• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include "ubifs.h"
30 
31 /**
32  * first_dirty_cnode - find first dirty cnode.
33  * @c: UBIFS file-system description object
34  * @nnode: nnode at which to start
35  *
36  * This function returns the first dirty cnode or %NULL if there is not one.
37  */
first_dirty_cnode(struct ubifs_nnode * nnode)38 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
39 {
40 	ubifs_assert(nnode);
41 	while (1) {
42 		int i, cont = 0;
43 
44 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
45 			struct ubifs_cnode *cnode;
46 
47 			cnode = nnode->nbranch[i].cnode;
48 			if (cnode &&
49 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
50 				if (cnode->level == 0)
51 					return cnode;
52 				nnode = (struct ubifs_nnode *)cnode;
53 				cont = 1;
54 				break;
55 			}
56 		}
57 		if (!cont)
58 			return (struct ubifs_cnode *)nnode;
59 	}
60 }
61 
62 /**
63  * next_dirty_cnode - find next dirty cnode.
64  * @cnode: cnode from which to begin searching
65  *
66  * This function returns the next dirty cnode or %NULL if there is not one.
67  */
next_dirty_cnode(struct ubifs_cnode * cnode)68 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
69 {
70 	struct ubifs_nnode *nnode;
71 	int i;
72 
73 	ubifs_assert(cnode);
74 	nnode = cnode->parent;
75 	if (!nnode)
76 		return NULL;
77 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
78 		cnode = nnode->nbranch[i].cnode;
79 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
80 			if (cnode->level == 0)
81 				return cnode; /* cnode is a pnode */
82 			/* cnode is a nnode */
83 			return first_dirty_cnode((struct ubifs_nnode *)cnode);
84 		}
85 	}
86 	return (struct ubifs_cnode *)nnode;
87 }
88 
89 /**
90  * get_cnodes_to_commit - create list of dirty cnodes to commit.
91  * @c: UBIFS file-system description object
92  *
93  * This function returns the number of cnodes to commit.
94  */
get_cnodes_to_commit(struct ubifs_info * c)95 static int get_cnodes_to_commit(struct ubifs_info *c)
96 {
97 	struct ubifs_cnode *cnode, *cnext;
98 	int cnt = 0;
99 
100 	if (!c->nroot)
101 		return 0;
102 
103 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
104 		return 0;
105 
106 	c->lpt_cnext = first_dirty_cnode(c->nroot);
107 	cnode = c->lpt_cnext;
108 	if (!cnode)
109 		return 0;
110 	cnt += 1;
111 	while (1) {
112 		ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
113 		__set_bit(COW_ZNODE, &cnode->flags);
114 		cnext = next_dirty_cnode(cnode);
115 		if (!cnext) {
116 			cnode->cnext = c->lpt_cnext;
117 			break;
118 		}
119 		cnode->cnext = cnext;
120 		cnode = cnext;
121 		cnt += 1;
122 	}
123 	dbg_cmt("committing %d cnodes", cnt);
124 	dbg_lp("committing %d cnodes", cnt);
125 	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
126 	return cnt;
127 }
128 
129 /**
130  * upd_ltab - update LPT LEB properties.
131  * @c: UBIFS file-system description object
132  * @lnum: LEB number
133  * @free: amount of free space
134  * @dirty: amount of dirty space to add
135  */
upd_ltab(struct ubifs_info * c,int lnum,int free,int dirty)136 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
137 {
138 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 	       lnum, c->ltab[lnum - c->lpt_first].free,
140 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
141 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
142 	c->ltab[lnum - c->lpt_first].free = free;
143 	c->ltab[lnum - c->lpt_first].dirty += dirty;
144 }
145 
146 /**
147  * alloc_lpt_leb - allocate an LPT LEB that is empty.
148  * @c: UBIFS file-system description object
149  * @lnum: LEB number is passed and returned here
150  *
151  * This function finds the next empty LEB in the ltab starting from @lnum. If a
152  * an empty LEB is found it is returned in @lnum and the function returns %0.
153  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
154  * never to run out of space.
155  */
alloc_lpt_leb(struct ubifs_info * c,int * lnum)156 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
157 {
158 	int i, n;
159 
160 	n = *lnum - c->lpt_first + 1;
161 	for (i = n; i < c->lpt_lebs; i++) {
162 		if (c->ltab[i].tgc || c->ltab[i].cmt)
163 			continue;
164 		if (c->ltab[i].free == c->leb_size) {
165 			c->ltab[i].cmt = 1;
166 			*lnum = i + c->lpt_first;
167 			return 0;
168 		}
169 	}
170 
171 	for (i = 0; i < n; i++) {
172 		if (c->ltab[i].tgc || c->ltab[i].cmt)
173 			continue;
174 		if (c->ltab[i].free == c->leb_size) {
175 			c->ltab[i].cmt = 1;
176 			*lnum = i + c->lpt_first;
177 			return 0;
178 		}
179 	}
180 	return -ENOSPC;
181 }
182 
183 /**
184  * layout_cnodes - layout cnodes for commit.
185  * @c: UBIFS file-system description object
186  *
187  * This function returns %0 on success and a negative error code on failure.
188  */
layout_cnodes(struct ubifs_info * c)189 static int layout_cnodes(struct ubifs_info *c)
190 {
191 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
192 	struct ubifs_cnode *cnode;
193 
194 	err = dbg_chk_lpt_sz(c, 0, 0);
195 	if (err)
196 		return err;
197 	cnode = c->lpt_cnext;
198 	if (!cnode)
199 		return 0;
200 	lnum = c->nhead_lnum;
201 	offs = c->nhead_offs;
202 	/* Try to place lsave and ltab nicely */
203 	done_lsave = !c->big_lpt;
204 	done_ltab = 0;
205 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
206 		done_lsave = 1;
207 		c->lsave_lnum = lnum;
208 		c->lsave_offs = offs;
209 		offs += c->lsave_sz;
210 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
211 	}
212 
213 	if (offs + c->ltab_sz <= c->leb_size) {
214 		done_ltab = 1;
215 		c->ltab_lnum = lnum;
216 		c->ltab_offs = offs;
217 		offs += c->ltab_sz;
218 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
219 	}
220 
221 	do {
222 		if (cnode->level) {
223 			len = c->nnode_sz;
224 			c->dirty_nn_cnt -= 1;
225 		} else {
226 			len = c->pnode_sz;
227 			c->dirty_pn_cnt -= 1;
228 		}
229 		while (offs + len > c->leb_size) {
230 			alen = ALIGN(offs, c->min_io_size);
231 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
232 			dbg_chk_lpt_sz(c, 2, alen - offs);
233 			err = alloc_lpt_leb(c, &lnum);
234 			if (err)
235 				goto no_space;
236 			offs = 0;
237 			ubifs_assert(lnum >= c->lpt_first &&
238 				     lnum <= c->lpt_last);
239 			/* Try to place lsave and ltab nicely */
240 			if (!done_lsave) {
241 				done_lsave = 1;
242 				c->lsave_lnum = lnum;
243 				c->lsave_offs = offs;
244 				offs += c->lsave_sz;
245 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
246 				continue;
247 			}
248 			if (!done_ltab) {
249 				done_ltab = 1;
250 				c->ltab_lnum = lnum;
251 				c->ltab_offs = offs;
252 				offs += c->ltab_sz;
253 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
254 				continue;
255 			}
256 			break;
257 		}
258 		if (cnode->parent) {
259 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
260 			cnode->parent->nbranch[cnode->iip].offs = offs;
261 		} else {
262 			c->lpt_lnum = lnum;
263 			c->lpt_offs = offs;
264 		}
265 		offs += len;
266 		dbg_chk_lpt_sz(c, 1, len);
267 		cnode = cnode->cnext;
268 	} while (cnode && cnode != c->lpt_cnext);
269 
270 	/* Make sure to place LPT's save table */
271 	if (!done_lsave) {
272 		if (offs + c->lsave_sz > c->leb_size) {
273 			alen = ALIGN(offs, c->min_io_size);
274 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
275 			dbg_chk_lpt_sz(c, 2, alen - offs);
276 			err = alloc_lpt_leb(c, &lnum);
277 			if (err)
278 				goto no_space;
279 			offs = 0;
280 			ubifs_assert(lnum >= c->lpt_first &&
281 				     lnum <= c->lpt_last);
282 		}
283 		done_lsave = 1;
284 		c->lsave_lnum = lnum;
285 		c->lsave_offs = offs;
286 		offs += c->lsave_sz;
287 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
288 	}
289 
290 	/* Make sure to place LPT's own lprops table */
291 	if (!done_ltab) {
292 		if (offs + c->ltab_sz > c->leb_size) {
293 			alen = ALIGN(offs, c->min_io_size);
294 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
295 			dbg_chk_lpt_sz(c, 2, alen - offs);
296 			err = alloc_lpt_leb(c, &lnum);
297 			if (err)
298 				goto no_space;
299 			offs = 0;
300 			ubifs_assert(lnum >= c->lpt_first &&
301 				     lnum <= c->lpt_last);
302 		}
303 		done_ltab = 1;
304 		c->ltab_lnum = lnum;
305 		c->ltab_offs = offs;
306 		offs += c->ltab_sz;
307 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
308 	}
309 
310 	alen = ALIGN(offs, c->min_io_size);
311 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
312 	dbg_chk_lpt_sz(c, 4, alen - offs);
313 	err = dbg_chk_lpt_sz(c, 3, alen);
314 	if (err)
315 		return err;
316 	return 0;
317 
318 no_space:
319 	ubifs_err("LPT out of space");
320 	dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
321 		"done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
322 	dbg_dump_lpt_info(c);
323 	dbg_dump_lpt_lebs(c);
324 	dump_stack();
325 	return err;
326 }
327 
328 /**
329  * realloc_lpt_leb - allocate an LPT LEB that is empty.
330  * @c: UBIFS file-system description object
331  * @lnum: LEB number is passed and returned here
332  *
333  * This function duplicates exactly the results of the function alloc_lpt_leb.
334  * It is used during end commit to reallocate the same LEB numbers that were
335  * allocated by alloc_lpt_leb during start commit.
336  *
337  * This function finds the next LEB that was allocated by the alloc_lpt_leb
338  * function starting from @lnum. If a LEB is found it is returned in @lnum and
339  * the function returns %0. Otherwise the function returns -ENOSPC.
340  * Note however, that LPT is designed never to run out of space.
341  */
realloc_lpt_leb(struct ubifs_info * c,int * lnum)342 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
343 {
344 	int i, n;
345 
346 	n = *lnum - c->lpt_first + 1;
347 	for (i = n; i < c->lpt_lebs; i++)
348 		if (c->ltab[i].cmt) {
349 			c->ltab[i].cmt = 0;
350 			*lnum = i + c->lpt_first;
351 			return 0;
352 		}
353 
354 	for (i = 0; i < n; i++)
355 		if (c->ltab[i].cmt) {
356 			c->ltab[i].cmt = 0;
357 			*lnum = i + c->lpt_first;
358 			return 0;
359 		}
360 	return -ENOSPC;
361 }
362 
363 /**
364  * write_cnodes - write cnodes for commit.
365  * @c: UBIFS file-system description object
366  *
367  * This function returns %0 on success and a negative error code on failure.
368  */
write_cnodes(struct ubifs_info * c)369 static int write_cnodes(struct ubifs_info *c)
370 {
371 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
372 	struct ubifs_cnode *cnode;
373 	void *buf = c->lpt_buf;
374 
375 	cnode = c->lpt_cnext;
376 	if (!cnode)
377 		return 0;
378 	lnum = c->nhead_lnum;
379 	offs = c->nhead_offs;
380 	from = offs;
381 	/* Ensure empty LEB is unmapped */
382 	if (offs == 0) {
383 		err = ubifs_leb_unmap(c, lnum);
384 		if (err)
385 			return err;
386 	}
387 	/* Try to place lsave and ltab nicely */
388 	done_lsave = !c->big_lpt;
389 	done_ltab = 0;
390 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
391 		done_lsave = 1;
392 		ubifs_pack_lsave(c, buf + offs, c->lsave);
393 		offs += c->lsave_sz;
394 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
395 	}
396 
397 	if (offs + c->ltab_sz <= c->leb_size) {
398 		done_ltab = 1;
399 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
400 		offs += c->ltab_sz;
401 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
402 	}
403 
404 	/* Loop for each cnode */
405 	do {
406 		if (cnode->level)
407 			len = c->nnode_sz;
408 		else
409 			len = c->pnode_sz;
410 		while (offs + len > c->leb_size) {
411 			wlen = offs - from;
412 			if (wlen) {
413 				alen = ALIGN(wlen, c->min_io_size);
414 				memset(buf + offs, 0xff, alen - wlen);
415 				err = ubifs_leb_write(c, lnum, buf + from, from,
416 						       alen, UBI_SHORTTERM);
417 				if (err)
418 					return err;
419 				dbg_chk_lpt_sz(c, 4, alen - wlen);
420 			}
421 			dbg_chk_lpt_sz(c, 2, 0);
422 			err = realloc_lpt_leb(c, &lnum);
423 			if (err)
424 				goto no_space;
425 			offs = 0;
426 			from = 0;
427 			ubifs_assert(lnum >= c->lpt_first &&
428 				     lnum <= c->lpt_last);
429 			err = ubifs_leb_unmap(c, lnum);
430 			if (err)
431 				return err;
432 			/* Try to place lsave and ltab nicely */
433 			if (!done_lsave) {
434 				done_lsave = 1;
435 				ubifs_pack_lsave(c, buf + offs, c->lsave);
436 				offs += c->lsave_sz;
437 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
438 				continue;
439 			}
440 			if (!done_ltab) {
441 				done_ltab = 1;
442 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
443 				offs += c->ltab_sz;
444 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
445 				continue;
446 			}
447 			break;
448 		}
449 		if (cnode->level)
450 			ubifs_pack_nnode(c, buf + offs,
451 					 (struct ubifs_nnode *)cnode);
452 		else
453 			ubifs_pack_pnode(c, buf + offs,
454 					 (struct ubifs_pnode *)cnode);
455 		/*
456 		 * The reason for the barriers is the same as in case of TNC.
457 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
458 		 * 'dirty_cow_pnode()' are the functions for which this is
459 		 * important.
460 		 */
461 		clear_bit(DIRTY_CNODE, &cnode->flags);
462 		smp_mb__before_clear_bit();
463 		clear_bit(COW_ZNODE, &cnode->flags);
464 		smp_mb__after_clear_bit();
465 		offs += len;
466 		dbg_chk_lpt_sz(c, 1, len);
467 		cnode = cnode->cnext;
468 	} while (cnode && cnode != c->lpt_cnext);
469 
470 	/* Make sure to place LPT's save table */
471 	if (!done_lsave) {
472 		if (offs + c->lsave_sz > c->leb_size) {
473 			wlen = offs - from;
474 			alen = ALIGN(wlen, c->min_io_size);
475 			memset(buf + offs, 0xff, alen - wlen);
476 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
477 					      UBI_SHORTTERM);
478 			if (err)
479 				return err;
480 			dbg_chk_lpt_sz(c, 2, alen - wlen);
481 			err = realloc_lpt_leb(c, &lnum);
482 			if (err)
483 				goto no_space;
484 			offs = 0;
485 			ubifs_assert(lnum >= c->lpt_first &&
486 				     lnum <= c->lpt_last);
487 			err = ubifs_leb_unmap(c, lnum);
488 			if (err)
489 				return err;
490 		}
491 		done_lsave = 1;
492 		ubifs_pack_lsave(c, buf + offs, c->lsave);
493 		offs += c->lsave_sz;
494 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
495 	}
496 
497 	/* Make sure to place LPT's own lprops table */
498 	if (!done_ltab) {
499 		if (offs + c->ltab_sz > c->leb_size) {
500 			wlen = offs - from;
501 			alen = ALIGN(wlen, c->min_io_size);
502 			memset(buf + offs, 0xff, alen - wlen);
503 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
504 					      UBI_SHORTTERM);
505 			if (err)
506 				return err;
507 			dbg_chk_lpt_sz(c, 2, alen - wlen);
508 			err = realloc_lpt_leb(c, &lnum);
509 			if (err)
510 				goto no_space;
511 			offs = 0;
512 			ubifs_assert(lnum >= c->lpt_first &&
513 				     lnum <= c->lpt_last);
514 			err = ubifs_leb_unmap(c, lnum);
515 			if (err)
516 				return err;
517 		}
518 		done_ltab = 1;
519 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
520 		offs += c->ltab_sz;
521 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
522 	}
523 
524 	/* Write remaining data in buffer */
525 	wlen = offs - from;
526 	alen = ALIGN(wlen, c->min_io_size);
527 	memset(buf + offs, 0xff, alen - wlen);
528 	err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
529 	if (err)
530 		return err;
531 
532 	dbg_chk_lpt_sz(c, 4, alen - wlen);
533 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
534 	if (err)
535 		return err;
536 
537 	c->nhead_lnum = lnum;
538 	c->nhead_offs = ALIGN(offs, c->min_io_size);
539 
540 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
541 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
542 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
543 	if (c->big_lpt)
544 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
545 
546 	return 0;
547 
548 no_space:
549 	ubifs_err("LPT out of space mismatch");
550 	dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
551 		"%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
552 	dbg_dump_lpt_info(c);
553 	dbg_dump_lpt_lebs(c);
554 	dump_stack();
555 	return err;
556 }
557 
558 /**
559  * next_pnode_to_dirty - find next pnode to dirty.
560  * @c: UBIFS file-system description object
561  * @pnode: pnode
562  *
563  * This function returns the next pnode to dirty or %NULL if there are no more
564  * pnodes.  Note that pnodes that have never been written (lnum == 0) are
565  * skipped.
566  */
next_pnode_to_dirty(struct ubifs_info * c,struct ubifs_pnode * pnode)567 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
568 					       struct ubifs_pnode *pnode)
569 {
570 	struct ubifs_nnode *nnode;
571 	int iip;
572 
573 	/* Try to go right */
574 	nnode = pnode->parent;
575 	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
576 		if (nnode->nbranch[iip].lnum)
577 			return ubifs_get_pnode(c, nnode, iip);
578 	}
579 
580 	/* Go up while can't go right */
581 	do {
582 		iip = nnode->iip + 1;
583 		nnode = nnode->parent;
584 		if (!nnode)
585 			return NULL;
586 		for (; iip < UBIFS_LPT_FANOUT; iip++) {
587 			if (nnode->nbranch[iip].lnum)
588 				break;
589 		}
590        } while (iip >= UBIFS_LPT_FANOUT);
591 
592 	/* Go right */
593 	nnode = ubifs_get_nnode(c, nnode, iip);
594 	if (IS_ERR(nnode))
595 		return (void *)nnode;
596 
597 	/* Go down to level 1 */
598 	while (nnode->level > 1) {
599 		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
600 			if (nnode->nbranch[iip].lnum)
601 				break;
602 		}
603 		if (iip >= UBIFS_LPT_FANOUT) {
604 			/*
605 			 * Should not happen, but we need to keep going
606 			 * if it does.
607 			 */
608 			iip = 0;
609 		}
610 		nnode = ubifs_get_nnode(c, nnode, iip);
611 		if (IS_ERR(nnode))
612 			return (void *)nnode;
613 	}
614 
615 	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
616 		if (nnode->nbranch[iip].lnum)
617 			break;
618 	if (iip >= UBIFS_LPT_FANOUT)
619 		/* Should not happen, but we need to keep going if it does */
620 		iip = 0;
621 	return ubifs_get_pnode(c, nnode, iip);
622 }
623 
624 /**
625  * pnode_lookup - lookup a pnode in the LPT.
626  * @c: UBIFS file-system description object
627  * @i: pnode number (0 to main_lebs - 1)
628  *
629  * This function returns a pointer to the pnode on success or a negative
630  * error code on failure.
631  */
pnode_lookup(struct ubifs_info * c,int i)632 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
633 {
634 	int err, h, iip, shft;
635 	struct ubifs_nnode *nnode;
636 
637 	if (!c->nroot) {
638 		err = ubifs_read_nnode(c, NULL, 0);
639 		if (err)
640 			return ERR_PTR(err);
641 	}
642 	i <<= UBIFS_LPT_FANOUT_SHIFT;
643 	nnode = c->nroot;
644 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
645 	for (h = 1; h < c->lpt_hght; h++) {
646 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
647 		shft -= UBIFS_LPT_FANOUT_SHIFT;
648 		nnode = ubifs_get_nnode(c, nnode, iip);
649 		if (IS_ERR(nnode))
650 			return ERR_PTR(PTR_ERR(nnode));
651 	}
652 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
653 	return ubifs_get_pnode(c, nnode, iip);
654 }
655 
656 /**
657  * add_pnode_dirt - add dirty space to LPT LEB properties.
658  * @c: UBIFS file-system description object
659  * @pnode: pnode for which to add dirt
660  */
add_pnode_dirt(struct ubifs_info * c,struct ubifs_pnode * pnode)661 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
662 {
663 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
664 			   c->pnode_sz);
665 }
666 
667 /**
668  * do_make_pnode_dirty - mark a pnode dirty.
669  * @c: UBIFS file-system description object
670  * @pnode: pnode to mark dirty
671  */
do_make_pnode_dirty(struct ubifs_info * c,struct ubifs_pnode * pnode)672 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
673 {
674 	/* Assumes cnext list is empty i.e. not called during commit */
675 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
676 		struct ubifs_nnode *nnode;
677 
678 		c->dirty_pn_cnt += 1;
679 		add_pnode_dirt(c, pnode);
680 		/* Mark parent and ancestors dirty too */
681 		nnode = pnode->parent;
682 		while (nnode) {
683 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
684 				c->dirty_nn_cnt += 1;
685 				ubifs_add_nnode_dirt(c, nnode);
686 				nnode = nnode->parent;
687 			} else
688 				break;
689 		}
690 	}
691 }
692 
693 /**
694  * make_tree_dirty - mark the entire LEB properties tree dirty.
695  * @c: UBIFS file-system description object
696  *
697  * This function is used by the "small" LPT model to cause the entire LEB
698  * properties tree to be written.  The "small" LPT model does not use LPT
699  * garbage collection because it is more efficient to write the entire tree
700  * (because it is small).
701  *
702  * This function returns %0 on success and a negative error code on failure.
703  */
make_tree_dirty(struct ubifs_info * c)704 static int make_tree_dirty(struct ubifs_info *c)
705 {
706 	struct ubifs_pnode *pnode;
707 
708 	pnode = pnode_lookup(c, 0);
709 	while (pnode) {
710 		do_make_pnode_dirty(c, pnode);
711 		pnode = next_pnode_to_dirty(c, pnode);
712 		if (IS_ERR(pnode))
713 			return PTR_ERR(pnode);
714 	}
715 	return 0;
716 }
717 
718 /**
719  * need_write_all - determine if the LPT area is running out of free space.
720  * @c: UBIFS file-system description object
721  *
722  * This function returns %1 if the LPT area is running out of free space and %0
723  * if it is not.
724  */
need_write_all(struct ubifs_info * c)725 static int need_write_all(struct ubifs_info *c)
726 {
727 	long long free = 0;
728 	int i;
729 
730 	for (i = 0; i < c->lpt_lebs; i++) {
731 		if (i + c->lpt_first == c->nhead_lnum)
732 			free += c->leb_size - c->nhead_offs;
733 		else if (c->ltab[i].free == c->leb_size)
734 			free += c->leb_size;
735 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
736 			free += c->leb_size;
737 	}
738 	/* Less than twice the size left */
739 	if (free <= c->lpt_sz * 2)
740 		return 1;
741 	return 0;
742 }
743 
744 /**
745  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
746  * @c: UBIFS file-system description object
747  *
748  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
749  * free space and so may be reused as soon as the next commit is completed.
750  * This function is called during start commit to mark LPT LEBs for trivial GC.
751  */
lpt_tgc_start(struct ubifs_info * c)752 static void lpt_tgc_start(struct ubifs_info *c)
753 {
754 	int i;
755 
756 	for (i = 0; i < c->lpt_lebs; i++) {
757 		if (i + c->lpt_first == c->nhead_lnum)
758 			continue;
759 		if (c->ltab[i].dirty > 0 &&
760 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
761 			c->ltab[i].tgc = 1;
762 			c->ltab[i].free = c->leb_size;
763 			c->ltab[i].dirty = 0;
764 			dbg_lp("LEB %d", i + c->lpt_first);
765 		}
766 	}
767 }
768 
769 /**
770  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
771  * @c: UBIFS file-system description object
772  *
773  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
774  * free space and so may be reused as soon as the next commit is completed.
775  * This function is called after the commit is completed (master node has been
776  * written) and un-maps LPT LEBs that were marked for trivial GC.
777  */
lpt_tgc_end(struct ubifs_info * c)778 static int lpt_tgc_end(struct ubifs_info *c)
779 {
780 	int i, err;
781 
782 	for (i = 0; i < c->lpt_lebs; i++)
783 		if (c->ltab[i].tgc) {
784 			err = ubifs_leb_unmap(c, i + c->lpt_first);
785 			if (err)
786 				return err;
787 			c->ltab[i].tgc = 0;
788 			dbg_lp("LEB %d", i + c->lpt_first);
789 		}
790 	return 0;
791 }
792 
793 /**
794  * populate_lsave - fill the lsave array with important LEB numbers.
795  * @c: the UBIFS file-system description object
796  *
797  * This function is only called for the "big" model. It records a small number
798  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
799  * most important to least important): empty, freeable, freeable index, dirty
800  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
801  * their pnodes into memory.  That will stop us from having to scan the LPT
802  * straight away. For the "small" model we assume that scanning the LPT is no
803  * big deal.
804  */
populate_lsave(struct ubifs_info * c)805 static void populate_lsave(struct ubifs_info *c)
806 {
807 	struct ubifs_lprops *lprops;
808 	struct ubifs_lpt_heap *heap;
809 	int i, cnt = 0;
810 
811 	ubifs_assert(c->big_lpt);
812 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
813 		c->lpt_drty_flgs |= LSAVE_DIRTY;
814 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
815 	}
816 	list_for_each_entry(lprops, &c->empty_list, list) {
817 		c->lsave[cnt++] = lprops->lnum;
818 		if (cnt >= c->lsave_cnt)
819 			return;
820 	}
821 	list_for_each_entry(lprops, &c->freeable_list, list) {
822 		c->lsave[cnt++] = lprops->lnum;
823 		if (cnt >= c->lsave_cnt)
824 			return;
825 	}
826 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
827 		c->lsave[cnt++] = lprops->lnum;
828 		if (cnt >= c->lsave_cnt)
829 			return;
830 	}
831 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
832 	for (i = 0; i < heap->cnt; i++) {
833 		c->lsave[cnt++] = heap->arr[i]->lnum;
834 		if (cnt >= c->lsave_cnt)
835 			return;
836 	}
837 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
838 	for (i = 0; i < heap->cnt; i++) {
839 		c->lsave[cnt++] = heap->arr[i]->lnum;
840 		if (cnt >= c->lsave_cnt)
841 			return;
842 	}
843 	heap = &c->lpt_heap[LPROPS_FREE - 1];
844 	for (i = 0; i < heap->cnt; i++) {
845 		c->lsave[cnt++] = heap->arr[i]->lnum;
846 		if (cnt >= c->lsave_cnt)
847 			return;
848 	}
849 	/* Fill it up completely */
850 	while (cnt < c->lsave_cnt)
851 		c->lsave[cnt++] = c->main_first;
852 }
853 
854 /**
855  * nnode_lookup - lookup a nnode in the LPT.
856  * @c: UBIFS file-system description object
857  * @i: nnode number
858  *
859  * This function returns a pointer to the nnode on success or a negative
860  * error code on failure.
861  */
nnode_lookup(struct ubifs_info * c,int i)862 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
863 {
864 	int err, iip;
865 	struct ubifs_nnode *nnode;
866 
867 	if (!c->nroot) {
868 		err = ubifs_read_nnode(c, NULL, 0);
869 		if (err)
870 			return ERR_PTR(err);
871 	}
872 	nnode = c->nroot;
873 	while (1) {
874 		iip = i & (UBIFS_LPT_FANOUT - 1);
875 		i >>= UBIFS_LPT_FANOUT_SHIFT;
876 		if (!i)
877 			break;
878 		nnode = ubifs_get_nnode(c, nnode, iip);
879 		if (IS_ERR(nnode))
880 			return nnode;
881 	}
882 	return nnode;
883 }
884 
885 /**
886  * make_nnode_dirty - find a nnode and, if found, make it dirty.
887  * @c: UBIFS file-system description object
888  * @node_num: nnode number of nnode to make dirty
889  * @lnum: LEB number where nnode was written
890  * @offs: offset where nnode was written
891  *
892  * This function is used by LPT garbage collection.  LPT garbage collection is
893  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
894  * simply involves marking all the nodes in the LEB being garbage-collected as
895  * dirty.  The dirty nodes are written next commit, after which the LEB is free
896  * to be reused.
897  *
898  * This function returns %0 on success and a negative error code on failure.
899  */
make_nnode_dirty(struct ubifs_info * c,int node_num,int lnum,int offs)900 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
901 			    int offs)
902 {
903 	struct ubifs_nnode *nnode;
904 
905 	nnode = nnode_lookup(c, node_num);
906 	if (IS_ERR(nnode))
907 		return PTR_ERR(nnode);
908 	if (nnode->parent) {
909 		struct ubifs_nbranch *branch;
910 
911 		branch = &nnode->parent->nbranch[nnode->iip];
912 		if (branch->lnum != lnum || branch->offs != offs)
913 			return 0; /* nnode is obsolete */
914 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
915 			return 0; /* nnode is obsolete */
916 	/* Assumes cnext list is empty i.e. not called during commit */
917 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
918 		c->dirty_nn_cnt += 1;
919 		ubifs_add_nnode_dirt(c, nnode);
920 		/* Mark parent and ancestors dirty too */
921 		nnode = nnode->parent;
922 		while (nnode) {
923 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
924 				c->dirty_nn_cnt += 1;
925 				ubifs_add_nnode_dirt(c, nnode);
926 				nnode = nnode->parent;
927 			} else
928 				break;
929 		}
930 	}
931 	return 0;
932 }
933 
934 /**
935  * make_pnode_dirty - find a pnode and, if found, make it dirty.
936  * @c: UBIFS file-system description object
937  * @node_num: pnode number of pnode to make dirty
938  * @lnum: LEB number where pnode was written
939  * @offs: offset where pnode was written
940  *
941  * This function is used by LPT garbage collection.  LPT garbage collection is
942  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
943  * simply involves marking all the nodes in the LEB being garbage-collected as
944  * dirty.  The dirty nodes are written next commit, after which the LEB is free
945  * to be reused.
946  *
947  * This function returns %0 on success and a negative error code on failure.
948  */
make_pnode_dirty(struct ubifs_info * c,int node_num,int lnum,int offs)949 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
950 			    int offs)
951 {
952 	struct ubifs_pnode *pnode;
953 	struct ubifs_nbranch *branch;
954 
955 	pnode = pnode_lookup(c, node_num);
956 	if (IS_ERR(pnode))
957 		return PTR_ERR(pnode);
958 	branch = &pnode->parent->nbranch[pnode->iip];
959 	if (branch->lnum != lnum || branch->offs != offs)
960 		return 0;
961 	do_make_pnode_dirty(c, pnode);
962 	return 0;
963 }
964 
965 /**
966  * make_ltab_dirty - make ltab node dirty.
967  * @c: UBIFS file-system description object
968  * @lnum: LEB number where ltab was written
969  * @offs: offset where ltab was written
970  *
971  * This function is used by LPT garbage collection.  LPT garbage collection is
972  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
973  * simply involves marking all the nodes in the LEB being garbage-collected as
974  * dirty.  The dirty nodes are written next commit, after which the LEB is free
975  * to be reused.
976  *
977  * This function returns %0 on success and a negative error code on failure.
978  */
make_ltab_dirty(struct ubifs_info * c,int lnum,int offs)979 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
980 {
981 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
982 		return 0; /* This ltab node is obsolete */
983 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
984 		c->lpt_drty_flgs |= LTAB_DIRTY;
985 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
986 	}
987 	return 0;
988 }
989 
990 /**
991  * make_lsave_dirty - make lsave node dirty.
992  * @c: UBIFS file-system description object
993  * @lnum: LEB number where lsave was written
994  * @offs: offset where lsave was written
995  *
996  * This function is used by LPT garbage collection.  LPT garbage collection is
997  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
998  * simply involves marking all the nodes in the LEB being garbage-collected as
999  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1000  * to be reused.
1001  *
1002  * This function returns %0 on success and a negative error code on failure.
1003  */
make_lsave_dirty(struct ubifs_info * c,int lnum,int offs)1004 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1005 {
1006 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1007 		return 0; /* This lsave node is obsolete */
1008 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1009 		c->lpt_drty_flgs |= LSAVE_DIRTY;
1010 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1011 	}
1012 	return 0;
1013 }
1014 
1015 /**
1016  * make_node_dirty - make node dirty.
1017  * @c: UBIFS file-system description object
1018  * @node_type: LPT node type
1019  * @node_num: node number
1020  * @lnum: LEB number where node was written
1021  * @offs: offset where node was written
1022  *
1023  * This function is used by LPT garbage collection.  LPT garbage collection is
1024  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1025  * simply involves marking all the nodes in the LEB being garbage-collected as
1026  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1027  * to be reused.
1028  *
1029  * This function returns %0 on success and a negative error code on failure.
1030  */
make_node_dirty(struct ubifs_info * c,int node_type,int node_num,int lnum,int offs)1031 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1032 			   int lnum, int offs)
1033 {
1034 	switch (node_type) {
1035 	case UBIFS_LPT_NNODE:
1036 		return make_nnode_dirty(c, node_num, lnum, offs);
1037 	case UBIFS_LPT_PNODE:
1038 		return make_pnode_dirty(c, node_num, lnum, offs);
1039 	case UBIFS_LPT_LTAB:
1040 		return make_ltab_dirty(c, lnum, offs);
1041 	case UBIFS_LPT_LSAVE:
1042 		return make_lsave_dirty(c, lnum, offs);
1043 	}
1044 	return -EINVAL;
1045 }
1046 
1047 /**
1048  * get_lpt_node_len - return the length of a node based on its type.
1049  * @c: UBIFS file-system description object
1050  * @node_type: LPT node type
1051  */
get_lpt_node_len(const struct ubifs_info * c,int node_type)1052 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1053 {
1054 	switch (node_type) {
1055 	case UBIFS_LPT_NNODE:
1056 		return c->nnode_sz;
1057 	case UBIFS_LPT_PNODE:
1058 		return c->pnode_sz;
1059 	case UBIFS_LPT_LTAB:
1060 		return c->ltab_sz;
1061 	case UBIFS_LPT_LSAVE:
1062 		return c->lsave_sz;
1063 	}
1064 	return 0;
1065 }
1066 
1067 /**
1068  * get_pad_len - return the length of padding in a buffer.
1069  * @c: UBIFS file-system description object
1070  * @buf: buffer
1071  * @len: length of buffer
1072  */
get_pad_len(const struct ubifs_info * c,uint8_t * buf,int len)1073 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1074 {
1075 	int offs, pad_len;
1076 
1077 	if (c->min_io_size == 1)
1078 		return 0;
1079 	offs = c->leb_size - len;
1080 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1081 	return pad_len;
1082 }
1083 
1084 /**
1085  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1086  * @c: UBIFS file-system description object
1087  * @buf: buffer
1088  * @node_num: node number is returned here
1089  */
get_lpt_node_type(const struct ubifs_info * c,uint8_t * buf,int * node_num)1090 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1091 			     int *node_num)
1092 {
1093 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1094 	int pos = 0, node_type;
1095 
1096 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1097 	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1098 	return node_type;
1099 }
1100 
1101 /**
1102  * is_a_node - determine if a buffer contains a node.
1103  * @c: UBIFS file-system description object
1104  * @buf: buffer
1105  * @len: length of buffer
1106  *
1107  * This function returns %1 if the buffer contains a node or %0 if it does not.
1108  */
is_a_node(const struct ubifs_info * c,uint8_t * buf,int len)1109 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1110 {
1111 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1112 	int pos = 0, node_type, node_len;
1113 	uint16_t crc, calc_crc;
1114 
1115 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1116 		return 0;
1117 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1118 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1119 		return 0;
1120 	node_len = get_lpt_node_len(c, node_type);
1121 	if (!node_len || node_len > len)
1122 		return 0;
1123 	pos = 0;
1124 	addr = buf;
1125 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1126 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1127 			 node_len - UBIFS_LPT_CRC_BYTES);
1128 	if (crc != calc_crc)
1129 		return 0;
1130 	return 1;
1131 }
1132 
1133 /**
1134  * lpt_gc_lnum - garbage collect a LPT LEB.
1135  * @c: UBIFS file-system description object
1136  * @lnum: LEB number to garbage collect
1137  *
1138  * LPT garbage collection is used only for the "big" LPT model
1139  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1140  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1141  * next commit, after which the LEB is free to be reused.
1142  *
1143  * This function returns %0 on success and a negative error code on failure.
1144  */
lpt_gc_lnum(struct ubifs_info * c,int lnum)1145 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1146 {
1147 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1148 	void *buf = c->lpt_buf;
1149 
1150 	dbg_lp("LEB %d", lnum);
1151 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1152 	if (err) {
1153 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1154 		return err;
1155 	}
1156 	while (1) {
1157 		if (!is_a_node(c, buf, len)) {
1158 			int pad_len;
1159 
1160 			pad_len = get_pad_len(c, buf, len);
1161 			if (pad_len) {
1162 				buf += pad_len;
1163 				len -= pad_len;
1164 				continue;
1165 			}
1166 			return 0;
1167 		}
1168 		node_type = get_lpt_node_type(c, buf, &node_num);
1169 		node_len = get_lpt_node_len(c, node_type);
1170 		offs = c->leb_size - len;
1171 		ubifs_assert(node_len != 0);
1172 		mutex_lock(&c->lp_mutex);
1173 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1174 		mutex_unlock(&c->lp_mutex);
1175 		if (err)
1176 			return err;
1177 		buf += node_len;
1178 		len -= node_len;
1179 	}
1180 	return 0;
1181 }
1182 
1183 /**
1184  * lpt_gc - LPT garbage collection.
1185  * @c: UBIFS file-system description object
1186  *
1187  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1188  * Returns %0 on success and a negative error code on failure.
1189  */
lpt_gc(struct ubifs_info * c)1190 static int lpt_gc(struct ubifs_info *c)
1191 {
1192 	int i, lnum = -1, dirty = 0;
1193 
1194 	mutex_lock(&c->lp_mutex);
1195 	for (i = 0; i < c->lpt_lebs; i++) {
1196 		ubifs_assert(!c->ltab[i].tgc);
1197 		if (i + c->lpt_first == c->nhead_lnum ||
1198 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1199 			continue;
1200 		if (c->ltab[i].dirty > dirty) {
1201 			dirty = c->ltab[i].dirty;
1202 			lnum = i + c->lpt_first;
1203 		}
1204 	}
1205 	mutex_unlock(&c->lp_mutex);
1206 	if (lnum == -1)
1207 		return -ENOSPC;
1208 	return lpt_gc_lnum(c, lnum);
1209 }
1210 
1211 /**
1212  * ubifs_lpt_start_commit - UBIFS commit starts.
1213  * @c: the UBIFS file-system description object
1214  *
1215  * This function has to be called when UBIFS starts the commit operation.
1216  * This function "freezes" all currently dirty LEB properties and does not
1217  * change them anymore. Further changes are saved and tracked separately
1218  * because they are not part of this commit. This function returns zero in case
1219  * of success and a negative error code in case of failure.
1220  */
ubifs_lpt_start_commit(struct ubifs_info * c)1221 int ubifs_lpt_start_commit(struct ubifs_info *c)
1222 {
1223 	int err, cnt;
1224 
1225 	dbg_lp("");
1226 
1227 	mutex_lock(&c->lp_mutex);
1228 	err = dbg_chk_lpt_free_spc(c);
1229 	if (err)
1230 		goto out;
1231 	err = dbg_check_ltab(c);
1232 	if (err)
1233 		goto out;
1234 
1235 	if (c->check_lpt_free) {
1236 		/*
1237 		 * We ensure there is enough free space in
1238 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1239 		 * information is lost when we unmount, so we also need
1240 		 * to check free space once after mounting also.
1241 		 */
1242 		c->check_lpt_free = 0;
1243 		while (need_write_all(c)) {
1244 			mutex_unlock(&c->lp_mutex);
1245 			err = lpt_gc(c);
1246 			if (err)
1247 				return err;
1248 			mutex_lock(&c->lp_mutex);
1249 		}
1250 	}
1251 
1252 	lpt_tgc_start(c);
1253 
1254 	if (!c->dirty_pn_cnt) {
1255 		dbg_cmt("no cnodes to commit");
1256 		err = 0;
1257 		goto out;
1258 	}
1259 
1260 	if (!c->big_lpt && need_write_all(c)) {
1261 		/* If needed, write everything */
1262 		err = make_tree_dirty(c);
1263 		if (err)
1264 			goto out;
1265 		lpt_tgc_start(c);
1266 	}
1267 
1268 	if (c->big_lpt)
1269 		populate_lsave(c);
1270 
1271 	cnt = get_cnodes_to_commit(c);
1272 	ubifs_assert(cnt != 0);
1273 
1274 	err = layout_cnodes(c);
1275 	if (err)
1276 		goto out;
1277 
1278 	/* Copy the LPT's own lprops for end commit to write */
1279 	memcpy(c->ltab_cmt, c->ltab,
1280 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1281 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1282 
1283 out:
1284 	mutex_unlock(&c->lp_mutex);
1285 	return err;
1286 }
1287 
1288 /**
1289  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1290  * @c: UBIFS file-system description object
1291  */
free_obsolete_cnodes(struct ubifs_info * c)1292 static void free_obsolete_cnodes(struct ubifs_info *c)
1293 {
1294 	struct ubifs_cnode *cnode, *cnext;
1295 
1296 	cnext = c->lpt_cnext;
1297 	if (!cnext)
1298 		return;
1299 	do {
1300 		cnode = cnext;
1301 		cnext = cnode->cnext;
1302 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1303 			kfree(cnode);
1304 		else
1305 			cnode->cnext = NULL;
1306 	} while (cnext != c->lpt_cnext);
1307 	c->lpt_cnext = NULL;
1308 }
1309 
1310 /**
1311  * ubifs_lpt_end_commit - finish the commit operation.
1312  * @c: the UBIFS file-system description object
1313  *
1314  * This function has to be called when the commit operation finishes. It
1315  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1316  * the media. Returns zero in case of success and a negative error code in case
1317  * of failure.
1318  */
ubifs_lpt_end_commit(struct ubifs_info * c)1319 int ubifs_lpt_end_commit(struct ubifs_info *c)
1320 {
1321 	int err;
1322 
1323 	dbg_lp("");
1324 
1325 	if (!c->lpt_cnext)
1326 		return 0;
1327 
1328 	err = write_cnodes(c);
1329 	if (err)
1330 		return err;
1331 
1332 	mutex_lock(&c->lp_mutex);
1333 	free_obsolete_cnodes(c);
1334 	mutex_unlock(&c->lp_mutex);
1335 
1336 	return 0;
1337 }
1338 
1339 /**
1340  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1341  * @c: UBIFS file-system description object
1342  *
1343  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1344  * commit for the "big" LPT model.
1345  */
ubifs_lpt_post_commit(struct ubifs_info * c)1346 int ubifs_lpt_post_commit(struct ubifs_info *c)
1347 {
1348 	int err;
1349 
1350 	mutex_lock(&c->lp_mutex);
1351 	err = lpt_tgc_end(c);
1352 	if (err)
1353 		goto out;
1354 	if (c->big_lpt)
1355 		while (need_write_all(c)) {
1356 			mutex_unlock(&c->lp_mutex);
1357 			err = lpt_gc(c);
1358 			if (err)
1359 				return err;
1360 			mutex_lock(&c->lp_mutex);
1361 		}
1362 out:
1363 	mutex_unlock(&c->lp_mutex);
1364 	return err;
1365 }
1366 
1367 /**
1368  * first_nnode - find the first nnode in memory.
1369  * @c: UBIFS file-system description object
1370  * @hght: height of tree where nnode found is returned here
1371  *
1372  * This function returns a pointer to the nnode found or %NULL if no nnode is
1373  * found. This function is a helper to 'ubifs_lpt_free()'.
1374  */
first_nnode(struct ubifs_info * c,int * hght)1375 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1376 {
1377 	struct ubifs_nnode *nnode;
1378 	int h, i, found;
1379 
1380 	nnode = c->nroot;
1381 	*hght = 0;
1382 	if (!nnode)
1383 		return NULL;
1384 	for (h = 1; h < c->lpt_hght; h++) {
1385 		found = 0;
1386 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1387 			if (nnode->nbranch[i].nnode) {
1388 				found = 1;
1389 				nnode = nnode->nbranch[i].nnode;
1390 				*hght = h;
1391 				break;
1392 			}
1393 		}
1394 		if (!found)
1395 			break;
1396 	}
1397 	return nnode;
1398 }
1399 
1400 /**
1401  * next_nnode - find the next nnode in memory.
1402  * @c: UBIFS file-system description object
1403  * @nnode: nnode from which to start.
1404  * @hght: height of tree where nnode is, is passed and returned here
1405  *
1406  * This function returns a pointer to the nnode found or %NULL if no nnode is
1407  * found. This function is a helper to 'ubifs_lpt_free()'.
1408  */
next_nnode(struct ubifs_info * c,struct ubifs_nnode * nnode,int * hght)1409 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1410 				      struct ubifs_nnode *nnode, int *hght)
1411 {
1412 	struct ubifs_nnode *parent;
1413 	int iip, h, i, found;
1414 
1415 	parent = nnode->parent;
1416 	if (!parent)
1417 		return NULL;
1418 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1419 		*hght -= 1;
1420 		return parent;
1421 	}
1422 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1423 		nnode = parent->nbranch[iip].nnode;
1424 		if (nnode)
1425 			break;
1426 	}
1427 	if (!nnode) {
1428 		*hght -= 1;
1429 		return parent;
1430 	}
1431 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1432 		found = 0;
1433 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1434 			if (nnode->nbranch[i].nnode) {
1435 				found = 1;
1436 				nnode = nnode->nbranch[i].nnode;
1437 				*hght = h;
1438 				break;
1439 			}
1440 		}
1441 		if (!found)
1442 			break;
1443 	}
1444 	return nnode;
1445 }
1446 
1447 /**
1448  * ubifs_lpt_free - free resources owned by the LPT.
1449  * @c: UBIFS file-system description object
1450  * @wr_only: free only resources used for writing
1451  */
ubifs_lpt_free(struct ubifs_info * c,int wr_only)1452 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1453 {
1454 	struct ubifs_nnode *nnode;
1455 	int i, hght;
1456 
1457 	/* Free write-only things first */
1458 
1459 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1460 
1461 	vfree(c->ltab_cmt);
1462 	c->ltab_cmt = NULL;
1463 	vfree(c->lpt_buf);
1464 	c->lpt_buf = NULL;
1465 	kfree(c->lsave);
1466 	c->lsave = NULL;
1467 
1468 	if (wr_only)
1469 		return;
1470 
1471 	/* Now free the rest */
1472 
1473 	nnode = first_nnode(c, &hght);
1474 	while (nnode) {
1475 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1476 			kfree(nnode->nbranch[i].nnode);
1477 		nnode = next_nnode(c, nnode, &hght);
1478 	}
1479 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1480 		kfree(c->lpt_heap[i].arr);
1481 	kfree(c->dirty_idx.arr);
1482 	kfree(c->nroot);
1483 	vfree(c->ltab);
1484 	kfree(c->lpt_nod_buf);
1485 }
1486 
1487 #ifdef CONFIG_UBIFS_FS_DEBUG
1488 
1489 /**
1490  * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1491  * @buf: buffer
1492  * @len: buffer length
1493  */
dbg_is_all_ff(uint8_t * buf,int len)1494 static int dbg_is_all_ff(uint8_t *buf, int len)
1495 {
1496 	int i;
1497 
1498 	for (i = 0; i < len; i++)
1499 		if (buf[i] != 0xff)
1500 			return 0;
1501 	return 1;
1502 }
1503 
1504 /**
1505  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1506  * @c: the UBIFS file-system description object
1507  * @lnum: LEB number where nnode was written
1508  * @offs: offset where nnode was written
1509  */
dbg_is_nnode_dirty(struct ubifs_info * c,int lnum,int offs)1510 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1511 {
1512 	struct ubifs_nnode *nnode;
1513 	int hght;
1514 
1515 	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1516 	nnode = first_nnode(c, &hght);
1517 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1518 		struct ubifs_nbranch *branch;
1519 
1520 		cond_resched();
1521 		if (nnode->parent) {
1522 			branch = &nnode->parent->nbranch[nnode->iip];
1523 			if (branch->lnum != lnum || branch->offs != offs)
1524 				continue;
1525 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1526 				return 1;
1527 			return 0;
1528 		} else {
1529 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1530 				continue;
1531 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1532 				return 1;
1533 			return 0;
1534 		}
1535 	}
1536 	return 1;
1537 }
1538 
1539 /**
1540  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1541  * @c: the UBIFS file-system description object
1542  * @lnum: LEB number where pnode was written
1543  * @offs: offset where pnode was written
1544  */
dbg_is_pnode_dirty(struct ubifs_info * c,int lnum,int offs)1545 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1546 {
1547 	int i, cnt;
1548 
1549 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1550 	for (i = 0; i < cnt; i++) {
1551 		struct ubifs_pnode *pnode;
1552 		struct ubifs_nbranch *branch;
1553 
1554 		cond_resched();
1555 		pnode = pnode_lookup(c, i);
1556 		if (IS_ERR(pnode))
1557 			return PTR_ERR(pnode);
1558 		branch = &pnode->parent->nbranch[pnode->iip];
1559 		if (branch->lnum != lnum || branch->offs != offs)
1560 			continue;
1561 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1562 			return 1;
1563 		return 0;
1564 	}
1565 	return 1;
1566 }
1567 
1568 /**
1569  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1570  * @c: the UBIFS file-system description object
1571  * @lnum: LEB number where ltab node was written
1572  * @offs: offset where ltab node was written
1573  */
dbg_is_ltab_dirty(struct ubifs_info * c,int lnum,int offs)1574 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1575 {
1576 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1577 		return 1;
1578 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1579 }
1580 
1581 /**
1582  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1583  * @c: the UBIFS file-system description object
1584  * @lnum: LEB number where lsave node was written
1585  * @offs: offset where lsave node was written
1586  */
dbg_is_lsave_dirty(struct ubifs_info * c,int lnum,int offs)1587 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1588 {
1589 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1590 		return 1;
1591 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1592 }
1593 
1594 /**
1595  * dbg_is_node_dirty - determine if a node is dirty.
1596  * @c: the UBIFS file-system description object
1597  * @node_type: node type
1598  * @lnum: LEB number where node was written
1599  * @offs: offset where node was written
1600  */
dbg_is_node_dirty(struct ubifs_info * c,int node_type,int lnum,int offs)1601 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1602 			     int offs)
1603 {
1604 	switch (node_type) {
1605 	case UBIFS_LPT_NNODE:
1606 		return dbg_is_nnode_dirty(c, lnum, offs);
1607 	case UBIFS_LPT_PNODE:
1608 		return dbg_is_pnode_dirty(c, lnum, offs);
1609 	case UBIFS_LPT_LTAB:
1610 		return dbg_is_ltab_dirty(c, lnum, offs);
1611 	case UBIFS_LPT_LSAVE:
1612 		return dbg_is_lsave_dirty(c, lnum, offs);
1613 	}
1614 	return 1;
1615 }
1616 
1617 /**
1618  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1619  * @c: the UBIFS file-system description object
1620  * @lnum: LEB number where node was written
1621  * @offs: offset where node was written
1622  *
1623  * This function returns %0 on success and a negative error code on failure.
1624  */
dbg_check_ltab_lnum(struct ubifs_info * c,int lnum)1625 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1626 {
1627 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1628 	int ret;
1629 	void *buf = c->dbg->buf;
1630 
1631 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1632 		return 0;
1633 
1634 	dbg_lp("LEB %d", lnum);
1635 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1636 	if (err) {
1637 		dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1638 		return err;
1639 	}
1640 	while (1) {
1641 		if (!is_a_node(c, buf, len)) {
1642 			int i, pad_len;
1643 
1644 			pad_len = get_pad_len(c, buf, len);
1645 			if (pad_len) {
1646 				buf += pad_len;
1647 				len -= pad_len;
1648 				dirty += pad_len;
1649 				continue;
1650 			}
1651 			if (!dbg_is_all_ff(buf, len)) {
1652 				dbg_msg("invalid empty space in LEB %d at %d",
1653 					lnum, c->leb_size - len);
1654 				err = -EINVAL;
1655 			}
1656 			i = lnum - c->lpt_first;
1657 			if (len != c->ltab[i].free) {
1658 				dbg_msg("invalid free space in LEB %d "
1659 					"(free %d, expected %d)",
1660 					lnum, len, c->ltab[i].free);
1661 				err = -EINVAL;
1662 			}
1663 			if (dirty != c->ltab[i].dirty) {
1664 				dbg_msg("invalid dirty space in LEB %d "
1665 					"(dirty %d, expected %d)",
1666 					lnum, dirty, c->ltab[i].dirty);
1667 				err = -EINVAL;
1668 			}
1669 			return err;
1670 		}
1671 		node_type = get_lpt_node_type(c, buf, &node_num);
1672 		node_len = get_lpt_node_len(c, node_type);
1673 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1674 		if (ret == 1)
1675 			dirty += node_len;
1676 		buf += node_len;
1677 		len -= node_len;
1678 	}
1679 }
1680 
1681 /**
1682  * dbg_check_ltab - check the free and dirty space in the ltab.
1683  * @c: the UBIFS file-system description object
1684  *
1685  * This function returns %0 on success and a negative error code on failure.
1686  */
dbg_check_ltab(struct ubifs_info * c)1687 int dbg_check_ltab(struct ubifs_info *c)
1688 {
1689 	int lnum, err, i, cnt;
1690 
1691 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1692 		return 0;
1693 
1694 	/* Bring the entire tree into memory */
1695 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1696 	for (i = 0; i < cnt; i++) {
1697 		struct ubifs_pnode *pnode;
1698 
1699 		pnode = pnode_lookup(c, i);
1700 		if (IS_ERR(pnode))
1701 			return PTR_ERR(pnode);
1702 		cond_resched();
1703 	}
1704 
1705 	/* Check nodes */
1706 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1707 	if (err)
1708 		return err;
1709 
1710 	/* Check each LEB */
1711 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1712 		err = dbg_check_ltab_lnum(c, lnum);
1713 		if (err) {
1714 			dbg_err("failed at LEB %d", lnum);
1715 			return err;
1716 		}
1717 	}
1718 
1719 	dbg_lp("succeeded");
1720 	return 0;
1721 }
1722 
1723 /**
1724  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1725  * @c: the UBIFS file-system description object
1726  *
1727  * This function returns %0 on success and a negative error code on failure.
1728  */
dbg_chk_lpt_free_spc(struct ubifs_info * c)1729 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1730 {
1731 	long long free = 0;
1732 	int i;
1733 
1734 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1735 		return 0;
1736 
1737 	for (i = 0; i < c->lpt_lebs; i++) {
1738 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1739 			continue;
1740 		if (i + c->lpt_first == c->nhead_lnum)
1741 			free += c->leb_size - c->nhead_offs;
1742 		else if (c->ltab[i].free == c->leb_size)
1743 			free += c->leb_size;
1744 	}
1745 	if (free < c->lpt_sz) {
1746 		dbg_err("LPT space error: free %lld lpt_sz %lld",
1747 			free, c->lpt_sz);
1748 		dbg_dump_lpt_info(c);
1749 		dbg_dump_lpt_lebs(c);
1750 		dump_stack();
1751 		return -EINVAL;
1752 	}
1753 	return 0;
1754 }
1755 
1756 /**
1757  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1758  * @c: the UBIFS file-system description object
1759  * @action: action
1760  * @len: length written
1761  *
1762  * This function returns %0 on success and a negative error code on failure.
1763  */
dbg_chk_lpt_sz(struct ubifs_info * c,int action,int len)1764 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1765 {
1766 	struct ubifs_debug_info *d = c->dbg;
1767 	long long chk_lpt_sz, lpt_sz;
1768 	int err = 0;
1769 
1770 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1771 		return 0;
1772 
1773 	switch (action) {
1774 	case 0:
1775 		d->chk_lpt_sz = 0;
1776 		d->chk_lpt_sz2 = 0;
1777 		d->chk_lpt_lebs = 0;
1778 		d->chk_lpt_wastage = 0;
1779 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1780 			dbg_err("dirty pnodes %d exceed max %d",
1781 				c->dirty_pn_cnt, c->pnode_cnt);
1782 			err = -EINVAL;
1783 		}
1784 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1785 			dbg_err("dirty nnodes %d exceed max %d",
1786 				c->dirty_nn_cnt, c->nnode_cnt);
1787 			err = -EINVAL;
1788 		}
1789 		return err;
1790 	case 1:
1791 		d->chk_lpt_sz += len;
1792 		return 0;
1793 	case 2:
1794 		d->chk_lpt_sz += len;
1795 		d->chk_lpt_wastage += len;
1796 		d->chk_lpt_lebs += 1;
1797 		return 0;
1798 	case 3:
1799 		chk_lpt_sz = c->leb_size;
1800 		chk_lpt_sz *= d->chk_lpt_lebs;
1801 		chk_lpt_sz += len - c->nhead_offs;
1802 		if (d->chk_lpt_sz != chk_lpt_sz) {
1803 			dbg_err("LPT wrote %lld but space used was %lld",
1804 				d->chk_lpt_sz, chk_lpt_sz);
1805 			err = -EINVAL;
1806 		}
1807 		if (d->chk_lpt_sz > c->lpt_sz) {
1808 			dbg_err("LPT wrote %lld but lpt_sz is %lld",
1809 				d->chk_lpt_sz, c->lpt_sz);
1810 			err = -EINVAL;
1811 		}
1812 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1813 			dbg_err("LPT layout size %lld but wrote %lld",
1814 				d->chk_lpt_sz, d->chk_lpt_sz2);
1815 			err = -EINVAL;
1816 		}
1817 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1818 			dbg_err("LPT new nhead offs: expected %d was %d",
1819 				d->new_nhead_offs, len);
1820 			err = -EINVAL;
1821 		}
1822 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1823 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1824 		lpt_sz += c->ltab_sz;
1825 		if (c->big_lpt)
1826 			lpt_sz += c->lsave_sz;
1827 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1828 			dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1829 				d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1830 			err = -EINVAL;
1831 		}
1832 		if (err) {
1833 			dbg_dump_lpt_info(c);
1834 			dbg_dump_lpt_lebs(c);
1835 			dump_stack();
1836 		}
1837 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1838 		d->chk_lpt_sz = 0;
1839 		d->chk_lpt_wastage = 0;
1840 		d->chk_lpt_lebs = 0;
1841 		d->new_nhead_offs = len;
1842 		return err;
1843 	case 4:
1844 		d->chk_lpt_sz += len;
1845 		d->chk_lpt_wastage += len;
1846 		return 0;
1847 	default:
1848 		return -EINVAL;
1849 	}
1850 }
1851 
1852 /**
1853  * dbg_dump_lpt_leb - dump an LPT LEB.
1854  * @c: UBIFS file-system description object
1855  * @lnum: LEB number to dump
1856  *
1857  * This function dumps an LEB from LPT area. Nodes in this area are very
1858  * different to nodes in the main area (e.g., they do not have common headers,
1859  * they do not have 8-byte alignments, etc), so we have a separate function to
1860  * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1861  */
dump_lpt_leb(const struct ubifs_info * c,int lnum)1862 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1863 {
1864 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1865 	void *buf = c->dbg->buf;
1866 
1867 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1868 	       current->pid, lnum);
1869 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1870 	if (err) {
1871 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1872 		return;
1873 	}
1874 	while (1) {
1875 		offs = c->leb_size - len;
1876 		if (!is_a_node(c, buf, len)) {
1877 			int pad_len;
1878 
1879 			pad_len = get_pad_len(c, buf, len);
1880 			if (pad_len) {
1881 				printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1882 				       lnum, offs, pad_len);
1883 				buf += pad_len;
1884 				len -= pad_len;
1885 				continue;
1886 			}
1887 			if (len)
1888 				printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1889 				       lnum, offs, len);
1890 			break;
1891 		}
1892 
1893 		node_type = get_lpt_node_type(c, buf, &node_num);
1894 		switch (node_type) {
1895 		case UBIFS_LPT_PNODE:
1896 		{
1897 			node_len = c->pnode_sz;
1898 			if (c->big_lpt)
1899 				printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1900 				       lnum, offs, node_num);
1901 			else
1902 				printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1903 				       lnum, offs);
1904 			break;
1905 		}
1906 		case UBIFS_LPT_NNODE:
1907 		{
1908 			int i;
1909 			struct ubifs_nnode nnode;
1910 
1911 			node_len = c->nnode_sz;
1912 			if (c->big_lpt)
1913 				printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1914 				       lnum, offs, node_num);
1915 			else
1916 				printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1917 				       lnum, offs);
1918 			err = ubifs_unpack_nnode(c, buf, &nnode);
1919 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1920 				printk("%d:%d", nnode.nbranch[i].lnum,
1921 				       nnode.nbranch[i].offs);
1922 				if (i != UBIFS_LPT_FANOUT - 1)
1923 					printk(", ");
1924 			}
1925 			printk("\n");
1926 			break;
1927 		}
1928 		case UBIFS_LPT_LTAB:
1929 			node_len = c->ltab_sz;
1930 			printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1931 			       lnum, offs);
1932 			break;
1933 		case UBIFS_LPT_LSAVE:
1934 			node_len = c->lsave_sz;
1935 			printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1936 			break;
1937 		default:
1938 			ubifs_err("LPT node type %d not recognized", node_type);
1939 			return;
1940 		}
1941 
1942 		buf += node_len;
1943 		len -= node_len;
1944 	}
1945 
1946 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1947 	       current->pid, lnum);
1948 }
1949 
1950 /**
1951  * dbg_dump_lpt_lebs - dump LPT lebs.
1952  * @c: UBIFS file-system description object
1953  *
1954  * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1955  * locked.
1956  */
dbg_dump_lpt_lebs(const struct ubifs_info * c)1957 void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1958 {
1959 	int i;
1960 
1961 	printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1962 	       current->pid);
1963 	for (i = 0; i < c->lpt_lebs; i++)
1964 		dump_lpt_leb(c, i + c->lpt_first);
1965 	printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
1966 	       current->pid);
1967 }
1968 
1969 #endif /* CONFIG_UBIFS_FS_DEBUG */
1970