• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_buf_item.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_mount.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_inode_item.h"
40 #include "xfs_btree.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_rw.h"
43 #include "xfs_error.h"
44 
45 
46 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
47 
48 /*
49  * This returns the number of iovecs needed to log the given inode item.
50  *
51  * We need one iovec for the inode log format structure, one for the
52  * inode core, and possibly one for the inode data/extents/b-tree root
53  * and one for the inode attribute data/extents/b-tree root.
54  */
55 STATIC uint
xfs_inode_item_size(xfs_inode_log_item_t * iip)56 xfs_inode_item_size(
57 	xfs_inode_log_item_t	*iip)
58 {
59 	uint		nvecs;
60 	xfs_inode_t	*ip;
61 
62 	ip = iip->ili_inode;
63 	nvecs = 2;
64 
65 	/*
66 	 * Only log the data/extents/b-tree root if there is something
67 	 * left to log.
68 	 */
69 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
70 
71 	switch (ip->i_d.di_format) {
72 	case XFS_DINODE_FMT_EXTENTS:
73 		iip->ili_format.ilf_fields &=
74 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
75 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
76 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
77 		    (ip->i_d.di_nextents > 0) &&
78 		    (ip->i_df.if_bytes > 0)) {
79 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
80 			nvecs++;
81 		} else {
82 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
83 		}
84 		break;
85 
86 	case XFS_DINODE_FMT_BTREE:
87 		ASSERT(ip->i_df.if_ext_max ==
88 		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
89 		iip->ili_format.ilf_fields &=
90 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
91 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
92 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
93 		    (ip->i_df.if_broot_bytes > 0)) {
94 			ASSERT(ip->i_df.if_broot != NULL);
95 			nvecs++;
96 		} else {
97 			ASSERT(!(iip->ili_format.ilf_fields &
98 				 XFS_ILOG_DBROOT));
99 #ifdef XFS_TRANS_DEBUG
100 			if (iip->ili_root_size > 0) {
101 				ASSERT(iip->ili_root_size ==
102 				       ip->i_df.if_broot_bytes);
103 				ASSERT(memcmp(iip->ili_orig_root,
104 					    ip->i_df.if_broot,
105 					    iip->ili_root_size) == 0);
106 			} else {
107 				ASSERT(ip->i_df.if_broot_bytes == 0);
108 			}
109 #endif
110 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
111 		}
112 		break;
113 
114 	case XFS_DINODE_FMT_LOCAL:
115 		iip->ili_format.ilf_fields &=
116 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
117 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
118 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
119 		    (ip->i_df.if_bytes > 0)) {
120 			ASSERT(ip->i_df.if_u1.if_data != NULL);
121 			ASSERT(ip->i_d.di_size > 0);
122 			nvecs++;
123 		} else {
124 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
125 		}
126 		break;
127 
128 	case XFS_DINODE_FMT_DEV:
129 		iip->ili_format.ilf_fields &=
130 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
131 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
132 		break;
133 
134 	case XFS_DINODE_FMT_UUID:
135 		iip->ili_format.ilf_fields &=
136 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
137 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
138 		break;
139 
140 	default:
141 		ASSERT(0);
142 		break;
143 	}
144 
145 	/*
146 	 * If there are no attributes associated with this file,
147 	 * then there cannot be anything more to log.
148 	 * Clear all attribute-related log flags.
149 	 */
150 	if (!XFS_IFORK_Q(ip)) {
151 		iip->ili_format.ilf_fields &=
152 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
153 		return nvecs;
154 	}
155 
156 	/*
157 	 * Log any necessary attribute data.
158 	 */
159 	switch (ip->i_d.di_aformat) {
160 	case XFS_DINODE_FMT_EXTENTS:
161 		iip->ili_format.ilf_fields &=
162 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
163 		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
164 		    (ip->i_d.di_anextents > 0) &&
165 		    (ip->i_afp->if_bytes > 0)) {
166 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
167 			nvecs++;
168 		} else {
169 			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
170 		}
171 		break;
172 
173 	case XFS_DINODE_FMT_BTREE:
174 		iip->ili_format.ilf_fields &=
175 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
176 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
177 		    (ip->i_afp->if_broot_bytes > 0)) {
178 			ASSERT(ip->i_afp->if_broot != NULL);
179 			nvecs++;
180 		} else {
181 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
182 		}
183 		break;
184 
185 	case XFS_DINODE_FMT_LOCAL:
186 		iip->ili_format.ilf_fields &=
187 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
188 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
189 		    (ip->i_afp->if_bytes > 0)) {
190 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
191 			nvecs++;
192 		} else {
193 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
194 		}
195 		break;
196 
197 	default:
198 		ASSERT(0);
199 		break;
200 	}
201 
202 	return nvecs;
203 }
204 
205 /*
206  * This is called to fill in the vector of log iovecs for the
207  * given inode log item.  It fills the first item with an inode
208  * log format structure, the second with the on-disk inode structure,
209  * and a possible third and/or fourth with the inode data/extents/b-tree
210  * root and inode attributes data/extents/b-tree root.
211  */
212 STATIC void
xfs_inode_item_format(xfs_inode_log_item_t * iip,xfs_log_iovec_t * log_vector)213 xfs_inode_item_format(
214 	xfs_inode_log_item_t	*iip,
215 	xfs_log_iovec_t		*log_vector)
216 {
217 	uint			nvecs;
218 	xfs_log_iovec_t		*vecp;
219 	xfs_inode_t		*ip;
220 	size_t			data_bytes;
221 	xfs_bmbt_rec_t		*ext_buffer;
222 	int			nrecs;
223 	xfs_mount_t		*mp;
224 
225 	ip = iip->ili_inode;
226 	vecp = log_vector;
227 
228 	vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
229 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
230 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
231 	vecp++;
232 	nvecs	     = 1;
233 
234 	/*
235 	 * Clear i_update_core if the timestamps (or any other
236 	 * non-transactional modification) need flushing/logging
237 	 * and we're about to log them with the rest of the core.
238 	 *
239 	 * This is the same logic as xfs_iflush() but this code can't
240 	 * run at the same time as xfs_iflush because we're in commit
241 	 * processing here and so we have the inode lock held in
242 	 * exclusive mode.  Although it doesn't really matter
243 	 * for the timestamps if both routines were to grab the
244 	 * timestamps or not.  That would be ok.
245 	 *
246 	 * We clear i_update_core before copying out the data.
247 	 * This is for coordination with our timestamp updates
248 	 * that don't hold the inode lock. They will always
249 	 * update the timestamps BEFORE setting i_update_core,
250 	 * so if we clear i_update_core after they set it we
251 	 * are guaranteed to see their updates to the timestamps
252 	 * either here.  Likewise, if they set it after we clear it
253 	 * here, we'll see it either on the next commit of this
254 	 * inode or the next time the inode gets flushed via
255 	 * xfs_iflush().  This depends on strongly ordered memory
256 	 * semantics, but we have that.  We use the SYNCHRONIZE
257 	 * macro to make sure that the compiler does not reorder
258 	 * the i_update_core access below the data copy below.
259 	 */
260 	if (ip->i_update_core)  {
261 		ip->i_update_core = 0;
262 		SYNCHRONIZE();
263 	}
264 
265 	/*
266 	 * We don't have to worry about re-ordering here because
267 	 * the update_size field is protected by the inode lock
268 	 * and we have that held in exclusive mode.
269 	 */
270 	if (ip->i_update_size)
271 		ip->i_update_size = 0;
272 
273 	/*
274 	 * Make sure to get the latest atime from the Linux inode.
275 	 */
276 	xfs_synchronize_atime(ip);
277 
278 	/*
279 	 * make sure the linux inode is dirty
280 	 */
281 	xfs_mark_inode_dirty_sync(ip);
282 
283 	vecp->i_addr = (xfs_caddr_t)&ip->i_d;
284 	vecp->i_len  = sizeof(struct xfs_icdinode);
285 	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
286 	vecp++;
287 	nvecs++;
288 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
289 
290 	/*
291 	 * If this is really an old format inode, then we need to
292 	 * log it as such.  This means that we have to copy the link
293 	 * count from the new field to the old.  We don't have to worry
294 	 * about the new fields, because nothing trusts them as long as
295 	 * the old inode version number is there.  If the superblock already
296 	 * has a new version number, then we don't bother converting back.
297 	 */
298 	mp = ip->i_mount;
299 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
300 	if (ip->i_d.di_version == 1) {
301 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
302 			/*
303 			 * Convert it back.
304 			 */
305 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
306 			ip->i_d.di_onlink = ip->i_d.di_nlink;
307 		} else {
308 			/*
309 			 * The superblock version has already been bumped,
310 			 * so just make the conversion to the new inode
311 			 * format permanent.
312 			 */
313 			ip->i_d.di_version = 2;
314 			ip->i_d.di_onlink = 0;
315 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
316 		}
317 	}
318 
319 	switch (ip->i_d.di_format) {
320 	case XFS_DINODE_FMT_EXTENTS:
321 		ASSERT(!(iip->ili_format.ilf_fields &
322 			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
323 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
324 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
325 			ASSERT(ip->i_df.if_bytes > 0);
326 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
327 			ASSERT(ip->i_d.di_nextents > 0);
328 			ASSERT(iip->ili_extents_buf == NULL);
329 			nrecs = ip->i_df.if_bytes /
330 				(uint)sizeof(xfs_bmbt_rec_t);
331 			ASSERT(nrecs > 0);
332 #ifdef XFS_NATIVE_HOST
333 			if (nrecs == ip->i_d.di_nextents) {
334 				/*
335 				 * There are no delayed allocation
336 				 * extents, so just point to the
337 				 * real extents array.
338 				 */
339 				vecp->i_addr =
340 					(char *)(ip->i_df.if_u1.if_extents);
341 				vecp->i_len = ip->i_df.if_bytes;
342 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
343 			} else
344 #endif
345 			{
346 				/*
347 				 * There are delayed allocation extents
348 				 * in the inode, or we need to convert
349 				 * the extents to on disk format.
350 				 * Use xfs_iextents_copy()
351 				 * to copy only the real extents into
352 				 * a separate buffer.  We'll free the
353 				 * buffer in the unlock routine.
354 				 */
355 				ext_buffer = kmem_alloc(ip->i_df.if_bytes,
356 					KM_SLEEP);
357 				iip->ili_extents_buf = ext_buffer;
358 				vecp->i_addr = (xfs_caddr_t)ext_buffer;
359 				vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
360 						XFS_DATA_FORK);
361 				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
362 			}
363 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
364 			iip->ili_format.ilf_dsize = vecp->i_len;
365 			vecp++;
366 			nvecs++;
367 		}
368 		break;
369 
370 	case XFS_DINODE_FMT_BTREE:
371 		ASSERT(!(iip->ili_format.ilf_fields &
372 			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
373 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
374 		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
375 			ASSERT(ip->i_df.if_broot_bytes > 0);
376 			ASSERT(ip->i_df.if_broot != NULL);
377 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
378 			vecp->i_len = ip->i_df.if_broot_bytes;
379 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
380 			vecp++;
381 			nvecs++;
382 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
383 		}
384 		break;
385 
386 	case XFS_DINODE_FMT_LOCAL:
387 		ASSERT(!(iip->ili_format.ilf_fields &
388 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
389 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
390 		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
391 			ASSERT(ip->i_df.if_bytes > 0);
392 			ASSERT(ip->i_df.if_u1.if_data != NULL);
393 			ASSERT(ip->i_d.di_size > 0);
394 
395 			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
396 			/*
397 			 * Round i_bytes up to a word boundary.
398 			 * The underlying memory is guaranteed to
399 			 * to be there by xfs_idata_realloc().
400 			 */
401 			data_bytes = roundup(ip->i_df.if_bytes, 4);
402 			ASSERT((ip->i_df.if_real_bytes == 0) ||
403 			       (ip->i_df.if_real_bytes == data_bytes));
404 			vecp->i_len = (int)data_bytes;
405 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
406 			vecp++;
407 			nvecs++;
408 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
409 		}
410 		break;
411 
412 	case XFS_DINODE_FMT_DEV:
413 		ASSERT(!(iip->ili_format.ilf_fields &
414 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
415 			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
416 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
417 			iip->ili_format.ilf_u.ilfu_rdev =
418 				ip->i_df.if_u2.if_rdev;
419 		}
420 		break;
421 
422 	case XFS_DINODE_FMT_UUID:
423 		ASSERT(!(iip->ili_format.ilf_fields &
424 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
425 			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
426 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
427 			iip->ili_format.ilf_u.ilfu_uuid =
428 				ip->i_df.if_u2.if_uuid;
429 		}
430 		break;
431 
432 	default:
433 		ASSERT(0);
434 		break;
435 	}
436 
437 	/*
438 	 * If there are no attributes associated with the file,
439 	 * then we're done.
440 	 * Assert that no attribute-related log flags are set.
441 	 */
442 	if (!XFS_IFORK_Q(ip)) {
443 		ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
444 		iip->ili_format.ilf_size = nvecs;
445 		ASSERT(!(iip->ili_format.ilf_fields &
446 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
447 		return;
448 	}
449 
450 	switch (ip->i_d.di_aformat) {
451 	case XFS_DINODE_FMT_EXTENTS:
452 		ASSERT(!(iip->ili_format.ilf_fields &
453 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
454 		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
455 			ASSERT(ip->i_afp->if_bytes > 0);
456 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
457 			ASSERT(ip->i_d.di_anextents > 0);
458 #ifdef DEBUG
459 			nrecs = ip->i_afp->if_bytes /
460 				(uint)sizeof(xfs_bmbt_rec_t);
461 #endif
462 			ASSERT(nrecs > 0);
463 			ASSERT(nrecs == ip->i_d.di_anextents);
464 #ifdef XFS_NATIVE_HOST
465 			/*
466 			 * There are not delayed allocation extents
467 			 * for attributes, so just point at the array.
468 			 */
469 			vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
470 			vecp->i_len = ip->i_afp->if_bytes;
471 #else
472 			ASSERT(iip->ili_aextents_buf == NULL);
473 			/*
474 			 * Need to endian flip before logging
475 			 */
476 			ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
477 				KM_SLEEP);
478 			iip->ili_aextents_buf = ext_buffer;
479 			vecp->i_addr = (xfs_caddr_t)ext_buffer;
480 			vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
481 					XFS_ATTR_FORK);
482 #endif
483 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
484 			iip->ili_format.ilf_asize = vecp->i_len;
485 			vecp++;
486 			nvecs++;
487 		}
488 		break;
489 
490 	case XFS_DINODE_FMT_BTREE:
491 		ASSERT(!(iip->ili_format.ilf_fields &
492 			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
493 		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
494 			ASSERT(ip->i_afp->if_broot_bytes > 0);
495 			ASSERT(ip->i_afp->if_broot != NULL);
496 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
497 			vecp->i_len = ip->i_afp->if_broot_bytes;
498 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
499 			vecp++;
500 			nvecs++;
501 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
502 		}
503 		break;
504 
505 	case XFS_DINODE_FMT_LOCAL:
506 		ASSERT(!(iip->ili_format.ilf_fields &
507 			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
508 		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
509 			ASSERT(ip->i_afp->if_bytes > 0);
510 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
511 
512 			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
513 			/*
514 			 * Round i_bytes up to a word boundary.
515 			 * The underlying memory is guaranteed to
516 			 * to be there by xfs_idata_realloc().
517 			 */
518 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
519 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
520 			       (ip->i_afp->if_real_bytes == data_bytes));
521 			vecp->i_len = (int)data_bytes;
522 			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
523 			vecp++;
524 			nvecs++;
525 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
526 		}
527 		break;
528 
529 	default:
530 		ASSERT(0);
531 		break;
532 	}
533 
534 	ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
535 	iip->ili_format.ilf_size = nvecs;
536 }
537 
538 
539 /*
540  * This is called to pin the inode associated with the inode log
541  * item in memory so it cannot be written out.  Do this by calling
542  * xfs_ipin() to bump the pin count in the inode while holding the
543  * inode pin lock.
544  */
545 STATIC void
xfs_inode_item_pin(xfs_inode_log_item_t * iip)546 xfs_inode_item_pin(
547 	xfs_inode_log_item_t	*iip)
548 {
549 	ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
550 	xfs_ipin(iip->ili_inode);
551 }
552 
553 
554 /*
555  * This is called to unpin the inode associated with the inode log
556  * item which was previously pinned with a call to xfs_inode_item_pin().
557  * Just call xfs_iunpin() on the inode to do this.
558  */
559 /* ARGSUSED */
560 STATIC void
xfs_inode_item_unpin(xfs_inode_log_item_t * iip,int stale)561 xfs_inode_item_unpin(
562 	xfs_inode_log_item_t	*iip,
563 	int			stale)
564 {
565 	xfs_iunpin(iip->ili_inode);
566 }
567 
568 /* ARGSUSED */
569 STATIC void
xfs_inode_item_unpin_remove(xfs_inode_log_item_t * iip,xfs_trans_t * tp)570 xfs_inode_item_unpin_remove(
571 	xfs_inode_log_item_t	*iip,
572 	xfs_trans_t		*tp)
573 {
574 	xfs_iunpin(iip->ili_inode);
575 }
576 
577 /*
578  * This is called to attempt to lock the inode associated with this
579  * inode log item, in preparation for the push routine which does the actual
580  * iflush.  Don't sleep on the inode lock or the flush lock.
581  *
582  * If the flush lock is already held, indicating that the inode has
583  * been or is in the process of being flushed, then (ideally) we'd like to
584  * see if the inode's buffer is still incore, and if so give it a nudge.
585  * We delay doing so until the pushbuf routine, though, to avoid holding
586  * the AIL lock across a call to the blackhole which is the buffer cache.
587  * Also we don't want to sleep in any device strategy routines, which can happen
588  * if we do the subsequent bawrite in here.
589  */
590 STATIC uint
xfs_inode_item_trylock(xfs_inode_log_item_t * iip)591 xfs_inode_item_trylock(
592 	xfs_inode_log_item_t	*iip)
593 {
594 	register xfs_inode_t	*ip;
595 
596 	ip = iip->ili_inode;
597 
598 	if (xfs_ipincount(ip) > 0) {
599 		return XFS_ITEM_PINNED;
600 	}
601 
602 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
603 		return XFS_ITEM_LOCKED;
604 	}
605 
606 	if (!xfs_iflock_nowait(ip)) {
607 		/*
608 		 * If someone else isn't already trying to push the inode
609 		 * buffer, we get to do it.
610 		 */
611 		if (iip->ili_pushbuf_flag == 0) {
612 			iip->ili_pushbuf_flag = 1;
613 #ifdef DEBUG
614 			iip->ili_push_owner = current_pid();
615 #endif
616 			/*
617 			 * Inode is left locked in shared mode.
618 			 * Pushbuf routine gets to unlock it.
619 			 */
620 			return XFS_ITEM_PUSHBUF;
621 		} else {
622 			/*
623 			 * We hold the AIL lock, so we must specify the
624 			 * NONOTIFY flag so that we won't double trip.
625 			 */
626 			xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
627 			return XFS_ITEM_FLUSHING;
628 		}
629 		/* NOTREACHED */
630 	}
631 
632 	/* Stale items should force out the iclog */
633 	if (ip->i_flags & XFS_ISTALE) {
634 		xfs_ifunlock(ip);
635 		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
636 		return XFS_ITEM_PINNED;
637 	}
638 
639 #ifdef DEBUG
640 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
641 		ASSERT(iip->ili_format.ilf_fields != 0);
642 		ASSERT(iip->ili_logged == 0);
643 		ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
644 	}
645 #endif
646 	return XFS_ITEM_SUCCESS;
647 }
648 
649 /*
650  * Unlock the inode associated with the inode log item.
651  * Clear the fields of the inode and inode log item that
652  * are specific to the current transaction.  If the
653  * hold flags is set, do not unlock the inode.
654  */
655 STATIC void
xfs_inode_item_unlock(xfs_inode_log_item_t * iip)656 xfs_inode_item_unlock(
657 	xfs_inode_log_item_t	*iip)
658 {
659 	uint		hold;
660 	uint		iolocked;
661 	uint		lock_flags;
662 	xfs_inode_t	*ip;
663 
664 	ASSERT(iip != NULL);
665 	ASSERT(iip->ili_inode->i_itemp != NULL);
666 	ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
667 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
668 		  XFS_ILI_IOLOCKED_EXCL)) ||
669 	       xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL));
670 	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
671 		  XFS_ILI_IOLOCKED_SHARED)) ||
672 	       xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED));
673 	/*
674 	 * Clear the transaction pointer in the inode.
675 	 */
676 	ip = iip->ili_inode;
677 	ip->i_transp = NULL;
678 
679 	/*
680 	 * If the inode needed a separate buffer with which to log
681 	 * its extents, then free it now.
682 	 */
683 	if (iip->ili_extents_buf != NULL) {
684 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
685 		ASSERT(ip->i_d.di_nextents > 0);
686 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
687 		ASSERT(ip->i_df.if_bytes > 0);
688 		kmem_free(iip->ili_extents_buf);
689 		iip->ili_extents_buf = NULL;
690 	}
691 	if (iip->ili_aextents_buf != NULL) {
692 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
693 		ASSERT(ip->i_d.di_anextents > 0);
694 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
695 		ASSERT(ip->i_afp->if_bytes > 0);
696 		kmem_free(iip->ili_aextents_buf);
697 		iip->ili_aextents_buf = NULL;
698 	}
699 
700 	/*
701 	 * Figure out if we should unlock the inode or not.
702 	 */
703 	hold = iip->ili_flags & XFS_ILI_HOLD;
704 
705 	/*
706 	 * Before clearing out the flags, remember whether we
707 	 * are holding the inode's IO lock.
708 	 */
709 	iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
710 
711 	/*
712 	 * Clear out the fields of the inode log item particular
713 	 * to the current transaction.
714 	 */
715 	iip->ili_ilock_recur = 0;
716 	iip->ili_iolock_recur = 0;
717 	iip->ili_flags = 0;
718 
719 	/*
720 	 * Unlock the inode if XFS_ILI_HOLD was not set.
721 	 */
722 	if (!hold) {
723 		lock_flags = XFS_ILOCK_EXCL;
724 		if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
725 			lock_flags |= XFS_IOLOCK_EXCL;
726 		} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
727 			lock_flags |= XFS_IOLOCK_SHARED;
728 		}
729 		xfs_iput(iip->ili_inode, lock_flags);
730 	}
731 }
732 
733 /*
734  * This is called to find out where the oldest active copy of the
735  * inode log item in the on disk log resides now that the last log
736  * write of it completed at the given lsn.  Since we always re-log
737  * all dirty data in an inode, the latest copy in the on disk log
738  * is the only one that matters.  Therefore, simply return the
739  * given lsn.
740  */
741 /*ARGSUSED*/
742 STATIC xfs_lsn_t
xfs_inode_item_committed(xfs_inode_log_item_t * iip,xfs_lsn_t lsn)743 xfs_inode_item_committed(
744 	xfs_inode_log_item_t	*iip,
745 	xfs_lsn_t		lsn)
746 {
747 	return (lsn);
748 }
749 
750 /*
751  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
752  * failed to get the inode flush lock but did get the inode locked SHARED.
753  * Here we're trying to see if the inode buffer is incore, and if so whether it's
754  * marked delayed write. If that's the case, we'll initiate a bawrite on that
755  * buffer to expedite the process.
756  *
757  * We aren't holding the AIL lock (or the flush lock) when this gets called,
758  * so it is inherently race-y.
759  */
760 STATIC void
xfs_inode_item_pushbuf(xfs_inode_log_item_t * iip)761 xfs_inode_item_pushbuf(
762 	xfs_inode_log_item_t	*iip)
763 {
764 	xfs_inode_t	*ip;
765 	xfs_mount_t	*mp;
766 	xfs_buf_t	*bp;
767 	uint		dopush;
768 
769 	ip = iip->ili_inode;
770 
771 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
772 
773 	/*
774 	 * The ili_pushbuf_flag keeps others from
775 	 * trying to duplicate our effort.
776 	 */
777 	ASSERT(iip->ili_pushbuf_flag != 0);
778 	ASSERT(iip->ili_push_owner == current_pid());
779 
780 	/*
781 	 * If a flush is not in progress anymore, chances are that the
782 	 * inode was taken off the AIL. So, just get out.
783 	 */
784 	if (completion_done(&ip->i_flush) ||
785 	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
786 		iip->ili_pushbuf_flag = 0;
787 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
788 		return;
789 	}
790 
791 	mp = ip->i_mount;
792 	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
793 		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
794 
795 	if (bp != NULL) {
796 		if (XFS_BUF_ISDELAYWRITE(bp)) {
797 			/*
798 			 * We were racing with iflush because we don't hold
799 			 * the AIL lock or the flush lock. However, at this point,
800 			 * we have the buffer, and we know that it's dirty.
801 			 * So, it's possible that iflush raced with us, and
802 			 * this item is already taken off the AIL.
803 			 * If not, we can flush it async.
804 			 */
805 			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
806 				  !completion_done(&ip->i_flush));
807 			iip->ili_pushbuf_flag = 0;
808 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
809 			xfs_buftrace("INODE ITEM PUSH", bp);
810 			if (XFS_BUF_ISPINNED(bp)) {
811 				xfs_log_force(mp, (xfs_lsn_t)0,
812 					      XFS_LOG_FORCE);
813 			}
814 			if (dopush) {
815 				int	error;
816 				error = xfs_bawrite(mp, bp);
817 				if (error)
818 					xfs_fs_cmn_err(CE_WARN, mp,
819 		"xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
820 							error, iip, bp);
821 			} else {
822 				xfs_buf_relse(bp);
823 			}
824 		} else {
825 			iip->ili_pushbuf_flag = 0;
826 			xfs_iunlock(ip, XFS_ILOCK_SHARED);
827 			xfs_buf_relse(bp);
828 		}
829 		return;
830 	}
831 	/*
832 	 * We have to be careful about resetting pushbuf flag too early (above).
833 	 * Even though in theory we can do it as soon as we have the buflock,
834 	 * we don't want others to be doing work needlessly. They'll come to
835 	 * this function thinking that pushing the buffer is their
836 	 * responsibility only to find that the buffer is still locked by
837 	 * another doing the same thing
838 	 */
839 	iip->ili_pushbuf_flag = 0;
840 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
841 	return;
842 }
843 
844 
845 /*
846  * This is called to asynchronously write the inode associated with this
847  * inode log item out to disk. The inode will already have been locked by
848  * a successful call to xfs_inode_item_trylock().
849  */
850 STATIC void
xfs_inode_item_push(xfs_inode_log_item_t * iip)851 xfs_inode_item_push(
852 	xfs_inode_log_item_t	*iip)
853 {
854 	xfs_inode_t	*ip;
855 
856 	ip = iip->ili_inode;
857 
858 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
859 	ASSERT(!completion_done(&ip->i_flush));
860 	/*
861 	 * Since we were able to lock the inode's flush lock and
862 	 * we found it on the AIL, the inode must be dirty.  This
863 	 * is because the inode is removed from the AIL while still
864 	 * holding the flush lock in xfs_iflush_done().  Thus, if
865 	 * we found it in the AIL and were able to obtain the flush
866 	 * lock without sleeping, then there must not have been
867 	 * anyone in the process of flushing the inode.
868 	 */
869 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
870 	       iip->ili_format.ilf_fields != 0);
871 
872 	/*
873 	 * Write out the inode.  The completion routine ('iflush_done') will
874 	 * pull it from the AIL, mark it clean, unlock the flush lock.
875 	 */
876 	(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
877 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
878 
879 	return;
880 }
881 
882 /*
883  * XXX rcc - this one really has to do something.  Probably needs
884  * to stamp in a new field in the incore inode.
885  */
886 /* ARGSUSED */
887 STATIC void
xfs_inode_item_committing(xfs_inode_log_item_t * iip,xfs_lsn_t lsn)888 xfs_inode_item_committing(
889 	xfs_inode_log_item_t	*iip,
890 	xfs_lsn_t		lsn)
891 {
892 	iip->ili_last_lsn = lsn;
893 	return;
894 }
895 
896 /*
897  * This is the ops vector shared by all buf log items.
898  */
899 static struct xfs_item_ops xfs_inode_item_ops = {
900 	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
901 	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
902 					xfs_inode_item_format,
903 	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
904 	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
905 	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
906 					xfs_inode_item_unpin_remove,
907 	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
908 	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
909 	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
910 					xfs_inode_item_committed,
911 	.iop_push	= (void(*)(xfs_log_item_t*))xfs_inode_item_push,
912 	.iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
913 	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
914 					xfs_inode_item_committing
915 };
916 
917 
918 /*
919  * Initialize the inode log item for a newly allocated (in-core) inode.
920  */
921 void
xfs_inode_item_init(xfs_inode_t * ip,xfs_mount_t * mp)922 xfs_inode_item_init(
923 	xfs_inode_t	*ip,
924 	xfs_mount_t	*mp)
925 {
926 	xfs_inode_log_item_t	*iip;
927 
928 	ASSERT(ip->i_itemp == NULL);
929 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
930 
931 	iip->ili_item.li_type = XFS_LI_INODE;
932 	iip->ili_item.li_ops = &xfs_inode_item_ops;
933 	iip->ili_item.li_mountp = mp;
934 	iip->ili_item.li_ailp = mp->m_ail;
935 	iip->ili_inode = ip;
936 
937 	/*
938 	   We have zeroed memory. No need ...
939 	   iip->ili_extents_buf = NULL;
940 	   iip->ili_pushbuf_flag = 0;
941 	 */
942 
943 	iip->ili_format.ilf_type = XFS_LI_INODE;
944 	iip->ili_format.ilf_ino = ip->i_ino;
945 	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
946 	iip->ili_format.ilf_len = ip->i_imap.im_len;
947 	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
948 }
949 
950 /*
951  * Free the inode log item and any memory hanging off of it.
952  */
953 void
xfs_inode_item_destroy(xfs_inode_t * ip)954 xfs_inode_item_destroy(
955 	xfs_inode_t	*ip)
956 {
957 #ifdef XFS_TRANS_DEBUG
958 	if (ip->i_itemp->ili_root_size != 0) {
959 		kmem_free(ip->i_itemp->ili_orig_root);
960 	}
961 #endif
962 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
963 }
964 
965 
966 /*
967  * This is the inode flushing I/O completion routine.  It is called
968  * from interrupt level when the buffer containing the inode is
969  * flushed to disk.  It is responsible for removing the inode item
970  * from the AIL if it has not been re-logged, and unlocking the inode's
971  * flush lock.
972  */
973 /*ARGSUSED*/
974 void
xfs_iflush_done(xfs_buf_t * bp,xfs_inode_log_item_t * iip)975 xfs_iflush_done(
976 	xfs_buf_t		*bp,
977 	xfs_inode_log_item_t	*iip)
978 {
979 	xfs_inode_t		*ip = iip->ili_inode;
980 	struct xfs_ail		*ailp = iip->ili_item.li_ailp;
981 
982 	/*
983 	 * We only want to pull the item from the AIL if it is
984 	 * actually there and its location in the log has not
985 	 * changed since we started the flush.  Thus, we only bother
986 	 * if the ili_logged flag is set and the inode's lsn has not
987 	 * changed.  First we check the lsn outside
988 	 * the lock since it's cheaper, and then we recheck while
989 	 * holding the lock before removing the inode from the AIL.
990 	 */
991 	if (iip->ili_logged &&
992 	    (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
993 		spin_lock(&ailp->xa_lock);
994 		if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
995 			/* xfs_trans_ail_delete() drops the AIL lock. */
996 			xfs_trans_ail_delete(ailp, (xfs_log_item_t*)iip);
997 		} else {
998 			spin_unlock(&ailp->xa_lock);
999 		}
1000 	}
1001 
1002 	iip->ili_logged = 0;
1003 
1004 	/*
1005 	 * Clear the ili_last_fields bits now that we know that the
1006 	 * data corresponding to them is safely on disk.
1007 	 */
1008 	iip->ili_last_fields = 0;
1009 
1010 	/*
1011 	 * Release the inode's flush lock since we're done with it.
1012 	 */
1013 	xfs_ifunlock(ip);
1014 
1015 	return;
1016 }
1017 
1018 /*
1019  * This is the inode flushing abort routine.  It is called
1020  * from xfs_iflush when the filesystem is shutting down to clean
1021  * up the inode state.
1022  * It is responsible for removing the inode item
1023  * from the AIL if it has not been re-logged, and unlocking the inode's
1024  * flush lock.
1025  */
1026 void
xfs_iflush_abort(xfs_inode_t * ip)1027 xfs_iflush_abort(
1028 	xfs_inode_t		*ip)
1029 {
1030 	xfs_inode_log_item_t	*iip = ip->i_itemp;
1031 	xfs_mount_t		*mp;
1032 
1033 	iip = ip->i_itemp;
1034 	mp = ip->i_mount;
1035 	if (iip) {
1036 		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
1037 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1038 			spin_lock(&ailp->xa_lock);
1039 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1040 				/* xfs_trans_ail_delete() drops the AIL lock. */
1041 				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
1042 			} else
1043 				spin_unlock(&ailp->xa_lock);
1044 		}
1045 		iip->ili_logged = 0;
1046 		/*
1047 		 * Clear the ili_last_fields bits now that we know that the
1048 		 * data corresponding to them is safely on disk.
1049 		 */
1050 		iip->ili_last_fields = 0;
1051 		/*
1052 		 * Clear the inode logging fields so no more flushes are
1053 		 * attempted.
1054 		 */
1055 		iip->ili_format.ilf_fields = 0;
1056 	}
1057 	/*
1058 	 * Release the inode's flush lock since we're done with it.
1059 	 */
1060 	xfs_ifunlock(ip);
1061 }
1062 
1063 void
xfs_istale_done(xfs_buf_t * bp,xfs_inode_log_item_t * iip)1064 xfs_istale_done(
1065 	xfs_buf_t		*bp,
1066 	xfs_inode_log_item_t	*iip)
1067 {
1068 	xfs_iflush_abort(iip->ili_inode);
1069 }
1070 
1071 /*
1072  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1073  * (which can have different field alignments) to the native version
1074  */
1075 int
xfs_inode_item_format_convert(xfs_log_iovec_t * buf,xfs_inode_log_format_t * in_f)1076 xfs_inode_item_format_convert(
1077 	xfs_log_iovec_t		*buf,
1078 	xfs_inode_log_format_t	*in_f)
1079 {
1080 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1081 		xfs_inode_log_format_32_t *in_f32;
1082 
1083 		in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1084 		in_f->ilf_type = in_f32->ilf_type;
1085 		in_f->ilf_size = in_f32->ilf_size;
1086 		in_f->ilf_fields = in_f32->ilf_fields;
1087 		in_f->ilf_asize = in_f32->ilf_asize;
1088 		in_f->ilf_dsize = in_f32->ilf_dsize;
1089 		in_f->ilf_ino = in_f32->ilf_ino;
1090 		/* copy biggest field of ilf_u */
1091 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1092 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1093 		       sizeof(uuid_t));
1094 		in_f->ilf_blkno = in_f32->ilf_blkno;
1095 		in_f->ilf_len = in_f32->ilf_len;
1096 		in_f->ilf_boffset = in_f32->ilf_boffset;
1097 		return 0;
1098 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1099 		xfs_inode_log_format_64_t *in_f64;
1100 
1101 		in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1102 		in_f->ilf_type = in_f64->ilf_type;
1103 		in_f->ilf_size = in_f64->ilf_size;
1104 		in_f->ilf_fields = in_f64->ilf_fields;
1105 		in_f->ilf_asize = in_f64->ilf_asize;
1106 		in_f->ilf_dsize = in_f64->ilf_dsize;
1107 		in_f->ilf_ino = in_f64->ilf_ino;
1108 		/* copy biggest field of ilf_u */
1109 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1110 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1111 		       sizeof(uuid_t));
1112 		in_f->ilf_blkno = in_f64->ilf_blkno;
1113 		in_f->ilf_len = in_f64->ilf_len;
1114 		in_f->ilf_boffset = in_f64->ilf_boffset;
1115 		return 0;
1116 	}
1117 	return EFSCORRUPTED;
1118 }
1119