• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_utils.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_inode_item.h"
43 #include "xfs_bmap.h"
44 #include "xfs_btree_trace.h"
45 #include "xfs_dir2_trace.h"
46 
47 
48 /*
49  * Allocate and initialise an xfs_inode.
50  */
51 STATIC struct xfs_inode *
xfs_inode_alloc(struct xfs_mount * mp,xfs_ino_t ino)52 xfs_inode_alloc(
53 	struct xfs_mount	*mp,
54 	xfs_ino_t		ino)
55 {
56 	struct xfs_inode	*ip;
57 
58 	/*
59 	 * if this didn't occur in transactions, we could use
60 	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
61 	 * code up to do this anyway.
62 	 */
63 	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
64 	if (!ip)
65 		return NULL;
66 
67 	ASSERT(atomic_read(&ip->i_iocount) == 0);
68 	ASSERT(atomic_read(&ip->i_pincount) == 0);
69 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
70 	ASSERT(completion_done(&ip->i_flush));
71 
72 	/*
73 	 * initialise the VFS inode here to get failures
74 	 * out of the way early.
75 	 */
76 	if (!inode_init_always(mp->m_super, VFS_I(ip))) {
77 		kmem_zone_free(xfs_inode_zone, ip);
78 		return NULL;
79 	}
80 
81 	/* initialise the xfs inode */
82 	ip->i_ino = ino;
83 	ip->i_mount = mp;
84 	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
85 	ip->i_afp = NULL;
86 	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
87 	ip->i_flags = 0;
88 	ip->i_update_core = 0;
89 	ip->i_update_size = 0;
90 	ip->i_delayed_blks = 0;
91 	memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
92 	ip->i_size = 0;
93 	ip->i_new_size = 0;
94 
95 	/*
96 	 * Initialize inode's trace buffers.
97 	 */
98 #ifdef	XFS_INODE_TRACE
99 	ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
100 #endif
101 #ifdef XFS_BMAP_TRACE
102 	ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
103 #endif
104 #ifdef XFS_BTREE_TRACE
105 	ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
106 #endif
107 #ifdef XFS_RW_TRACE
108 	ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
109 #endif
110 #ifdef XFS_ILOCK_TRACE
111 	ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
112 #endif
113 #ifdef XFS_DIR2_TRACE
114 	ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
115 #endif
116 
117 	return ip;
118 }
119 
120 /*
121  * Check the validity of the inode we just found it the cache
122  */
123 static int
xfs_iget_cache_hit(struct xfs_perag * pag,struct xfs_inode * ip,int flags,int lock_flags)124 xfs_iget_cache_hit(
125 	struct xfs_perag	*pag,
126 	struct xfs_inode	*ip,
127 	int			flags,
128 	int			lock_flags) __releases(pag->pag_ici_lock)
129 {
130 	struct xfs_mount	*mp = ip->i_mount;
131 	int			error = EAGAIN;
132 
133 	/*
134 	 * If INEW is set this inode is being set up
135 	 * If IRECLAIM is set this inode is being torn down
136 	 * Pause and try again.
137 	 */
138 	if (xfs_iflags_test(ip, (XFS_INEW|XFS_IRECLAIM))) {
139 		XFS_STATS_INC(xs_ig_frecycle);
140 		goto out_error;
141 	}
142 
143 	/* If IRECLAIMABLE is set, we've torn down the vfs inode part */
144 	if (xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
145 
146 		/*
147 		 * If lookup is racing with unlink, then we should return an
148 		 * error immediately so we don't remove it from the reclaim
149 		 * list and potentially leak the inode.
150 		 */
151 		if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
152 			error = ENOENT;
153 			goto out_error;
154 		}
155 
156 		xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
157 
158 		/*
159 		 * We need to re-initialise the VFS inode as it has been
160 		 * 'freed' by the VFS. Do this here so we can deal with
161 		 * errors cleanly, then tag it so it can be set up correctly
162 		 * later.
163 		 */
164 		if (!inode_init_always(mp->m_super, VFS_I(ip))) {
165 			error = ENOMEM;
166 			goto out_error;
167 		}
168 
169 		/*
170 		 * We must set the XFS_INEW flag before clearing the
171 		 * XFS_IRECLAIMABLE flag so that if a racing lookup does
172 		 * not find the XFS_IRECLAIMABLE above but has the igrab()
173 		 * below succeed we can safely check XFS_INEW to detect
174 		 * that this inode is still being initialised.
175 		 */
176 		xfs_iflags_set(ip, XFS_INEW);
177 		xfs_iflags_clear(ip, XFS_IRECLAIMABLE);
178 
179 		/* clear the radix tree reclaim flag as well. */
180 		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
181 	} else if (!igrab(VFS_I(ip))) {
182 		/* If the VFS inode is being torn down, pause and try again. */
183 		XFS_STATS_INC(xs_ig_frecycle);
184 		goto out_error;
185 	} else if (xfs_iflags_test(ip, XFS_INEW)) {
186 		/*
187 		 * We are racing with another cache hit that is
188 		 * currently recycling this inode out of the XFS_IRECLAIMABLE
189 		 * state. Wait for the initialisation to complete before
190 		 * continuing.
191 		 */
192 		wait_on_inode(VFS_I(ip));
193 	}
194 
195 	if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
196 		error = ENOENT;
197 		iput(VFS_I(ip));
198 		goto out_error;
199 	}
200 
201 	/* We've got a live one. */
202 	read_unlock(&pag->pag_ici_lock);
203 
204 	if (lock_flags != 0)
205 		xfs_ilock(ip, lock_flags);
206 
207 	xfs_iflags_clear(ip, XFS_ISTALE);
208 	xfs_itrace_exit_tag(ip, "xfs_iget.found");
209 	XFS_STATS_INC(xs_ig_found);
210 	return 0;
211 
212 out_error:
213 	read_unlock(&pag->pag_ici_lock);
214 	return error;
215 }
216 
217 
218 static int
xfs_iget_cache_miss(struct xfs_mount * mp,struct xfs_perag * pag,xfs_trans_t * tp,xfs_ino_t ino,struct xfs_inode ** ipp,xfs_daddr_t bno,int flags,int lock_flags)219 xfs_iget_cache_miss(
220 	struct xfs_mount	*mp,
221 	struct xfs_perag	*pag,
222 	xfs_trans_t		*tp,
223 	xfs_ino_t		ino,
224 	struct xfs_inode	**ipp,
225 	xfs_daddr_t		bno,
226 	int			flags,
227 	int			lock_flags) __releases(pag->pag_ici_lock)
228 {
229 	struct xfs_inode	*ip;
230 	int			error;
231 	unsigned long		first_index, mask;
232 	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
233 
234 	ip = xfs_inode_alloc(mp, ino);
235 	if (!ip)
236 		return ENOMEM;
237 
238 	error = xfs_iread(mp, tp, ip, bno, flags);
239 	if (error)
240 		goto out_destroy;
241 
242 	xfs_itrace_exit_tag(ip, "xfs_iget.alloc");
243 
244 	if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
245 		error = ENOENT;
246 		goto out_destroy;
247 	}
248 
249 	/*
250 	 * Preload the radix tree so we can insert safely under the
251 	 * write spinlock. Note that we cannot sleep inside the preload
252 	 * region.
253 	 */
254 	if (radix_tree_preload(GFP_KERNEL)) {
255 		error = EAGAIN;
256 		goto out_destroy;
257 	}
258 
259 	/*
260 	 * Because the inode hasn't been added to the radix-tree yet it can't
261 	 * be found by another thread, so we can do the non-sleeping lock here.
262 	 */
263 	if (lock_flags) {
264 		if (!xfs_ilock_nowait(ip, lock_flags))
265 			BUG();
266 	}
267 
268 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
269 	first_index = agino & mask;
270 	write_lock(&pag->pag_ici_lock);
271 
272 	/* insert the new inode */
273 	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
274 	if (unlikely(error)) {
275 		WARN_ON(error != -EEXIST);
276 		XFS_STATS_INC(xs_ig_dup);
277 		error = EAGAIN;
278 		goto out_preload_end;
279 	}
280 
281 	/* These values _must_ be set before releasing the radix tree lock! */
282 	ip->i_udquot = ip->i_gdquot = NULL;
283 	xfs_iflags_set(ip, XFS_INEW);
284 
285 	write_unlock(&pag->pag_ici_lock);
286 	radix_tree_preload_end();
287 	*ipp = ip;
288 	return 0;
289 
290 out_preload_end:
291 	write_unlock(&pag->pag_ici_lock);
292 	radix_tree_preload_end();
293 	if (lock_flags)
294 		xfs_iunlock(ip, lock_flags);
295 out_destroy:
296 	xfs_destroy_inode(ip);
297 	return error;
298 }
299 
300 /*
301  * Look up an inode by number in the given file system.
302  * The inode is looked up in the cache held in each AG.
303  * If the inode is found in the cache, initialise the vfs inode
304  * if necessary.
305  *
306  * If it is not in core, read it in from the file system's device,
307  * add it to the cache and initialise the vfs inode.
308  *
309  * The inode is locked according to the value of the lock_flags parameter.
310  * This flag parameter indicates how and if the inode's IO lock and inode lock
311  * should be taken.
312  *
313  * mp -- the mount point structure for the current file system.  It points
314  *       to the inode hash table.
315  * tp -- a pointer to the current transaction if there is one.  This is
316  *       simply passed through to the xfs_iread() call.
317  * ino -- the number of the inode desired.  This is the unique identifier
318  *        within the file system for the inode being requested.
319  * lock_flags -- flags indicating how to lock the inode.  See the comment
320  *		 for xfs_ilock() for a list of valid values.
321  * bno -- the block number starting the buffer containing the inode,
322  *	  if known (as by bulkstat), else 0.
323  */
324 int
xfs_iget(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,uint flags,uint lock_flags,xfs_inode_t ** ipp,xfs_daddr_t bno)325 xfs_iget(
326 	xfs_mount_t	*mp,
327 	xfs_trans_t	*tp,
328 	xfs_ino_t	ino,
329 	uint		flags,
330 	uint		lock_flags,
331 	xfs_inode_t	**ipp,
332 	xfs_daddr_t	bno)
333 {
334 	xfs_inode_t	*ip;
335 	int		error;
336 	xfs_perag_t	*pag;
337 	xfs_agino_t	agino;
338 
339 	/* the radix tree exists only in inode capable AGs */
340 	if (XFS_INO_TO_AGNO(mp, ino) >= mp->m_maxagi)
341 		return EINVAL;
342 
343 	/* get the perag structure and ensure that it's inode capable */
344 	pag = xfs_get_perag(mp, ino);
345 	if (!pag->pagi_inodeok)
346 		return EINVAL;
347 	ASSERT(pag->pag_ici_init);
348 	agino = XFS_INO_TO_AGINO(mp, ino);
349 
350 again:
351 	error = 0;
352 	read_lock(&pag->pag_ici_lock);
353 	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
354 
355 	if (ip) {
356 		error = xfs_iget_cache_hit(pag, ip, flags, lock_flags);
357 		if (error)
358 			goto out_error_or_again;
359 	} else {
360 		read_unlock(&pag->pag_ici_lock);
361 		XFS_STATS_INC(xs_ig_missed);
362 
363 		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip, bno,
364 							flags, lock_flags);
365 		if (error)
366 			goto out_error_or_again;
367 	}
368 	xfs_put_perag(mp, pag);
369 
370 	*ipp = ip;
371 
372 	ASSERT(ip->i_df.if_ext_max ==
373 	       XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
374 	/*
375 	 * If we have a real type for an on-disk inode, we can set ops(&unlock)
376 	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
377 	 */
378 	if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
379 		xfs_setup_inode(ip);
380 	return 0;
381 
382 out_error_or_again:
383 	if (error == EAGAIN) {
384 		delay(1);
385 		goto again;
386 	}
387 	xfs_put_perag(mp, pag);
388 	return error;
389 }
390 
391 
392 /*
393  * Look for the inode corresponding to the given ino in the hash table.
394  * If it is there and its i_transp pointer matches tp, return it.
395  * Otherwise, return NULL.
396  */
397 xfs_inode_t *
xfs_inode_incore(xfs_mount_t * mp,xfs_ino_t ino,xfs_trans_t * tp)398 xfs_inode_incore(xfs_mount_t	*mp,
399 		 xfs_ino_t	ino,
400 		 xfs_trans_t	*tp)
401 {
402 	xfs_inode_t	*ip;
403 	xfs_perag_t	*pag;
404 
405 	pag = xfs_get_perag(mp, ino);
406 	read_lock(&pag->pag_ici_lock);
407 	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ino));
408 	read_unlock(&pag->pag_ici_lock);
409 	xfs_put_perag(mp, pag);
410 
411 	/* the returned inode must match the transaction */
412 	if (ip && (ip->i_transp != tp))
413 		return NULL;
414 	return ip;
415 }
416 
417 /*
418  * Decrement reference count of an inode structure and unlock it.
419  *
420  * ip -- the inode being released
421  * lock_flags -- this parameter indicates the inode's locks to be
422  *       to be released.  See the comment on xfs_iunlock() for a list
423  *	 of valid values.
424  */
425 void
xfs_iput(xfs_inode_t * ip,uint lock_flags)426 xfs_iput(xfs_inode_t	*ip,
427 	 uint		lock_flags)
428 {
429 	xfs_itrace_entry(ip);
430 	xfs_iunlock(ip, lock_flags);
431 	IRELE(ip);
432 }
433 
434 /*
435  * Special iput for brand-new inodes that are still locked
436  */
437 void
xfs_iput_new(xfs_inode_t * ip,uint lock_flags)438 xfs_iput_new(
439 	xfs_inode_t	*ip,
440 	uint		lock_flags)
441 {
442 	struct inode	*inode = VFS_I(ip);
443 
444 	xfs_itrace_entry(ip);
445 
446 	if ((ip->i_d.di_mode == 0)) {
447 		ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
448 		make_bad_inode(inode);
449 	}
450 	if (inode->i_state & I_NEW)
451 		unlock_new_inode(inode);
452 	if (lock_flags)
453 		xfs_iunlock(ip, lock_flags);
454 	IRELE(ip);
455 }
456 
457 /*
458  * This is called free all the memory associated with an inode.
459  * It must free the inode itself and any buffers allocated for
460  * if_extents/if_data and if_broot.  It must also free the lock
461  * associated with the inode.
462  *
463  * Note: because we don't initialise everything on reallocation out
464  * of the zone, we must ensure we nullify everything correctly before
465  * freeing the structure.
466  */
467 void
xfs_ireclaim(struct xfs_inode * ip)468 xfs_ireclaim(
469 	struct xfs_inode	*ip)
470 {
471 	struct xfs_mount	*mp = ip->i_mount;
472 	struct xfs_perag	*pag;
473 
474 	XFS_STATS_INC(xs_ig_reclaims);
475 
476 	/*
477 	 * Remove the inode from the per-AG radix tree.  It doesn't matter
478 	 * if it was never added to it because radix_tree_delete can deal
479 	 * with that case just fine.
480 	 */
481 	pag = xfs_get_perag(mp, ip->i_ino);
482 	write_lock(&pag->pag_ici_lock);
483 	radix_tree_delete(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino));
484 	write_unlock(&pag->pag_ici_lock);
485 	xfs_put_perag(mp, pag);
486 
487 	/*
488 	 * Here we do an (almost) spurious inode lock in order to coordinate
489 	 * with inode cache radix tree lookups.  This is because the lookup
490 	 * can reference the inodes in the cache without taking references.
491 	 *
492 	 * We make that OK here by ensuring that we wait until the inode is
493 	 * unlocked after the lookup before we go ahead and free it.  We get
494 	 * both the ilock and the iolock because the code may need to drop the
495 	 * ilock one but will still hold the iolock.
496 	 */
497 	xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
498 	/*
499 	 * Release dquots (and their references) if any.
500 	 */
501 	XFS_QM_DQDETACH(ip->i_mount, ip);
502 	xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
503 
504 	switch (ip->i_d.di_mode & S_IFMT) {
505 	case S_IFREG:
506 	case S_IFDIR:
507 	case S_IFLNK:
508 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
509 		break;
510 	}
511 
512 	if (ip->i_afp)
513 		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
514 
515 #ifdef XFS_INODE_TRACE
516 	ktrace_free(ip->i_trace);
517 #endif
518 #ifdef XFS_BMAP_TRACE
519 	ktrace_free(ip->i_xtrace);
520 #endif
521 #ifdef XFS_BTREE_TRACE
522 	ktrace_free(ip->i_btrace);
523 #endif
524 #ifdef XFS_RW_TRACE
525 	ktrace_free(ip->i_rwtrace);
526 #endif
527 #ifdef XFS_ILOCK_TRACE
528 	ktrace_free(ip->i_lock_trace);
529 #endif
530 #ifdef XFS_DIR2_TRACE
531 	ktrace_free(ip->i_dir_trace);
532 #endif
533 	if (ip->i_itemp) {
534 		/*
535 		 * Only if we are shutting down the fs will we see an
536 		 * inode still in the AIL. If it is there, we should remove
537 		 * it to prevent a use-after-free from occurring.
538 		 */
539 		xfs_log_item_t	*lip = &ip->i_itemp->ili_item;
540 		struct xfs_ail	*ailp = lip->li_ailp;
541 
542 		ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
543 				       XFS_FORCED_SHUTDOWN(ip->i_mount));
544 		if (lip->li_flags & XFS_LI_IN_AIL) {
545 			spin_lock(&ailp->xa_lock);
546 			if (lip->li_flags & XFS_LI_IN_AIL)
547 				xfs_trans_ail_delete(ailp, lip);
548 			else
549 				spin_unlock(&ailp->xa_lock);
550 		}
551 		xfs_inode_item_destroy(ip);
552 		ip->i_itemp = NULL;
553 	}
554 	/* asserts to verify all state is correct here */
555 	ASSERT(atomic_read(&ip->i_iocount) == 0);
556 	ASSERT(atomic_read(&ip->i_pincount) == 0);
557 	ASSERT(!spin_is_locked(&ip->i_flags_lock));
558 	ASSERT(completion_done(&ip->i_flush));
559 	kmem_zone_free(xfs_inode_zone, ip);
560 }
561 
562 /*
563  * This is a wrapper routine around the xfs_ilock() routine
564  * used to centralize some grungy code.  It is used in places
565  * that wish to lock the inode solely for reading the extents.
566  * The reason these places can't just call xfs_ilock(SHARED)
567  * is that the inode lock also guards to bringing in of the
568  * extents from disk for a file in b-tree format.  If the inode
569  * is in b-tree format, then we need to lock the inode exclusively
570  * until the extents are read in.  Locking it exclusively all
571  * the time would limit our parallelism unnecessarily, though.
572  * What we do instead is check to see if the extents have been
573  * read in yet, and only lock the inode exclusively if they
574  * have not.
575  *
576  * The function returns a value which should be given to the
577  * corresponding xfs_iunlock_map_shared().  This value is
578  * the mode in which the lock was actually taken.
579  */
580 uint
xfs_ilock_map_shared(xfs_inode_t * ip)581 xfs_ilock_map_shared(
582 	xfs_inode_t	*ip)
583 {
584 	uint	lock_mode;
585 
586 	if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
587 	    ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
588 		lock_mode = XFS_ILOCK_EXCL;
589 	} else {
590 		lock_mode = XFS_ILOCK_SHARED;
591 	}
592 
593 	xfs_ilock(ip, lock_mode);
594 
595 	return lock_mode;
596 }
597 
598 /*
599  * This is simply the unlock routine to go with xfs_ilock_map_shared().
600  * All it does is call xfs_iunlock() with the given lock_mode.
601  */
602 void
xfs_iunlock_map_shared(xfs_inode_t * ip,unsigned int lock_mode)603 xfs_iunlock_map_shared(
604 	xfs_inode_t	*ip,
605 	unsigned int	lock_mode)
606 {
607 	xfs_iunlock(ip, lock_mode);
608 }
609 
610 /*
611  * The xfs inode contains 2 locks: a multi-reader lock called the
612  * i_iolock and a multi-reader lock called the i_lock.  This routine
613  * allows either or both of the locks to be obtained.
614  *
615  * The 2 locks should always be ordered so that the IO lock is
616  * obtained first in order to prevent deadlock.
617  *
618  * ip -- the inode being locked
619  * lock_flags -- this parameter indicates the inode's locks
620  *       to be locked.  It can be:
621  *		XFS_IOLOCK_SHARED,
622  *		XFS_IOLOCK_EXCL,
623  *		XFS_ILOCK_SHARED,
624  *		XFS_ILOCK_EXCL,
625  *		XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
626  *		XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
627  *		XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
628  *		XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
629  */
630 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)631 xfs_ilock(
632 	xfs_inode_t		*ip,
633 	uint			lock_flags)
634 {
635 	/*
636 	 * You can't set both SHARED and EXCL for the same lock,
637 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
638 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
639 	 */
640 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
641 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
642 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
643 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
644 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
645 
646 	if (lock_flags & XFS_IOLOCK_EXCL)
647 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
648 	else if (lock_flags & XFS_IOLOCK_SHARED)
649 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
650 
651 	if (lock_flags & XFS_ILOCK_EXCL)
652 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
653 	else if (lock_flags & XFS_ILOCK_SHARED)
654 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
655 
656 	xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
657 }
658 
659 /*
660  * This is just like xfs_ilock(), except that the caller
661  * is guaranteed not to sleep.  It returns 1 if it gets
662  * the requested locks and 0 otherwise.  If the IO lock is
663  * obtained but the inode lock cannot be, then the IO lock
664  * is dropped before returning.
665  *
666  * ip -- the inode being locked
667  * lock_flags -- this parameter indicates the inode's locks to be
668  *       to be locked.  See the comment for xfs_ilock() for a list
669  *	 of valid values.
670  */
671 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)672 xfs_ilock_nowait(
673 	xfs_inode_t		*ip,
674 	uint			lock_flags)
675 {
676 	/*
677 	 * You can't set both SHARED and EXCL for the same lock,
678 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
679 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
680 	 */
681 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
682 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
683 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
684 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
685 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
686 
687 	if (lock_flags & XFS_IOLOCK_EXCL) {
688 		if (!mrtryupdate(&ip->i_iolock))
689 			goto out;
690 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
691 		if (!mrtryaccess(&ip->i_iolock))
692 			goto out;
693 	}
694 	if (lock_flags & XFS_ILOCK_EXCL) {
695 		if (!mrtryupdate(&ip->i_lock))
696 			goto out_undo_iolock;
697 	} else if (lock_flags & XFS_ILOCK_SHARED) {
698 		if (!mrtryaccess(&ip->i_lock))
699 			goto out_undo_iolock;
700 	}
701 	xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
702 	return 1;
703 
704  out_undo_iolock:
705 	if (lock_flags & XFS_IOLOCK_EXCL)
706 		mrunlock_excl(&ip->i_iolock);
707 	else if (lock_flags & XFS_IOLOCK_SHARED)
708 		mrunlock_shared(&ip->i_iolock);
709  out:
710 	return 0;
711 }
712 
713 /*
714  * xfs_iunlock() is used to drop the inode locks acquired with
715  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
716  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
717  * that we know which locks to drop.
718  *
719  * ip -- the inode being unlocked
720  * lock_flags -- this parameter indicates the inode's locks to be
721  *       to be unlocked.  See the comment for xfs_ilock() for a list
722  *	 of valid values for this parameter.
723  *
724  */
725 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)726 xfs_iunlock(
727 	xfs_inode_t		*ip,
728 	uint			lock_flags)
729 {
730 	/*
731 	 * You can't set both SHARED and EXCL for the same lock,
732 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
733 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
734 	 */
735 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
736 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
737 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
738 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
739 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY |
740 			XFS_LOCK_DEP_MASK)) == 0);
741 	ASSERT(lock_flags != 0);
742 
743 	if (lock_flags & XFS_IOLOCK_EXCL)
744 		mrunlock_excl(&ip->i_iolock);
745 	else if (lock_flags & XFS_IOLOCK_SHARED)
746 		mrunlock_shared(&ip->i_iolock);
747 
748 	if (lock_flags & XFS_ILOCK_EXCL)
749 		mrunlock_excl(&ip->i_lock);
750 	else if (lock_flags & XFS_ILOCK_SHARED)
751 		mrunlock_shared(&ip->i_lock);
752 
753 	if ((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) &&
754 	    !(lock_flags & XFS_IUNLOCK_NONOTIFY) && ip->i_itemp) {
755 		/*
756 		 * Let the AIL know that this item has been unlocked in case
757 		 * it is in the AIL and anyone is waiting on it.  Don't do
758 		 * this if the caller has asked us not to.
759 		 */
760 		xfs_trans_unlocked_item(ip->i_itemp->ili_item.li_ailp,
761 					(xfs_log_item_t*)(ip->i_itemp));
762 	}
763 	xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
764 }
765 
766 /*
767  * give up write locks.  the i/o lock cannot be held nested
768  * if it is being demoted.
769  */
770 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)771 xfs_ilock_demote(
772 	xfs_inode_t		*ip,
773 	uint			lock_flags)
774 {
775 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
776 	ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
777 
778 	if (lock_flags & XFS_ILOCK_EXCL)
779 		mrdemote(&ip->i_lock);
780 	if (lock_flags & XFS_IOLOCK_EXCL)
781 		mrdemote(&ip->i_iolock);
782 }
783 
784 #ifdef DEBUG
785 /*
786  * Debug-only routine, without additional rw_semaphore APIs, we can
787  * now only answer requests regarding whether we hold the lock for write
788  * (reader state is outside our visibility, we only track writer state).
789  *
790  * Note: this means !xfs_isilocked would give false positives, so don't do that.
791  */
792 int
xfs_isilocked(xfs_inode_t * ip,uint lock_flags)793 xfs_isilocked(
794 	xfs_inode_t		*ip,
795 	uint			lock_flags)
796 {
797 	if ((lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) ==
798 			XFS_ILOCK_EXCL) {
799 		if (!ip->i_lock.mr_writer)
800 			return 0;
801 	}
802 
803 	if ((lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) ==
804 			XFS_IOLOCK_EXCL) {
805 		if (!ip->i_iolock.mr_writer)
806 			return 0;
807 	}
808 
809 	return 1;
810 }
811 #endif
812 
813 #ifdef	XFS_INODE_TRACE
814 
815 #define KTRACE_ENTER(ip, vk, s, line, ra)			\
816 	ktrace_enter((ip)->i_trace,				\
817 /*  0 */		(void *)(__psint_t)(vk),		\
818 /*  1 */		(void *)(s),				\
819 /*  2 */		(void *)(__psint_t) line,		\
820 /*  3 */		(void *)(__psint_t)atomic_read(&VFS_I(ip)->i_count), \
821 /*  4 */		(void *)(ra),				\
822 /*  5 */		NULL,					\
823 /*  6 */		(void *)(__psint_t)current_cpu(),	\
824 /*  7 */		(void *)(__psint_t)current_pid(),	\
825 /*  8 */		(void *)__return_address,		\
826 /*  9 */		NULL, NULL, NULL, NULL, NULL, NULL, NULL)
827 
828 /*
829  * Vnode tracing code.
830  */
831 void
_xfs_itrace_entry(xfs_inode_t * ip,const char * func,inst_t * ra)832 _xfs_itrace_entry(xfs_inode_t *ip, const char *func, inst_t *ra)
833 {
834 	KTRACE_ENTER(ip, INODE_KTRACE_ENTRY, func, 0, ra);
835 }
836 
837 void
_xfs_itrace_exit(xfs_inode_t * ip,const char * func,inst_t * ra)838 _xfs_itrace_exit(xfs_inode_t *ip, const char *func, inst_t *ra)
839 {
840 	KTRACE_ENTER(ip, INODE_KTRACE_EXIT, func, 0, ra);
841 }
842 
843 void
xfs_itrace_hold(xfs_inode_t * ip,char * file,int line,inst_t * ra)844 xfs_itrace_hold(xfs_inode_t *ip, char *file, int line, inst_t *ra)
845 {
846 	KTRACE_ENTER(ip, INODE_KTRACE_HOLD, file, line, ra);
847 }
848 
849 void
_xfs_itrace_ref(xfs_inode_t * ip,char * file,int line,inst_t * ra)850 _xfs_itrace_ref(xfs_inode_t *ip, char *file, int line, inst_t *ra)
851 {
852 	KTRACE_ENTER(ip, INODE_KTRACE_REF, file, line, ra);
853 }
854 
855 void
xfs_itrace_rele(xfs_inode_t * ip,char * file,int line,inst_t * ra)856 xfs_itrace_rele(xfs_inode_t *ip, char *file, int line, inst_t *ra)
857 {
858 	KTRACE_ENTER(ip, INODE_KTRACE_RELE, file, line, ra);
859 }
860 #endif	/* XFS_INODE_TRACE */
861