• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_MMU_NOTIFIER_H
2 #define _LINUX_MMU_NOTIFIER_H
3 
4 #include <linux/list.h>
5 #include <linux/spinlock.h>
6 #include <linux/mm_types.h>
7 
8 struct mmu_notifier;
9 struct mmu_notifier_ops;
10 
11 #ifdef CONFIG_MMU_NOTIFIER
12 
13 /*
14  * The mmu notifier_mm structure is allocated and installed in
15  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
16  * critical section and it's released only when mm_count reaches zero
17  * in mmdrop().
18  */
19 struct mmu_notifier_mm {
20 	/* all mmu notifiers registerd in this mm are queued in this list */
21 	struct hlist_head list;
22 	/* to serialize the list modifications and hlist_unhashed */
23 	spinlock_t lock;
24 };
25 
26 struct mmu_notifier_ops {
27 	/*
28 	 * Called either by mmu_notifier_unregister or when the mm is
29 	 * being destroyed by exit_mmap, always before all pages are
30 	 * freed. This can run concurrently with other mmu notifier
31 	 * methods (the ones invoked outside the mm context) and it
32 	 * should tear down all secondary mmu mappings and freeze the
33 	 * secondary mmu. If this method isn't implemented you've to
34 	 * be sure that nothing could possibly write to the pages
35 	 * through the secondary mmu by the time the last thread with
36 	 * tsk->mm == mm exits.
37 	 *
38 	 * As side note: the pages freed after ->release returns could
39 	 * be immediately reallocated by the gart at an alias physical
40 	 * address with a different cache model, so if ->release isn't
41 	 * implemented because all _software_ driven memory accesses
42 	 * through the secondary mmu are terminated by the time the
43 	 * last thread of this mm quits, you've also to be sure that
44 	 * speculative _hardware_ operations can't allocate dirty
45 	 * cachelines in the cpu that could not be snooped and made
46 	 * coherent with the other read and write operations happening
47 	 * through the gart alias address, so leading to memory
48 	 * corruption.
49 	 */
50 	void (*release)(struct mmu_notifier *mn,
51 			struct mm_struct *mm);
52 
53 	/*
54 	 * clear_flush_young is called after the VM is
55 	 * test-and-clearing the young/accessed bitflag in the
56 	 * pte. This way the VM will provide proper aging to the
57 	 * accesses to the page through the secondary MMUs and not
58 	 * only to the ones through the Linux pte.
59 	 */
60 	int (*clear_flush_young)(struct mmu_notifier *mn,
61 				 struct mm_struct *mm,
62 				 unsigned long address);
63 
64 	/*
65 	 * Before this is invoked any secondary MMU is still ok to
66 	 * read/write to the page previously pointed to by the Linux
67 	 * pte because the page hasn't been freed yet and it won't be
68 	 * freed until this returns. If required set_page_dirty has to
69 	 * be called internally to this method.
70 	 */
71 	void (*invalidate_page)(struct mmu_notifier *mn,
72 				struct mm_struct *mm,
73 				unsigned long address);
74 
75 	/*
76 	 * invalidate_range_start() and invalidate_range_end() must be
77 	 * paired and are called only when the mmap_sem and/or the
78 	 * locks protecting the reverse maps are held. The subsystem
79 	 * must guarantee that no additional references are taken to
80 	 * the pages in the range established between the call to
81 	 * invalidate_range_start() and the matching call to
82 	 * invalidate_range_end().
83 	 *
84 	 * Invalidation of multiple concurrent ranges may be
85 	 * optionally permitted by the driver. Either way the
86 	 * establishment of sptes is forbidden in the range passed to
87 	 * invalidate_range_begin/end for the whole duration of the
88 	 * invalidate_range_begin/end critical section.
89 	 *
90 	 * invalidate_range_start() is called when all pages in the
91 	 * range are still mapped and have at least a refcount of one.
92 	 *
93 	 * invalidate_range_end() is called when all pages in the
94 	 * range have been unmapped and the pages have been freed by
95 	 * the VM.
96 	 *
97 	 * The VM will remove the page table entries and potentially
98 	 * the page between invalidate_range_start() and
99 	 * invalidate_range_end(). If the page must not be freed
100 	 * because of pending I/O or other circumstances then the
101 	 * invalidate_range_start() callback (or the initial mapping
102 	 * by the driver) must make sure that the refcount is kept
103 	 * elevated.
104 	 *
105 	 * If the driver increases the refcount when the pages are
106 	 * initially mapped into an address space then either
107 	 * invalidate_range_start() or invalidate_range_end() may
108 	 * decrease the refcount. If the refcount is decreased on
109 	 * invalidate_range_start() then the VM can free pages as page
110 	 * table entries are removed.  If the refcount is only
111 	 * droppped on invalidate_range_end() then the driver itself
112 	 * will drop the last refcount but it must take care to flush
113 	 * any secondary tlb before doing the final free on the
114 	 * page. Pages will no longer be referenced by the linux
115 	 * address space but may still be referenced by sptes until
116 	 * the last refcount is dropped.
117 	 */
118 	void (*invalidate_range_start)(struct mmu_notifier *mn,
119 				       struct mm_struct *mm,
120 				       unsigned long start, unsigned long end);
121 	void (*invalidate_range_end)(struct mmu_notifier *mn,
122 				     struct mm_struct *mm,
123 				     unsigned long start, unsigned long end);
124 };
125 
126 /*
127  * The notifier chains are protected by mmap_sem and/or the reverse map
128  * semaphores. Notifier chains are only changed when all reverse maps and
129  * the mmap_sem locks are taken.
130  *
131  * Therefore notifier chains can only be traversed when either
132  *
133  * 1. mmap_sem is held.
134  * 2. One of the reverse map locks is held (i_mmap_lock or anon_vma->lock).
135  * 3. No other concurrent thread can access the list (release)
136  */
137 struct mmu_notifier {
138 	struct hlist_node hlist;
139 	const struct mmu_notifier_ops *ops;
140 };
141 
mm_has_notifiers(struct mm_struct * mm)142 static inline int mm_has_notifiers(struct mm_struct *mm)
143 {
144 	return unlikely(mm->mmu_notifier_mm);
145 }
146 
147 extern int mmu_notifier_register(struct mmu_notifier *mn,
148 				 struct mm_struct *mm);
149 extern int __mmu_notifier_register(struct mmu_notifier *mn,
150 				   struct mm_struct *mm);
151 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
152 				    struct mm_struct *mm);
153 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
154 extern void __mmu_notifier_release(struct mm_struct *mm);
155 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
156 					  unsigned long address);
157 extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
158 					  unsigned long address);
159 extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
160 				  unsigned long start, unsigned long end);
161 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
162 				  unsigned long start, unsigned long end);
163 
mmu_notifier_release(struct mm_struct * mm)164 static inline void mmu_notifier_release(struct mm_struct *mm)
165 {
166 	if (mm_has_notifiers(mm))
167 		__mmu_notifier_release(mm);
168 }
169 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long address)170 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
171 					  unsigned long address)
172 {
173 	if (mm_has_notifiers(mm))
174 		return __mmu_notifier_clear_flush_young(mm, address);
175 	return 0;
176 }
177 
mmu_notifier_invalidate_page(struct mm_struct * mm,unsigned long address)178 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
179 					  unsigned long address)
180 {
181 	if (mm_has_notifiers(mm))
182 		__mmu_notifier_invalidate_page(mm, address);
183 }
184 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)185 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
186 				  unsigned long start, unsigned long end)
187 {
188 	if (mm_has_notifiers(mm))
189 		__mmu_notifier_invalidate_range_start(mm, start, end);
190 }
191 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)192 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
193 				  unsigned long start, unsigned long end)
194 {
195 	if (mm_has_notifiers(mm))
196 		__mmu_notifier_invalidate_range_end(mm, start, end);
197 }
198 
mmu_notifier_mm_init(struct mm_struct * mm)199 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
200 {
201 	mm->mmu_notifier_mm = NULL;
202 }
203 
mmu_notifier_mm_destroy(struct mm_struct * mm)204 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
205 {
206 	if (mm_has_notifiers(mm))
207 		__mmu_notifier_mm_destroy(mm);
208 }
209 
210 /*
211  * These two macros will sometime replace ptep_clear_flush.
212  * ptep_clear_flush is impleemnted as macro itself, so this also is
213  * implemented as a macro until ptep_clear_flush will converted to an
214  * inline function, to diminish the risk of compilation failure. The
215  * invalidate_page method over time can be moved outside the PT lock
216  * and these two macros can be later removed.
217  */
218 #define ptep_clear_flush_notify(__vma, __address, __ptep)		\
219 ({									\
220 	pte_t __pte;							\
221 	struct vm_area_struct *___vma = __vma;				\
222 	unsigned long ___address = __address;				\
223 	__pte = ptep_clear_flush(___vma, ___address, __ptep);		\
224 	mmu_notifier_invalidate_page(___vma->vm_mm, ___address);	\
225 	__pte;								\
226 })
227 
228 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
229 ({									\
230 	int __young;							\
231 	struct vm_area_struct *___vma = __vma;				\
232 	unsigned long ___address = __address;				\
233 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
234 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
235 						  ___address);		\
236 	__young;							\
237 })
238 
239 #else /* CONFIG_MMU_NOTIFIER */
240 
mmu_notifier_release(struct mm_struct * mm)241 static inline void mmu_notifier_release(struct mm_struct *mm)
242 {
243 }
244 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long address)245 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
246 					  unsigned long address)
247 {
248 	return 0;
249 }
250 
mmu_notifier_invalidate_page(struct mm_struct * mm,unsigned long address)251 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
252 					  unsigned long address)
253 {
254 }
255 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)256 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
257 				  unsigned long start, unsigned long end)
258 {
259 }
260 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)261 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
262 				  unsigned long start, unsigned long end)
263 {
264 }
265 
mmu_notifier_mm_init(struct mm_struct * mm)266 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
267 {
268 }
269 
mmu_notifier_mm_destroy(struct mm_struct * mm)270 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
271 {
272 }
273 
274 #define ptep_clear_flush_young_notify ptep_clear_flush_young
275 #define ptep_clear_flush_notify ptep_clear_flush
276 
277 #endif /* CONFIG_MMU_NOTIFIER */
278 
279 #endif /* _LINUX_MMU_NOTIFIER_H */
280