *, newname, int, flags)
2427 {
2428 	struct dentry *new_dentry;
2429 	struct nameidata nd;
2430 	struct path old_path;
2431 	int error;
2432 	char *to;
2433 
2434 	if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2435 		return -EINVAL;
2436 
2437 	error = user_path_at(olddfd, oldname,
2438 			     flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2439 			     &old_path);
2440 	if (error)
2441 		return error;
2442 
2443 	error = user_path_parent(newdfd, newname, &nd, &to);
2444 	if (error)
2445 		goto out;
2446 	error = -EXDEV;
2447 	if (old_path.mnt != nd.path.mnt)
2448 		goto out_release;
2449 	new_dentry = lookup_create(&nd, 0);
2450 	error = PTR_ERR(new_dentry);
2451 	if (IS_ERR(new_dentry))
2452 		goto out_unlock;
2453 	error = mnt_want_write(nd.path.mnt);
2454 	if (error)
2455 		goto out_dput;
2456 	error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2457 	if (error)
2458 		goto out_drop_write;
2459 	error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2460 out_drop_write:
2461 	mnt_drop_write(nd.path.mnt);
2462 out_dput:
2463 	dput(new_dentry);
2464 out_unlock:
2465 	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2466 out_release:
2467 	path_put(&nd.path);
2468 	putname(to);
2469 out:
2470 	path_put(&old_path);
2471 
2472 	return error;
2473 }
2474 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)2475 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2476 {
2477 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2478 }
2479 
2480 /*
2481  * The worst of all namespace operations - renaming directory. "Perverted"
2482  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2483  * Problems:
2484  *	a) we can get into loop creation. Check is done in is_subdir().
2485  *	b) race potential - two innocent renames can create a loop together.
2486  *	   That's where 4.4 screws up. Current fix: serialization on
2487  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2488  *	   story.
2489  *	c) we have to lock _three_ objects - parents and victim (if it exists).
2490  *	   And that - after we got ->i_mutex on parents (until then we don't know
2491  *	   whether the target exists).  Solution: try to be smart with locking
2492  *	   order for inodes.  We rely on the fact that tree topology may change
2493  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
2494  *	   move will be locked.  Thus we can rank directories by the tree
2495  *	   (ancestors first) and rank all non-directories after them.
2496  *	   That works since everybody except rename does "lock parent, lookup,
2497  *	   lock child" and rename is under ->s_vfs_rename_mutex.
2498  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
2499  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
2500  *	   we'd better make sure that there's no link(2) for them.
2501  *	d) some filesystems don't support opened-but-unlinked directories,
2502  *	   either because of layout or because they are not ready to deal with
2503  *	   all cases correctly. The latter will be fixed (taking this sort of
2504  *	   stuff into VFS), but the former is not going away. Solution: the same
2505  *	   trick as in rmdir().
2506  *	e) conversion from fhandle to dentry may come in the wrong moment - when
2507  *	   we are removing the target. Solution: we will have to grab ->i_mutex
2508  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2509  *	   ->i_mutex on parents, which works but leads to some truely excessive
2510  *	   locking].
2511  */
vfs_rename_dir(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2512 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2513 			  struct inode *new_dir, struct dentry *new_dentry)
2514 {
2515 	int error = 0;
2516 	struct inode *target;
2517 
2518 	/*
2519 	 * If we are going to change the parent - check write permissions,
2520 	 * we'll need to flip '..'.
2521 	 */
2522 	if (new_dir != old_dir) {
2523 		error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2524 		if (error)
2525 			return error;
2526 	}
2527 
2528 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2529 	if (error)
2530 		return error;
2531 
2532 	target = new_dentry->d_inode;
2533 	if (target) {
2534 		mutex_lock(&target->i_mutex);
2535 		dentry_unhash(new_dentry);
2536 	}
2537 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2538 		error = -EBUSY;
2539 	else
2540 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2541 	if (target) {
2542 		if (!error)
2543 			target->i_flags |= S_DEAD;
2544 		mutex_unlock(&target->i_mutex);
2545 		if (d_unhashed(new_dentry))
2546 			d_rehash(new_dentry);
2547 		dput(new_dentry);
2548 	}
2549 	if (!error)
2550 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2551 			d_move(old_dentry,new_dentry);
2552 	return error;
2553 }
2554 
vfs_rename_other(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2555 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2556 			    struct inode *new_dir, struct dentry *new_dentry)
2557 {
2558 	struct inode *target;
2559 	int error;
2560 
2561 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2562 	if (error)
2563 		return error;
2564 
2565 	dget(new_dentry);
2566 	target = new_dentry->d_inode;
2567 	if (target)
2568 		mutex_lock(&target->i_mutex);
2569 	if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2570 		error = -EBUSY;
2571 	else
2572 		error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2573 	if (!error) {
2574 		if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2575 			d_move(old_dentry, new_dentry);
2576 	}
2577 	if (target)
2578 		mutex_unlock(&target->i_mutex);
2579 	dput(new_dentry);
2580 	return error;
2581 }
2582 
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)2583 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2584 	       struct inode *new_dir, struct dentry *new_dentry)
2585 {
2586 	int error;
2587 	int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2588 	const char *old_name;
2589 
2590 	if (old_dentry->d_inode == new_dentry->d_inode)
2591  		return 0;
2592 
2593 	error = may_delete(old_dir, old_dentry, is_dir);
2594 	if (error)
2595 		return error;
2596 
2597 	if (!new_dentry->d_inode)
2598 		error = may_create(new_dir, new_dentry);
2599 	else
2600 		error = may_delete(new_dir, new_dentry, is_dir);
2601 	if (error)
2602 		return error;
2603 
2604 	if (!old_dir->i_op->rename)
2605 		return -EPERM;
2606 
2607 	DQUOT_INIT(old_dir);
2608 	DQUOT_INIT(new_dir);
2609 
2610 	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2611 
2612 	if (is_dir)
2613 		error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2614 	else
2615 		error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2616 	if (!error) {
2617 		const char *new_name = old_dentry->d_name.name;
2618 		fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2619 			      new_dentry->d_inode, old_dentry);
2620 	}
2621 	fsnotify_oldname_free(old_name);
2622 
2623 	return error;
2624 }
2625 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)2626 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2627 		int, newdfd, const char __user *, newname)
2628 {
2629 	struct dentry *old_dir, *new_dir;
2630 	struct dentry *old_dentry, *new_dentry;
2631 	struct dentry *trap;
2632 	struct nameidata oldnd, newnd;
2633 	char *from;
2634 	char *to;
2635 	int error;
2636 
2637 	error = user_path_parent(olddfd, oldname, &oldnd, &from);
2638 	if (error)
2639 		goto exit;
2640 
2641 	error = user_path_parent(newdfd, newname, &newnd, &to);
2642 	if (error)
2643 		goto exit1;
2644 
2645 	error = -EXDEV;
2646 	if (oldnd.path.mnt != newnd.path.mnt)
2647 		goto exit2;
2648 
2649 	old_dir = oldnd.path.dentry;
2650 	error = -EBUSY;
2651 	if (oldnd.last_type != LAST_NORM)
2652 		goto exit2;
2653 
2654 	new_dir = newnd.path.dentry;
2655 	if (newnd.last_type != LAST_NORM)
2656 		goto exit2;
2657 
2658 	oldnd.flags &= ~LOOKUP_PARENT;
2659 	newnd.flags &= ~LOOKUP_PARENT;
2660 	newnd.flags |= LOOKUP_RENAME_TARGET;
2661 
2662 	trap = lock_rename(new_dir, old_dir);
2663 
2664 	old_dentry = lookup_hash(&oldnd);
2665 	error = PTR_ERR(old_dentry);
2666 	if (IS_ERR(old_dentry))
2667 		goto exit3;
2668 	/* source must exist */
2669 	error = -ENOENT;
2670 	if (!old_dentry->d_inode)
2671 		goto exit4;
2672 	/* unless the source is a directory trailing slashes give -ENOTDIR */
2673 	if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2674 		error = -ENOTDIR;
2675 		if (oldnd.last.name[oldnd.last.len])
2676 			goto exit4;
2677 		if (newnd.last.name[newnd.last.len])
2678 			goto exit4;
2679 	}
2680 	/* source should not be ancestor of target */
2681 	error = -EINVAL;
2682 	if (old_dentry == trap)
2683 		goto exit4;
2684 	new_dentry = lookup_hash(&newnd);
2685 	error = PTR_ERR(new_dentry);
2686 	if (IS_ERR(new_dentry))
2687 		goto exit4;
2688 	/* target should not be an ancestor of source */
2689 	error = -ENOTEMPTY;
2690 	if (new_dentry == trap)
2691 		goto exit5;
2692 
2693 	error = mnt_want_write(oldnd.path.mnt);
2694 	if (error)
2695 		goto exit5;
2696 	error = security_path_rename(&oldnd.path, old_dentry,
2697 				     &newnd.path, new_dentry);
2698 	if (error)
2699 		goto exit6;
2700 	error = vfs_rename(old_dir->d_inode, old_dentry,
2701 				   new_dir->d_inode, new_dentry);
2702 exit6:
2703 	mnt_drop_write(oldnd.path.mnt);
2704 exit5:
2705 	dput(new_dentry);
2706 exit4:
2707 	dput(old_dentry);
2708 exit3:
2709 	unlock_rename(new_dir, old_dir);
2710 exit2:
2711 	path_put(&newnd.path);
2712 	putname(to);
2713 exit1:
2714 	path_put(&oldnd.path);
2715 	putname(from);
2716 exit:
2717 	return error;
2718 }
2719 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)2720 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2721 {
2722 	return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2723 }
2724 
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen,const char * link)2725 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2726 {
2727 	int len;
2728 
2729 	len = PTR_ERR(link);
2730 	if (IS_ERR(link))
2731 		goto out;
2732 
2733 	len = strlen(link);
2734 	if (len > (unsigned) buflen)
2735 		len = buflen;
2736 	if (copy_to_user(buffer, link, len))
2737 		len = -EFAULT;
2738 out:
2739 	return len;
2740 }
2741 
2742 /*
2743  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
2744  * have ->follow_link() touching nd only in nd_set_link().  Using (or not
2745  * using) it for any given inode is up to filesystem.
2746  */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)2747 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2748 {
2749 	struct nameidata nd;
2750 	void *cookie;
2751 	int res;
2752 
2753 	nd.depth = 0;
2754 	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2755 	if (IS_ERR(cookie))
2756 		return PTR_ERR(cookie);
2757 
2758 	res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2759 	if (dentry->d_inode->i_op->put_link)
2760 		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2761 	return res;
2762 }
2763 
vfs_follow_link(struct nameidata * nd,const char * link)2764 int vfs_follow_link(struct nameidata *nd, const char *link)
2765 {
2766 	return __vfs_follow_link(nd, link);
2767 }
2768 
2769 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)2770 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2771 {
2772 	char *kaddr;
2773 	struct page *page;
2774 	struct address_space *mapping = dentry->d_inode->i_mapping;
2775 	page = read_mapping_page(mapping, 0, NULL);
2776 	if (IS_ERR(page))
2777 		return (char*)page;
2778 	*ppage = page;
2779 	kaddr = kmap(page);
2780 	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2781 	return kaddr;
2782 }
2783 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)2784 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2785 {
2786 	struct page *page = NULL;
2787 	char *s = page_getlink(dentry, &page);
2788 	int res = vfs_readlink(dentry,buffer,buflen,s);
2789 	if (page) {
2790 		kunmap(page);
2791 		page_cache_release(page);
2792 	}
2793 	return res;
2794 }
2795 
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)2796 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2797 {
2798 	struct page *page = NULL;
2799 	nd_set_link(nd, page_getlink(dentry, &page));
2800 	return page;
2801 }
2802 
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)2803 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2804 {
2805 	struct page *page = cookie;
2806 
2807 	if (page) {
2808 		kunmap(page);
2809 		page_cache_release(page);
2810 	}
2811 }
2812 
2813 /*
2814  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2815  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)2816 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2817 {
2818 	struct address_space *mapping = inode->i_mapping;
2819 	struct page *page;
2820 	void *fsdata;
2821 	int err;
2822 	char *kaddr;
2823 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2824 	if (nofs)
2825 		flags |= AOP_FLAG_NOFS;
2826 
2827 retry:
2828 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
2829 				flags, &page, &fsdata);
2830 	if (err)
2831 		goto fail;
2832 
2833 	kaddr = kmap_atomic(page, KM_USER0);
2834 	memcpy(kaddr, symname, len-1);
2835 	kunmap_atomic(kaddr, KM_USER0);
2836 
2837 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2838 							page, fsdata);
2839 	if (err < 0)
2840 		goto fail;
2841 	if (err < len-1)
2842 		goto retry;
2843 
2844 	mark_inode_dirty(inode);
2845 	return 0;
2846 fail:
2847 	return err;
2848 }
2849 
page_symlink(struct inode * inode,const char * symname,int len)2850 int page_symlink(struct inode *inode, const char *symname, int len)
2851 {
2852 	return __page_symlink(inode, symname, len,
2853 			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2854 }
2855 
2856 const struct inode_operations page_symlink_inode_operations = {
2857 	.readlink	= generic_readlink,
2858 	.follow_link	= page_follow_link_light,
2859 	.put_link	= page_put_link,
2860 };
2861 
2862 EXPORT_SYMBOL(user_path_at);
2863 EXPORT_SYMBOL(follow_down);
2864 EXPORT_SYMBOL(follow_up);
2865 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2866 EXPORT_SYMBOL(getname);
2867 EXPORT_SYMBOL(lock_rename);
2868 EXPORT_SYMBOL(lookup_one_len);
2869 EXPORT_SYMBOL(page_follow_link_light);
2870 EXPORT_SYMBOL(page_put_link);
2871 EXPORT_SYMBOL(page_readlink);
2872 EXPORT_SYMBOL(__page_symlink);
2873 EXPORT_SYMBOL(page_symlink);
2874 EXPORT_SYMBOL(page_symlink_inode_operations);
2875 EXPORT_SYMBOL(path_lookup);
2876 EXPORT_SYMBOL(kern_path);
2877 EXPORT_SYMBOL(vfs_path_lookup);
2878 EXPORT_SYMBOL(inode_permission);
2879 EXPORT_SYMBOL(file_permission);
2880 EXPORT_SYMBOL(unlock_rename);
2881 EXPORT_SYMBOL(vfs_create);
2882 EXPORT_SYMBOL(vfs_follow_link);
2883 EXPORT_SYMBOL(vfs_link);
2884 EXPORT_SYMBOL(vfs_mkdir);
2885 EXPORT_SYMBOL(vfs_mknod);
2886 EXPORT_SYMBOL(generic_permission);
2887 EXPORT_SYMBOL(vfs_readlink);
2888 EXPORT_SYMBOL(vfs_rename);
2889 EXPORT_SYMBOL(vfs_rmdir);
2890 EXPORT_SYMBOL(vfs_symlink);
2891 EXPORT_SYMBOL(vfs_unlink);
2892 EXPORT_SYMBOL(dentry_unhash);
2893 EXPORT_SYMBOL(generic_readlink);
2894 
2895 /* to be mentioned only in INIT_TASK */
2896 struct fs_struct init_fs = {
2897 	.count		= ATOMIC_INIT(1),
2898 	.lock		= __RW_LOCK_UNLOCKED(init_fs.lock),
2899 	.umask		= 0022,
2900 };
2901