• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3 
4 /*
5  * Copyright 1995 Linus Torvalds
6  */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 
17 /*
18  * Bits in mapping->flags.  The lower __GFP_BITS_SHIFT bits are the page
19  * allocation mode flags.
20  */
21 #define	AS_EIO		(__GFP_BITS_SHIFT + 0)	/* IO error on async write */
22 #define AS_ENOSPC	(__GFP_BITS_SHIFT + 1)	/* ENOSPC on async write */
23 #define AS_MM_ALL_LOCKS	(__GFP_BITS_SHIFT + 2)	/* under mm_take_all_locks() */
24 
mapping_set_error(struct address_space * mapping,int error)25 static inline void mapping_set_error(struct address_space *mapping, int error)
26 {
27 	if (unlikely(error)) {
28 		if (error == -ENOSPC)
29 			set_bit(AS_ENOSPC, &mapping->flags);
30 		else
31 			set_bit(AS_EIO, &mapping->flags);
32 	}
33 }
34 
35 #ifdef CONFIG_UNEVICTABLE_LRU
36 #define AS_UNEVICTABLE	(__GFP_BITS_SHIFT + 2)	/* e.g., ramdisk, SHM_LOCK */
37 
mapping_set_unevictable(struct address_space * mapping)38 static inline void mapping_set_unevictable(struct address_space *mapping)
39 {
40 	set_bit(AS_UNEVICTABLE, &mapping->flags);
41 }
42 
mapping_clear_unevictable(struct address_space * mapping)43 static inline void mapping_clear_unevictable(struct address_space *mapping)
44 {
45 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
46 }
47 
mapping_unevictable(struct address_space * mapping)48 static inline int mapping_unevictable(struct address_space *mapping)
49 {
50 	if (likely(mapping))
51 		return test_bit(AS_UNEVICTABLE, &mapping->flags);
52 	return !!mapping;
53 }
54 #else
mapping_set_unevictable(struct address_space * mapping)55 static inline void mapping_set_unevictable(struct address_space *mapping) { }
mapping_clear_unevictable(struct address_space * mapping)56 static inline void mapping_clear_unevictable(struct address_space *mapping) { }
mapping_unevictable(struct address_space * mapping)57 static inline int mapping_unevictable(struct address_space *mapping)
58 {
59 	return 0;
60 }
61 #endif
62 
mapping_gfp_mask(struct address_space * mapping)63 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
64 {
65 	return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
66 }
67 
68 /*
69  * This is non-atomic.  Only to be used before the mapping is activated.
70  * Probably needs a barrier...
71  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)72 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
73 {
74 	m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
75 				(__force unsigned long)mask;
76 }
77 
78 /*
79  * The page cache can done in larger chunks than
80  * one page, because it allows for more efficient
81  * throughput (it can then be mapped into user
82  * space in smaller chunks for same flexibility).
83  *
84  * Or rather, it _will_ be done in larger chunks.
85  */
86 #define PAGE_CACHE_SHIFT	PAGE_SHIFT
87 #define PAGE_CACHE_SIZE		PAGE_SIZE
88 #define PAGE_CACHE_MASK		PAGE_MASK
89 #define PAGE_CACHE_ALIGN(addr)	(((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
90 
91 #define page_cache_get(page)		get_page(page)
92 #define page_cache_release(page)	put_page(page)
93 void release_pages(struct page **pages, int nr, int cold);
94 
95 /*
96  * speculatively take a reference to a page.
97  * If the page is free (_count == 0), then _count is untouched, and 0
98  * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
99  *
100  * This function must be called inside the same rcu_read_lock() section as has
101  * been used to lookup the page in the pagecache radix-tree (or page table):
102  * this allows allocators to use a synchronize_rcu() to stabilize _count.
103  *
104  * Unless an RCU grace period has passed, the count of all pages coming out
105  * of the allocator must be considered unstable. page_count may return higher
106  * than expected, and put_page must be able to do the right thing when the
107  * page has been finished with, no matter what it is subsequently allocated
108  * for (because put_page is what is used here to drop an invalid speculative
109  * reference).
110  *
111  * This is the interesting part of the lockless pagecache (and lockless
112  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
113  * has the following pattern:
114  * 1. find page in radix tree
115  * 2. conditionally increment refcount
116  * 3. check the page is still in pagecache (if no, goto 1)
117  *
118  * Remove-side that cares about stability of _count (eg. reclaim) has the
119  * following (with tree_lock held for write):
120  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
121  * B. remove page from pagecache
122  * C. free the page
123  *
124  * There are 2 critical interleavings that matter:
125  * - 2 runs before A: in this case, A sees elevated refcount and bails out
126  * - A runs before 2: in this case, 2 sees zero refcount and retries;
127  *   subsequently, B will complete and 1 will find no page, causing the
128  *   lookup to return NULL.
129  *
130  * It is possible that between 1 and 2, the page is removed then the exact same
131  * page is inserted into the same position in pagecache. That's OK: the
132  * old find_get_page using tree_lock could equally have run before or after
133  * such a re-insertion, depending on order that locks are granted.
134  *
135  * Lookups racing against pagecache insertion isn't a big problem: either 1
136  * will find the page or it will not. Likewise, the old find_get_page could run
137  * either before the insertion or afterwards, depending on timing.
138  */
page_cache_get_speculative(struct page * page)139 static inline int page_cache_get_speculative(struct page *page)
140 {
141 	VM_BUG_ON(in_interrupt());
142 
143 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
144 # ifdef CONFIG_PREEMPT
145 	VM_BUG_ON(!in_atomic());
146 # endif
147 	/*
148 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
149 	 * this for us.
150 	 *
151 	 * Pagecache won't be truncated from interrupt context, so if we have
152 	 * found a page in the radix tree here, we have pinned its refcount by
153 	 * disabling preempt, and hence no need for the "speculative get" that
154 	 * SMP requires.
155 	 */
156 	VM_BUG_ON(page_count(page) == 0);
157 	atomic_inc(&page->_count);
158 
159 #else
160 	if (unlikely(!get_page_unless_zero(page))) {
161 		/*
162 		 * Either the page has been freed, or will be freed.
163 		 * In either case, retry here and the caller should
164 		 * do the right thing (see comments above).
165 		 */
166 		return 0;
167 	}
168 #endif
169 	VM_BUG_ON(PageTail(page));
170 
171 	return 1;
172 }
173 
174 /*
175  * Same as above, but add instead of inc (could just be merged)
176  */
page_cache_add_speculative(struct page * page,int count)177 static inline int page_cache_add_speculative(struct page *page, int count)
178 {
179 	VM_BUG_ON(in_interrupt());
180 
181 #if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
182 # ifdef CONFIG_PREEMPT
183 	VM_BUG_ON(!in_atomic());
184 # endif
185 	VM_BUG_ON(page_count(page) == 0);
186 	atomic_add(count, &page->_count);
187 
188 #else
189 	if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
190 		return 0;
191 #endif
192 	VM_BUG_ON(PageCompound(page) && page != compound_head(page));
193 
194 	return 1;
195 }
196 
page_freeze_refs(struct page * page,int count)197 static inline int page_freeze_refs(struct page *page, int count)
198 {
199 	return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
200 }
201 
page_unfreeze_refs(struct page * page,int count)202 static inline void page_unfreeze_refs(struct page *page, int count)
203 {
204 	VM_BUG_ON(page_count(page) != 0);
205 	VM_BUG_ON(count == 0);
206 
207 	atomic_set(&page->_count, count);
208 }
209 
210 #ifdef CONFIG_NUMA
211 extern struct page *__page_cache_alloc(gfp_t gfp);
212 #else
__page_cache_alloc(gfp_t gfp)213 static inline struct page *__page_cache_alloc(gfp_t gfp)
214 {
215 	return alloc_pages(gfp, 0);
216 }
217 #endif
218 
page_cache_alloc(struct address_space * x)219 static inline struct page *page_cache_alloc(struct address_space *x)
220 {
221 	return __page_cache_alloc(mapping_gfp_mask(x));
222 }
223 
page_cache_alloc_cold(struct address_space * x)224 static inline struct page *page_cache_alloc_cold(struct address_space *x)
225 {
226 	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
227 }
228 
229 typedef int filler_t(void *, struct page *);
230 
231 extern struct page * find_get_page(struct address_space *mapping,
232 				pgoff_t index);
233 extern struct page * find_lock_page(struct address_space *mapping,
234 				pgoff_t index);
235 extern struct page * find_or_create_page(struct address_space *mapping,
236 				pgoff_t index, gfp_t gfp_mask);
237 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
238 			unsigned int nr_pages, struct page **pages);
239 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
240 			       unsigned int nr_pages, struct page **pages);
241 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
242 			int tag, unsigned int nr_pages, struct page **pages);
243 
244 struct page *grab_cache_page_write_begin(struct address_space *mapping,
245 			pgoff_t index, unsigned flags);
246 
247 /*
248  * Returns locked page at given index in given cache, creating it if needed.
249  */
grab_cache_page(struct address_space * mapping,pgoff_t index)250 static inline struct page *grab_cache_page(struct address_space *mapping,
251 								pgoff_t index)
252 {
253 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
254 }
255 
256 extern struct page * grab_cache_page_nowait(struct address_space *mapping,
257 				pgoff_t index);
258 extern struct page * read_cache_page_async(struct address_space *mapping,
259 				pgoff_t index, filler_t *filler,
260 				void *data);
261 extern struct page * read_cache_page(struct address_space *mapping,
262 				pgoff_t index, filler_t *filler,
263 				void *data);
264 extern int read_cache_pages(struct address_space *mapping,
265 		struct list_head *pages, filler_t *filler, void *data);
266 
read_mapping_page_async(struct address_space * mapping,pgoff_t index,void * data)267 static inline struct page *read_mapping_page_async(
268 						struct address_space *mapping,
269 						     pgoff_t index, void *data)
270 {
271 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
272 	return read_cache_page_async(mapping, index, filler, data);
273 }
274 
read_mapping_page(struct address_space * mapping,pgoff_t index,void * data)275 static inline struct page *read_mapping_page(struct address_space *mapping,
276 					     pgoff_t index, void *data)
277 {
278 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
279 	return read_cache_page(mapping, index, filler, data);
280 }
281 
282 /*
283  * Return byte-offset into filesystem object for page.
284  */
page_offset(struct page * page)285 static inline loff_t page_offset(struct page *page)
286 {
287 	return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
288 }
289 
linear_page_index(struct vm_area_struct * vma,unsigned long address)290 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
291 					unsigned long address)
292 {
293 	pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
294 	pgoff += vma->vm_pgoff;
295 	return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
296 }
297 
298 extern void __lock_page(struct page *page);
299 extern int __lock_page_killable(struct page *page);
300 extern void __lock_page_nosync(struct page *page);
301 extern void unlock_page(struct page *page);
302 
__set_page_locked(struct page * page)303 static inline void __set_page_locked(struct page *page)
304 {
305 	__set_bit(PG_locked, &page->flags);
306 }
307 
__clear_page_locked(struct page * page)308 static inline void __clear_page_locked(struct page *page)
309 {
310 	__clear_bit(PG_locked, &page->flags);
311 }
312 
trylock_page(struct page * page)313 static inline int trylock_page(struct page *page)
314 {
315 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
316 }
317 
318 /*
319  * lock_page may only be called if we have the page's inode pinned.
320  */
lock_page(struct page * page)321 static inline void lock_page(struct page *page)
322 {
323 	might_sleep();
324 	if (!trylock_page(page))
325 		__lock_page(page);
326 }
327 
328 /*
329  * lock_page_killable is like lock_page but can be interrupted by fatal
330  * signals.  It returns 0 if it locked the page and -EINTR if it was
331  * killed while waiting.
332  */
lock_page_killable(struct page * page)333 static inline int lock_page_killable(struct page *page)
334 {
335 	might_sleep();
336 	if (!trylock_page(page))
337 		return __lock_page_killable(page);
338 	return 0;
339 }
340 
341 /*
342  * lock_page_nosync should only be used if we can't pin the page's inode.
343  * Doesn't play quite so well with block device plugging.
344  */
lock_page_nosync(struct page * page)345 static inline void lock_page_nosync(struct page *page)
346 {
347 	might_sleep();
348 	if (!trylock_page(page))
349 		__lock_page_nosync(page);
350 }
351 
352 /*
353  * This is exported only for wait_on_page_locked/wait_on_page_writeback.
354  * Never use this directly!
355  */
356 extern void wait_on_page_bit(struct page *page, int bit_nr);
357 
358 /*
359  * Wait for a page to be unlocked.
360  *
361  * This must be called with the caller "holding" the page,
362  * ie with increased "page->count" so that the page won't
363  * go away during the wait..
364  */
wait_on_page_locked(struct page * page)365 static inline void wait_on_page_locked(struct page *page)
366 {
367 	if (PageLocked(page))
368 		wait_on_page_bit(page, PG_locked);
369 }
370 
371 /*
372  * Wait for a page to complete writeback
373  */
wait_on_page_writeback(struct page * page)374 static inline void wait_on_page_writeback(struct page *page)
375 {
376 	if (PageWriteback(page))
377 		wait_on_page_bit(page, PG_writeback);
378 }
379 
380 extern void end_page_writeback(struct page *page);
381 
382 /*
383  * Fault a userspace page into pagetables.  Return non-zero on a fault.
384  *
385  * This assumes that two userspace pages are always sufficient.  That's
386  * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
387  */
fault_in_pages_writeable(char __user * uaddr,int size)388 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
389 {
390 	int ret;
391 
392 	if (unlikely(size == 0))
393 		return 0;
394 
395 	/*
396 	 * Writing zeroes into userspace here is OK, because we know that if
397 	 * the zero gets there, we'll be overwriting it.
398 	 */
399 	ret = __put_user(0, uaddr);
400 	if (ret == 0) {
401 		char __user *end = uaddr + size - 1;
402 
403 		/*
404 		 * If the page was already mapped, this will get a cache miss
405 		 * for sure, so try to avoid doing it.
406 		 */
407 		if (((unsigned long)uaddr & PAGE_MASK) !=
408 				((unsigned long)end & PAGE_MASK))
409 		 	ret = __put_user(0, end);
410 	}
411 	return ret;
412 }
413 
fault_in_pages_readable(const char __user * uaddr,int size)414 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
415 {
416 	volatile char c;
417 	int ret;
418 
419 	if (unlikely(size == 0))
420 		return 0;
421 
422 	ret = __get_user(c, uaddr);
423 	if (ret == 0) {
424 		const char __user *end = uaddr + size - 1;
425 
426 		if (((unsigned long)uaddr & PAGE_MASK) !=
427 				((unsigned long)end & PAGE_MASK))
428 		 	ret = __get_user(c, end);
429 	}
430 	return ret;
431 }
432 
433 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
434 				pgoff_t index, gfp_t gfp_mask);
435 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
436 				pgoff_t index, gfp_t gfp_mask);
437 extern void remove_from_page_cache(struct page *page);
438 extern void __remove_from_page_cache(struct page *page);
439 
440 /*
441  * Like add_to_page_cache_locked, but used to add newly allocated pages:
442  * the page is new, so we can just run __set_page_locked() against it.
443  */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)444 static inline int add_to_page_cache(struct page *page,
445 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
446 {
447 	int error;
448 
449 	__set_page_locked(page);
450 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
451 	if (unlikely(error))
452 		__clear_page_locked(page);
453 	return error;
454 }
455 
456 #endif /* _LINUX_PAGEMAP_H */
457