1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dmapi.h"
28 #include "xfs_mount.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_extfree_item.h"
31
32
33 kmem_zone_t *xfs_efi_zone;
34 kmem_zone_t *xfs_efd_zone;
35
36 STATIC void xfs_efi_item_unlock(xfs_efi_log_item_t *);
37
38 void
xfs_efi_item_free(xfs_efi_log_item_t * efip)39 xfs_efi_item_free(xfs_efi_log_item_t *efip)
40 {
41 int nexts = efip->efi_format.efi_nextents;
42
43 if (nexts > XFS_EFI_MAX_FAST_EXTENTS) {
44 kmem_free(efip);
45 } else {
46 kmem_zone_free(xfs_efi_zone, efip);
47 }
48 }
49
50 /*
51 * This returns the number of iovecs needed to log the given efi item.
52 * We only need 1 iovec for an efi item. It just logs the efi_log_format
53 * structure.
54 */
55 /*ARGSUSED*/
56 STATIC uint
xfs_efi_item_size(xfs_efi_log_item_t * efip)57 xfs_efi_item_size(xfs_efi_log_item_t *efip)
58 {
59 return 1;
60 }
61
62 /*
63 * This is called to fill in the vector of log iovecs for the
64 * given efi log item. We use only 1 iovec, and we point that
65 * at the efi_log_format structure embedded in the efi item.
66 * It is at this point that we assert that all of the extent
67 * slots in the efi item have been filled.
68 */
69 STATIC void
xfs_efi_item_format(xfs_efi_log_item_t * efip,xfs_log_iovec_t * log_vector)70 xfs_efi_item_format(xfs_efi_log_item_t *efip,
71 xfs_log_iovec_t *log_vector)
72 {
73 uint size;
74
75 ASSERT(efip->efi_next_extent == efip->efi_format.efi_nextents);
76
77 efip->efi_format.efi_type = XFS_LI_EFI;
78
79 size = sizeof(xfs_efi_log_format_t);
80 size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
81 efip->efi_format.efi_size = 1;
82
83 log_vector->i_addr = (xfs_caddr_t)&(efip->efi_format);
84 log_vector->i_len = size;
85 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFI_FORMAT);
86 ASSERT(size >= sizeof(xfs_efi_log_format_t));
87 }
88
89
90 /*
91 * Pinning has no meaning for an efi item, so just return.
92 */
93 /*ARGSUSED*/
94 STATIC void
xfs_efi_item_pin(xfs_efi_log_item_t * efip)95 xfs_efi_item_pin(xfs_efi_log_item_t *efip)
96 {
97 return;
98 }
99
100
101 /*
102 * While EFIs cannot really be pinned, the unpin operation is the
103 * last place at which the EFI is manipulated during a transaction.
104 * Here we coordinate with xfs_efi_cancel() to determine who gets to
105 * free the EFI.
106 */
107 /*ARGSUSED*/
108 STATIC void
xfs_efi_item_unpin(xfs_efi_log_item_t * efip,int stale)109 xfs_efi_item_unpin(xfs_efi_log_item_t *efip, int stale)
110 {
111 struct xfs_ail *ailp = efip->efi_item.li_ailp;
112
113 spin_lock(&ailp->xa_lock);
114 if (efip->efi_flags & XFS_EFI_CANCELED) {
115 /* xfs_trans_ail_delete() drops the AIL lock. */
116 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
117 xfs_efi_item_free(efip);
118 } else {
119 efip->efi_flags |= XFS_EFI_COMMITTED;
120 spin_unlock(&ailp->xa_lock);
121 }
122 }
123
124 /*
125 * like unpin only we have to also clear the xaction descriptor
126 * pointing the log item if we free the item. This routine duplicates
127 * unpin because efi_flags is protected by the AIL lock. Freeing
128 * the descriptor and then calling unpin would force us to drop the AIL
129 * lock which would open up a race condition.
130 */
131 STATIC void
xfs_efi_item_unpin_remove(xfs_efi_log_item_t * efip,xfs_trans_t * tp)132 xfs_efi_item_unpin_remove(xfs_efi_log_item_t *efip, xfs_trans_t *tp)
133 {
134 struct xfs_ail *ailp = efip->efi_item.li_ailp;
135 xfs_log_item_desc_t *lidp;
136
137 spin_lock(&ailp->xa_lock);
138 if (efip->efi_flags & XFS_EFI_CANCELED) {
139 /*
140 * free the xaction descriptor pointing to this item
141 */
142 lidp = xfs_trans_find_item(tp, (xfs_log_item_t *) efip);
143 xfs_trans_free_item(tp, lidp);
144
145 /* xfs_trans_ail_delete() drops the AIL lock. */
146 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
147 xfs_efi_item_free(efip);
148 } else {
149 efip->efi_flags |= XFS_EFI_COMMITTED;
150 spin_unlock(&ailp->xa_lock);
151 }
152 }
153
154 /*
155 * Efi items have no locking or pushing. However, since EFIs are
156 * pulled from the AIL when their corresponding EFDs are committed
157 * to disk, their situation is very similar to being pinned. Return
158 * XFS_ITEM_PINNED so that the caller will eventually flush the log.
159 * This should help in getting the EFI out of the AIL.
160 */
161 /*ARGSUSED*/
162 STATIC uint
xfs_efi_item_trylock(xfs_efi_log_item_t * efip)163 xfs_efi_item_trylock(xfs_efi_log_item_t *efip)
164 {
165 return XFS_ITEM_PINNED;
166 }
167
168 /*
169 * Efi items have no locking, so just return.
170 */
171 /*ARGSUSED*/
172 STATIC void
xfs_efi_item_unlock(xfs_efi_log_item_t * efip)173 xfs_efi_item_unlock(xfs_efi_log_item_t *efip)
174 {
175 if (efip->efi_item.li_flags & XFS_LI_ABORTED)
176 xfs_efi_item_free(efip);
177 return;
178 }
179
180 /*
181 * The EFI is logged only once and cannot be moved in the log, so
182 * simply return the lsn at which it's been logged. The canceled
183 * flag is not paid any attention here. Checking for that is delayed
184 * until the EFI is unpinned.
185 */
186 /*ARGSUSED*/
187 STATIC xfs_lsn_t
xfs_efi_item_committed(xfs_efi_log_item_t * efip,xfs_lsn_t lsn)188 xfs_efi_item_committed(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
189 {
190 return lsn;
191 }
192
193 /*
194 * There isn't much you can do to push on an efi item. It is simply
195 * stuck waiting for all of its corresponding efd items to be
196 * committed to disk.
197 */
198 /*ARGSUSED*/
199 STATIC void
xfs_efi_item_push(xfs_efi_log_item_t * efip)200 xfs_efi_item_push(xfs_efi_log_item_t *efip)
201 {
202 return;
203 }
204
205 /*
206 * The EFI dependency tracking op doesn't do squat. It can't because
207 * it doesn't know where the free extent is coming from. The dependency
208 * tracking has to be handled by the "enclosing" metadata object. For
209 * example, for inodes, the inode is locked throughout the extent freeing
210 * so the dependency should be recorded there.
211 */
212 /*ARGSUSED*/
213 STATIC void
xfs_efi_item_committing(xfs_efi_log_item_t * efip,xfs_lsn_t lsn)214 xfs_efi_item_committing(xfs_efi_log_item_t *efip, xfs_lsn_t lsn)
215 {
216 return;
217 }
218
219 /*
220 * This is the ops vector shared by all efi log items.
221 */
222 static struct xfs_item_ops xfs_efi_item_ops = {
223 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efi_item_size,
224 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
225 xfs_efi_item_format,
226 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efi_item_pin,
227 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efi_item_unpin,
228 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t *))
229 xfs_efi_item_unpin_remove,
230 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efi_item_trylock,
231 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efi_item_unlock,
232 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
233 xfs_efi_item_committed,
234 .iop_push = (void(*)(xfs_log_item_t*))xfs_efi_item_push,
235 .iop_pushbuf = NULL,
236 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
237 xfs_efi_item_committing
238 };
239
240
241 /*
242 * Allocate and initialize an efi item with the given number of extents.
243 */
244 xfs_efi_log_item_t *
xfs_efi_init(xfs_mount_t * mp,uint nextents)245 xfs_efi_init(xfs_mount_t *mp,
246 uint nextents)
247
248 {
249 xfs_efi_log_item_t *efip;
250 uint size;
251
252 ASSERT(nextents > 0);
253 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
254 size = (uint)(sizeof(xfs_efi_log_item_t) +
255 ((nextents - 1) * sizeof(xfs_extent_t)));
256 efip = (xfs_efi_log_item_t*)kmem_zalloc(size, KM_SLEEP);
257 } else {
258 efip = (xfs_efi_log_item_t*)kmem_zone_zalloc(xfs_efi_zone,
259 KM_SLEEP);
260 }
261
262 efip->efi_item.li_type = XFS_LI_EFI;
263 efip->efi_item.li_ops = &xfs_efi_item_ops;
264 efip->efi_item.li_mountp = mp;
265 efip->efi_item.li_ailp = mp->m_ail;
266 efip->efi_format.efi_nextents = nextents;
267 efip->efi_format.efi_id = (__psint_t)(void*)efip;
268
269 return (efip);
270 }
271
272 /*
273 * Copy an EFI format buffer from the given buf, and into the destination
274 * EFI format structure.
275 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
276 * one of which will be the native format for this kernel.
277 * It will handle the conversion of formats if necessary.
278 */
279 int
xfs_efi_copy_format(xfs_log_iovec_t * buf,xfs_efi_log_format_t * dst_efi_fmt)280 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
281 {
282 xfs_efi_log_format_t *src_efi_fmt = (xfs_efi_log_format_t *)buf->i_addr;
283 uint i;
284 uint len = sizeof(xfs_efi_log_format_t) +
285 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
286 uint len32 = sizeof(xfs_efi_log_format_32_t) +
287 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
288 uint len64 = sizeof(xfs_efi_log_format_64_t) +
289 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
290
291 if (buf->i_len == len) {
292 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
293 return 0;
294 } else if (buf->i_len == len32) {
295 xfs_efi_log_format_32_t *src_efi_fmt_32 =
296 (xfs_efi_log_format_32_t *)buf->i_addr;
297
298 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
299 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
300 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
301 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
302 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
303 dst_efi_fmt->efi_extents[i].ext_start =
304 src_efi_fmt_32->efi_extents[i].ext_start;
305 dst_efi_fmt->efi_extents[i].ext_len =
306 src_efi_fmt_32->efi_extents[i].ext_len;
307 }
308 return 0;
309 } else if (buf->i_len == len64) {
310 xfs_efi_log_format_64_t *src_efi_fmt_64 =
311 (xfs_efi_log_format_64_t *)buf->i_addr;
312
313 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
314 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
315 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
316 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
317 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
318 dst_efi_fmt->efi_extents[i].ext_start =
319 src_efi_fmt_64->efi_extents[i].ext_start;
320 dst_efi_fmt->efi_extents[i].ext_len =
321 src_efi_fmt_64->efi_extents[i].ext_len;
322 }
323 return 0;
324 }
325 return EFSCORRUPTED;
326 }
327
328 /*
329 * This is called by the efd item code below to release references to
330 * the given efi item. Each efd calls this with the number of
331 * extents that it has logged, and when the sum of these reaches
332 * the total number of extents logged by this efi item we can free
333 * the efi item.
334 *
335 * Freeing the efi item requires that we remove it from the AIL.
336 * We'll use the AIL lock to protect our counters as well as
337 * the removal from the AIL.
338 */
339 void
xfs_efi_release(xfs_efi_log_item_t * efip,uint nextents)340 xfs_efi_release(xfs_efi_log_item_t *efip,
341 uint nextents)
342 {
343 struct xfs_ail *ailp = efip->efi_item.li_ailp;
344 int extents_left;
345
346 ASSERT(efip->efi_next_extent > 0);
347 ASSERT(efip->efi_flags & XFS_EFI_COMMITTED);
348
349 spin_lock(&ailp->xa_lock);
350 ASSERT(efip->efi_next_extent >= nextents);
351 efip->efi_next_extent -= nextents;
352 extents_left = efip->efi_next_extent;
353 if (extents_left == 0) {
354 /* xfs_trans_ail_delete() drops the AIL lock. */
355 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)efip);
356 xfs_efi_item_free(efip);
357 } else {
358 spin_unlock(&ailp->xa_lock);
359 }
360 }
361
362 STATIC void
xfs_efd_item_free(xfs_efd_log_item_t * efdp)363 xfs_efd_item_free(xfs_efd_log_item_t *efdp)
364 {
365 int nexts = efdp->efd_format.efd_nextents;
366
367 if (nexts > XFS_EFD_MAX_FAST_EXTENTS) {
368 kmem_free(efdp);
369 } else {
370 kmem_zone_free(xfs_efd_zone, efdp);
371 }
372 }
373
374 /*
375 * This returns the number of iovecs needed to log the given efd item.
376 * We only need 1 iovec for an efd item. It just logs the efd_log_format
377 * structure.
378 */
379 /*ARGSUSED*/
380 STATIC uint
xfs_efd_item_size(xfs_efd_log_item_t * efdp)381 xfs_efd_item_size(xfs_efd_log_item_t *efdp)
382 {
383 return 1;
384 }
385
386 /*
387 * This is called to fill in the vector of log iovecs for the
388 * given efd log item. We use only 1 iovec, and we point that
389 * at the efd_log_format structure embedded in the efd item.
390 * It is at this point that we assert that all of the extent
391 * slots in the efd item have been filled.
392 */
393 STATIC void
xfs_efd_item_format(xfs_efd_log_item_t * efdp,xfs_log_iovec_t * log_vector)394 xfs_efd_item_format(xfs_efd_log_item_t *efdp,
395 xfs_log_iovec_t *log_vector)
396 {
397 uint size;
398
399 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
400
401 efdp->efd_format.efd_type = XFS_LI_EFD;
402
403 size = sizeof(xfs_efd_log_format_t);
404 size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
405 efdp->efd_format.efd_size = 1;
406
407 log_vector->i_addr = (xfs_caddr_t)&(efdp->efd_format);
408 log_vector->i_len = size;
409 XLOG_VEC_SET_TYPE(log_vector, XLOG_REG_TYPE_EFD_FORMAT);
410 ASSERT(size >= sizeof(xfs_efd_log_format_t));
411 }
412
413
414 /*
415 * Pinning has no meaning for an efd item, so just return.
416 */
417 /*ARGSUSED*/
418 STATIC void
xfs_efd_item_pin(xfs_efd_log_item_t * efdp)419 xfs_efd_item_pin(xfs_efd_log_item_t *efdp)
420 {
421 return;
422 }
423
424
425 /*
426 * Since pinning has no meaning for an efd item, unpinning does
427 * not either.
428 */
429 /*ARGSUSED*/
430 STATIC void
xfs_efd_item_unpin(xfs_efd_log_item_t * efdp,int stale)431 xfs_efd_item_unpin(xfs_efd_log_item_t *efdp, int stale)
432 {
433 return;
434 }
435
436 /*ARGSUSED*/
437 STATIC void
xfs_efd_item_unpin_remove(xfs_efd_log_item_t * efdp,xfs_trans_t * tp)438 xfs_efd_item_unpin_remove(xfs_efd_log_item_t *efdp, xfs_trans_t *tp)
439 {
440 return;
441 }
442
443 /*
444 * Efd items have no locking, so just return success.
445 */
446 /*ARGSUSED*/
447 STATIC uint
xfs_efd_item_trylock(xfs_efd_log_item_t * efdp)448 xfs_efd_item_trylock(xfs_efd_log_item_t *efdp)
449 {
450 return XFS_ITEM_LOCKED;
451 }
452
453 /*
454 * Efd items have no locking or pushing, so return failure
455 * so that the caller doesn't bother with us.
456 */
457 /*ARGSUSED*/
458 STATIC void
xfs_efd_item_unlock(xfs_efd_log_item_t * efdp)459 xfs_efd_item_unlock(xfs_efd_log_item_t *efdp)
460 {
461 if (efdp->efd_item.li_flags & XFS_LI_ABORTED)
462 xfs_efd_item_free(efdp);
463 return;
464 }
465
466 /*
467 * When the efd item is committed to disk, all we need to do
468 * is delete our reference to our partner efi item and then
469 * free ourselves. Since we're freeing ourselves we must
470 * return -1 to keep the transaction code from further referencing
471 * this item.
472 */
473 /*ARGSUSED*/
474 STATIC xfs_lsn_t
xfs_efd_item_committed(xfs_efd_log_item_t * efdp,xfs_lsn_t lsn)475 xfs_efd_item_committed(xfs_efd_log_item_t *efdp, xfs_lsn_t lsn)
476 {
477 /*
478 * If we got a log I/O error, it's always the case that the LR with the
479 * EFI got unpinned and freed before the EFD got aborted.
480 */
481 if ((efdp->efd_item.li_flags & XFS_LI_ABORTED) == 0)
482 xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
483
484 xfs_efd_item_free(efdp);
485 return (xfs_lsn_t)-1;
486 }
487
488 /*
489 * There isn't much you can do to push on an efd item. It is simply
490 * stuck waiting for the log to be flushed to disk.
491 */
492 /*ARGSUSED*/
493 STATIC void
xfs_efd_item_push(xfs_efd_log_item_t * efdp)494 xfs_efd_item_push(xfs_efd_log_item_t *efdp)
495 {
496 return;
497 }
498
499 /*
500 * The EFD dependency tracking op doesn't do squat. It can't because
501 * it doesn't know where the free extent is coming from. The dependency
502 * tracking has to be handled by the "enclosing" metadata object. For
503 * example, for inodes, the inode is locked throughout the extent freeing
504 * so the dependency should be recorded there.
505 */
506 /*ARGSUSED*/
507 STATIC void
xfs_efd_item_committing(xfs_efd_log_item_t * efip,xfs_lsn_t lsn)508 xfs_efd_item_committing(xfs_efd_log_item_t *efip, xfs_lsn_t lsn)
509 {
510 return;
511 }
512
513 /*
514 * This is the ops vector shared by all efd log items.
515 */
516 static struct xfs_item_ops xfs_efd_item_ops = {
517 .iop_size = (uint(*)(xfs_log_item_t*))xfs_efd_item_size,
518 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
519 xfs_efd_item_format,
520 .iop_pin = (void(*)(xfs_log_item_t*))xfs_efd_item_pin,
521 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_efd_item_unpin,
522 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
523 xfs_efd_item_unpin_remove,
524 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_efd_item_trylock,
525 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_efd_item_unlock,
526 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
527 xfs_efd_item_committed,
528 .iop_push = (void(*)(xfs_log_item_t*))xfs_efd_item_push,
529 .iop_pushbuf = NULL,
530 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
531 xfs_efd_item_committing
532 };
533
534
535 /*
536 * Allocate and initialize an efd item with the given number of extents.
537 */
538 xfs_efd_log_item_t *
xfs_efd_init(xfs_mount_t * mp,xfs_efi_log_item_t * efip,uint nextents)539 xfs_efd_init(xfs_mount_t *mp,
540 xfs_efi_log_item_t *efip,
541 uint nextents)
542
543 {
544 xfs_efd_log_item_t *efdp;
545 uint size;
546
547 ASSERT(nextents > 0);
548 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
549 size = (uint)(sizeof(xfs_efd_log_item_t) +
550 ((nextents - 1) * sizeof(xfs_extent_t)));
551 efdp = (xfs_efd_log_item_t*)kmem_zalloc(size, KM_SLEEP);
552 } else {
553 efdp = (xfs_efd_log_item_t*)kmem_zone_zalloc(xfs_efd_zone,
554 KM_SLEEP);
555 }
556
557 efdp->efd_item.li_type = XFS_LI_EFD;
558 efdp->efd_item.li_ops = &xfs_efd_item_ops;
559 efdp->efd_item.li_mountp = mp;
560 efdp->efd_item.li_ailp = mp->m_ail;
561 efdp->efd_efip = efip;
562 efdp->efd_format.efd_nextents = nextents;
563 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
564
565 return (efdp);
566 }
567