• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 
34 /*
35  * Attempt to steal a page from a pipe buffer. This should perhaps go into
36  * a vm helper function, it's already simplified quite a bit by the
37  * addition of remove_mapping(). If success is returned, the caller may
38  * attempt to reuse this page for another destination.
39  */
page_cache_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 				     struct pipe_buffer *buf)
42 {
43 	struct page *page = buf->page;
44 	struct address_space *mapping;
45 
46 	lock_page(page);
47 
48 	mapping = page_mapping(page);
49 	if (mapping) {
50 		WARN_ON(!PageUptodate(page));
51 
52 		/*
53 		 * At least for ext2 with nobh option, we need to wait on
54 		 * writeback completing on this page, since we'll remove it
55 		 * from the pagecache.  Otherwise truncate wont wait on the
56 		 * page, allowing the disk blocks to be reused by someone else
57 		 * before we actually wrote our data to them. fs corruption
58 		 * ensues.
59 		 */
60 		wait_on_page_writeback(page);
61 
62 		if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
63 			goto out_unlock;
64 
65 		/*
66 		 * If we succeeded in removing the mapping, set LRU flag
67 		 * and return good.
68 		 */
69 		if (remove_mapping(mapping, page)) {
70 			buf->flags |= PIPE_BUF_FLAG_LRU;
71 			return 0;
72 		}
73 	}
74 
75 	/*
76 	 * Raced with truncate or failed to remove page from current
77 	 * address space, unlock and return failure.
78 	 */
79 out_unlock:
80 	unlock_page(page);
81 	return 1;
82 }
83 
page_cache_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)84 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
85 					struct pipe_buffer *buf)
86 {
87 	page_cache_release(buf->page);
88 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
89 }
90 
91 /*
92  * Check whether the contents of buf is OK to access. Since the content
93  * is a page cache page, IO may be in flight.
94  */
page_cache_pipe_buf_confirm(struct pipe_inode_info * pipe,struct pipe_buffer * buf)95 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
96 				       struct pipe_buffer *buf)
97 {
98 	struct page *page = buf->page;
99 	int err;
100 
101 	if (!PageUptodate(page)) {
102 		lock_page(page);
103 
104 		/*
105 		 * Page got truncated/unhashed. This will cause a 0-byte
106 		 * splice, if this is the first page.
107 		 */
108 		if (!page->mapping) {
109 			err = -ENODATA;
110 			goto error;
111 		}
112 
113 		/*
114 		 * Uh oh, read-error from disk.
115 		 */
116 		if (!PageUptodate(page)) {
117 			err = -EIO;
118 			goto error;
119 		}
120 
121 		/*
122 		 * Page is ok afterall, we are done.
123 		 */
124 		unlock_page(page);
125 	}
126 
127 	return 0;
128 error:
129 	unlock_page(page);
130 	return err;
131 }
132 
133 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
134 	.can_merge = 0,
135 	.map = generic_pipe_buf_map,
136 	.unmap = generic_pipe_buf_unmap,
137 	.confirm = page_cache_pipe_buf_confirm,
138 	.release = page_cache_pipe_buf_release,
139 	.steal = page_cache_pipe_buf_steal,
140 	.get = generic_pipe_buf_get,
141 };
142 
user_page_pipe_buf_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)143 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
144 				    struct pipe_buffer *buf)
145 {
146 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
147 		return 1;
148 
149 	buf->flags |= PIPE_BUF_FLAG_LRU;
150 	return generic_pipe_buf_steal(pipe, buf);
151 }
152 
153 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
154 	.can_merge = 0,
155 	.map = generic_pipe_buf_map,
156 	.unmap = generic_pipe_buf_unmap,
157 	.confirm = generic_pipe_buf_confirm,
158 	.release = page_cache_pipe_buf_release,
159 	.steal = user_page_pipe_buf_steal,
160 	.get = generic_pipe_buf_get,
161 };
162 
163 /**
164  * splice_to_pipe - fill passed data into a pipe
165  * @pipe:	pipe to fill
166  * @spd:	data to fill
167  *
168  * Description:
169  *    @spd contains a map of pages and len/offset tuples, along with
170  *    the struct pipe_buf_operations associated with these pages. This
171  *    function will link that data to the pipe.
172  *
173  */
splice_to_pipe(struct pipe_inode_info * pipe,struct splice_pipe_desc * spd)174 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
175 		       struct splice_pipe_desc *spd)
176 {
177 	unsigned int spd_pages = spd->nr_pages;
178 	int ret, do_wakeup, page_nr;
179 
180 	ret = 0;
181 	do_wakeup = 0;
182 	page_nr = 0;
183 
184 	if (pipe->inode)
185 		mutex_lock(&pipe->inode->i_mutex);
186 
187 	for (;;) {
188 		if (!pipe->readers) {
189 			send_sig(SIGPIPE, current, 0);
190 			if (!ret)
191 				ret = -EPIPE;
192 			break;
193 		}
194 
195 		if (pipe->nrbufs < PIPE_BUFFERS) {
196 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 			struct pipe_buffer *buf = pipe->bufs + newbuf;
198 
199 			buf->page = spd->pages[page_nr];
200 			buf->offset = spd->partial[page_nr].offset;
201 			buf->len = spd->partial[page_nr].len;
202 			buf->private = spd->partial[page_nr].private;
203 			buf->ops = spd->ops;
204 			if (spd->flags & SPLICE_F_GIFT)
205 				buf->flags |= PIPE_BUF_FLAG_GIFT;
206 
207 			pipe->nrbufs++;
208 			page_nr++;
209 			ret += buf->len;
210 
211 			if (pipe->inode)
212 				do_wakeup = 1;
213 
214 			if (!--spd->nr_pages)
215 				break;
216 			if (pipe->nrbufs < PIPE_BUFFERS)
217 				continue;
218 
219 			break;
220 		}
221 
222 		if (spd->flags & SPLICE_F_NONBLOCK) {
223 			if (!ret)
224 				ret = -EAGAIN;
225 			break;
226 		}
227 
228 		if (signal_pending(current)) {
229 			if (!ret)
230 				ret = -ERESTARTSYS;
231 			break;
232 		}
233 
234 		if (do_wakeup) {
235 			smp_mb();
236 			if (waitqueue_active(&pipe->wait))
237 				wake_up_interruptible_sync(&pipe->wait);
238 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 			do_wakeup = 0;
240 		}
241 
242 		pipe->waiting_writers++;
243 		pipe_wait(pipe);
244 		pipe->waiting_writers--;
245 	}
246 
247 	if (pipe->inode) {
248 		mutex_unlock(&pipe->inode->i_mutex);
249 
250 		if (do_wakeup) {
251 			smp_mb();
252 			if (waitqueue_active(&pipe->wait))
253 				wake_up_interruptible(&pipe->wait);
254 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 		}
256 	}
257 
258 	while (page_nr < spd_pages)
259 		spd->spd_release(spd, page_nr++);
260 
261 	return ret;
262 }
263 
spd_release_page(struct splice_pipe_desc * spd,unsigned int i)264 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
265 {
266 	page_cache_release(spd->pages[i]);
267 }
268 
269 static int
__generic_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)270 __generic_file_splice_read(struct file *in, loff_t *ppos,
271 			   struct pipe_inode_info *pipe, size_t len,
272 			   unsigned int flags)
273 {
274 	struct address_space *mapping = in->f_mapping;
275 	unsigned int loff, nr_pages, req_pages;
276 	struct page *pages[PIPE_BUFFERS];
277 	struct partial_page partial[PIPE_BUFFERS];
278 	struct page *page;
279 	pgoff_t index, end_index;
280 	loff_t isize;
281 	int error, page_nr;
282 	struct splice_pipe_desc spd = {
283 		.pages = pages,
284 		.partial = partial,
285 		.flags = flags,
286 		.ops = &page_cache_pipe_buf_ops,
287 		.spd_release = spd_release_page,
288 	};
289 
290 	index = *ppos >> PAGE_CACHE_SHIFT;
291 	loff = *ppos & ~PAGE_CACHE_MASK;
292 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
293 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
294 
295 	/*
296 	 * Lookup the (hopefully) full range of pages we need.
297 	 */
298 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
299 	index += spd.nr_pages;
300 
301 	/*
302 	 * If find_get_pages_contig() returned fewer pages than we needed,
303 	 * readahead/allocate the rest and fill in the holes.
304 	 */
305 	if (spd.nr_pages < nr_pages)
306 		page_cache_sync_readahead(mapping, &in->f_ra, in,
307 				index, req_pages - spd.nr_pages);
308 
309 	error = 0;
310 	while (spd.nr_pages < nr_pages) {
311 		/*
312 		 * Page could be there, find_get_pages_contig() breaks on
313 		 * the first hole.
314 		 */
315 		page = find_get_page(mapping, index);
316 		if (!page) {
317 			/*
318 			 * page didn't exist, allocate one.
319 			 */
320 			page = page_cache_alloc_cold(mapping);
321 			if (!page)
322 				break;
323 
324 			error = add_to_page_cache_lru(page, mapping, index,
325 						mapping_gfp_mask(mapping));
326 			if (unlikely(error)) {
327 				page_cache_release(page);
328 				if (error == -EEXIST)
329 					continue;
330 				break;
331 			}
332 			/*
333 			 * add_to_page_cache() locks the page, unlock it
334 			 * to avoid convoluting the logic below even more.
335 			 */
336 			unlock_page(page);
337 		}
338 
339 		pages[spd.nr_pages++] = page;
340 		index++;
341 	}
342 
343 	/*
344 	 * Now loop over the map and see if we need to start IO on any
345 	 * pages, fill in the partial map, etc.
346 	 */
347 	index = *ppos >> PAGE_CACHE_SHIFT;
348 	nr_pages = spd.nr_pages;
349 	spd.nr_pages = 0;
350 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
351 		unsigned int this_len;
352 
353 		if (!len)
354 			break;
355 
356 		/*
357 		 * this_len is the max we'll use from this page
358 		 */
359 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
360 		page = pages[page_nr];
361 
362 		if (PageReadahead(page))
363 			page_cache_async_readahead(mapping, &in->f_ra, in,
364 					page, index, req_pages - page_nr);
365 
366 		/*
367 		 * If the page isn't uptodate, we may need to start io on it
368 		 */
369 		if (!PageUptodate(page)) {
370 			/*
371 			 * If in nonblock mode then dont block on waiting
372 			 * for an in-flight io page
373 			 */
374 			if (flags & SPLICE_F_NONBLOCK) {
375 				if (!trylock_page(page)) {
376 					error = -EAGAIN;
377 					break;
378 				}
379 			} else
380 				lock_page(page);
381 
382 			/*
383 			 * Page was truncated, or invalidated by the
384 			 * filesystem.  Redo the find/create, but this time the
385 			 * page is kept locked, so there's no chance of another
386 			 * race with truncate/invalidate.
387 			 */
388 			if (!page->mapping) {
389 				unlock_page(page);
390 				page = find_or_create_page(mapping, index,
391 						mapping_gfp_mask(mapping));
392 
393 				if (!page) {
394 					error = -ENOMEM;
395 					break;
396 				}
397 				page_cache_release(pages[page_nr]);
398 				pages[page_nr] = page;
399 			}
400 			/*
401 			 * page was already under io and is now done, great
402 			 */
403 			if (PageUptodate(page)) {
404 				unlock_page(page);
405 				goto fill_it;
406 			}
407 
408 			/*
409 			 * need to read in the page
410 			 */
411 			error = mapping->a_ops->readpage(in, page);
412 			if (unlikely(error)) {
413 				/*
414 				 * We really should re-lookup the page here,
415 				 * but it complicates things a lot. Instead
416 				 * lets just do what we already stored, and
417 				 * we'll get it the next time we are called.
418 				 */
419 				if (error == AOP_TRUNCATED_PAGE)
420 					error = 0;
421 
422 				break;
423 			}
424 		}
425 fill_it:
426 		/*
427 		 * i_size must be checked after PageUptodate.
428 		 */
429 		isize = i_size_read(mapping->host);
430 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
431 		if (unlikely(!isize || index > end_index))
432 			break;
433 
434 		/*
435 		 * if this is the last page, see if we need to shrink
436 		 * the length and stop
437 		 */
438 		if (end_index == index) {
439 			unsigned int plen;
440 
441 			/*
442 			 * max good bytes in this page
443 			 */
444 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
445 			if (plen <= loff)
446 				break;
447 
448 			/*
449 			 * force quit after adding this page
450 			 */
451 			this_len = min(this_len, plen - loff);
452 			len = this_len;
453 		}
454 
455 		partial[page_nr].offset = loff;
456 		partial[page_nr].len = this_len;
457 		len -= this_len;
458 		loff = 0;
459 		spd.nr_pages++;
460 		index++;
461 	}
462 
463 	/*
464 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
465 	 * we got, 'nr_pages' is how many pages are in the map.
466 	 */
467 	while (page_nr < nr_pages)
468 		page_cache_release(pages[page_nr++]);
469 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
470 
471 	if (spd.nr_pages)
472 		return splice_to_pipe(pipe, &spd);
473 
474 	return error;
475 }
476 
477 /**
478  * generic_file_splice_read - splice data from file to a pipe
479  * @in:		file to splice from
480  * @ppos:	position in @in
481  * @pipe:	pipe to splice to
482  * @len:	number of bytes to splice
483  * @flags:	splice modifier flags
484  *
485  * Description:
486  *    Will read pages from given file and fill them into a pipe. Can be
487  *    used as long as the address_space operations for the source implements
488  *    a readpage() hook.
489  *
490  */
generic_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)491 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
492 				 struct pipe_inode_info *pipe, size_t len,
493 				 unsigned int flags)
494 {
495 	loff_t isize, left;
496 	int ret;
497 
498 	isize = i_size_read(in->f_mapping->host);
499 	if (unlikely(*ppos >= isize))
500 		return 0;
501 
502 	left = isize - *ppos;
503 	if (unlikely(left < len))
504 		len = left;
505 
506 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
507 	if (ret > 0)
508 		*ppos += ret;
509 
510 	return ret;
511 }
512 
513 EXPORT_SYMBOL(generic_file_splice_read);
514 
515 /*
516  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
517  * using sendpage(). Return the number of bytes sent.
518  */
pipe_to_sendpage(struct pipe_inode_info * pipe,struct pipe_buffer * buf,struct splice_desc * sd)519 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
520 			    struct pipe_buffer *buf, struct splice_desc *sd)
521 {
522 	struct file *file = sd->u.file;
523 	loff_t pos = sd->pos;
524 	int ret, more;
525 
526 	ret = buf->ops->confirm(pipe, buf);
527 	if (!ret) {
528 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
529 
530 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
531 					   sd->len, &pos, more);
532 	}
533 
534 	return ret;
535 }
536 
537 /*
538  * This is a little more tricky than the file -> pipe splicing. There are
539  * basically three cases:
540  *
541  *	- Destination page already exists in the address space and there
542  *	  are users of it. For that case we have no other option that
543  *	  copying the data. Tough luck.
544  *	- Destination page already exists in the address space, but there
545  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
546  *	  through to last case.
547  *	- Destination page does not exist, we can add the pipe page to
548  *	  the page cache and avoid the copy.
549  *
550  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
551  * sd->flags), we attempt to migrate pages from the pipe to the output
552  * file address space page cache. This is possible if no one else has
553  * the pipe page referenced outside of the pipe and page cache. If
554  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
555  * a new page in the output file page cache and fill/dirty that.
556  */
pipe_to_file(struct pipe_inode_info * pipe,struct pipe_buffer * buf,struct splice_desc * sd)557 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
558 			struct splice_desc *sd)
559 {
560 	struct file *file = sd->u.file;
561 	struct address_space *mapping = file->f_mapping;
562 	unsigned int offset, this_len;
563 	struct page *page;
564 	void *fsdata;
565 	int ret;
566 
567 	/*
568 	 * make sure the data in this buffer is uptodate
569 	 */
570 	ret = buf->ops->confirm(pipe, buf);
571 	if (unlikely(ret))
572 		return ret;
573 
574 	offset = sd->pos & ~PAGE_CACHE_MASK;
575 
576 	this_len = sd->len;
577 	if (this_len + offset > PAGE_CACHE_SIZE)
578 		this_len = PAGE_CACHE_SIZE - offset;
579 
580 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
581 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
582 	if (unlikely(ret))
583 		goto out;
584 
585 	if (buf->page != page) {
586 		/*
587 		 * Careful, ->map() uses KM_USER0!
588 		 */
589 		char *src = buf->ops->map(pipe, buf, 1);
590 		char *dst = kmap_atomic(page, KM_USER1);
591 
592 		memcpy(dst + offset, src + buf->offset, this_len);
593 		flush_dcache_page(page);
594 		kunmap_atomic(dst, KM_USER1);
595 		buf->ops->unmap(pipe, buf, src);
596 	}
597 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
598 				page, fsdata);
599 out:
600 	return ret;
601 }
602 
603 /**
604  * __splice_from_pipe - splice data from a pipe to given actor
605  * @pipe:	pipe to splice from
606  * @sd:		information to @actor
607  * @actor:	handler that splices the data
608  *
609  * Description:
610  *    This function does little more than loop over the pipe and call
611  *    @actor to do the actual moving of a single struct pipe_buffer to
612  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
613  *    pipe_to_user.
614  *
615  */
__splice_from_pipe(struct pipe_inode_info * pipe,struct splice_desc * sd,splice_actor * actor)616 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
617 			   splice_actor *actor)
618 {
619 	int ret, do_wakeup, err;
620 
621 	ret = 0;
622 	do_wakeup = 0;
623 
624 	for (;;) {
625 		if (pipe->nrbufs) {
626 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
627 			const struct pipe_buf_operations *ops = buf->ops;
628 
629 			sd->len = buf->len;
630 			if (sd->len > sd->total_len)
631 				sd->len = sd->total_len;
632 
633 			err = actor(pipe, buf, sd);
634 			if (err <= 0) {
635 				if (!ret && err != -ENODATA)
636 					ret = err;
637 
638 				break;
639 			}
640 
641 			ret += err;
642 			buf->offset += err;
643 			buf->len -= err;
644 
645 			sd->len -= err;
646 			sd->pos += err;
647 			sd->total_len -= err;
648 			if (sd->len)
649 				continue;
650 
651 			if (!buf->len) {
652 				buf->ops = NULL;
653 				ops->release(pipe, buf);
654 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
655 				pipe->nrbufs--;
656 				if (pipe->inode)
657 					do_wakeup = 1;
658 			}
659 
660 			if (!sd->total_len)
661 				break;
662 		}
663 
664 		if (pipe->nrbufs)
665 			continue;
666 		if (!pipe->writers)
667 			break;
668 		if (!pipe->waiting_writers) {
669 			if (ret)
670 				break;
671 		}
672 
673 		if (sd->flags & SPLICE_F_NONBLOCK) {
674 			if (!ret)
675 				ret = -EAGAIN;
676 			break;
677 		}
678 
679 		if (signal_pending(current)) {
680 			if (!ret)
681 				ret = -ERESTARTSYS;
682 			break;
683 		}
684 
685 		if (do_wakeup) {
686 			smp_mb();
687 			if (waitqueue_active(&pipe->wait))
688 				wake_up_interruptible_sync(&pipe->wait);
689 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
690 			do_wakeup = 0;
691 		}
692 
693 		pipe_wait(pipe);
694 	}
695 
696 	if (do_wakeup) {
697 		smp_mb();
698 		if (waitqueue_active(&pipe->wait))
699 			wake_up_interruptible(&pipe->wait);
700 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
701 	}
702 
703 	return ret;
704 }
705 EXPORT_SYMBOL(__splice_from_pipe);
706 
707 /**
708  * splice_from_pipe - splice data from a pipe to a file
709  * @pipe:	pipe to splice from
710  * @out:	file to splice to
711  * @ppos:	position in @out
712  * @len:	how many bytes to splice
713  * @flags:	splice modifier flags
714  * @actor:	handler that splices the data
715  *
716  * Description:
717  *    See __splice_from_pipe. This function locks the input and output inodes,
718  *    otherwise it's identical to __splice_from_pipe().
719  *
720  */
splice_from_pipe(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags,splice_actor * actor)721 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
722 			 loff_t *ppos, size_t len, unsigned int flags,
723 			 splice_actor *actor)
724 {
725 	ssize_t ret;
726 	struct inode *inode = out->f_mapping->host;
727 	struct splice_desc sd = {
728 		.total_len = len,
729 		.flags = flags,
730 		.pos = *ppos,
731 		.u.file = out,
732 	};
733 
734 	/*
735 	 * The actor worker might be calling ->write_begin and
736 	 * ->write_end. Most of the time, these expect i_mutex to
737 	 * be held. Since this may result in an ABBA deadlock with
738 	 * pipe->inode, we have to order lock acquiry here.
739 	 */
740 	inode_double_lock(inode, pipe->inode);
741 	ret = __splice_from_pipe(pipe, &sd, actor);
742 	inode_double_unlock(inode, pipe->inode);
743 
744 	return ret;
745 }
746 
747 /**
748  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
749  * @pipe:	pipe info
750  * @out:	file to write to
751  * @ppos:	position in @out
752  * @len:	number of bytes to splice
753  * @flags:	splice modifier flags
754  *
755  * Description:
756  *    Will either move or copy pages (determined by @flags options) from
757  *    the given pipe inode to the given file. The caller is responsible
758  *    for acquiring i_mutex on both inodes.
759  *
760  */
761 ssize_t
generic_file_splice_write_nolock(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)762 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
763 				 loff_t *ppos, size_t len, unsigned int flags)
764 {
765 	struct address_space *mapping = out->f_mapping;
766 	struct inode *inode = mapping->host;
767 	struct splice_desc sd = {
768 		.total_len = len,
769 		.flags = flags,
770 		.pos = *ppos,
771 		.u.file = out,
772 	};
773 	ssize_t ret;
774 	int err;
775 
776 	err = file_remove_suid(out);
777 	if (unlikely(err))
778 		return err;
779 
780 	ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
781 	if (ret > 0) {
782 		unsigned long nr_pages;
783 
784 		*ppos += ret;
785 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
786 
787 		/*
788 		 * If file or inode is SYNC and we actually wrote some data,
789 		 * sync it.
790 		 */
791 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
792 			err = generic_osync_inode(inode, mapping,
793 						  OSYNC_METADATA|OSYNC_DATA);
794 
795 			if (err)
796 				ret = err;
797 		}
798 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
799 	}
800 
801 	return ret;
802 }
803 
804 EXPORT_SYMBOL(generic_file_splice_write_nolock);
805 
806 /**
807  * generic_file_splice_write - splice data from a pipe to a file
808  * @pipe:	pipe info
809  * @out:	file to write to
810  * @ppos:	position in @out
811  * @len:	number of bytes to splice
812  * @flags:	splice modifier flags
813  *
814  * Description:
815  *    Will either move or copy pages (determined by @flags options) from
816  *    the given pipe inode to the given file.
817  *
818  */
819 ssize_t
generic_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)820 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
821 			  loff_t *ppos, size_t len, unsigned int flags)
822 {
823 	struct address_space *mapping = out->f_mapping;
824 	struct inode *inode = mapping->host;
825 	struct splice_desc sd = {
826 		.total_len = len,
827 		.flags = flags,
828 		.pos = *ppos,
829 		.u.file = out,
830 	};
831 	ssize_t ret;
832 
833 	inode_double_lock(inode, pipe->inode);
834 	ret = file_remove_suid(out);
835 	if (likely(!ret))
836 		ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
837 	inode_double_unlock(inode, pipe->inode);
838 	if (ret > 0) {
839 		unsigned long nr_pages;
840 
841 		*ppos += ret;
842 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
843 
844 		/*
845 		 * If file or inode is SYNC and we actually wrote some data,
846 		 * sync it.
847 		 */
848 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
849 			int err;
850 
851 			mutex_lock(&inode->i_mutex);
852 			err = generic_osync_inode(inode, mapping,
853 						  OSYNC_METADATA|OSYNC_DATA);
854 			mutex_unlock(&inode->i_mutex);
855 
856 			if (err)
857 				ret = err;
858 		}
859 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
860 	}
861 
862 	return ret;
863 }
864 
865 EXPORT_SYMBOL(generic_file_splice_write);
866 
867 /**
868  * generic_splice_sendpage - splice data from a pipe to a socket
869  * @pipe:	pipe to splice from
870  * @out:	socket to write to
871  * @ppos:	position in @out
872  * @len:	number of bytes to splice
873  * @flags:	splice modifier flags
874  *
875  * Description:
876  *    Will send @len bytes from the pipe to a network socket. No data copying
877  *    is involved.
878  *
879  */
generic_splice_sendpage(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)880 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
881 				loff_t *ppos, size_t len, unsigned int flags)
882 {
883 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
884 }
885 
886 EXPORT_SYMBOL(generic_splice_sendpage);
887 
888 /*
889  * Attempt to initiate a splice from pipe to file.
890  */
do_splice_from(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)891 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
892 			   loff_t *ppos, size_t len, unsigned int flags)
893 {
894 	int ret;
895 
896 	if (unlikely(!out->f_op || !out->f_op->splice_write))
897 		return -EINVAL;
898 
899 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
900 		return -EBADF;
901 
902 	if (unlikely(out->f_flags & O_APPEND))
903 		return -EINVAL;
904 
905 	ret = rw_verify_area(WRITE, out, ppos, len);
906 	if (unlikely(ret < 0))
907 		return ret;
908 
909 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
910 }
911 
912 /*
913  * Attempt to initiate a splice from a file to a pipe.
914  */
do_splice_to(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)915 static long do_splice_to(struct file *in, loff_t *ppos,
916 			 struct pipe_inode_info *pipe, size_t len,
917 			 unsigned int flags)
918 {
919 	int ret;
920 
921 	if (unlikely(!in->f_op || !in->f_op->splice_read))
922 		return -EINVAL;
923 
924 	if (unlikely(!(in->f_mode & FMODE_READ)))
925 		return -EBADF;
926 
927 	ret = rw_verify_area(READ, in, ppos, len);
928 	if (unlikely(ret < 0))
929 		return ret;
930 
931 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
932 }
933 
934 /**
935  * splice_direct_to_actor - splices data directly between two non-pipes
936  * @in:		file to splice from
937  * @sd:		actor information on where to splice to
938  * @actor:	handles the data splicing
939  *
940  * Description:
941  *    This is a special case helper to splice directly between two
942  *    points, without requiring an explicit pipe. Internally an allocated
943  *    pipe is cached in the process, and reused during the lifetime of
944  *    that process.
945  *
946  */
splice_direct_to_actor(struct file * in,struct splice_desc * sd,splice_direct_actor * actor)947 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
948 			       splice_direct_actor *actor)
949 {
950 	struct pipe_inode_info *pipe;
951 	long ret, bytes;
952 	umode_t i_mode;
953 	size_t len;
954 	int i, flags;
955 
956 	/*
957 	 * We require the input being a regular file, as we don't want to
958 	 * randomly drop data for eg socket -> socket splicing. Use the
959 	 * piped splicing for that!
960 	 */
961 	i_mode = in->f_path.dentry->d_inode->i_mode;
962 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
963 		return -EINVAL;
964 
965 	/*
966 	 * neither in nor out is a pipe, setup an internal pipe attached to
967 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
968 	 */
969 	pipe = current->splice_pipe;
970 	if (unlikely(!pipe)) {
971 		pipe = alloc_pipe_info(NULL);
972 		if (!pipe)
973 			return -ENOMEM;
974 
975 		/*
976 		 * We don't have an immediate reader, but we'll read the stuff
977 		 * out of the pipe right after the splice_to_pipe(). So set
978 		 * PIPE_READERS appropriately.
979 		 */
980 		pipe->readers = 1;
981 
982 		current->splice_pipe = pipe;
983 	}
984 
985 	/*
986 	 * Do the splice.
987 	 */
988 	ret = 0;
989 	bytes = 0;
990 	len = sd->total_len;
991 	flags = sd->flags;
992 
993 	/*
994 	 * Don't block on output, we have to drain the direct pipe.
995 	 */
996 	sd->flags &= ~SPLICE_F_NONBLOCK;
997 
998 	while (len) {
999 		size_t read_len;
1000 		loff_t pos = sd->pos, prev_pos = pos;
1001 
1002 		ret = do_splice_to(in, &pos, pipe, len, flags);
1003 		if (unlikely(ret <= 0))
1004 			goto out_release;
1005 
1006 		read_len = ret;
1007 		sd->total_len = read_len;
1008 
1009 		/*
1010 		 * NOTE: nonblocking mode only applies to the input. We
1011 		 * must not do the output in nonblocking mode as then we
1012 		 * could get stuck data in the internal pipe:
1013 		 */
1014 		ret = actor(pipe, sd);
1015 		if (unlikely(ret <= 0)) {
1016 			sd->pos = prev_pos;
1017 			goto out_release;
1018 		}
1019 
1020 		bytes += ret;
1021 		len -= ret;
1022 		sd->pos = pos;
1023 
1024 		if (ret < read_len) {
1025 			sd->pos = prev_pos + ret;
1026 			goto out_release;
1027 		}
1028 	}
1029 
1030 done:
1031 	pipe->nrbufs = pipe->curbuf = 0;
1032 	file_accessed(in);
1033 	return bytes;
1034 
1035 out_release:
1036 	/*
1037 	 * If we did an incomplete transfer we must release
1038 	 * the pipe buffers in question:
1039 	 */
1040 	for (i = 0; i < PIPE_BUFFERS; i++) {
1041 		struct pipe_buffer *buf = pipe->bufs + i;
1042 
1043 		if (buf->ops) {
1044 			buf->ops->release(pipe, buf);
1045 			buf->ops = NULL;
1046 		}
1047 	}
1048 
1049 	if (!bytes)
1050 		bytes = ret;
1051 
1052 	goto done;
1053 }
1054 EXPORT_SYMBOL(splice_direct_to_actor);
1055 
direct_splice_actor(struct pipe_inode_info * pipe,struct splice_desc * sd)1056 static int direct_splice_actor(struct pipe_inode_info *pipe,
1057 			       struct splice_desc *sd)
1058 {
1059 	struct file *file = sd->u.file;
1060 
1061 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1062 }
1063 
1064 /**
1065  * do_splice_direct - splices data directly between two files
1066  * @in:		file to splice from
1067  * @ppos:	input file offset
1068  * @out:	file to splice to
1069  * @len:	number of bytes to splice
1070  * @flags:	splice modifier flags
1071  *
1072  * Description:
1073  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1074  *    doing it in the application would incur an extra system call
1075  *    (splice in + splice out, as compared to just sendfile()). So this helper
1076  *    can splice directly through a process-private pipe.
1077  *
1078  */
do_splice_direct(struct file * in,loff_t * ppos,struct file * out,size_t len,unsigned int flags)1079 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1080 		      size_t len, unsigned int flags)
1081 {
1082 	struct splice_desc sd = {
1083 		.len		= len,
1084 		.total_len	= len,
1085 		.flags		= flags,
1086 		.pos		= *ppos,
1087 		.u.file		= out,
1088 	};
1089 	long ret;
1090 
1091 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1092 	if (ret > 0)
1093 		*ppos = sd.pos;
1094 
1095 	return ret;
1096 }
1097 
1098 /*
1099  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1100  * location, so checking ->i_pipe is not enough to verify that this is a
1101  * pipe.
1102  */
pipe_info(struct inode * inode)1103 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1104 {
1105 	if (S_ISFIFO(inode->i_mode))
1106 		return inode->i_pipe;
1107 
1108 	return NULL;
1109 }
1110 
1111 /*
1112  * Determine where to splice to/from.
1113  */
do_splice(struct file * in,loff_t __user * off_in,struct file * out,loff_t __user * off_out,size_t len,unsigned int flags)1114 static long do_splice(struct file *in, loff_t __user *off_in,
1115 		      struct file *out, loff_t __user *off_out,
1116 		      size_t len, unsigned int flags)
1117 {
1118 	struct pipe_inode_info *pipe;
1119 	loff_t offset, *off;
1120 	long ret;
1121 
1122 	pipe = pipe_info(in->f_path.dentry->d_inode);
1123 	if (pipe) {
1124 		if (off_in)
1125 			return -ESPIPE;
1126 		if (off_out) {
1127 			if (out->f_op->llseek == no_llseek)
1128 				return -EINVAL;
1129 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1130 				return -EFAULT;
1131 			off = &offset;
1132 		} else
1133 			off = &out->f_pos;
1134 
1135 		ret = do_splice_from(pipe, out, off, len, flags);
1136 
1137 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1138 			ret = -EFAULT;
1139 
1140 		return ret;
1141 	}
1142 
1143 	pipe = pipe_info(out->f_path.dentry->d_inode);
1144 	if (pipe) {
1145 		if (off_out)
1146 			return -ESPIPE;
1147 		if (off_in) {
1148 			if (in->f_op->llseek == no_llseek)
1149 				return -EINVAL;
1150 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1151 				return -EFAULT;
1152 			off = &offset;
1153 		} else
1154 			off = &in->f_pos;
1155 
1156 		ret = do_splice_to(in, off, pipe, len, flags);
1157 
1158 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1159 			ret = -EFAULT;
1160 
1161 		return ret;
1162 	}
1163 
1164 	return -EINVAL;
1165 }
1166 
1167 /*
1168  * Map an iov into an array of pages and offset/length tupples. With the
1169  * partial_page structure, we can map several non-contiguous ranges into
1170  * our ones pages[] map instead of splitting that operation into pieces.
1171  * Could easily be exported as a generic helper for other users, in which
1172  * case one would probably want to add a 'max_nr_pages' parameter as well.
1173  */
get_iovec_page_array(const struct iovec __user * iov,unsigned int nr_vecs,struct page ** pages,struct partial_page * partial,int aligned)1174 static int get_iovec_page_array(const struct iovec __user *iov,
1175 				unsigned int nr_vecs, struct page **pages,
1176 				struct partial_page *partial, int aligned)
1177 {
1178 	int buffers = 0, error = 0;
1179 
1180 	while (nr_vecs) {
1181 		unsigned long off, npages;
1182 		struct iovec entry;
1183 		void __user *base;
1184 		size_t len;
1185 		int i;
1186 
1187 		error = -EFAULT;
1188 		if (copy_from_user(&entry, iov, sizeof(entry)))
1189 			break;
1190 
1191 		base = entry.iov_base;
1192 		len = entry.iov_len;
1193 
1194 		/*
1195 		 * Sanity check this iovec. 0 read succeeds.
1196 		 */
1197 		error = 0;
1198 		if (unlikely(!len))
1199 			break;
1200 		error = -EFAULT;
1201 		if (!access_ok(VERIFY_READ, base, len))
1202 			break;
1203 
1204 		/*
1205 		 * Get this base offset and number of pages, then map
1206 		 * in the user pages.
1207 		 */
1208 		off = (unsigned long) base & ~PAGE_MASK;
1209 
1210 		/*
1211 		 * If asked for alignment, the offset must be zero and the
1212 		 * length a multiple of the PAGE_SIZE.
1213 		 */
1214 		error = -EINVAL;
1215 		if (aligned && (off || len & ~PAGE_MASK))
1216 			break;
1217 
1218 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1219 		if (npages > PIPE_BUFFERS - buffers)
1220 			npages = PIPE_BUFFERS - buffers;
1221 
1222 		error = get_user_pages_fast((unsigned long)base, npages,
1223 					0, &pages[buffers]);
1224 
1225 		if (unlikely(error <= 0))
1226 			break;
1227 
1228 		/*
1229 		 * Fill this contiguous range into the partial page map.
1230 		 */
1231 		for (i = 0; i < error; i++) {
1232 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1233 
1234 			partial[buffers].offset = off;
1235 			partial[buffers].len = plen;
1236 
1237 			off = 0;
1238 			len -= plen;
1239 			buffers++;
1240 		}
1241 
1242 		/*
1243 		 * We didn't complete this iov, stop here since it probably
1244 		 * means we have to move some of this into a pipe to
1245 		 * be able to continue.
1246 		 */
1247 		if (len)
1248 			break;
1249 
1250 		/*
1251 		 * Don't continue if we mapped fewer pages than we asked for,
1252 		 * or if we mapped the max number of pages that we have
1253 		 * room for.
1254 		 */
1255 		if (error < npages || buffers == PIPE_BUFFERS)
1256 			break;
1257 
1258 		nr_vecs--;
1259 		iov++;
1260 	}
1261 
1262 	if (buffers)
1263 		return buffers;
1264 
1265 	return error;
1266 }
1267 
pipe_to_user(struct pipe_inode_info * pipe,struct pipe_buffer * buf,struct splice_desc * sd)1268 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1269 			struct splice_desc *sd)
1270 {
1271 	char *src;
1272 	int ret;
1273 
1274 	ret = buf->ops->confirm(pipe, buf);
1275 	if (unlikely(ret))
1276 		return ret;
1277 
1278 	/*
1279 	 * See if we can use the atomic maps, by prefaulting in the
1280 	 * pages and doing an atomic copy
1281 	 */
1282 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1283 		src = buf->ops->map(pipe, buf, 1);
1284 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1285 							sd->len);
1286 		buf->ops->unmap(pipe, buf, src);
1287 		if (!ret) {
1288 			ret = sd->len;
1289 			goto out;
1290 		}
1291 	}
1292 
1293 	/*
1294 	 * No dice, use slow non-atomic map and copy
1295  	 */
1296 	src = buf->ops->map(pipe, buf, 0);
1297 
1298 	ret = sd->len;
1299 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1300 		ret = -EFAULT;
1301 
1302 	buf->ops->unmap(pipe, buf, src);
1303 out:
1304 	if (ret > 0)
1305 		sd->u.userptr += ret;
1306 	return ret;
1307 }
1308 
1309 /*
1310  * For lack of a better implementation, implement vmsplice() to userspace
1311  * as a simple copy of the pipes pages to the user iov.
1312  */
vmsplice_to_user(struct file * file,const struct iovec __user * iov,unsigned long nr_segs,unsigned int flags)1313 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1314 			     unsigned long nr_segs, unsigned int flags)
1315 {
1316 	struct pipe_inode_info *pipe;
1317 	struct splice_desc sd;
1318 	ssize_t size;
1319 	int error;
1320 	long ret;
1321 
1322 	pipe = pipe_info(file->f_path.dentry->d_inode);
1323 	if (!pipe)
1324 		return -EBADF;
1325 
1326 	if (pipe->inode)
1327 		mutex_lock(&pipe->inode->i_mutex);
1328 
1329 	error = ret = 0;
1330 	while (nr_segs) {
1331 		void __user *base;
1332 		size_t len;
1333 
1334 		/*
1335 		 * Get user address base and length for this iovec.
1336 		 */
1337 		error = get_user(base, &iov->iov_base);
1338 		if (unlikely(error))
1339 			break;
1340 		error = get_user(len, &iov->iov_len);
1341 		if (unlikely(error))
1342 			break;
1343 
1344 		/*
1345 		 * Sanity check this iovec. 0 read succeeds.
1346 		 */
1347 		if (unlikely(!len))
1348 			break;
1349 		if (unlikely(!base)) {
1350 			error = -EFAULT;
1351 			break;
1352 		}
1353 
1354 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1355 			error = -EFAULT;
1356 			break;
1357 		}
1358 
1359 		sd.len = 0;
1360 		sd.total_len = len;
1361 		sd.flags = flags;
1362 		sd.u.userptr = base;
1363 		sd.pos = 0;
1364 
1365 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1366 		if (size < 0) {
1367 			if (!ret)
1368 				ret = size;
1369 
1370 			break;
1371 		}
1372 
1373 		ret += size;
1374 
1375 		if (size < len)
1376 			break;
1377 
1378 		nr_segs--;
1379 		iov++;
1380 	}
1381 
1382 	if (pipe->inode)
1383 		mutex_unlock(&pipe->inode->i_mutex);
1384 
1385 	if (!ret)
1386 		ret = error;
1387 
1388 	return ret;
1389 }
1390 
1391 /*
1392  * vmsplice splices a user address range into a pipe. It can be thought of
1393  * as splice-from-memory, where the regular splice is splice-from-file (or
1394  * to file). In both cases the output is a pipe, naturally.
1395  */
vmsplice_to_pipe(struct file * file,const struct iovec __user * iov,unsigned long nr_segs,unsigned int flags)1396 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1397 			     unsigned long nr_segs, unsigned int flags)
1398 {
1399 	struct pipe_inode_info *pipe;
1400 	struct page *pages[PIPE_BUFFERS];
1401 	struct partial_page partial[PIPE_BUFFERS];
1402 	struct splice_pipe_desc spd = {
1403 		.pages = pages,
1404 		.partial = partial,
1405 		.flags = flags,
1406 		.ops = &user_page_pipe_buf_ops,
1407 		.spd_release = spd_release_page,
1408 	};
1409 
1410 	pipe = pipe_info(file->f_path.dentry->d_inode);
1411 	if (!pipe)
1412 		return -EBADF;
1413 
1414 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1415 					    flags & SPLICE_F_GIFT);
1416 	if (spd.nr_pages <= 0)
1417 		return spd.nr_pages;
1418 
1419 	return splice_to_pipe(pipe, &spd);
1420 }
1421 
1422 /*
1423  * Note that vmsplice only really supports true splicing _from_ user memory
1424  * to a pipe, not the other way around. Splicing from user memory is a simple
1425  * operation that can be supported without any funky alignment restrictions
1426  * or nasty vm tricks. We simply map in the user memory and fill them into
1427  * a pipe. The reverse isn't quite as easy, though. There are two possible
1428  * solutions for that:
1429  *
1430  *	- memcpy() the data internally, at which point we might as well just
1431  *	  do a regular read() on the buffer anyway.
1432  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1433  *	  has restriction limitations on both ends of the pipe).
1434  *
1435  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1436  *
1437  */
SYSCALL_DEFINE4(vmsplice,int,fd,const struct iovec __user *,iov,unsigned long,nr_segs,unsigned int,flags)1438 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1439 		unsigned long, nr_segs, unsigned int, flags)
1440 {
1441 	struct file *file;
1442 	long error;
1443 	int fput;
1444 
1445 	if (unlikely(nr_segs > UIO_MAXIOV))
1446 		return -EINVAL;
1447 	else if (unlikely(!nr_segs))
1448 		return 0;
1449 
1450 	error = -EBADF;
1451 	file = fget_light(fd, &fput);
1452 	if (file) {
1453 		if (file->f_mode & FMODE_WRITE)
1454 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1455 		else if (file->f_mode & FMODE_READ)
1456 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1457 
1458 		fput_light(file, fput);
1459 	}
1460 
1461 	return error;
1462 }
1463 
SYSCALL_DEFINE6(splice,int,fd_in,loff_t __user *,off_in,int,fd_out,loff_t __user *,off_out,size_t,len,unsigned int,flags)1464 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1465 		int, fd_out, loff_t __user *, off_out,
1466 		size_t, len, unsigned int, flags)
1467 {
1468 	long error;
1469 	struct file *in, *out;
1470 	int fput_in, fput_out;
1471 
1472 	if (unlikely(!len))
1473 		return 0;
1474 
1475 	error = -EBADF;
1476 	in = fget_light(fd_in, &fput_in);
1477 	if (in) {
1478 		if (in->f_mode & FMODE_READ) {
1479 			out = fget_light(fd_out, &fput_out);
1480 			if (out) {
1481 				if (out->f_mode & FMODE_WRITE)
1482 					error = do_splice(in, off_in,
1483 							  out, off_out,
1484 							  len, flags);
1485 				fput_light(out, fput_out);
1486 			}
1487 		}
1488 
1489 		fput_light(in, fput_in);
1490 	}
1491 
1492 	return error;
1493 }
1494 
1495 /*
1496  * Make sure there's data to read. Wait for input if we can, otherwise
1497  * return an appropriate error.
1498  */
link_ipipe_prep(struct pipe_inode_info * pipe,unsigned int flags)1499 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1500 {
1501 	int ret;
1502 
1503 	/*
1504 	 * Check ->nrbufs without the inode lock first. This function
1505 	 * is speculative anyways, so missing one is ok.
1506 	 */
1507 	if (pipe->nrbufs)
1508 		return 0;
1509 
1510 	ret = 0;
1511 	mutex_lock(&pipe->inode->i_mutex);
1512 
1513 	while (!pipe->nrbufs) {
1514 		if (signal_pending(current)) {
1515 			ret = -ERESTARTSYS;
1516 			break;
1517 		}
1518 		if (!pipe->writers)
1519 			break;
1520 		if (!pipe->waiting_writers) {
1521 			if (flags & SPLICE_F_NONBLOCK) {
1522 				ret = -EAGAIN;
1523 				break;
1524 			}
1525 		}
1526 		pipe_wait(pipe);
1527 	}
1528 
1529 	mutex_unlock(&pipe->inode->i_mutex);
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Make sure there's writeable room. Wait for room if we can, otherwise
1535  * return an appropriate error.
1536  */
link_opipe_prep(struct pipe_inode_info * pipe,unsigned int flags)1537 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1538 {
1539 	int ret;
1540 
1541 	/*
1542 	 * Check ->nrbufs without the inode lock first. This function
1543 	 * is speculative anyways, so missing one is ok.
1544 	 */
1545 	if (pipe->nrbufs < PIPE_BUFFERS)
1546 		return 0;
1547 
1548 	ret = 0;
1549 	mutex_lock(&pipe->inode->i_mutex);
1550 
1551 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1552 		if (!pipe->readers) {
1553 			send_sig(SIGPIPE, current, 0);
1554 			ret = -EPIPE;
1555 			break;
1556 		}
1557 		if (flags & SPLICE_F_NONBLOCK) {
1558 			ret = -EAGAIN;
1559 			break;
1560 		}
1561 		if (signal_pending(current)) {
1562 			ret = -ERESTARTSYS;
1563 			break;
1564 		}
1565 		pipe->waiting_writers++;
1566 		pipe_wait(pipe);
1567 		pipe->waiting_writers--;
1568 	}
1569 
1570 	mutex_unlock(&pipe->inode->i_mutex);
1571 	return ret;
1572 }
1573 
1574 /*
1575  * Link contents of ipipe to opipe.
1576  */
link_pipe(struct pipe_inode_info * ipipe,struct pipe_inode_info * opipe,size_t len,unsigned int flags)1577 static int link_pipe(struct pipe_inode_info *ipipe,
1578 		     struct pipe_inode_info *opipe,
1579 		     size_t len, unsigned int flags)
1580 {
1581 	struct pipe_buffer *ibuf, *obuf;
1582 	int ret = 0, i = 0, nbuf;
1583 
1584 	/*
1585 	 * Potential ABBA deadlock, work around it by ordering lock
1586 	 * grabbing by inode address. Otherwise two different processes
1587 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1588 	 */
1589 	inode_double_lock(ipipe->inode, opipe->inode);
1590 
1591 	do {
1592 		if (!opipe->readers) {
1593 			send_sig(SIGPIPE, current, 0);
1594 			if (!ret)
1595 				ret = -EPIPE;
1596 			break;
1597 		}
1598 
1599 		/*
1600 		 * If we have iterated all input buffers or ran out of
1601 		 * output room, break.
1602 		 */
1603 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1604 			break;
1605 
1606 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1607 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1608 
1609 		/*
1610 		 * Get a reference to this pipe buffer,
1611 		 * so we can copy the contents over.
1612 		 */
1613 		ibuf->ops->get(ipipe, ibuf);
1614 
1615 		obuf = opipe->bufs + nbuf;
1616 		*obuf = *ibuf;
1617 
1618 		/*
1619 		 * Don't inherit the gift flag, we need to
1620 		 * prevent multiple steals of this page.
1621 		 */
1622 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1623 
1624 		if (obuf->len > len)
1625 			obuf->len = len;
1626 
1627 		opipe->nrbufs++;
1628 		ret += obuf->len;
1629 		len -= obuf->len;
1630 		i++;
1631 	} while (len);
1632 
1633 	/*
1634 	 * return EAGAIN if we have the potential of some data in the
1635 	 * future, otherwise just return 0
1636 	 */
1637 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1638 		ret = -EAGAIN;
1639 
1640 	inode_double_unlock(ipipe->inode, opipe->inode);
1641 
1642 	/*
1643 	 * If we put data in the output pipe, wakeup any potential readers.
1644 	 */
1645 	if (ret > 0) {
1646 		smp_mb();
1647 		if (waitqueue_active(&opipe->wait))
1648 			wake_up_interruptible(&opipe->wait);
1649 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1650 	}
1651 
1652 	return ret;
1653 }
1654 
1655 /*
1656  * This is a tee(1) implementation that works on pipes. It doesn't copy
1657  * any data, it simply references the 'in' pages on the 'out' pipe.
1658  * The 'flags' used are the SPLICE_F_* variants, currently the only
1659  * applicable one is SPLICE_F_NONBLOCK.
1660  */
do_tee(struct file * in,struct file * out,size_t len,unsigned int flags)1661 static long do_tee(struct file *in, struct file *out, size_t len,
1662 		   unsigned int flags)
1663 {
1664 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1665 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1666 	int ret = -EINVAL;
1667 
1668 	/*
1669 	 * Duplicate the contents of ipipe to opipe without actually
1670 	 * copying the data.
1671 	 */
1672 	if (ipipe && opipe && ipipe != opipe) {
1673 		/*
1674 		 * Keep going, unless we encounter an error. The ipipe/opipe
1675 		 * ordering doesn't really matter.
1676 		 */
1677 		ret = link_ipipe_prep(ipipe, flags);
1678 		if (!ret) {
1679 			ret = link_opipe_prep(opipe, flags);
1680 			if (!ret)
1681 				ret = link_pipe(ipipe, opipe, len, flags);
1682 		}
1683 	}
1684 
1685 	return ret;
1686 }
1687 
SYSCALL_DEFINE4(tee,int,fdin,int,fdout,size_t,len,unsigned int,flags)1688 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1689 {
1690 	struct file *in;
1691 	int error, fput_in;
1692 
1693 	if (unlikely(!len))
1694 		return 0;
1695 
1696 	error = -EBADF;
1697 	in = fget_light(fdin, &fput_in);
1698 	if (in) {
1699 		if (in->f_mode & FMODE_READ) {
1700 			int fput_out;
1701 			struct file *out = fget_light(fdout, &fput_out);
1702 
1703 			if (out) {
1704 				if (out->f_mode & FMODE_WRITE)
1705 					error = do_tee(in, out, len, flags);
1706 				fput_light(out, fput_out);
1707 			}
1708 		}
1709  		fput_light(in, fput_in);
1710  	}
1711 
1712 	return error;
1713 }
1714