• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  fs/partitions/msdos.c
3  *
4  *  Code extracted from drivers/block/genhd.c
5  *  Copyright (C) 1991-1998  Linus Torvalds
6  *
7  *  Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug
8  *  in the early extended-partition checks and added DM partitions
9  *
10  *  Support for DiskManager v6.0x added by Mark Lord,
11  *  with information provided by OnTrack.  This now works for linux fdisk
12  *  and LILO, as well as loadlin and bootln.  Note that disks other than
13  *  /dev/hda *must* have a "DOS" type 0x51 partition in the first slot (hda1).
14  *
15  *  More flexible handling of extended partitions - aeb, 950831
16  *
17  *  Check partition table on IDE disks for common CHS translations
18  *
19  *  Re-organised Feb 1998 Russell King
20  */
21 #include <linux/msdos_fs.h>
22 
23 #include "check.h"
24 #include "msdos.h"
25 #include "efi.h"
26 
27 /*
28  * Many architectures don't like unaligned accesses, while
29  * the nr_sects and start_sect partition table entries are
30  * at a 2 (mod 4) address.
31  */
32 #include <asm/unaligned.h>
33 
34 #define SYS_IND(p)	(get_unaligned(&p->sys_ind))
35 #define NR_SECTS(p)	({ __le32 __a =	get_unaligned(&p->nr_sects);	\
36 				le32_to_cpu(__a); \
37 			})
38 
39 #define START_SECT(p)	({ __le32 __a =	get_unaligned(&p->start_sect);	\
40 				le32_to_cpu(__a); \
41 			})
42 
is_extended_partition(struct partition * p)43 static inline int is_extended_partition(struct partition *p)
44 {
45 	return (SYS_IND(p) == DOS_EXTENDED_PARTITION ||
46 		SYS_IND(p) == WIN98_EXTENDED_PARTITION ||
47 		SYS_IND(p) == LINUX_EXTENDED_PARTITION);
48 }
49 
50 #define MSDOS_LABEL_MAGIC1	0x55
51 #define MSDOS_LABEL_MAGIC2	0xAA
52 
53 static inline int
msdos_magic_present(unsigned char * p)54 msdos_magic_present(unsigned char *p)
55 {
56 	return (p[0] == MSDOS_LABEL_MAGIC1 && p[1] == MSDOS_LABEL_MAGIC2);
57 }
58 
59 /* Value is EBCDIC 'IBMA' */
60 #define AIX_LABEL_MAGIC1	0xC9
61 #define AIX_LABEL_MAGIC2	0xC2
62 #define AIX_LABEL_MAGIC3	0xD4
63 #define AIX_LABEL_MAGIC4	0xC1
aix_magic_present(unsigned char * p,struct block_device * bdev)64 static int aix_magic_present(unsigned char *p, struct block_device *bdev)
65 {
66 	struct partition *pt = (struct partition *) (p + 0x1be);
67 	Sector sect;
68 	unsigned char *d;
69 	int slot, ret = 0;
70 
71 	if (!(p[0] == AIX_LABEL_MAGIC1 &&
72 		p[1] == AIX_LABEL_MAGIC2 &&
73 		p[2] == AIX_LABEL_MAGIC3 &&
74 		p[3] == AIX_LABEL_MAGIC4))
75 		return 0;
76 	/* Assume the partition table is valid if Linux partitions exists */
77 	for (slot = 1; slot <= 4; slot++, pt++) {
78 		if (pt->sys_ind == LINUX_SWAP_PARTITION ||
79 			pt->sys_ind == LINUX_RAID_PARTITION ||
80 			pt->sys_ind == LINUX_DATA_PARTITION ||
81 			pt->sys_ind == LINUX_LVM_PARTITION ||
82 			is_extended_partition(pt))
83 			return 0;
84 	}
85 	d = read_dev_sector(bdev, 7, &sect);
86 	if (d) {
87 		if (d[0] == '_' && d[1] == 'L' && d[2] == 'V' && d[3] == 'M')
88 			ret = 1;
89 		put_dev_sector(sect);
90 	};
91 	return ret;
92 }
93 
94 /*
95  * Create devices for each logical partition in an extended partition.
96  * The logical partitions form a linked list, with each entry being
97  * a partition table with two entries.  The first entry
98  * is the real data partition (with a start relative to the partition
99  * table start).  The second is a pointer to the next logical partition
100  * (with a start relative to the entire extended partition).
101  * We do not create a Linux partition for the partition tables, but
102  * only for the actual data partitions.
103  */
104 
105 static void
parse_extended(struct parsed_partitions * state,struct block_device * bdev,u32 first_sector,u32 first_size)106 parse_extended(struct parsed_partitions *state, struct block_device *bdev,
107 			u32 first_sector, u32 first_size)
108 {
109 	struct partition *p;
110 	Sector sect;
111 	unsigned char *data;
112 	u32 this_sector, this_size;
113 	int sector_size = bdev_hardsect_size(bdev) / 512;
114 	int loopct = 0;		/* number of links followed
115 				   without finding a data partition */
116 	int i;
117 
118 	this_sector = first_sector;
119 	this_size = first_size;
120 
121 	while (1) {
122 		if (++loopct > 100)
123 			return;
124 		if (state->next == state->limit)
125 			return;
126 		data = read_dev_sector(bdev, this_sector, &sect);
127 		if (!data)
128 			return;
129 
130 		if (!msdos_magic_present(data + 510))
131 			goto done;
132 
133 		p = (struct partition *) (data + 0x1be);
134 
135 		/*
136 		 * Usually, the first entry is the real data partition,
137 		 * the 2nd entry is the next extended partition, or empty,
138 		 * and the 3rd and 4th entries are unused.
139 		 * However, DRDOS sometimes has the extended partition as
140 		 * the first entry (when the data partition is empty),
141 		 * and OS/2 seems to use all four entries.
142 		 */
143 
144 		/*
145 		 * First process the data partition(s)
146 		 */
147 		for (i=0; i<4; i++, p++) {
148 			u32 offs, size, next;
149 			if (!NR_SECTS(p) || is_extended_partition(p))
150 				continue;
151 
152 			/* Check the 3rd and 4th entries -
153 			   these sometimes contain random garbage */
154 			offs = START_SECT(p)*sector_size;
155 			size = NR_SECTS(p)*sector_size;
156 			next = this_sector + offs;
157 			if (i >= 2) {
158 				if (offs + size > this_size)
159 					continue;
160 				if (next < first_sector)
161 					continue;
162 				if (next + size > first_sector + first_size)
163 					continue;
164 			}
165 
166 			put_partition(state, state->next, next, size);
167 			if (SYS_IND(p) == LINUX_RAID_PARTITION)
168 				state->parts[state->next].flags = ADDPART_FLAG_RAID;
169 			loopct = 0;
170 			if (++state->next == state->limit)
171 				goto done;
172 		}
173 		/*
174 		 * Next, process the (first) extended partition, if present.
175 		 * (So far, there seems to be no reason to make
176 		 *  parse_extended()  recursive and allow a tree
177 		 *  of extended partitions.)
178 		 * It should be a link to the next logical partition.
179 		 */
180 		p -= 4;
181 		for (i=0; i<4; i++, p++)
182 			if (NR_SECTS(p) && is_extended_partition(p))
183 				break;
184 		if (i == 4)
185 			goto done;	 /* nothing left to do */
186 
187 		this_sector = first_sector + START_SECT(p) * sector_size;
188 		this_size = NR_SECTS(p) * sector_size;
189 		put_dev_sector(sect);
190 	}
191 done:
192 	put_dev_sector(sect);
193 }
194 
195 /* james@bpgc.com: Solaris has a nasty indicator: 0x82 which also
196    indicates linux swap.  Be careful before believing this is Solaris. */
197 
198 static void
parse_solaris_x86(struct parsed_partitions * state,struct block_device * bdev,u32 offset,u32 size,int origin)199 parse_solaris_x86(struct parsed_partitions *state, struct block_device *bdev,
200 			u32 offset, u32 size, int origin)
201 {
202 #ifdef CONFIG_SOLARIS_X86_PARTITION
203 	Sector sect;
204 	struct solaris_x86_vtoc *v;
205 	int i;
206 	short max_nparts;
207 
208 	v = (struct solaris_x86_vtoc *)read_dev_sector(bdev, offset+1, &sect);
209 	if (!v)
210 		return;
211 	if (le32_to_cpu(v->v_sanity) != SOLARIS_X86_VTOC_SANE) {
212 		put_dev_sector(sect);
213 		return;
214 	}
215 	printk(" %s%d: <solaris:", state->name, origin);
216 	if (le32_to_cpu(v->v_version) != 1) {
217 		printk("  cannot handle version %d vtoc>\n",
218 			le32_to_cpu(v->v_version));
219 		put_dev_sector(sect);
220 		return;
221 	}
222 	/* Ensure we can handle previous case of VTOC with 8 entries gracefully */
223 	max_nparts = le16_to_cpu (v->v_nparts) > 8 ? SOLARIS_X86_NUMSLICE : 8;
224 	for (i=0; i<max_nparts && state->next<state->limit; i++) {
225 		struct solaris_x86_slice *s = &v->v_slice[i];
226 		if (s->s_size == 0)
227 			continue;
228 		printk(" [s%d]", i);
229 		/* solaris partitions are relative to current MS-DOS
230 		 * one; must add the offset of the current partition */
231 		put_partition(state, state->next++,
232 				 le32_to_cpu(s->s_start)+offset,
233 				 le32_to_cpu(s->s_size));
234 	}
235 	put_dev_sector(sect);
236 	printk(" >\n");
237 #endif
238 }
239 
240 #if defined(CONFIG_BSD_DISKLABEL)
241 /*
242  * Create devices for BSD partitions listed in a disklabel, under a
243  * dos-like partition. See parse_extended() for more information.
244  */
245 static void
parse_bsd(struct parsed_partitions * state,struct block_device * bdev,u32 offset,u32 size,int origin,char * flavour,int max_partitions)246 parse_bsd(struct parsed_partitions *state, struct block_device *bdev,
247 		u32 offset, u32 size, int origin, char *flavour,
248 		int max_partitions)
249 {
250 	Sector sect;
251 	struct bsd_disklabel *l;
252 	struct bsd_partition *p;
253 
254 	l = (struct bsd_disklabel *)read_dev_sector(bdev, offset+1, &sect);
255 	if (!l)
256 		return;
257 	if (le32_to_cpu(l->d_magic) != BSD_DISKMAGIC) {
258 		put_dev_sector(sect);
259 		return;
260 	}
261 	printk(" %s%d: <%s:", state->name, origin, flavour);
262 
263 	if (le16_to_cpu(l->d_npartitions) < max_partitions)
264 		max_partitions = le16_to_cpu(l->d_npartitions);
265 	for (p = l->d_partitions; p - l->d_partitions < max_partitions; p++) {
266 		u32 bsd_start, bsd_size;
267 
268 		if (state->next == state->limit)
269 			break;
270 		if (p->p_fstype == BSD_FS_UNUSED)
271 			continue;
272 		bsd_start = le32_to_cpu(p->p_offset);
273 		bsd_size = le32_to_cpu(p->p_size);
274 		if (offset == bsd_start && size == bsd_size)
275 			/* full parent partition, we have it already */
276 			continue;
277 		if (offset > bsd_start || offset+size < bsd_start+bsd_size) {
278 			printk("bad subpartition - ignored\n");
279 			continue;
280 		}
281 		put_partition(state, state->next++, bsd_start, bsd_size);
282 	}
283 	put_dev_sector(sect);
284 	if (le16_to_cpu(l->d_npartitions) > max_partitions)
285 		printk(" (ignored %d more)",
286 		       le16_to_cpu(l->d_npartitions) - max_partitions);
287 	printk(" >\n");
288 }
289 #endif
290 
291 static void
parse_freebsd(struct parsed_partitions * state,struct block_device * bdev,u32 offset,u32 size,int origin)292 parse_freebsd(struct parsed_partitions *state, struct block_device *bdev,
293 		u32 offset, u32 size, int origin)
294 {
295 #ifdef CONFIG_BSD_DISKLABEL
296 	parse_bsd(state, bdev, offset, size, origin,
297 			"bsd", BSD_MAXPARTITIONS);
298 #endif
299 }
300 
301 static void
parse_netbsd(struct parsed_partitions * state,struct block_device * bdev,u32 offset,u32 size,int origin)302 parse_netbsd(struct parsed_partitions *state, struct block_device *bdev,
303 		u32 offset, u32 size, int origin)
304 {
305 #ifdef CONFIG_BSD_DISKLABEL
306 	parse_bsd(state, bdev, offset, size, origin,
307 			"netbsd", BSD_MAXPARTITIONS);
308 #endif
309 }
310 
311 static void
parse_openbsd(struct parsed_partitions * state,struct block_device * bdev,u32 offset,u32 size,int origin)312 parse_openbsd(struct parsed_partitions *state, struct block_device *bdev,
313 		u32 offset, u32 size, int origin)
314 {
315 #ifdef CONFIG_BSD_DISKLABEL
316 	parse_bsd(state, bdev, offset, size, origin,
317 			"openbsd", OPENBSD_MAXPARTITIONS);
318 #endif
319 }
320 
321 /*
322  * Create devices for Unixware partitions listed in a disklabel, under a
323  * dos-like partition. See parse_extended() for more information.
324  */
325 static void
parse_unixware(struct parsed_partitions * state,struct block_device * bdev,u32 offset,u32 size,int origin)326 parse_unixware(struct parsed_partitions *state, struct block_device *bdev,
327 		u32 offset, u32 size, int origin)
328 {
329 #ifdef CONFIG_UNIXWARE_DISKLABEL
330 	Sector sect;
331 	struct unixware_disklabel *l;
332 	struct unixware_slice *p;
333 
334 	l = (struct unixware_disklabel *)read_dev_sector(bdev, offset+29, &sect);
335 	if (!l)
336 		return;
337 	if (le32_to_cpu(l->d_magic) != UNIXWARE_DISKMAGIC ||
338 	    le32_to_cpu(l->vtoc.v_magic) != UNIXWARE_DISKMAGIC2) {
339 		put_dev_sector(sect);
340 		return;
341 	}
342 	printk(" %s%d: <unixware:", state->name, origin);
343 	p = &l->vtoc.v_slice[1];
344 	/* I omit the 0th slice as it is the same as whole disk. */
345 	while (p - &l->vtoc.v_slice[0] < UNIXWARE_NUMSLICE) {
346 		if (state->next == state->limit)
347 			break;
348 
349 		if (p->s_label != UNIXWARE_FS_UNUSED)
350 			put_partition(state, state->next++,
351 						START_SECT(p), NR_SECTS(p));
352 		p++;
353 	}
354 	put_dev_sector(sect);
355 	printk(" >\n");
356 #endif
357 }
358 
359 /*
360  * Minix 2.0.0/2.0.2 subpartition support.
361  * Anand Krishnamurthy <anandk@wiproge.med.ge.com>
362  * Rajeev V. Pillai    <rajeevvp@yahoo.com>
363  */
364 static void
parse_minix(struct parsed_partitions * state,struct block_device * bdev,u32 offset,u32 size,int origin)365 parse_minix(struct parsed_partitions *state, struct block_device *bdev,
366 		u32 offset, u32 size, int origin)
367 {
368 #ifdef CONFIG_MINIX_SUBPARTITION
369 	Sector sect;
370 	unsigned char *data;
371 	struct partition *p;
372 	int i;
373 
374 	data = read_dev_sector(bdev, offset, &sect);
375 	if (!data)
376 		return;
377 
378 	p = (struct partition *)(data + 0x1be);
379 
380 	/* The first sector of a Minix partition can have either
381 	 * a secondary MBR describing its subpartitions, or
382 	 * the normal boot sector. */
383 	if (msdos_magic_present (data + 510) &&
384 	    SYS_IND(p) == MINIX_PARTITION) { /* subpartition table present */
385 
386 		printk(" %s%d: <minix:", state->name, origin);
387 		for (i = 0; i < MINIX_NR_SUBPARTITIONS; i++, p++) {
388 			if (state->next == state->limit)
389 				break;
390 			/* add each partition in use */
391 			if (SYS_IND(p) == MINIX_PARTITION)
392 				put_partition(state, state->next++,
393 					      START_SECT(p), NR_SECTS(p));
394 		}
395 		printk(" >\n");
396 	}
397 	put_dev_sector(sect);
398 #endif /* CONFIG_MINIX_SUBPARTITION */
399 }
400 
401 static struct {
402 	unsigned char id;
403 	void (*parse)(struct parsed_partitions *, struct block_device *,
404 			u32, u32, int);
405 } subtypes[] = {
406 	{FREEBSD_PARTITION, parse_freebsd},
407 	{NETBSD_PARTITION, parse_netbsd},
408 	{OPENBSD_PARTITION, parse_openbsd},
409 	{MINIX_PARTITION, parse_minix},
410 	{UNIXWARE_PARTITION, parse_unixware},
411 	{SOLARIS_X86_PARTITION, parse_solaris_x86},
412 	{NEW_SOLARIS_X86_PARTITION, parse_solaris_x86},
413 	{0, NULL},
414 };
415 
msdos_partition(struct parsed_partitions * state,struct block_device * bdev)416 int msdos_partition(struct parsed_partitions *state, struct block_device *bdev)
417 {
418 	int sector_size = bdev_hardsect_size(bdev) / 512;
419 	Sector sect;
420 	unsigned char *data;
421 	struct partition *p;
422 	struct fat_boot_sector *fb;
423 	int slot;
424 
425 	data = read_dev_sector(bdev, 0, &sect);
426 	if (!data)
427 		return -1;
428 	if (!msdos_magic_present(data + 510)) {
429 		put_dev_sector(sect);
430 		return 0;
431 	}
432 
433 	if (aix_magic_present(data, bdev)) {
434 		put_dev_sector(sect);
435 		printk( " [AIX]");
436 		return 0;
437 	}
438 
439 	/*
440 	 * Now that the 55aa signature is present, this is probably
441 	 * either the boot sector of a FAT filesystem or a DOS-type
442 	 * partition table. Reject this in case the boot indicator
443 	 * is not 0 or 0x80.
444 	 */
445 	p = (struct partition *) (data + 0x1be);
446 	for (slot = 1; slot <= 4; slot++, p++) {
447 		if (p->boot_ind != 0 && p->boot_ind != 0x80) {
448 			/*
449 			 * Even without a valid boot inidicator value
450 			 * its still possible this is valid FAT filesystem
451 			 * without a partition table.
452 			 */
453 			fb = (struct fat_boot_sector *) data;
454 			if (slot == 1 && fb->reserved && fb->fats
455 				&& fat_valid_media(fb->media)) {
456 				printk("\n");
457 				put_dev_sector(sect);
458 				return 1;
459 			} else {
460 				put_dev_sector(sect);
461 				return 0;
462 			}
463 		}
464 	}
465 
466 #ifdef CONFIG_EFI_PARTITION
467 	p = (struct partition *) (data + 0x1be);
468 	for (slot = 1 ; slot <= 4 ; slot++, p++) {
469 		/* If this is an EFI GPT disk, msdos should ignore it. */
470 		if (SYS_IND(p) == EFI_PMBR_OSTYPE_EFI_GPT) {
471 			put_dev_sector(sect);
472 			return 0;
473 		}
474 	}
475 #endif
476 	p = (struct partition *) (data + 0x1be);
477 
478 	/*
479 	 * Look for partitions in two passes:
480 	 * First find the primary and DOS-type extended partitions.
481 	 * On the second pass look inside *BSD, Unixware and Solaris partitions.
482 	 */
483 
484 	state->next = 5;
485 	for (slot = 1 ; slot <= 4 ; slot++, p++) {
486 		u32 start = START_SECT(p)*sector_size;
487 		u32 size = NR_SECTS(p)*sector_size;
488 		if (!size)
489 			continue;
490 		if (is_extended_partition(p)) {
491 			/* prevent someone doing mkfs or mkswap on an
492 			   extended partition, but leave room for LILO */
493 			put_partition(state, slot, start, size == 1 ? 1 : 2);
494 			printk(" <");
495 			parse_extended(state, bdev, start, size);
496 			printk(" >");
497 			continue;
498 		}
499 		put_partition(state, slot, start, size);
500 		if (SYS_IND(p) == LINUX_RAID_PARTITION)
501 			state->parts[slot].flags = 1;
502 		if (SYS_IND(p) == DM6_PARTITION)
503 			printk("[DM]");
504 		if (SYS_IND(p) == EZD_PARTITION)
505 			printk("[EZD]");
506 	}
507 
508 	printk("\n");
509 
510 	/* second pass - output for each on a separate line */
511 	p = (struct partition *) (0x1be + data);
512 	for (slot = 1 ; slot <= 4 ; slot++, p++) {
513 		unsigned char id = SYS_IND(p);
514 		int n;
515 
516 		if (!NR_SECTS(p))
517 			continue;
518 
519 		for (n = 0; subtypes[n].parse && id != subtypes[n].id; n++)
520 			;
521 
522 		if (!subtypes[n].parse)
523 			continue;
524 		subtypes[n].parse(state, bdev, START_SECT(p)*sector_size,
525 						NR_SECTS(p)*sector_size, slot);
526 	}
527 	put_dev_sector(sect);
528 	return 1;
529 }
530