• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_inode.h"
37 #include "xfs_dinode.h"
38 #include "xfs_error.h"
39 #include "xfs_mru_cache.h"
40 #include "xfs_filestream.h"
41 #include "xfs_vnodeops.h"
42 #include "xfs_utils.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_inode_item.h"
45 #include "xfs_rw.h"
46 
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49 
50 /*
51  * Sync all the inodes in the given AG according to the
52  * direction given by the flags.
53  */
54 STATIC int
xfs_sync_inodes_ag(xfs_mount_t * mp,int ag,int flags)55 xfs_sync_inodes_ag(
56 	xfs_mount_t	*mp,
57 	int		ag,
58 	int		flags)
59 {
60 	xfs_perag_t	*pag = &mp->m_perag[ag];
61 	int		nr_found;
62 	uint32_t	first_index = 0;
63 	int		error = 0;
64 	int		last_error = 0;
65 	int		fflag = XFS_B_ASYNC;
66 
67 	if (flags & SYNC_DELWRI)
68 		fflag = XFS_B_DELWRI;
69 	if (flags & SYNC_WAIT)
70 		fflag = 0;		/* synchronous overrides all */
71 
72 	do {
73 		struct inode	*inode;
74 		xfs_inode_t	*ip = NULL;
75 		int		lock_flags = XFS_ILOCK_SHARED;
76 
77 		/*
78 		 * use a gang lookup to find the next inode in the tree
79 		 * as the tree is sparse and a gang lookup walks to find
80 		 * the number of objects requested.
81 		 */
82 		read_lock(&pag->pag_ici_lock);
83 		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
84 				(void**)&ip, first_index, 1);
85 
86 		if (!nr_found) {
87 			read_unlock(&pag->pag_ici_lock);
88 			break;
89 		}
90 
91 		/*
92 		 * Update the index for the next lookup. Catch overflows
93 		 * into the next AG range which can occur if we have inodes
94 		 * in the last block of the AG and we are currently
95 		 * pointing to the last inode.
96 		 */
97 		first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
98 		if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
99 			read_unlock(&pag->pag_ici_lock);
100 			break;
101 		}
102 
103 		/* nothing to sync during shutdown */
104 		if (XFS_FORCED_SHUTDOWN(mp)) {
105 			read_unlock(&pag->pag_ici_lock);
106 			return 0;
107 		}
108 
109 		/*
110 		 * If we can't get a reference on the inode, it must be
111 		 * in reclaim. Leave it for the reclaim code to flush.
112 		 */
113 		inode = VFS_I(ip);
114 		if (!igrab(inode)) {
115 			read_unlock(&pag->pag_ici_lock);
116 			continue;
117 		}
118 		read_unlock(&pag->pag_ici_lock);
119 
120 		/* avoid new or bad inodes */
121 		if (is_bad_inode(inode) ||
122 		    xfs_iflags_test(ip, XFS_INEW)) {
123 			IRELE(ip);
124 			continue;
125 		}
126 
127 		/*
128 		 * If we have to flush data or wait for I/O completion
129 		 * we need to hold the iolock.
130 		 */
131 		if ((flags & SYNC_DELWRI) && VN_DIRTY(inode)) {
132 			xfs_ilock(ip, XFS_IOLOCK_SHARED);
133 			lock_flags |= XFS_IOLOCK_SHARED;
134 			error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE);
135 			if (flags & SYNC_IOWAIT)
136 				xfs_ioend_wait(ip);
137 		}
138 		xfs_ilock(ip, XFS_ILOCK_SHARED);
139 
140 		if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) {
141 			if (flags & SYNC_WAIT) {
142 				xfs_iflock(ip);
143 				if (!xfs_inode_clean(ip))
144 					error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
145 				else
146 					xfs_ifunlock(ip);
147 			} else if (xfs_iflock_nowait(ip)) {
148 				if (!xfs_inode_clean(ip))
149 					error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
150 				else
151 					xfs_ifunlock(ip);
152 			}
153 		}
154 		xfs_iput(ip, lock_flags);
155 
156 		if (error)
157 			last_error = error;
158 		/*
159 		 * bail out if the filesystem is corrupted.
160 		 */
161 		if (error == EFSCORRUPTED)
162 			return XFS_ERROR(error);
163 
164 	} while (nr_found);
165 
166 	return last_error;
167 }
168 
169 int
xfs_sync_inodes(xfs_mount_t * mp,int flags)170 xfs_sync_inodes(
171 	xfs_mount_t	*mp,
172 	int		flags)
173 {
174 	int		error;
175 	int		last_error;
176 	int		i;
177 	int		lflags = XFS_LOG_FORCE;
178 
179 	if (mp->m_flags & XFS_MOUNT_RDONLY)
180 		return 0;
181 	error = 0;
182 	last_error = 0;
183 
184 	if (flags & SYNC_WAIT)
185 		lflags |= XFS_LOG_SYNC;
186 
187 	for (i = 0; i < mp->m_sb.sb_agcount; i++) {
188 		if (!mp->m_perag[i].pag_ici_init)
189 			continue;
190 		error = xfs_sync_inodes_ag(mp, i, flags);
191 		if (error)
192 			last_error = error;
193 		if (error == EFSCORRUPTED)
194 			break;
195 	}
196 	if (flags & SYNC_DELWRI)
197 		xfs_log_force(mp, 0, lflags);
198 
199 	return XFS_ERROR(last_error);
200 }
201 
202 STATIC int
xfs_commit_dummy_trans(struct xfs_mount * mp,uint log_flags)203 xfs_commit_dummy_trans(
204 	struct xfs_mount	*mp,
205 	uint			log_flags)
206 {
207 	struct xfs_inode	*ip = mp->m_rootip;
208 	struct xfs_trans	*tp;
209 	int			error;
210 
211 	/*
212 	 * Put a dummy transaction in the log to tell recovery
213 	 * that all others are OK.
214 	 */
215 	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
216 	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
217 	if (error) {
218 		xfs_trans_cancel(tp, 0);
219 		return error;
220 	}
221 
222 	xfs_ilock(ip, XFS_ILOCK_EXCL);
223 
224 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
225 	xfs_trans_ihold(tp, ip);
226 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
227 	/* XXX(hch): ignoring the error here.. */
228 	error = xfs_trans_commit(tp, 0);
229 
230 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
231 
232 	xfs_log_force(mp, 0, log_flags);
233 	return 0;
234 }
235 
236 int
xfs_sync_fsdata(struct xfs_mount * mp,int flags)237 xfs_sync_fsdata(
238 	struct xfs_mount	*mp,
239 	int			flags)
240 {
241 	struct xfs_buf		*bp;
242 	struct xfs_buf_log_item	*bip;
243 	int			error = 0;
244 
245 	/*
246 	 * If this is xfssyncd() then only sync the superblock if we can
247 	 * lock it without sleeping and it is not pinned.
248 	 */
249 	if (flags & SYNC_BDFLUSH) {
250 		ASSERT(!(flags & SYNC_WAIT));
251 
252 		bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
253 		if (!bp)
254 			goto out;
255 
256 		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
257 		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
258 			goto out_brelse;
259 	} else {
260 		bp = xfs_getsb(mp, 0);
261 
262 		/*
263 		 * If the buffer is pinned then push on the log so we won't
264 		 * get stuck waiting in the write for someone, maybe
265 		 * ourselves, to flush the log.
266 		 *
267 		 * Even though we just pushed the log above, we did not have
268 		 * the superblock buffer locked at that point so it can
269 		 * become pinned in between there and here.
270 		 */
271 		if (XFS_BUF_ISPINNED(bp))
272 			xfs_log_force(mp, 0, XFS_LOG_FORCE);
273 	}
274 
275 
276 	if (flags & SYNC_WAIT)
277 		XFS_BUF_UNASYNC(bp);
278 	else
279 		XFS_BUF_ASYNC(bp);
280 
281 	return xfs_bwrite(mp, bp);
282 
283  out_brelse:
284 	xfs_buf_relse(bp);
285  out:
286 	return error;
287 }
288 
289 /*
290  * When remounting a filesystem read-only or freezing the filesystem, we have
291  * two phases to execute. This first phase is syncing the data before we
292  * quiesce the filesystem, and the second is flushing all the inodes out after
293  * we've waited for all the transactions created by the first phase to
294  * complete. The second phase ensures that the inodes are written to their
295  * location on disk rather than just existing in transactions in the log. This
296  * means after a quiesce there is no log replay required to write the inodes to
297  * disk (this is the main difference between a sync and a quiesce).
298  */
299 /*
300  * First stage of freeze - no writers will make progress now we are here,
301  * so we flush delwri and delalloc buffers here, then wait for all I/O to
302  * complete.  Data is frozen at that point. Metadata is not frozen,
303  * transactions can still occur here so don't bother flushing the buftarg
304  * because it'll just get dirty again.
305  */
306 int
xfs_quiesce_data(struct xfs_mount * mp)307 xfs_quiesce_data(
308 	struct xfs_mount	*mp)
309 {
310 	int error;
311 
312 	/* push non-blocking */
313 	xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_BDFLUSH);
314 	XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
315 	xfs_filestream_flush(mp);
316 
317 	/* push and block */
318 	xfs_sync_inodes(mp, SYNC_DELWRI|SYNC_WAIT|SYNC_IOWAIT);
319 	XFS_QM_DQSYNC(mp, SYNC_WAIT);
320 
321 	/* write superblock and hoover up shutdown errors */
322 	error = xfs_sync_fsdata(mp, 0);
323 
324 	/* flush data-only devices */
325 	if (mp->m_rtdev_targp)
326 		XFS_bflush(mp->m_rtdev_targp);
327 
328 	return error;
329 }
330 
331 STATIC void
xfs_quiesce_fs(struct xfs_mount * mp)332 xfs_quiesce_fs(
333 	struct xfs_mount	*mp)
334 {
335 	int	count = 0, pincount;
336 
337 	xfs_flush_buftarg(mp->m_ddev_targp, 0);
338 	xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
339 
340 	/*
341 	 * This loop must run at least twice.  The first instance of the loop
342 	 * will flush most meta data but that will generate more meta data
343 	 * (typically directory updates).  Which then must be flushed and
344 	 * logged before we can write the unmount record.
345 	 */
346 	do {
347 		xfs_sync_inodes(mp, SYNC_ATTR|SYNC_WAIT);
348 		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
349 		if (!pincount) {
350 			delay(50);
351 			count++;
352 		}
353 	} while (count < 2);
354 }
355 
356 /*
357  * Second stage of a quiesce. The data is already synced, now we have to take
358  * care of the metadata. New transactions are already blocked, so we need to
359  * wait for any remaining transactions to drain out before proceding.
360  */
361 void
xfs_quiesce_attr(struct xfs_mount * mp)362 xfs_quiesce_attr(
363 	struct xfs_mount	*mp)
364 {
365 	int	error = 0;
366 
367 	/* wait for all modifications to complete */
368 	while (atomic_read(&mp->m_active_trans) > 0)
369 		delay(100);
370 
371 	/* flush inodes and push all remaining buffers out to disk */
372 	xfs_quiesce_fs(mp);
373 
374 	/*
375 	 * Just warn here till VFS can correctly support
376 	 * read-only remount without racing.
377 	 */
378 	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
379 
380 	/* Push the superblock and write an unmount record */
381 	error = xfs_log_sbcount(mp, 1);
382 	if (error)
383 		xfs_fs_cmn_err(CE_WARN, mp,
384 				"xfs_attr_quiesce: failed to log sb changes. "
385 				"Frozen image may not be consistent.");
386 	xfs_log_unmount_write(mp);
387 	xfs_unmountfs_writesb(mp);
388 }
389 
390 /*
391  * Enqueue a work item to be picked up by the vfs xfssyncd thread.
392  * Doing this has two advantages:
393  * - It saves on stack space, which is tight in certain situations
394  * - It can be used (with care) as a mechanism to avoid deadlocks.
395  * Flushing while allocating in a full filesystem requires both.
396  */
397 STATIC void
xfs_syncd_queue_work(struct xfs_mount * mp,void * data,void (* syncer)(struct xfs_mount *,void *))398 xfs_syncd_queue_work(
399 	struct xfs_mount *mp,
400 	void		*data,
401 	void		(*syncer)(struct xfs_mount *, void *))
402 {
403 	struct bhv_vfs_sync_work *work;
404 
405 	work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
406 	INIT_LIST_HEAD(&work->w_list);
407 	work->w_syncer = syncer;
408 	work->w_data = data;
409 	work->w_mount = mp;
410 	spin_lock(&mp->m_sync_lock);
411 	list_add_tail(&work->w_list, &mp->m_sync_list);
412 	spin_unlock(&mp->m_sync_lock);
413 	wake_up_process(mp->m_sync_task);
414 }
415 
416 /*
417  * Flush delayed allocate data, attempting to free up reserved space
418  * from existing allocations.  At this point a new allocation attempt
419  * has failed with ENOSPC and we are in the process of scratching our
420  * heads, looking about for more room...
421  */
422 STATIC void
xfs_flush_inode_work(struct xfs_mount * mp,void * arg)423 xfs_flush_inode_work(
424 	struct xfs_mount *mp,
425 	void		*arg)
426 {
427 	struct inode	*inode = arg;
428 	filemap_flush(inode->i_mapping);
429 	iput(inode);
430 }
431 
432 void
xfs_flush_inode(xfs_inode_t * ip)433 xfs_flush_inode(
434 	xfs_inode_t	*ip)
435 {
436 	struct inode	*inode = VFS_I(ip);
437 
438 	igrab(inode);
439 	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inode_work);
440 	delay(msecs_to_jiffies(500));
441 }
442 
443 /*
444  * This is the "bigger hammer" version of xfs_flush_inode_work...
445  * (IOW, "If at first you don't succeed, use a Bigger Hammer").
446  */
447 STATIC void
xfs_flush_device_work(struct xfs_mount * mp,void * arg)448 xfs_flush_device_work(
449 	struct xfs_mount *mp,
450 	void		*arg)
451 {
452 	struct inode	*inode = arg;
453 	sync_blockdev(mp->m_super->s_bdev);
454 	iput(inode);
455 }
456 
457 void
xfs_flush_device(xfs_inode_t * ip)458 xfs_flush_device(
459 	xfs_inode_t	*ip)
460 {
461 	struct inode	*inode = VFS_I(ip);
462 
463 	igrab(inode);
464 	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_device_work);
465 	delay(msecs_to_jiffies(500));
466 	xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
467 }
468 
469 /*
470  * Every sync period we need to unpin all items, reclaim inodes, sync
471  * quota and write out the superblock. We might need to cover the log
472  * to indicate it is idle.
473  */
474 STATIC void
xfs_sync_worker(struct xfs_mount * mp,void * unused)475 xfs_sync_worker(
476 	struct xfs_mount *mp,
477 	void		*unused)
478 {
479 	int		error;
480 
481 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
482 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
483 		xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
484 		/* dgc: errors ignored here */
485 		error = XFS_QM_DQSYNC(mp, SYNC_BDFLUSH);
486 		error = xfs_sync_fsdata(mp, SYNC_BDFLUSH);
487 		if (xfs_log_need_covered(mp))
488 			error = xfs_commit_dummy_trans(mp, XFS_LOG_FORCE);
489 	}
490 	mp->m_sync_seq++;
491 	wake_up(&mp->m_wait_single_sync_task);
492 }
493 
494 STATIC int
xfssyncd(void * arg)495 xfssyncd(
496 	void			*arg)
497 {
498 	struct xfs_mount	*mp = arg;
499 	long			timeleft;
500 	bhv_vfs_sync_work_t	*work, *n;
501 	LIST_HEAD		(tmp);
502 
503 	set_freezable();
504 	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
505 	for (;;) {
506 		timeleft = schedule_timeout_interruptible(timeleft);
507 		/* swsusp */
508 		try_to_freeze();
509 		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
510 			break;
511 
512 		spin_lock(&mp->m_sync_lock);
513 		/*
514 		 * We can get woken by laptop mode, to do a sync -
515 		 * that's the (only!) case where the list would be
516 		 * empty with time remaining.
517 		 */
518 		if (!timeleft || list_empty(&mp->m_sync_list)) {
519 			if (!timeleft)
520 				timeleft = xfs_syncd_centisecs *
521 							msecs_to_jiffies(10);
522 			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
523 			list_add_tail(&mp->m_sync_work.w_list,
524 					&mp->m_sync_list);
525 		}
526 		list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
527 			list_move(&work->w_list, &tmp);
528 		spin_unlock(&mp->m_sync_lock);
529 
530 		list_for_each_entry_safe(work, n, &tmp, w_list) {
531 			(*work->w_syncer)(mp, work->w_data);
532 			list_del(&work->w_list);
533 			if (work == &mp->m_sync_work)
534 				continue;
535 			kmem_free(work);
536 		}
537 	}
538 
539 	return 0;
540 }
541 
542 int
xfs_syncd_init(struct xfs_mount * mp)543 xfs_syncd_init(
544 	struct xfs_mount	*mp)
545 {
546 	mp->m_sync_work.w_syncer = xfs_sync_worker;
547 	mp->m_sync_work.w_mount = mp;
548 	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
549 	if (IS_ERR(mp->m_sync_task))
550 		return -PTR_ERR(mp->m_sync_task);
551 	return 0;
552 }
553 
554 void
xfs_syncd_stop(struct xfs_mount * mp)555 xfs_syncd_stop(
556 	struct xfs_mount	*mp)
557 {
558 	kthread_stop(mp->m_sync_task);
559 }
560 
561 int
xfs_reclaim_inode(xfs_inode_t * ip,int locked,int sync_mode)562 xfs_reclaim_inode(
563 	xfs_inode_t	*ip,
564 	int		locked,
565 	int		sync_mode)
566 {
567 	xfs_perag_t	*pag = xfs_get_perag(ip->i_mount, ip->i_ino);
568 
569 	/* The hash lock here protects a thread in xfs_iget_core from
570 	 * racing with us on linking the inode back with a vnode.
571 	 * Once we have the XFS_IRECLAIM flag set it will not touch
572 	 * us.
573 	 */
574 	write_lock(&pag->pag_ici_lock);
575 	spin_lock(&ip->i_flags_lock);
576 	if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
577 	    !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
578 		spin_unlock(&ip->i_flags_lock);
579 		write_unlock(&pag->pag_ici_lock);
580 		if (locked) {
581 			xfs_ifunlock(ip);
582 			xfs_iunlock(ip, XFS_ILOCK_EXCL);
583 		}
584 		return 1;
585 	}
586 	__xfs_iflags_set(ip, XFS_IRECLAIM);
587 	spin_unlock(&ip->i_flags_lock);
588 	write_unlock(&pag->pag_ici_lock);
589 	xfs_put_perag(ip->i_mount, pag);
590 
591 	/*
592 	 * If the inode is still dirty, then flush it out.  If the inode
593 	 * is not in the AIL, then it will be OK to flush it delwri as
594 	 * long as xfs_iflush() does not keep any references to the inode.
595 	 * We leave that decision up to xfs_iflush() since it has the
596 	 * knowledge of whether it's OK to simply do a delwri flush of
597 	 * the inode or whether we need to wait until the inode is
598 	 * pulled from the AIL.
599 	 * We get the flush lock regardless, though, just to make sure
600 	 * we don't free it while it is being flushed.
601 	 */
602 	if (!locked) {
603 		xfs_ilock(ip, XFS_ILOCK_EXCL);
604 		xfs_iflock(ip);
605 	}
606 
607 	/*
608 	 * In the case of a forced shutdown we rely on xfs_iflush() to
609 	 * wait for the inode to be unpinned before returning an error.
610 	 */
611 	if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
612 		/* synchronize with xfs_iflush_done */
613 		xfs_iflock(ip);
614 		xfs_ifunlock(ip);
615 	}
616 
617 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
618 	xfs_ireclaim(ip);
619 	return 0;
620 }
621 
622 /*
623  * We set the inode flag atomically with the radix tree tag.
624  * Once we get tag lookups on the radix tree, this inode flag
625  * can go away.
626  */
627 void
xfs_inode_set_reclaim_tag(xfs_inode_t * ip)628 xfs_inode_set_reclaim_tag(
629 	xfs_inode_t	*ip)
630 {
631 	xfs_mount_t	*mp = ip->i_mount;
632 	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);
633 
634 	read_lock(&pag->pag_ici_lock);
635 	spin_lock(&ip->i_flags_lock);
636 	radix_tree_tag_set(&pag->pag_ici_root,
637 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
638 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
639 	spin_unlock(&ip->i_flags_lock);
640 	read_unlock(&pag->pag_ici_lock);
641 	xfs_put_perag(mp, pag);
642 }
643 
644 void
__xfs_inode_clear_reclaim_tag(xfs_mount_t * mp,xfs_perag_t * pag,xfs_inode_t * ip)645 __xfs_inode_clear_reclaim_tag(
646 	xfs_mount_t	*mp,
647 	xfs_perag_t	*pag,
648 	xfs_inode_t	*ip)
649 {
650 	radix_tree_tag_clear(&pag->pag_ici_root,
651 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
652 }
653 
654 void
xfs_inode_clear_reclaim_tag(xfs_inode_t * ip)655 xfs_inode_clear_reclaim_tag(
656 	xfs_inode_t	*ip)
657 {
658 	xfs_mount_t	*mp = ip->i_mount;
659 	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);
660 
661 	read_lock(&pag->pag_ici_lock);
662 	spin_lock(&ip->i_flags_lock);
663 	__xfs_inode_clear_reclaim_tag(mp, pag, ip);
664 	spin_unlock(&ip->i_flags_lock);
665 	read_unlock(&pag->pag_ici_lock);
666 	xfs_put_perag(mp, pag);
667 }
668 
669 
670 STATIC void
xfs_reclaim_inodes_ag(xfs_mount_t * mp,int ag,int noblock,int mode)671 xfs_reclaim_inodes_ag(
672 	xfs_mount_t	*mp,
673 	int		ag,
674 	int		noblock,
675 	int		mode)
676 {
677 	xfs_inode_t	*ip = NULL;
678 	xfs_perag_t	*pag = &mp->m_perag[ag];
679 	int		nr_found;
680 	uint32_t	first_index;
681 	int		skipped;
682 
683 restart:
684 	first_index = 0;
685 	skipped = 0;
686 	do {
687 		/*
688 		 * use a gang lookup to find the next inode in the tree
689 		 * as the tree is sparse and a gang lookup walks to find
690 		 * the number of objects requested.
691 		 */
692 		read_lock(&pag->pag_ici_lock);
693 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
694 					(void**)&ip, first_index, 1,
695 					XFS_ICI_RECLAIM_TAG);
696 
697 		if (!nr_found) {
698 			read_unlock(&pag->pag_ici_lock);
699 			break;
700 		}
701 
702 		/*
703 		 * Update the index for the next lookup. Catch overflows
704 		 * into the next AG range which can occur if we have inodes
705 		 * in the last block of the AG and we are currently
706 		 * pointing to the last inode.
707 		 */
708 		first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
709 		if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
710 			read_unlock(&pag->pag_ici_lock);
711 			break;
712 		}
713 
714 		/* ignore if already under reclaim */
715 		if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
716 			read_unlock(&pag->pag_ici_lock);
717 			continue;
718 		}
719 
720 		if (noblock) {
721 			if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
722 				read_unlock(&pag->pag_ici_lock);
723 				continue;
724 			}
725 			if (xfs_ipincount(ip) ||
726 			    !xfs_iflock_nowait(ip)) {
727 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
728 				read_unlock(&pag->pag_ici_lock);
729 				continue;
730 			}
731 		}
732 		read_unlock(&pag->pag_ici_lock);
733 
734 		/*
735 		 * hmmm - this is an inode already in reclaim. Do
736 		 * we even bother catching it here?
737 		 */
738 		if (xfs_reclaim_inode(ip, noblock, mode))
739 			skipped++;
740 	} while (nr_found);
741 
742 	if (skipped) {
743 		delay(1);
744 		goto restart;
745 	}
746 	return;
747 
748 }
749 
750 int
xfs_reclaim_inodes(xfs_mount_t * mp,int noblock,int mode)751 xfs_reclaim_inodes(
752 	xfs_mount_t	*mp,
753 	int		 noblock,
754 	int		mode)
755 {
756 	int		i;
757 
758 	for (i = 0; i < mp->m_sb.sb_agcount; i++) {
759 		if (!mp->m_perag[i].pag_ici_init)
760 			continue;
761 		xfs_reclaim_inodes_ag(mp, i, noblock, mode);
762 	}
763 	return 0;
764 }
765 
766 
767