• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations of regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
28  * page is dirty and is used for budgeting purposes - dirty pages should not be
29  * budgeted. The PG_checked flag is set if full budgeting is required for the
30  * page e.g., when it corresponds to a file hole or it is just beyond the file
31  * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
32  * fail in this function, and the budget is released in 'ubifs_write_end()'. So
33  * the PG_private and PG_checked flags carry the information about how the page
34  * was budgeted, to make it possible to release the budget properly.
35  *
36  * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
37  * we implement. However, this is not true for '->writepage()', which might be
38  * called with 'i_mutex' unlocked. For example, when pdflush is performing
39  * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
40  * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
41  * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
42  * path'. So, in '->writepage()' we are only guaranteed that the page is
43  * locked.
44  *
45  * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
46  * readahead path does not have it locked ("sys_read -> generic_file_aio_read
47  * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
48  * not set as well. However, UBIFS disables readahead.
49  *
50  * This, for example means that there might be 2 concurrent '->writepage()'
51  * calls for the same inode, but different inode dirty pages.
52  */
53 
54 #include "ubifs.h"
55 #include <linux/mount.h>
56 #include <linux/namei.h>
57 
read_block(struct inode * inode,void * addr,unsigned int block,struct ubifs_data_node * dn)58 static int read_block(struct inode *inode, void *addr, unsigned int block,
59 		      struct ubifs_data_node *dn)
60 {
61 	struct ubifs_info *c = inode->i_sb->s_fs_info;
62 	int err, len, out_len;
63 	union ubifs_key key;
64 	unsigned int dlen;
65 
66 	data_key_init(c, &key, inode->i_ino, block);
67 	err = ubifs_tnc_lookup(c, &key, dn);
68 	if (err) {
69 		if (err == -ENOENT)
70 			/* Not found, so it must be a hole */
71 			memset(addr, 0, UBIFS_BLOCK_SIZE);
72 		return err;
73 	}
74 
75 	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
76 		     ubifs_inode(inode)->creat_sqnum);
77 	len = le32_to_cpu(dn->size);
78 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 		goto dump;
80 
81 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 	out_len = UBIFS_BLOCK_SIZE;
83 	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 			       le16_to_cpu(dn->compr_type));
85 	if (err || len != out_len)
86 		goto dump;
87 
88 	/*
89 	 * Data length can be less than a full block, even for blocks that are
90 	 * not the last in the file (e.g., as a result of making a hole and
91 	 * appending data). Ensure that the remainder is zeroed out.
92 	 */
93 	if (len < UBIFS_BLOCK_SIZE)
94 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95 
96 	return 0;
97 
98 dump:
99 	ubifs_err("bad data node (block %u, inode %lu)",
100 		  block, inode->i_ino);
101 	dbg_dump_node(c, dn);
102 	return -EINVAL;
103 }
104 
do_readpage(struct page * page)105 static int do_readpage(struct page *page)
106 {
107 	void *addr;
108 	int err = 0, i;
109 	unsigned int block, beyond;
110 	struct ubifs_data_node *dn;
111 	struct inode *inode = page->mapping->host;
112 	loff_t i_size = i_size_read(inode);
113 
114 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 		inode->i_ino, page->index, i_size, page->flags);
116 	ubifs_assert(!PageChecked(page));
117 	ubifs_assert(!PagePrivate(page));
118 
119 	addr = kmap(page);
120 
121 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 	if (block >= beyond) {
124 		/* Reading beyond inode */
125 		SetPageChecked(page);
126 		memset(addr, 0, PAGE_CACHE_SIZE);
127 		goto out;
128 	}
129 
130 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 	if (!dn) {
132 		err = -ENOMEM;
133 		goto error;
134 	}
135 
136 	i = 0;
137 	while (1) {
138 		int ret;
139 
140 		if (block >= beyond) {
141 			/* Reading beyond inode */
142 			err = -ENOENT;
143 			memset(addr, 0, UBIFS_BLOCK_SIZE);
144 		} else {
145 			ret = read_block(inode, addr, block, dn);
146 			if (ret) {
147 				err = ret;
148 				if (err != -ENOENT)
149 					break;
150 			} else if (block + 1 == beyond) {
151 				int dlen = le32_to_cpu(dn->size);
152 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
153 
154 				if (ilen && ilen < dlen)
155 					memset(addr + ilen, 0, dlen - ilen);
156 			}
157 		}
158 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
159 			break;
160 		block += 1;
161 		addr += UBIFS_BLOCK_SIZE;
162 	}
163 	if (err) {
164 		if (err == -ENOENT) {
165 			/* Not found, so it must be a hole */
166 			SetPageChecked(page);
167 			dbg_gen("hole");
168 			goto out_free;
169 		}
170 		ubifs_err("cannot read page %lu of inode %lu, error %d",
171 			  page->index, inode->i_ino, err);
172 		goto error;
173 	}
174 
175 out_free:
176 	kfree(dn);
177 out:
178 	SetPageUptodate(page);
179 	ClearPageError(page);
180 	flush_dcache_page(page);
181 	kunmap(page);
182 	return 0;
183 
184 error:
185 	kfree(dn);
186 	ClearPageUptodate(page);
187 	SetPageError(page);
188 	flush_dcache_page(page);
189 	kunmap(page);
190 	return err;
191 }
192 
193 /**
194  * release_new_page_budget - release budget of a new page.
195  * @c: UBIFS file-system description object
196  *
197  * This is a helper function which releases budget corresponding to the budget
198  * of one new page of data.
199  */
release_new_page_budget(struct ubifs_info * c)200 static void release_new_page_budget(struct ubifs_info *c)
201 {
202 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203 
204 	ubifs_release_budget(c, &req);
205 }
206 
207 /**
208  * release_existing_page_budget - release budget of an existing page.
209  * @c: UBIFS file-system description object
210  *
211  * This is a helper function which releases budget corresponding to the budget
212  * of changing one one page of data which already exists on the flash media.
213  */
release_existing_page_budget(struct ubifs_info * c)214 static void release_existing_page_budget(struct ubifs_info *c)
215 {
216 	struct ubifs_budget_req req = { .dd_growth = c->page_budget};
217 
218 	ubifs_release_budget(c, &req);
219 }
220 
write_begin_slow(struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,unsigned flags)221 static int write_begin_slow(struct address_space *mapping,
222 			    loff_t pos, unsigned len, struct page **pagep,
223 			    unsigned flags)
224 {
225 	struct inode *inode = mapping->host;
226 	struct ubifs_info *c = inode->i_sb->s_fs_info;
227 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
228 	struct ubifs_budget_req req = { .new_page = 1 };
229 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
230 	struct page *page;
231 
232 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
233 		inode->i_ino, pos, len, inode->i_size);
234 
235 	/*
236 	 * At the slow path we have to budget before locking the page, because
237 	 * budgeting may force write-back, which would wait on locked pages and
238 	 * deadlock if we had the page locked. At this point we do not know
239 	 * anything about the page, so assume that this is a new page which is
240 	 * written to a hole. This corresponds to largest budget. Later the
241 	 * budget will be amended if this is not true.
242 	 */
243 	if (appending)
244 		/* We are appending data, budget for inode change */
245 		req.dirtied_ino = 1;
246 
247 	err = ubifs_budget_space(c, &req);
248 	if (unlikely(err))
249 		return err;
250 
251 	page = grab_cache_page_write_begin(mapping, index, flags);
252 	if (unlikely(!page)) {
253 		ubifs_release_budget(c, &req);
254 		return -ENOMEM;
255 	}
256 
257 	if (!PageUptodate(page)) {
258 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
259 			SetPageChecked(page);
260 		else {
261 			err = do_readpage(page);
262 			if (err) {
263 				unlock_page(page);
264 				page_cache_release(page);
265 				return err;
266 			}
267 		}
268 
269 		SetPageUptodate(page);
270 		ClearPageError(page);
271 	}
272 
273 	if (PagePrivate(page))
274 		/*
275 		 * The page is dirty, which means it was budgeted twice:
276 		 *   o first time the budget was allocated by the task which
277 		 *     made the page dirty and set the PG_private flag;
278 		 *   o and then we budgeted for it for the second time at the
279 		 *     very beginning of this function.
280 		 *
281 		 * So what we have to do is to release the page budget we
282 		 * allocated.
283 		 */
284 		release_new_page_budget(c);
285 	else if (!PageChecked(page))
286 		/*
287 		 * We are changing a page which already exists on the media.
288 		 * This means that changing the page does not make the amount
289 		 * of indexing information larger, and this part of the budget
290 		 * which we have already acquired may be released.
291 		 */
292 		ubifs_convert_page_budget(c);
293 
294 	if (appending) {
295 		struct ubifs_inode *ui = ubifs_inode(inode);
296 
297 		/*
298 		 * 'ubifs_write_end()' is optimized from the fast-path part of
299 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
300 		 * if data is appended.
301 		 */
302 		mutex_lock(&ui->ui_mutex);
303 		if (ui->dirty)
304 			/*
305 			 * The inode is dirty already, so we may free the
306 			 * budget we allocated.
307 			 */
308 			ubifs_release_dirty_inode_budget(c, ui);
309 	}
310 
311 	*pagep = page;
312 	return 0;
313 }
314 
315 /**
316  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
317  * @c: UBIFS file-system description object
318  * @page: page to allocate budget for
319  * @ui: UBIFS inode object the page belongs to
320  * @appending: non-zero if the page is appended
321  *
322  * This is a helper function for 'ubifs_write_begin()' which allocates budget
323  * for the operation. The budget is allocated differently depending on whether
324  * this is appending, whether the page is dirty or not, and so on. This
325  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
326  * in case of success and %-ENOSPC in case of failure.
327  */
allocate_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)328 static int allocate_budget(struct ubifs_info *c, struct page *page,
329 			   struct ubifs_inode *ui, int appending)
330 {
331 	struct ubifs_budget_req req = { .fast = 1 };
332 
333 	if (PagePrivate(page)) {
334 		if (!appending)
335 			/*
336 			 * The page is dirty and we are not appending, which
337 			 * means no budget is needed at all.
338 			 */
339 			return 0;
340 
341 		mutex_lock(&ui->ui_mutex);
342 		if (ui->dirty)
343 			/*
344 			 * The page is dirty and we are appending, so the inode
345 			 * has to be marked as dirty. However, it is already
346 			 * dirty, so we do not need any budget. We may return,
347 			 * but @ui->ui_mutex hast to be left locked because we
348 			 * should prevent write-back from flushing the inode
349 			 * and freeing the budget. The lock will be released in
350 			 * 'ubifs_write_end()'.
351 			 */
352 			return 0;
353 
354 		/*
355 		 * The page is dirty, we are appending, the inode is clean, so
356 		 * we need to budget the inode change.
357 		 */
358 		req.dirtied_ino = 1;
359 	} else {
360 		if (PageChecked(page))
361 			/*
362 			 * The page corresponds to a hole and does not
363 			 * exist on the media. So changing it makes
364 			 * make the amount of indexing information
365 			 * larger, and we have to budget for a new
366 			 * page.
367 			 */
368 			req.new_page = 1;
369 		else
370 			/*
371 			 * Not a hole, the change will not add any new
372 			 * indexing information, budget for page
373 			 * change.
374 			 */
375 			req.dirtied_page = 1;
376 
377 		if (appending) {
378 			mutex_lock(&ui->ui_mutex);
379 			if (!ui->dirty)
380 				/*
381 				 * The inode is clean but we will have to mark
382 				 * it as dirty because we are appending. This
383 				 * needs a budget.
384 				 */
385 				req.dirtied_ino = 1;
386 		}
387 	}
388 
389 	return ubifs_budget_space(c, &req);
390 }
391 
392 /*
393  * This function is called when a page of data is going to be written. Since
394  * the page of data will not necessarily go to the flash straight away, UBIFS
395  * has to reserve space on the media for it, which is done by means of
396  * budgeting.
397  *
398  * This is the hot-path of the file-system and we are trying to optimize it as
399  * much as possible. For this reasons it is split on 2 parts - slow and fast.
400  *
401  * There many budgeting cases:
402  *     o a new page is appended - we have to budget for a new page and for
403  *       changing the inode; however, if the inode is already dirty, there is
404  *       no need to budget for it;
405  *     o an existing clean page is changed - we have budget for it; if the page
406  *       does not exist on the media (a hole), we have to budget for a new
407  *       page; otherwise, we may budget for changing an existing page; the
408  *       difference between these cases is that changing an existing page does
409  *       not introduce anything new to the FS indexing information, so it does
410  *       not grow, and smaller budget is acquired in this case;
411  *     o an existing dirty page is changed - no need to budget at all, because
412  *       the page budget has been acquired by earlier, when the page has been
413  *       marked dirty.
414  *
415  * UBIFS budgeting sub-system may force write-back if it thinks there is no
416  * space to reserve. This imposes some locking restrictions and makes it
417  * impossible to take into account the above cases, and makes it impossible to
418  * optimize budgeting.
419  *
420  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
421  * there is a plenty of flash space and the budget will be acquired quickly,
422  * without forcing write-back. The slow path does not make this assumption.
423  */
ubifs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)424 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
425 			     loff_t pos, unsigned len, unsigned flags,
426 			     struct page **pagep, void **fsdata)
427 {
428 	struct inode *inode = mapping->host;
429 	struct ubifs_info *c = inode->i_sb->s_fs_info;
430 	struct ubifs_inode *ui = ubifs_inode(inode);
431 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
432 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
433 	struct page *page;
434 
435 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
436 
437 	if (unlikely(c->ro_media))
438 		return -EROFS;
439 
440 	/* Try out the fast-path part first */
441 	page = grab_cache_page_write_begin(mapping, index, flags);
442 	if (unlikely(!page))
443 		return -ENOMEM;
444 
445 	if (!PageUptodate(page)) {
446 		/* The page is not loaded from the flash */
447 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
448 			/*
449 			 * We change whole page so no need to load it. But we
450 			 * have to set the @PG_checked flag to make the further
451 			 * code the page is new. This might be not true, but it
452 			 * is better to budget more that to read the page from
453 			 * the media.
454 			 */
455 			SetPageChecked(page);
456 		else {
457 			err = do_readpage(page);
458 			if (err) {
459 				unlock_page(page);
460 				page_cache_release(page);
461 				return err;
462 			}
463 		}
464 
465 		SetPageUptodate(page);
466 		ClearPageError(page);
467 	}
468 
469 	err = allocate_budget(c, page, ui, appending);
470 	if (unlikely(err)) {
471 		ubifs_assert(err == -ENOSPC);
472 		/*
473 		 * Budgeting failed which means it would have to force
474 		 * write-back but didn't, because we set the @fast flag in the
475 		 * request. Write-back cannot be done now, while we have the
476 		 * page locked, because it would deadlock. Unlock and free
477 		 * everything and fall-back to slow-path.
478 		 */
479 		if (appending) {
480 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
481 			mutex_unlock(&ui->ui_mutex);
482 		}
483 		unlock_page(page);
484 		page_cache_release(page);
485 
486 		return write_begin_slow(mapping, pos, len, pagep, flags);
487 	}
488 
489 	/*
490 	 * Whee, we aquired budgeting quickly - without involving
491 	 * garbage-collection, committing or forceing write-back. We return
492 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493 	 * otherwise. This is an optimization (slightly hacky though).
494 	 */
495 	*pagep = page;
496 	return 0;
497 
498 }
499 
500 /**
501  * cancel_budget - cancel budget.
502  * @c: UBIFS file-system description object
503  * @page: page to cancel budget for
504  * @ui: UBIFS inode object the page belongs to
505  * @appending: non-zero if the page is appended
506  *
507  * This is a helper function for a page write operation. It unlocks the
508  * @ui->ui_mutex in case of appending.
509  */
cancel_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)510 static void cancel_budget(struct ubifs_info *c, struct page *page,
511 			  struct ubifs_inode *ui, int appending)
512 {
513 	if (appending) {
514 		if (!ui->dirty)
515 			ubifs_release_dirty_inode_budget(c, ui);
516 		mutex_unlock(&ui->ui_mutex);
517 	}
518 	if (!PagePrivate(page)) {
519 		if (PageChecked(page))
520 			release_new_page_budget(c);
521 		else
522 			release_existing_page_budget(c);
523 	}
524 }
525 
ubifs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)526 static int ubifs_write_end(struct file *file, struct address_space *mapping,
527 			   loff_t pos, unsigned len, unsigned copied,
528 			   struct page *page, void *fsdata)
529 {
530 	struct inode *inode = mapping->host;
531 	struct ubifs_inode *ui = ubifs_inode(inode);
532 	struct ubifs_info *c = inode->i_sb->s_fs_info;
533 	loff_t end_pos = pos + len;
534 	int appending = !!(end_pos > inode->i_size);
535 
536 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
537 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
538 
539 	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
540 		/*
541 		 * VFS copied less data to the page that it intended and
542 		 * declared in its '->write_begin()' call via the @len
543 		 * argument. If the page was not up-to-date, and @len was
544 		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
545 		 * not load it from the media (for optimization reasons). This
546 		 * means that part of the page contains garbage. So read the
547 		 * page now.
548 		 */
549 		dbg_gen("copied %d instead of %d, read page and repeat",
550 			copied, len);
551 		cancel_budget(c, page, ui, appending);
552 
553 		/*
554 		 * Return 0 to force VFS to repeat the whole operation, or the
555 		 * error code if 'do_readpage()' failes.
556 		 */
557 		copied = do_readpage(page);
558 		goto out;
559 	}
560 
561 	if (!PagePrivate(page)) {
562 		SetPagePrivate(page);
563 		atomic_long_inc(&c->dirty_pg_cnt);
564 		__set_page_dirty_nobuffers(page);
565 	}
566 
567 	if (appending) {
568 		i_size_write(inode, end_pos);
569 		ui->ui_size = end_pos;
570 		/*
571 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
572 		 * inode has dirty pages), this has been done in
573 		 * '__set_page_dirty_nobuffers()'.
574 		 */
575 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
576 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
577 		mutex_unlock(&ui->ui_mutex);
578 	}
579 
580 out:
581 	unlock_page(page);
582 	page_cache_release(page);
583 	return copied;
584 }
585 
586 /**
587  * populate_page - copy data nodes into a page for bulk-read.
588  * @c: UBIFS file-system description object
589  * @page: page
590  * @bu: bulk-read information
591  * @n: next zbranch slot
592  *
593  * This function returns %0 on success and a negative error code on failure.
594  */
populate_page(struct ubifs_info * c,struct page * page,struct bu_info * bu,int * n)595 static int populate_page(struct ubifs_info *c, struct page *page,
596 			 struct bu_info *bu, int *n)
597 {
598 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
599 	struct inode *inode = page->mapping->host;
600 	loff_t i_size = i_size_read(inode);
601 	unsigned int page_block;
602 	void *addr, *zaddr;
603 	pgoff_t end_index;
604 
605 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
606 		inode->i_ino, page->index, i_size, page->flags);
607 
608 	addr = zaddr = kmap(page);
609 
610 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
611 	if (!i_size || page->index > end_index) {
612 		hole = 1;
613 		memset(addr, 0, PAGE_CACHE_SIZE);
614 		goto out_hole;
615 	}
616 
617 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
618 	while (1) {
619 		int err, len, out_len, dlen;
620 
621 		if (nn >= bu->cnt) {
622 			hole = 1;
623 			memset(addr, 0, UBIFS_BLOCK_SIZE);
624 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
625 			struct ubifs_data_node *dn;
626 
627 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
628 
629 			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
630 				     ubifs_inode(inode)->creat_sqnum);
631 
632 			len = le32_to_cpu(dn->size);
633 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
634 				goto out_err;
635 
636 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
637 			out_len = UBIFS_BLOCK_SIZE;
638 			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
639 					       le16_to_cpu(dn->compr_type));
640 			if (err || len != out_len)
641 				goto out_err;
642 
643 			if (len < UBIFS_BLOCK_SIZE)
644 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
645 
646 			nn += 1;
647 			read = (i << UBIFS_BLOCK_SHIFT) + len;
648 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
649 			nn += 1;
650 			continue;
651 		} else {
652 			hole = 1;
653 			memset(addr, 0, UBIFS_BLOCK_SIZE);
654 		}
655 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
656 			break;
657 		addr += UBIFS_BLOCK_SIZE;
658 		page_block += 1;
659 	}
660 
661 	if (end_index == page->index) {
662 		int len = i_size & (PAGE_CACHE_SIZE - 1);
663 
664 		if (len && len < read)
665 			memset(zaddr + len, 0, read - len);
666 	}
667 
668 out_hole:
669 	if (hole) {
670 		SetPageChecked(page);
671 		dbg_gen("hole");
672 	}
673 
674 	SetPageUptodate(page);
675 	ClearPageError(page);
676 	flush_dcache_page(page);
677 	kunmap(page);
678 	*n = nn;
679 	return 0;
680 
681 out_err:
682 	ClearPageUptodate(page);
683 	SetPageError(page);
684 	flush_dcache_page(page);
685 	kunmap(page);
686 	ubifs_err("bad data node (block %u, inode %lu)",
687 		  page_block, inode->i_ino);
688 	return -EINVAL;
689 }
690 
691 /**
692  * ubifs_do_bulk_read - do bulk-read.
693  * @c: UBIFS file-system description object
694  * @bu: bulk-read information
695  * @page1: first page to read
696  *
697  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
698  */
ubifs_do_bulk_read(struct ubifs_info * c,struct bu_info * bu,struct page * page1)699 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
700 			      struct page *page1)
701 {
702 	pgoff_t offset = page1->index, end_index;
703 	struct address_space *mapping = page1->mapping;
704 	struct inode *inode = mapping->host;
705 	struct ubifs_inode *ui = ubifs_inode(inode);
706 	int err, page_idx, page_cnt, ret = 0, n = 0;
707 	int allocate = bu->buf ? 0 : 1;
708 	loff_t isize;
709 
710 	err = ubifs_tnc_get_bu_keys(c, bu);
711 	if (err)
712 		goto out_warn;
713 
714 	if (bu->eof) {
715 		/* Turn off bulk-read at the end of the file */
716 		ui->read_in_a_row = 1;
717 		ui->bulk_read = 0;
718 	}
719 
720 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
721 	if (!page_cnt) {
722 		/*
723 		 * This happens when there are multiple blocks per page and the
724 		 * blocks for the first page we are looking for, are not
725 		 * together. If all the pages were like this, bulk-read would
726 		 * reduce performance, so we turn it off for a while.
727 		 */
728 		goto out_bu_off;
729 	}
730 
731 	if (bu->cnt) {
732 		if (allocate) {
733 			/*
734 			 * Allocate bulk-read buffer depending on how many data
735 			 * nodes we are going to read.
736 			 */
737 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
738 				      bu->zbranch[bu->cnt - 1].len -
739 				      bu->zbranch[0].offs;
740 			ubifs_assert(bu->buf_len > 0);
741 			ubifs_assert(bu->buf_len <= c->leb_size);
742 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
743 			if (!bu->buf)
744 				goto out_bu_off;
745 		}
746 
747 		err = ubifs_tnc_bulk_read(c, bu);
748 		if (err)
749 			goto out_warn;
750 	}
751 
752 	err = populate_page(c, page1, bu, &n);
753 	if (err)
754 		goto out_warn;
755 
756 	unlock_page(page1);
757 	ret = 1;
758 
759 	isize = i_size_read(inode);
760 	if (isize == 0)
761 		goto out_free;
762 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
763 
764 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
765 		pgoff_t page_offset = offset + page_idx;
766 		struct page *page;
767 
768 		if (page_offset > end_index)
769 			break;
770 		page = find_or_create_page(mapping, page_offset,
771 					   GFP_NOFS | __GFP_COLD);
772 		if (!page)
773 			break;
774 		if (!PageUptodate(page))
775 			err = populate_page(c, page, bu, &n);
776 		unlock_page(page);
777 		page_cache_release(page);
778 		if (err)
779 			break;
780 	}
781 
782 	ui->last_page_read = offset + page_idx - 1;
783 
784 out_free:
785 	if (allocate)
786 		kfree(bu->buf);
787 	return ret;
788 
789 out_warn:
790 	ubifs_warn("ignoring error %d and skipping bulk-read", err);
791 	goto out_free;
792 
793 out_bu_off:
794 	ui->read_in_a_row = ui->bulk_read = 0;
795 	goto out_free;
796 }
797 
798 /**
799  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
800  * @page: page from which to start bulk-read.
801  *
802  * Some flash media are capable of reading sequentially at faster rates. UBIFS
803  * bulk-read facility is designed to take advantage of that, by reading in one
804  * go consecutive data nodes that are also located consecutively in the same
805  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
806  */
ubifs_bulk_read(struct page * page)807 static int ubifs_bulk_read(struct page *page)
808 {
809 	struct inode *inode = page->mapping->host;
810 	struct ubifs_info *c = inode->i_sb->s_fs_info;
811 	struct ubifs_inode *ui = ubifs_inode(inode);
812 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
813 	struct bu_info *bu;
814 	int err = 0, allocated = 0;
815 
816 	ui->last_page_read = index;
817 	if (!c->bulk_read)
818 		return 0;
819 
820 	/*
821 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
822 	 * so don't bother if we cannot lock the mutex.
823 	 */
824 	if (!mutex_trylock(&ui->ui_mutex))
825 		return 0;
826 
827 	if (index != last_page_read + 1) {
828 		/* Turn off bulk-read if we stop reading sequentially */
829 		ui->read_in_a_row = 1;
830 		if (ui->bulk_read)
831 			ui->bulk_read = 0;
832 		goto out_unlock;
833 	}
834 
835 	if (!ui->bulk_read) {
836 		ui->read_in_a_row += 1;
837 		if (ui->read_in_a_row < 3)
838 			goto out_unlock;
839 		/* Three reads in a row, so switch on bulk-read */
840 		ui->bulk_read = 1;
841 	}
842 
843 	/*
844 	 * If possible, try to use pre-allocated bulk-read information, which
845 	 * is protected by @c->bu_mutex.
846 	 */
847 	if (mutex_trylock(&c->bu_mutex))
848 		bu = &c->bu;
849 	else {
850 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
851 		if (!bu)
852 			goto out_unlock;
853 
854 		bu->buf = NULL;
855 		allocated = 1;
856 	}
857 
858 	bu->buf_len = c->max_bu_buf_len;
859 	data_key_init(c, &bu->key, inode->i_ino,
860 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
861 	err = ubifs_do_bulk_read(c, bu, page);
862 
863 	if (!allocated)
864 		mutex_unlock(&c->bu_mutex);
865 	else
866 		kfree(bu);
867 
868 out_unlock:
869 	mutex_unlock(&ui->ui_mutex);
870 	return err;
871 }
872 
ubifs_readpage(struct file * file,struct page * page)873 static int ubifs_readpage(struct file *file, struct page *page)
874 {
875 	if (ubifs_bulk_read(page))
876 		return 0;
877 	do_readpage(page);
878 	unlock_page(page);
879 	return 0;
880 }
881 
do_writepage(struct page * page,int len)882 static int do_writepage(struct page *page, int len)
883 {
884 	int err = 0, i, blen;
885 	unsigned int block;
886 	void *addr;
887 	union ubifs_key key;
888 	struct inode *inode = page->mapping->host;
889 	struct ubifs_info *c = inode->i_sb->s_fs_info;
890 
891 #ifdef UBIFS_DEBUG
892 	spin_lock(&ui->ui_lock);
893 	ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
894 	spin_unlock(&ui->ui_lock);
895 #endif
896 
897 	/* Update radix tree tags */
898 	set_page_writeback(page);
899 
900 	addr = kmap(page);
901 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
902 	i = 0;
903 	while (len) {
904 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
905 		data_key_init(c, &key, inode->i_ino, block);
906 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
907 		if (err)
908 			break;
909 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
910 			break;
911 		block += 1;
912 		addr += blen;
913 		len -= blen;
914 	}
915 	if (err) {
916 		SetPageError(page);
917 		ubifs_err("cannot write page %lu of inode %lu, error %d",
918 			  page->index, inode->i_ino, err);
919 		ubifs_ro_mode(c, err);
920 	}
921 
922 	ubifs_assert(PagePrivate(page));
923 	if (PageChecked(page))
924 		release_new_page_budget(c);
925 	else
926 		release_existing_page_budget(c);
927 
928 	atomic_long_dec(&c->dirty_pg_cnt);
929 	ClearPagePrivate(page);
930 	ClearPageChecked(page);
931 
932 	kunmap(page);
933 	unlock_page(page);
934 	end_page_writeback(page);
935 	return err;
936 }
937 
938 /*
939  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
940  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
941  * situation when a we have an inode with size 0, then a megabyte of data is
942  * appended to the inode, then write-back starts and flushes some amount of the
943  * dirty pages, the journal becomes full, commit happens and finishes, and then
944  * an unclean reboot happens. When the file system is mounted next time, the
945  * inode size would still be 0, but there would be many pages which are beyond
946  * the inode size, they would be indexed and consume flash space. Because the
947  * journal has been committed, the replay would not be able to detect this
948  * situation and correct the inode size. This means UBIFS would have to scan
949  * whole index and correct all inode sizes, which is long an unacceptable.
950  *
951  * To prevent situations like this, UBIFS writes pages back only if they are
952  * within last synchronized inode size, i.e. the the size which has been
953  * written to the flash media last time. Otherwise, UBIFS forces inode
954  * write-back, thus making sure the on-flash inode contains current inode size,
955  * and then keeps writing pages back.
956  *
957  * Some locking issues explanation. 'ubifs_writepage()' first is called with
958  * the page locked, and it locks @ui_mutex. However, write-back does take inode
959  * @i_mutex, which means other VFS operations may be run on this inode at the
960  * same time. And the problematic one is truncation to smaller size, from where
961  * we have to call 'vmtruncate()', which first changes @inode->i_size, then
962  * drops the truncated pages. And while dropping the pages, it takes the page
963  * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
964  * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
965  * means that @inode->i_size is changed while @ui_mutex is unlocked.
966  *
967  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
968  * inode size. How do we do this if @inode->i_size may became smaller while we
969  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
970  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
971  * internally and updates it under @ui_mutex.
972  *
973  * Q: why we do not worry that if we race with truncation, we may end up with a
974  * situation when the inode is truncated while we are in the middle of
975  * 'do_writepage()', so we do write beyond inode size?
976  * A: If we are in the middle of 'do_writepage()', truncation would be locked
977  * on the page lock and it would not write the truncated inode node to the
978  * journal before we have finished.
979  */
ubifs_writepage(struct page * page,struct writeback_control * wbc)980 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
981 {
982 	struct inode *inode = page->mapping->host;
983 	struct ubifs_inode *ui = ubifs_inode(inode);
984 	loff_t i_size =  i_size_read(inode), synced_i_size;
985 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
986 	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
987 	void *kaddr;
988 
989 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
990 		inode->i_ino, page->index, page->flags);
991 	ubifs_assert(PagePrivate(page));
992 
993 	/* Is the page fully outside @i_size? (truncate in progress) */
994 	if (page->index > end_index || (page->index == end_index && !len)) {
995 		err = 0;
996 		goto out_unlock;
997 	}
998 
999 	spin_lock(&ui->ui_lock);
1000 	synced_i_size = ui->synced_i_size;
1001 	spin_unlock(&ui->ui_lock);
1002 
1003 	/* Is the page fully inside @i_size? */
1004 	if (page->index < end_index) {
1005 		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1006 			err = inode->i_sb->s_op->write_inode(inode, 1);
1007 			if (err)
1008 				goto out_unlock;
1009 			/*
1010 			 * The inode has been written, but the write-buffer has
1011 			 * not been synchronized, so in case of an unclean
1012 			 * reboot we may end up with some pages beyond inode
1013 			 * size, but they would be in the journal (because
1014 			 * commit flushes write buffers) and recovery would deal
1015 			 * with this.
1016 			 */
1017 		}
1018 		return do_writepage(page, PAGE_CACHE_SIZE);
1019 	}
1020 
1021 	/*
1022 	 * The page straddles @i_size. It must be zeroed out on each and every
1023 	 * writepage invocation because it may be mmapped. "A file is mapped
1024 	 * in multiples of the page size. For a file that is not a multiple of
1025 	 * the page size, the remaining memory is zeroed when mapped, and
1026 	 * writes to that region are not written out to the file."
1027 	 */
1028 	kaddr = kmap_atomic(page, KM_USER0);
1029 	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1030 	flush_dcache_page(page);
1031 	kunmap_atomic(kaddr, KM_USER0);
1032 
1033 	if (i_size > synced_i_size) {
1034 		err = inode->i_sb->s_op->write_inode(inode, 1);
1035 		if (err)
1036 			goto out_unlock;
1037 	}
1038 
1039 	return do_writepage(page, len);
1040 
1041 out_unlock:
1042 	unlock_page(page);
1043 	return err;
1044 }
1045 
1046 /**
1047  * do_attr_changes - change inode attributes.
1048  * @inode: inode to change attributes for
1049  * @attr: describes attributes to change
1050  */
do_attr_changes(struct inode * inode,const struct iattr * attr)1051 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1052 {
1053 	if (attr->ia_valid & ATTR_UID)
1054 		inode->i_uid = attr->ia_uid;
1055 	if (attr->ia_valid & ATTR_GID)
1056 		inode->i_gid = attr->ia_gid;
1057 	if (attr->ia_valid & ATTR_ATIME)
1058 		inode->i_atime = timespec_trunc(attr->ia_atime,
1059 						inode->i_sb->s_time_gran);
1060 	if (attr->ia_valid & ATTR_MTIME)
1061 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1062 						inode->i_sb->s_time_gran);
1063 	if (attr->ia_valid & ATTR_CTIME)
1064 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1065 						inode->i_sb->s_time_gran);
1066 	if (attr->ia_valid & ATTR_MODE) {
1067 		umode_t mode = attr->ia_mode;
1068 
1069 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1070 			mode &= ~S_ISGID;
1071 		inode->i_mode = mode;
1072 	}
1073 }
1074 
1075 /**
1076  * do_truncation - truncate an inode.
1077  * @c: UBIFS file-system description object
1078  * @inode: inode to truncate
1079  * @attr: inode attribute changes description
1080  *
1081  * This function implements VFS '->setattr()' call when the inode is truncated
1082  * to a smaller size. Returns zero in case of success and a negative error code
1083  * in case of failure.
1084  */
do_truncation(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1085 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1086 			 const struct iattr *attr)
1087 {
1088 	int err;
1089 	struct ubifs_budget_req req;
1090 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1091 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1092 	struct ubifs_inode *ui = ubifs_inode(inode);
1093 
1094 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1095 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1096 
1097 	/*
1098 	 * If this is truncation to a smaller size, and we do not truncate on a
1099 	 * block boundary, budget for changing one data block, because the last
1100 	 * block will be re-written.
1101 	 */
1102 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1103 		req.dirtied_page = 1;
1104 
1105 	req.dirtied_ino = 1;
1106 	/* A funny way to budget for truncation node */
1107 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1108 	err = ubifs_budget_space(c, &req);
1109 	if (err) {
1110 		/*
1111 		 * Treat truncations to zero as deletion and always allow them,
1112 		 * just like we do for '->unlink()'.
1113 		 */
1114 		if (new_size || err != -ENOSPC)
1115 			return err;
1116 		budgeted = 0;
1117 	}
1118 
1119 	err = vmtruncate(inode, new_size);
1120 	if (err)
1121 		goto out_budg;
1122 
1123 	if (offset) {
1124 		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1125 		struct page *page;
1126 
1127 		page = find_lock_page(inode->i_mapping, index);
1128 		if (page) {
1129 			if (PageDirty(page)) {
1130 				/*
1131 				 * 'ubifs_jnl_truncate()' will try to truncate
1132 				 * the last data node, but it contains
1133 				 * out-of-date data because the page is dirty.
1134 				 * Write the page now, so that
1135 				 * 'ubifs_jnl_truncate()' will see an already
1136 				 * truncated (and up to date) data node.
1137 				 */
1138 				ubifs_assert(PagePrivate(page));
1139 
1140 				clear_page_dirty_for_io(page);
1141 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1142 					offset = new_size &
1143 						 (PAGE_CACHE_SIZE - 1);
1144 				err = do_writepage(page, offset);
1145 				page_cache_release(page);
1146 				if (err)
1147 					goto out_budg;
1148 				/*
1149 				 * We could now tell 'ubifs_jnl_truncate()' not
1150 				 * to read the last block.
1151 				 */
1152 			} else {
1153 				/*
1154 				 * We could 'kmap()' the page and pass the data
1155 				 * to 'ubifs_jnl_truncate()' to save it from
1156 				 * having to read it.
1157 				 */
1158 				unlock_page(page);
1159 				page_cache_release(page);
1160 			}
1161 		}
1162 	}
1163 
1164 	mutex_lock(&ui->ui_mutex);
1165 	ui->ui_size = inode->i_size;
1166 	/* Truncation changes inode [mc]time */
1167 	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1168 	/* The other attributes may be changed at the same time as well */
1169 	do_attr_changes(inode, attr);
1170 
1171 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1172 	mutex_unlock(&ui->ui_mutex);
1173 out_budg:
1174 	if (budgeted)
1175 		ubifs_release_budget(c, &req);
1176 	else {
1177 		c->nospace = c->nospace_rp = 0;
1178 		smp_wmb();
1179 	}
1180 	return err;
1181 }
1182 
1183 /**
1184  * do_setattr - change inode attributes.
1185  * @c: UBIFS file-system description object
1186  * @inode: inode to change attributes for
1187  * @attr: inode attribute changes description
1188  *
1189  * This function implements VFS '->setattr()' call for all cases except
1190  * truncations to smaller size. Returns zero in case of success and a negative
1191  * error code in case of failure.
1192  */
do_setattr(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1193 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1194 		      const struct iattr *attr)
1195 {
1196 	int err, release;
1197 	loff_t new_size = attr->ia_size;
1198 	struct ubifs_inode *ui = ubifs_inode(inode);
1199 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1200 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1201 
1202 	err = ubifs_budget_space(c, &req);
1203 	if (err)
1204 		return err;
1205 
1206 	if (attr->ia_valid & ATTR_SIZE) {
1207 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1208 		err = vmtruncate(inode, new_size);
1209 		if (err)
1210 			goto out;
1211 	}
1212 
1213 	mutex_lock(&ui->ui_mutex);
1214 	if (attr->ia_valid & ATTR_SIZE) {
1215 		/* Truncation changes inode [mc]time */
1216 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1217 		/* 'vmtruncate()' changed @i_size, update @ui_size */
1218 		ui->ui_size = inode->i_size;
1219 	}
1220 
1221 	do_attr_changes(inode, attr);
1222 
1223 	release = ui->dirty;
1224 	if (attr->ia_valid & ATTR_SIZE)
1225 		/*
1226 		 * Inode length changed, so we have to make sure
1227 		 * @I_DIRTY_DATASYNC is set.
1228 		 */
1229 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1230 	else
1231 		mark_inode_dirty_sync(inode);
1232 	mutex_unlock(&ui->ui_mutex);
1233 
1234 	if (release)
1235 		ubifs_release_budget(c, &req);
1236 	if (IS_SYNC(inode))
1237 		err = inode->i_sb->s_op->write_inode(inode, 1);
1238 	return err;
1239 
1240 out:
1241 	ubifs_release_budget(c, &req);
1242 	return err;
1243 }
1244 
ubifs_setattr(struct dentry * dentry,struct iattr * attr)1245 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1246 {
1247 	int err;
1248 	struct inode *inode = dentry->d_inode;
1249 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1250 
1251 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1252 		inode->i_ino, inode->i_mode, attr->ia_valid);
1253 	err = inode_change_ok(inode, attr);
1254 	if (err)
1255 		return err;
1256 
1257 	err = dbg_check_synced_i_size(inode);
1258 	if (err)
1259 		return err;
1260 
1261 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1262 		/* Truncation to a smaller size */
1263 		err = do_truncation(c, inode, attr);
1264 	else
1265 		err = do_setattr(c, inode, attr);
1266 
1267 	return err;
1268 }
1269 
ubifs_invalidatepage(struct page * page,unsigned long offset)1270 static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1271 {
1272 	struct inode *inode = page->mapping->host;
1273 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1274 
1275 	ubifs_assert(PagePrivate(page));
1276 	if (offset)
1277 		/* Partial page remains dirty */
1278 		return;
1279 
1280 	if (PageChecked(page))
1281 		release_new_page_budget(c);
1282 	else
1283 		release_existing_page_budget(c);
1284 
1285 	atomic_long_dec(&c->dirty_pg_cnt);
1286 	ClearPagePrivate(page);
1287 	ClearPageChecked(page);
1288 }
1289 
ubifs_follow_link(struct dentry * dentry,struct nameidata * nd)1290 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1291 {
1292 	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1293 
1294 	nd_set_link(nd, ui->data);
1295 	return NULL;
1296 }
1297 
ubifs_fsync(struct file * file,struct dentry * dentry,int datasync)1298 int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1299 {
1300 	struct inode *inode = dentry->d_inode;
1301 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1302 	int err;
1303 
1304 	dbg_gen("syncing inode %lu", inode->i_ino);
1305 
1306 	/*
1307 	 * VFS has already synchronized dirty pages for this inode. Synchronize
1308 	 * the inode unless this is a 'datasync()' call.
1309 	 */
1310 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1311 		err = inode->i_sb->s_op->write_inode(inode, 1);
1312 		if (err)
1313 			return err;
1314 	}
1315 
1316 	/*
1317 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1318 	 * them.
1319 	 */
1320 	err = ubifs_sync_wbufs_by_inode(c, inode);
1321 	if (err)
1322 		return err;
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  * mctime_update_needed - check if mtime or ctime update is needed.
1329  * @inode: the inode to do the check for
1330  * @now: current time
1331  *
1332  * This helper function checks if the inode mtime/ctime should be updated or
1333  * not. If current values of the time-stamps are within the UBIFS inode time
1334  * granularity, they are not updated. This is an optimization.
1335  */
mctime_update_needed(const struct inode * inode,const struct timespec * now)1336 static inline int mctime_update_needed(const struct inode *inode,
1337 				       const struct timespec *now)
1338 {
1339 	if (!timespec_equal(&inode->i_mtime, now) ||
1340 	    !timespec_equal(&inode->i_ctime, now))
1341 		return 1;
1342 	return 0;
1343 }
1344 
1345 /**
1346  * update_ctime - update mtime and ctime of an inode.
1347  * @c: UBIFS file-system description object
1348  * @inode: inode to update
1349  *
1350  * This function updates mtime and ctime of the inode if it is not equivalent to
1351  * current time. Returns zero in case of success and a negative error code in
1352  * case of failure.
1353  */
update_mctime(struct ubifs_info * c,struct inode * inode)1354 static int update_mctime(struct ubifs_info *c, struct inode *inode)
1355 {
1356 	struct timespec now = ubifs_current_time(inode);
1357 	struct ubifs_inode *ui = ubifs_inode(inode);
1358 
1359 	if (mctime_update_needed(inode, &now)) {
1360 		int err, release;
1361 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1362 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1363 
1364 		err = ubifs_budget_space(c, &req);
1365 		if (err)
1366 			return err;
1367 
1368 		mutex_lock(&ui->ui_mutex);
1369 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1370 		release = ui->dirty;
1371 		mark_inode_dirty_sync(inode);
1372 		mutex_unlock(&ui->ui_mutex);
1373 		if (release)
1374 			ubifs_release_budget(c, &req);
1375 	}
1376 
1377 	return 0;
1378 }
1379 
ubifs_aio_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)1380 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1381 			       unsigned long nr_segs, loff_t pos)
1382 {
1383 	int err;
1384 	ssize_t ret;
1385 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1386 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1387 
1388 	err = update_mctime(c, inode);
1389 	if (err)
1390 		return err;
1391 
1392 	ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
1393 	if (ret < 0)
1394 		return ret;
1395 
1396 	if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
1397 		err = ubifs_sync_wbufs_by_inode(c, inode);
1398 		if (err)
1399 			return err;
1400 	}
1401 
1402 	return ret;
1403 }
1404 
ubifs_set_page_dirty(struct page * page)1405 static int ubifs_set_page_dirty(struct page *page)
1406 {
1407 	int ret;
1408 
1409 	ret = __set_page_dirty_nobuffers(page);
1410 	/*
1411 	 * An attempt to dirty a page without budgeting for it - should not
1412 	 * happen.
1413 	 */
1414 	ubifs_assert(ret == 0);
1415 	return ret;
1416 }
1417 
ubifs_releasepage(struct page * page,gfp_t unused_gfp_flags)1418 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1419 {
1420 	/*
1421 	 * An attempt to release a dirty page without budgeting for it - should
1422 	 * not happen.
1423 	 */
1424 	if (PageWriteback(page))
1425 		return 0;
1426 	ubifs_assert(PagePrivate(page));
1427 	ubifs_assert(0);
1428 	ClearPagePrivate(page);
1429 	ClearPageChecked(page);
1430 	return 1;
1431 }
1432 
1433 /*
1434  * mmap()d file has taken write protection fault and is being made
1435  * writable. UBIFS must ensure page is budgeted for.
1436  */
ubifs_vm_page_mkwrite(struct vm_area_struct * vma,struct page * page)1437 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
1438 {
1439 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1440 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1441 	struct timespec now = ubifs_current_time(inode);
1442 	struct ubifs_budget_req req = { .new_page = 1 };
1443 	int err, update_time;
1444 
1445 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1446 		i_size_read(inode));
1447 	ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1448 
1449 	if (unlikely(c->ro_media))
1450 		return -EROFS;
1451 
1452 	/*
1453 	 * We have not locked @page so far so we may budget for changing the
1454 	 * page. Note, we cannot do this after we locked the page, because
1455 	 * budgeting may cause write-back which would cause deadlock.
1456 	 *
1457 	 * At the moment we do not know whether the page is dirty or not, so we
1458 	 * assume that it is not and budget for a new page. We could look at
1459 	 * the @PG_private flag and figure this out, but we may race with write
1460 	 * back and the page state may change by the time we lock it, so this
1461 	 * would need additional care. We do not bother with this at the
1462 	 * moment, although it might be good idea to do. Instead, we allocate
1463 	 * budget for a new page and amend it later on if the page was in fact
1464 	 * dirty.
1465 	 *
1466 	 * The budgeting-related logic of this function is similar to what we
1467 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1468 	 * for more comments.
1469 	 */
1470 	update_time = mctime_update_needed(inode, &now);
1471 	if (update_time)
1472 		/*
1473 		 * We have to change inode time stamp which requires extra
1474 		 * budgeting.
1475 		 */
1476 		req.dirtied_ino = 1;
1477 
1478 	err = ubifs_budget_space(c, &req);
1479 	if (unlikely(err)) {
1480 		if (err == -ENOSPC)
1481 			ubifs_warn("out of space for mmapped file "
1482 				   "(inode number %lu)", inode->i_ino);
1483 		return err;
1484 	}
1485 
1486 	lock_page(page);
1487 	if (unlikely(page->mapping != inode->i_mapping ||
1488 		     page_offset(page) > i_size_read(inode))) {
1489 		/* Page got truncated out from underneath us */
1490 		err = -EINVAL;
1491 		goto out_unlock;
1492 	}
1493 
1494 	if (PagePrivate(page))
1495 		release_new_page_budget(c);
1496 	else {
1497 		if (!PageChecked(page))
1498 			ubifs_convert_page_budget(c);
1499 		SetPagePrivate(page);
1500 		atomic_long_inc(&c->dirty_pg_cnt);
1501 		__set_page_dirty_nobuffers(page);
1502 	}
1503 
1504 	if (update_time) {
1505 		int release;
1506 		struct ubifs_inode *ui = ubifs_inode(inode);
1507 
1508 		mutex_lock(&ui->ui_mutex);
1509 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1510 		release = ui->dirty;
1511 		mark_inode_dirty_sync(inode);
1512 		mutex_unlock(&ui->ui_mutex);
1513 		if (release)
1514 			ubifs_release_dirty_inode_budget(c, ui);
1515 	}
1516 
1517 	unlock_page(page);
1518 	return 0;
1519 
1520 out_unlock:
1521 	unlock_page(page);
1522 	ubifs_release_budget(c, &req);
1523 	return err;
1524 }
1525 
1526 static struct vm_operations_struct ubifs_file_vm_ops = {
1527 	.fault        = filemap_fault,
1528 	.page_mkwrite = ubifs_vm_page_mkwrite,
1529 };
1530 
ubifs_file_mmap(struct file * file,struct vm_area_struct * vma)1531 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1532 {
1533 	int err;
1534 
1535 	/* 'generic_file_mmap()' takes care of NOMMU case */
1536 	err = generic_file_mmap(file, vma);
1537 	if (err)
1538 		return err;
1539 	vma->vm_ops = &ubifs_file_vm_ops;
1540 	return 0;
1541 }
1542 
1543 const struct address_space_operations ubifs_file_address_operations = {
1544 	.readpage       = ubifs_readpage,
1545 	.writepage      = ubifs_writepage,
1546 	.write_begin    = ubifs_write_begin,
1547 	.write_end      = ubifs_write_end,
1548 	.invalidatepage = ubifs_invalidatepage,
1549 	.set_page_dirty = ubifs_set_page_dirty,
1550 	.releasepage    = ubifs_releasepage,
1551 };
1552 
1553 const struct inode_operations ubifs_file_inode_operations = {
1554 	.setattr     = ubifs_setattr,
1555 	.getattr     = ubifs_getattr,
1556 #ifdef CONFIG_UBIFS_FS_XATTR
1557 	.setxattr    = ubifs_setxattr,
1558 	.getxattr    = ubifs_getxattr,
1559 	.listxattr   = ubifs_listxattr,
1560 	.removexattr = ubifs_removexattr,
1561 #endif
1562 };
1563 
1564 const struct inode_operations ubifs_symlink_inode_operations = {
1565 	.readlink    = generic_readlink,
1566 	.follow_link = ubifs_follow_link,
1567 	.setattr     = ubifs_setattr,
1568 	.getattr     = ubifs_getattr,
1569 };
1570 
1571 const struct file_operations ubifs_file_operations = {
1572 	.llseek         = generic_file_llseek,
1573 	.read           = do_sync_read,
1574 	.write          = do_sync_write,
1575 	.aio_read       = generic_file_aio_read,
1576 	.aio_write      = ubifs_aio_write,
1577 	.mmap           = ubifs_file_mmap,
1578 	.fsync          = ubifs_fsync,
1579 	.unlocked_ioctl = ubifs_ioctl,
1580 	.splice_read	= generic_file_splice_read,
1581 	.splice_write	= generic_file_splice_write,
1582 #ifdef CONFIG_COMPAT
1583 	.compat_ioctl   = ubifs_compat_ioctl,
1584 #endif
1585 };
1586