1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * alloc.h
5 *
6 * Function prototypes
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #ifndef OCFS2_ALLOC_H
27 #define OCFS2_ALLOC_H
28
29
30 /*
31 * For xattr tree leaf, we limit the leaf byte size to be 64K.
32 */
33 #define OCFS2_MAX_XATTR_TREE_LEAF_SIZE 65536
34
35 /*
36 * ocfs2_extent_tree and ocfs2_extent_tree_operations are used to abstract
37 * the b-tree operations in ocfs2. Now all the b-tree operations are not
38 * limited to ocfs2_dinode only. Any data which need to allocate clusters
39 * to store can use b-tree. And it only needs to implement its ocfs2_extent_tree
40 * and operation.
41 *
42 * ocfs2_extent_tree becomes the first-class object for extent tree
43 * manipulation. Callers of the alloc.c code need to fill it via one of
44 * the ocfs2_init_*_extent_tree() operations below.
45 *
46 * ocfs2_extent_tree contains info for the root of the b-tree, it must have a
47 * root ocfs2_extent_list and a root_bh so that they can be used in the b-tree
48 * functions. With metadata ecc, we now call different journal_access
49 * functions for each type of metadata, so it must have the
50 * root_journal_access function.
51 * ocfs2_extent_tree_operations abstract the normal operations we do for
52 * the root of extent b-tree.
53 */
54 struct ocfs2_extent_tree_operations;
55 struct ocfs2_extent_tree {
56 struct ocfs2_extent_tree_operations *et_ops;
57 struct buffer_head *et_root_bh;
58 struct ocfs2_extent_list *et_root_el;
59 ocfs2_journal_access_func et_root_journal_access;
60 void *et_object;
61 unsigned int et_max_leaf_clusters;
62 };
63
64 /*
65 * ocfs2_init_*_extent_tree() will fill an ocfs2_extent_tree from the
66 * specified object buffer.
67 */
68 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
69 struct inode *inode,
70 struct buffer_head *bh);
71 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
72 struct inode *inode,
73 struct buffer_head *bh);
74 struct ocfs2_xattr_value_buf;
75 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
76 struct inode *inode,
77 struct ocfs2_xattr_value_buf *vb);
78
79 /*
80 * Read an extent block into *bh. If *bh is NULL, a bh will be
81 * allocated. This is a cached read. The extent block will be validated
82 * with ocfs2_validate_extent_block().
83 */
84 int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
85 struct buffer_head **bh);
86
87 struct ocfs2_alloc_context;
88 int ocfs2_insert_extent(struct ocfs2_super *osb,
89 handle_t *handle,
90 struct inode *inode,
91 struct ocfs2_extent_tree *et,
92 u32 cpos,
93 u64 start_blk,
94 u32 new_clusters,
95 u8 flags,
96 struct ocfs2_alloc_context *meta_ac);
97
98 enum ocfs2_alloc_restarted {
99 RESTART_NONE = 0,
100 RESTART_TRANS,
101 RESTART_META
102 };
103 int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
104 struct inode *inode,
105 u32 *logical_offset,
106 u32 clusters_to_add,
107 int mark_unwritten,
108 struct ocfs2_extent_tree *et,
109 handle_t *handle,
110 struct ocfs2_alloc_context *data_ac,
111 struct ocfs2_alloc_context *meta_ac,
112 enum ocfs2_alloc_restarted *reason_ret);
113 struct ocfs2_cached_dealloc_ctxt;
114 int ocfs2_mark_extent_written(struct inode *inode,
115 struct ocfs2_extent_tree *et,
116 handle_t *handle, u32 cpos, u32 len, u32 phys,
117 struct ocfs2_alloc_context *meta_ac,
118 struct ocfs2_cached_dealloc_ctxt *dealloc);
119 int ocfs2_remove_extent(struct inode *inode,
120 struct ocfs2_extent_tree *et,
121 u32 cpos, u32 len, handle_t *handle,
122 struct ocfs2_alloc_context *meta_ac,
123 struct ocfs2_cached_dealloc_ctxt *dealloc);
124 int ocfs2_remove_btree_range(struct inode *inode,
125 struct ocfs2_extent_tree *et,
126 u32 cpos, u32 phys_cpos, u32 len,
127 struct ocfs2_cached_dealloc_ctxt *dealloc);
128
129 int ocfs2_num_free_extents(struct ocfs2_super *osb,
130 struct inode *inode,
131 struct ocfs2_extent_tree *et);
132
133 /*
134 * how many new metadata chunks would an allocation need at maximum?
135 *
136 * Please note that the caller must make sure that root_el is the root
137 * of extent tree. So for an inode, it should be &fe->id2.i_list. Otherwise
138 * the result may be wrong.
139 */
ocfs2_extend_meta_needed(struct ocfs2_extent_list * root_el)140 static inline int ocfs2_extend_meta_needed(struct ocfs2_extent_list *root_el)
141 {
142 /*
143 * Rather than do all the work of determining how much we need
144 * (involves a ton of reads and locks), just ask for the
145 * maximal limit. That's a tree depth shift. So, one block for
146 * level of the tree (current l_tree_depth), one block for the
147 * new tree_depth==0 extent_block, and one block at the new
148 * top-of-the tree.
149 */
150 return le16_to_cpu(root_el->l_tree_depth) + 2;
151 }
152
153 void ocfs2_dinode_new_extent_list(struct inode *inode, struct ocfs2_dinode *di);
154 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di);
155 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
156 struct buffer_head *di_bh);
157
158 int ocfs2_truncate_log_init(struct ocfs2_super *osb);
159 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb);
160 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
161 int cancel);
162 int ocfs2_flush_truncate_log(struct ocfs2_super *osb);
163 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
164 int slot_num,
165 struct ocfs2_dinode **tl_copy);
166 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
167 struct ocfs2_dinode *tl_copy);
168 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb);
169 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
170 handle_t *handle,
171 u64 start_blk,
172 unsigned int num_clusters);
173 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb);
174
175 /*
176 * Process local structure which describes the block unlinks done
177 * during an operation. This is populated via
178 * ocfs2_cache_block_dealloc().
179 *
180 * ocfs2_run_deallocs() should be called after the potentially
181 * de-allocating routines. No journal handles should be open, and most
182 * locks should have been dropped.
183 */
184 struct ocfs2_cached_dealloc_ctxt {
185 struct ocfs2_per_slot_free_list *c_first_suballocator;
186 struct ocfs2_cached_block_free *c_global_allocator;
187 };
ocfs2_init_dealloc_ctxt(struct ocfs2_cached_dealloc_ctxt * c)188 static inline void ocfs2_init_dealloc_ctxt(struct ocfs2_cached_dealloc_ctxt *c)
189 {
190 c->c_first_suballocator = NULL;
191 c->c_global_allocator = NULL;
192 }
193 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
194 u64 blkno, unsigned int bit);
ocfs2_dealloc_has_cluster(struct ocfs2_cached_dealloc_ctxt * c)195 static inline int ocfs2_dealloc_has_cluster(struct ocfs2_cached_dealloc_ctxt *c)
196 {
197 return c->c_global_allocator != NULL;
198 }
199 int ocfs2_run_deallocs(struct ocfs2_super *osb,
200 struct ocfs2_cached_dealloc_ctxt *ctxt);
201
202 struct ocfs2_truncate_context {
203 struct ocfs2_cached_dealloc_ctxt tc_dealloc;
204 int tc_ext_alloc_locked; /* is it cluster locked? */
205 /* these get destroyed once it's passed to ocfs2_commit_truncate. */
206 struct buffer_head *tc_last_eb_bh;
207 };
208
209 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
210 u64 range_start, u64 range_end);
211 int ocfs2_prepare_truncate(struct ocfs2_super *osb,
212 struct inode *inode,
213 struct buffer_head *fe_bh,
214 struct ocfs2_truncate_context **tc);
215 int ocfs2_commit_truncate(struct ocfs2_super *osb,
216 struct inode *inode,
217 struct buffer_head *fe_bh,
218 struct ocfs2_truncate_context *tc);
219 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
220 unsigned int start, unsigned int end, int trunc);
221
222 int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
223 u32 cpos, struct buffer_head **leaf_bh);
224 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster);
225
226 /*
227 * Helper function to look at the # of clusters in an extent record.
228 */
ocfs2_rec_clusters(struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec)229 static inline unsigned int ocfs2_rec_clusters(struct ocfs2_extent_list *el,
230 struct ocfs2_extent_rec *rec)
231 {
232 /*
233 * Cluster count in extent records is slightly different
234 * between interior nodes and leaf nodes. This is to support
235 * unwritten extents which need a flags field in leaf node
236 * records, thus shrinking the available space for a clusters
237 * field.
238 */
239 if (el->l_tree_depth)
240 return le32_to_cpu(rec->e_int_clusters);
241 else
242 return le16_to_cpu(rec->e_leaf_clusters);
243 }
244
245 /*
246 * This is only valid for leaf nodes, which are the only ones that can
247 * have empty extents anyway.
248 */
ocfs2_is_empty_extent(struct ocfs2_extent_rec * rec)249 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
250 {
251 return !rec->e_leaf_clusters;
252 }
253
254 #endif /* OCFS2_ALLOC_H */
255