• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3 
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6 
7 #define USB_MAJOR			180
8 #define USB_DEVICE_MAJOR		189
9 
10 
11 #ifdef __KERNEL__
12 
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>	/* for mdelay() */
15 #include <linux/interrupt.h>	/* for in_interrupt() */
16 #include <linux/list.h>		/* for struct list_head */
17 #include <linux/kref.h>		/* for struct kref */
18 #include <linux/device.h>	/* for struct device */
19 #include <linux/fs.h>		/* for struct file_operations */
20 #include <linux/completion.h>	/* for struct completion */
21 #include <linux/sched.h>	/* for current && schedule_timeout */
22 #include <linux/mutex.h>	/* for struct mutex */
23 
24 struct usb_device;
25 struct usb_driver;
26 struct wusb_dev;
27 
28 /*-------------------------------------------------------------------------*/
29 
30 /*
31  * Host-side wrappers for standard USB descriptors ... these are parsed
32  * from the data provided by devices.  Parsing turns them from a flat
33  * sequence of descriptors into a hierarchy:
34  *
35  *  - devices have one (usually) or more configs;
36  *  - configs have one (often) or more interfaces;
37  *  - interfaces have one (usually) or more settings;
38  *  - each interface setting has zero or (usually) more endpoints.
39  *
40  * And there might be other descriptors mixed in with those.
41  *
42  * Devices may also have class-specific or vendor-specific descriptors.
43  */
44 
45 struct ep_device;
46 
47 /**
48  * struct usb_host_endpoint - host-side endpoint descriptor and queue
49  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
50  * @urb_list: urbs queued to this endpoint; maintained by usbcore
51  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
52  *	with one or more transfer descriptors (TDs) per urb
53  * @ep_dev: ep_device for sysfs info
54  * @extra: descriptors following this endpoint in the configuration
55  * @extralen: how many bytes of "extra" are valid
56  * @enabled: URBs may be submitted to this endpoint
57  *
58  * USB requests are always queued to a given endpoint, identified by a
59  * descriptor within an active interface in a given USB configuration.
60  */
61 struct usb_host_endpoint {
62 	struct usb_endpoint_descriptor	desc;
63 	struct list_head		urb_list;
64 	void				*hcpriv;
65 	struct ep_device 		*ep_dev;	/* For sysfs info */
66 
67 	unsigned char *extra;   /* Extra descriptors */
68 	int extralen;
69 	int enabled;
70 };
71 
72 /* host-side wrapper for one interface setting's parsed descriptors */
73 struct usb_host_interface {
74 	struct usb_interface_descriptor	desc;
75 
76 	/* array of desc.bNumEndpoint endpoints associated with this
77 	 * interface setting.  these will be in no particular order.
78 	 */
79 	struct usb_host_endpoint *endpoint;
80 
81 	char *string;		/* iInterface string, if present */
82 	unsigned char *extra;   /* Extra descriptors */
83 	int extralen;
84 };
85 
86 enum usb_interface_condition {
87 	USB_INTERFACE_UNBOUND = 0,
88 	USB_INTERFACE_BINDING,
89 	USB_INTERFACE_BOUND,
90 	USB_INTERFACE_UNBINDING,
91 };
92 
93 /**
94  * struct usb_interface - what usb device drivers talk to
95  * @altsetting: array of interface structures, one for each alternate
96  * 	setting that may be selected.  Each one includes a set of
97  * 	endpoint configurations.  They will be in no particular order.
98  * @cur_altsetting: the current altsetting.
99  * @num_altsetting: number of altsettings defined.
100  * @intf_assoc: interface association descriptor
101  * @minor: the minor number assigned to this interface, if this
102  *	interface is bound to a driver that uses the USB major number.
103  *	If this interface does not use the USB major, this field should
104  *	be unused.  The driver should set this value in the probe()
105  *	function of the driver, after it has been assigned a minor
106  *	number from the USB core by calling usb_register_dev().
107  * @condition: binding state of the interface: not bound, binding
108  *	(in probe()), bound to a driver, or unbinding (in disconnect())
109  * @is_active: flag set when the interface is bound and not suspended.
110  * @sysfs_files_created: sysfs attributes exist
111  * @ep_devs_created: endpoint child pseudo-devices exist
112  * @unregistering: flag set when the interface is being unregistered
113  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
114  *	capability during autosuspend.
115  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
116  *	has been deferred.
117  * @needs_binding: flag set when the driver should be re-probed or unbound
118  *	following a reset or suspend operation it doesn't support.
119  * @dev: driver model's view of this device
120  * @usb_dev: if an interface is bound to the USB major, this will point
121  *	to the sysfs representation for that device.
122  * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
123  *	allowed unless the counter is 0.
124  * @reset_ws: Used for scheduling resets from atomic context.
125  * @reset_running: set to 1 if the interface is currently running a
126  *      queued reset so that usb_cancel_queued_reset() doesn't try to
127  *      remove from the workqueue when running inside the worker
128  *      thread. See __usb_queue_reset_device().
129  *
130  * USB device drivers attach to interfaces on a physical device.  Each
131  * interface encapsulates a single high level function, such as feeding
132  * an audio stream to a speaker or reporting a change in a volume control.
133  * Many USB devices only have one interface.  The protocol used to talk to
134  * an interface's endpoints can be defined in a usb "class" specification,
135  * or by a product's vendor.  The (default) control endpoint is part of
136  * every interface, but is never listed among the interface's descriptors.
137  *
138  * The driver that is bound to the interface can use standard driver model
139  * calls such as dev_get_drvdata() on the dev member of this structure.
140  *
141  * Each interface may have alternate settings.  The initial configuration
142  * of a device sets altsetting 0, but the device driver can change
143  * that setting using usb_set_interface().  Alternate settings are often
144  * used to control the use of periodic endpoints, such as by having
145  * different endpoints use different amounts of reserved USB bandwidth.
146  * All standards-conformant USB devices that use isochronous endpoints
147  * will use them in non-default settings.
148  *
149  * The USB specification says that alternate setting numbers must run from
150  * 0 to one less than the total number of alternate settings.  But some
151  * devices manage to mess this up, and the structures aren't necessarily
152  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
153  * look up an alternate setting in the altsetting array based on its number.
154  */
155 struct usb_interface {
156 	/* array of alternate settings for this interface,
157 	 * stored in no particular order */
158 	struct usb_host_interface *altsetting;
159 
160 	struct usb_host_interface *cur_altsetting;	/* the currently
161 					 * active alternate setting */
162 	unsigned num_altsetting;	/* number of alternate settings */
163 
164 	/* If there is an interface association descriptor then it will list
165 	 * the associated interfaces */
166 	struct usb_interface_assoc_descriptor *intf_assoc;
167 
168 	int minor;			/* minor number this interface is
169 					 * bound to */
170 	enum usb_interface_condition condition;		/* state of binding */
171 	unsigned is_active:1;		/* the interface is not suspended */
172 	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
173 	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
174 	unsigned unregistering:1;	/* unregistration is in progress */
175 	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
176 	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
177 	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
178 	unsigned reset_running:1;
179 
180 	struct device dev;		/* interface specific device info */
181 	struct device *usb_dev;
182 	int pm_usage_cnt;		/* usage counter for autosuspend */
183 	struct work_struct reset_ws;	/* for resets in atomic context */
184 };
185 #define	to_usb_interface(d) container_of(d, struct usb_interface, dev)
186 #define	interface_to_usbdev(intf) \
187 	container_of(intf->dev.parent, struct usb_device, dev)
188 
usb_get_intfdata(struct usb_interface * intf)189 static inline void *usb_get_intfdata(struct usb_interface *intf)
190 {
191 	return dev_get_drvdata(&intf->dev);
192 }
193 
usb_set_intfdata(struct usb_interface * intf,void * data)194 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
195 {
196 	dev_set_drvdata(&intf->dev, data);
197 }
198 
199 struct usb_interface *usb_get_intf(struct usb_interface *intf);
200 void usb_put_intf(struct usb_interface *intf);
201 
202 /* this maximum is arbitrary */
203 #define USB_MAXINTERFACES	32
204 #define USB_MAXIADS		USB_MAXINTERFACES/2
205 
206 /**
207  * struct usb_interface_cache - long-term representation of a device interface
208  * @num_altsetting: number of altsettings defined.
209  * @ref: reference counter.
210  * @altsetting: variable-length array of interface structures, one for
211  *	each alternate setting that may be selected.  Each one includes a
212  *	set of endpoint configurations.  They will be in no particular order.
213  *
214  * These structures persist for the lifetime of a usb_device, unlike
215  * struct usb_interface (which persists only as long as its configuration
216  * is installed).  The altsetting arrays can be accessed through these
217  * structures at any time, permitting comparison of configurations and
218  * providing support for the /proc/bus/usb/devices pseudo-file.
219  */
220 struct usb_interface_cache {
221 	unsigned num_altsetting;	/* number of alternate settings */
222 	struct kref ref;		/* reference counter */
223 
224 	/* variable-length array of alternate settings for this interface,
225 	 * stored in no particular order */
226 	struct usb_host_interface altsetting[0];
227 };
228 #define	ref_to_usb_interface_cache(r) \
229 		container_of(r, struct usb_interface_cache, ref)
230 #define	altsetting_to_usb_interface_cache(a) \
231 		container_of(a, struct usb_interface_cache, altsetting[0])
232 
233 /**
234  * struct usb_host_config - representation of a device's configuration
235  * @desc: the device's configuration descriptor.
236  * @string: pointer to the cached version of the iConfiguration string, if
237  *	present for this configuration.
238  * @intf_assoc: list of any interface association descriptors in this config
239  * @interface: array of pointers to usb_interface structures, one for each
240  *	interface in the configuration.  The number of interfaces is stored
241  *	in desc.bNumInterfaces.  These pointers are valid only while the
242  *	the configuration is active.
243  * @intf_cache: array of pointers to usb_interface_cache structures, one
244  *	for each interface in the configuration.  These structures exist
245  *	for the entire life of the device.
246  * @extra: pointer to buffer containing all extra descriptors associated
247  *	with this configuration (those preceding the first interface
248  *	descriptor).
249  * @extralen: length of the extra descriptors buffer.
250  *
251  * USB devices may have multiple configurations, but only one can be active
252  * at any time.  Each encapsulates a different operational environment;
253  * for example, a dual-speed device would have separate configurations for
254  * full-speed and high-speed operation.  The number of configurations
255  * available is stored in the device descriptor as bNumConfigurations.
256  *
257  * A configuration can contain multiple interfaces.  Each corresponds to
258  * a different function of the USB device, and all are available whenever
259  * the configuration is active.  The USB standard says that interfaces
260  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
261  * of devices get this wrong.  In addition, the interface array is not
262  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
263  * look up an interface entry based on its number.
264  *
265  * Device drivers should not attempt to activate configurations.  The choice
266  * of which configuration to install is a policy decision based on such
267  * considerations as available power, functionality provided, and the user's
268  * desires (expressed through userspace tools).  However, drivers can call
269  * usb_reset_configuration() to reinitialize the current configuration and
270  * all its interfaces.
271  */
272 struct usb_host_config {
273 	struct usb_config_descriptor	desc;
274 
275 	char *string;		/* iConfiguration string, if present */
276 
277 	/* List of any Interface Association Descriptors in this
278 	 * configuration. */
279 	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
280 
281 	/* the interfaces associated with this configuration,
282 	 * stored in no particular order */
283 	struct usb_interface *interface[USB_MAXINTERFACES];
284 
285 	/* Interface information available even when this is not the
286 	 * active configuration */
287 	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
288 
289 	unsigned char *extra;   /* Extra descriptors */
290 	int extralen;
291 };
292 
293 int __usb_get_extra_descriptor(char *buffer, unsigned size,
294 	unsigned char type, void **ptr);
295 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
296 				__usb_get_extra_descriptor((ifpoint)->extra, \
297 				(ifpoint)->extralen, \
298 				type, (void **)ptr)
299 
300 /* ----------------------------------------------------------------------- */
301 
302 /* USB device number allocation bitmap */
303 struct usb_devmap {
304 	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
305 };
306 
307 /*
308  * Allocated per bus (tree of devices) we have:
309  */
310 struct usb_bus {
311 	struct device *controller;	/* host/master side hardware */
312 	int busnum;			/* Bus number (in order of reg) */
313 	const char *bus_name;		/* stable id (PCI slot_name etc) */
314 	u8 uses_dma;			/* Does the host controller use DMA? */
315 	u8 otg_port;			/* 0, or number of OTG/HNP port */
316 	unsigned is_b_host:1;		/* true during some HNP roleswitches */
317 	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
318 
319 	int devnum_next;		/* Next open device number in
320 					 * round-robin allocation */
321 
322 	struct usb_devmap devmap;	/* device address allocation map */
323 	struct usb_device *root_hub;	/* Root hub */
324 	struct list_head bus_list;	/* list of busses */
325 
326 	int bandwidth_allocated;	/* on this bus: how much of the time
327 					 * reserved for periodic (intr/iso)
328 					 * requests is used, on average?
329 					 * Units: microseconds/frame.
330 					 * Limits: Full/low speed reserve 90%,
331 					 * while high speed reserves 80%.
332 					 */
333 	int bandwidth_int_reqs;		/* number of Interrupt requests */
334 	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
335 
336 #ifdef CONFIG_USB_DEVICEFS
337 	struct dentry *usbfs_dentry;	/* usbfs dentry entry for the bus */
338 #endif
339 	struct device *dev;		/* device for this bus */
340 
341 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
342 	struct mon_bus *mon_bus;	/* non-null when associated */
343 	int monitored;			/* non-zero when monitored */
344 #endif
345 };
346 
347 /* ----------------------------------------------------------------------- */
348 
349 /* This is arbitrary.
350  * From USB 2.0 spec Table 11-13, offset 7, a hub can
351  * have up to 255 ports. The most yet reported is 10.
352  *
353  * Current Wireless USB host hardware (Intel i1480 for example) allows
354  * up to 22 devices to connect. Upcoming hardware might raise that
355  * limit. Because the arrays need to add a bit for hub status data, we
356  * do 31, so plus one evens out to four bytes.
357  */
358 #define USB_MAXCHILDREN		(31)
359 
360 struct usb_tt;
361 
362 /**
363  * struct usb_device - kernel's representation of a USB device
364  * @devnum: device number; address on a USB bus
365  * @devpath: device ID string for use in messages (e.g., /port/...)
366  * @state: device state: configured, not attached, etc.
367  * @speed: device speed: high/full/low (or error)
368  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
369  * @ttport: device port on that tt hub
370  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
371  * @parent: our hub, unless we're the root
372  * @bus: bus we're part of
373  * @ep0: endpoint 0 data (default control pipe)
374  * @dev: generic device interface
375  * @descriptor: USB device descriptor
376  * @config: all of the device's configs
377  * @actconfig: the active configuration
378  * @ep_in: array of IN endpoints
379  * @ep_out: array of OUT endpoints
380  * @rawdescriptors: raw descriptors for each config
381  * @bus_mA: Current available from the bus
382  * @portnum: parent port number (origin 1)
383  * @level: number of USB hub ancestors
384  * @can_submit: URBs may be submitted
385  * @discon_suspended: disconnected while suspended
386  * @persist_enabled:  USB_PERSIST enabled for this device
387  * @have_langid: whether string_langid is valid
388  * @authorized: policy has said we can use it;
389  *	(user space) policy determines if we authorize this device to be
390  *	used or not. By default, wired USB devices are authorized.
391  *	WUSB devices are not, until we authorize them from user space.
392  *	FIXME -- complete doc
393  * @authenticated: Crypto authentication passed
394  * @wusb: device is Wireless USB
395  * @string_langid: language ID for strings
396  * @product: iProduct string, if present (static)
397  * @manufacturer: iManufacturer string, if present (static)
398  * @serial: iSerialNumber string, if present (static)
399  * @filelist: usbfs files that are open to this device
400  * @usb_classdev: USB class device that was created for usbfs device
401  *	access from userspace
402  * @usbfs_dentry: usbfs dentry entry for the device
403  * @maxchild: number of ports if hub
404  * @children: child devices - USB devices that are attached to this hub
405  * @pm_usage_cnt: usage counter for autosuspend
406  * @quirks: quirks of the whole device
407  * @urbnum: number of URBs submitted for the whole device
408  * @active_duration: total time device is not suspended
409  * @autosuspend: for delayed autosuspends
410  * @autoresume: for autoresumes requested while in_interrupt
411  * @pm_mutex: protects PM operations
412  * @last_busy: time of last use
413  * @autosuspend_delay: in jiffies
414  * @connect_time: time device was first connected
415  * @auto_pm: autosuspend/resume in progress
416  * @do_remote_wakeup:  remote wakeup should be enabled
417  * @reset_resume: needs reset instead of resume
418  * @autosuspend_disabled: autosuspend disabled by the user
419  * @autoresume_disabled: autoresume disabled by the user
420  * @skip_sys_resume: skip the next system resume
421  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
422  *	specific data for the device.
423  *
424  * Notes:
425  * Usbcore drivers should not set usbdev->state directly.  Instead use
426  * usb_set_device_state().
427  */
428 struct usb_device {
429 	int		devnum;
430 	char		devpath [16];
431 	enum usb_device_state	state;
432 	enum usb_device_speed	speed;
433 
434 	struct usb_tt	*tt;
435 	int		ttport;
436 
437 	unsigned int toggle[2];
438 
439 	struct usb_device *parent;
440 	struct usb_bus *bus;
441 	struct usb_host_endpoint ep0;
442 
443 	struct device dev;
444 
445 	struct usb_device_descriptor descriptor;
446 	struct usb_host_config *config;
447 
448 	struct usb_host_config *actconfig;
449 	struct usb_host_endpoint *ep_in[16];
450 	struct usb_host_endpoint *ep_out[16];
451 
452 	char **rawdescriptors;
453 
454 	unsigned short bus_mA;
455 	u8 portnum;
456 	u8 level;
457 
458 	unsigned can_submit:1;
459 	unsigned discon_suspended:1;
460 	unsigned persist_enabled:1;
461 	unsigned have_langid:1;
462 	unsigned authorized:1;
463  	unsigned authenticated:1;
464 	unsigned wusb:1;
465 	int string_langid;
466 
467 	/* static strings from the device */
468 	char *product;
469 	char *manufacturer;
470 	char *serial;
471 
472 	struct list_head filelist;
473 #ifdef CONFIG_USB_DEVICE_CLASS
474 	struct device *usb_classdev;
475 #endif
476 #ifdef CONFIG_USB_DEVICEFS
477 	struct dentry *usbfs_dentry;
478 #endif
479 
480 	int maxchild;
481 	struct usb_device *children[USB_MAXCHILDREN];
482 
483 	int pm_usage_cnt;
484 	u32 quirks;
485 	atomic_t urbnum;
486 
487 	unsigned long active_duration;
488 
489 #ifdef CONFIG_PM
490 	struct delayed_work autosuspend;
491 	struct work_struct autoresume;
492 	struct mutex pm_mutex;
493 
494 	unsigned long last_busy;
495 	int autosuspend_delay;
496 	unsigned long connect_time;
497 
498 	unsigned auto_pm:1;
499 	unsigned do_remote_wakeup:1;
500 	unsigned reset_resume:1;
501 	unsigned autosuspend_disabled:1;
502 	unsigned autoresume_disabled:1;
503 	unsigned skip_sys_resume:1;
504 #endif
505 	struct wusb_dev *wusb_dev;
506 };
507 #define	to_usb_device(d) container_of(d, struct usb_device, dev)
508 
509 extern struct usb_device *usb_get_dev(struct usb_device *dev);
510 extern void usb_put_dev(struct usb_device *dev);
511 
512 /* USB device locking */
513 #define usb_lock_device(udev)		down(&(udev)->dev.sem)
514 #define usb_unlock_device(udev)		up(&(udev)->dev.sem)
515 #define usb_trylock_device(udev)	down_trylock(&(udev)->dev.sem)
516 extern int usb_lock_device_for_reset(struct usb_device *udev,
517 				     const struct usb_interface *iface);
518 
519 /* USB port reset for device reinitialization */
520 extern int usb_reset_device(struct usb_device *dev);
521 extern void usb_queue_reset_device(struct usb_interface *dev);
522 
523 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
524 
525 /* USB autosuspend and autoresume */
526 #ifdef CONFIG_USB_SUSPEND
527 extern int usb_autopm_set_interface(struct usb_interface *intf);
528 extern int usb_autopm_get_interface(struct usb_interface *intf);
529 extern void usb_autopm_put_interface(struct usb_interface *intf);
530 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
531 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
532 
usb_autopm_enable(struct usb_interface * intf)533 static inline void usb_autopm_enable(struct usb_interface *intf)
534 {
535 	intf->pm_usage_cnt = 0;
536 	usb_autopm_set_interface(intf);
537 }
538 
usb_autopm_disable(struct usb_interface * intf)539 static inline void usb_autopm_disable(struct usb_interface *intf)
540 {
541 	intf->pm_usage_cnt = 1;
542 	usb_autopm_set_interface(intf);
543 }
544 
usb_mark_last_busy(struct usb_device * udev)545 static inline void usb_mark_last_busy(struct usb_device *udev)
546 {
547 	udev->last_busy = jiffies;
548 }
549 
550 #else
551 
usb_autopm_set_interface(struct usb_interface * intf)552 static inline int usb_autopm_set_interface(struct usb_interface *intf)
553 { return 0; }
554 
usb_autopm_get_interface(struct usb_interface * intf)555 static inline int usb_autopm_get_interface(struct usb_interface *intf)
556 { return 0; }
557 
usb_autopm_get_interface_async(struct usb_interface * intf)558 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
559 { return 0; }
560 
usb_autopm_put_interface(struct usb_interface * intf)561 static inline void usb_autopm_put_interface(struct usb_interface *intf)
562 { }
usb_autopm_put_interface_async(struct usb_interface * intf)563 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
564 { }
usb_autopm_enable(struct usb_interface * intf)565 static inline void usb_autopm_enable(struct usb_interface *intf)
566 { }
usb_autopm_disable(struct usb_interface * intf)567 static inline void usb_autopm_disable(struct usb_interface *intf)
568 { }
usb_mark_last_busy(struct usb_device * udev)569 static inline void usb_mark_last_busy(struct usb_device *udev)
570 { }
571 #endif
572 
573 /*-------------------------------------------------------------------------*/
574 
575 /* for drivers using iso endpoints */
576 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
577 
578 /* used these for multi-interface device registration */
579 extern int usb_driver_claim_interface(struct usb_driver *driver,
580 			struct usb_interface *iface, void *priv);
581 
582 /**
583  * usb_interface_claimed - returns true iff an interface is claimed
584  * @iface: the interface being checked
585  *
586  * Returns true (nonzero) iff the interface is claimed, else false (zero).
587  * Callers must own the driver model's usb bus readlock.  So driver
588  * probe() entries don't need extra locking, but other call contexts
589  * may need to explicitly claim that lock.
590  *
591  */
usb_interface_claimed(struct usb_interface * iface)592 static inline int usb_interface_claimed(struct usb_interface *iface)
593 {
594 	return (iface->dev.driver != NULL);
595 }
596 
597 extern void usb_driver_release_interface(struct usb_driver *driver,
598 			struct usb_interface *iface);
599 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
600 					 const struct usb_device_id *id);
601 extern int usb_match_one_id(struct usb_interface *interface,
602 			    const struct usb_device_id *id);
603 
604 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
605 		int minor);
606 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
607 		unsigned ifnum);
608 extern struct usb_host_interface *usb_altnum_to_altsetting(
609 		const struct usb_interface *intf, unsigned int altnum);
610 
611 
612 /**
613  * usb_make_path - returns stable device path in the usb tree
614  * @dev: the device whose path is being constructed
615  * @buf: where to put the string
616  * @size: how big is "buf"?
617  *
618  * Returns length of the string (> 0) or negative if size was too small.
619  *
620  * This identifier is intended to be "stable", reflecting physical paths in
621  * hardware such as physical bus addresses for host controllers or ports on
622  * USB hubs.  That makes it stay the same until systems are physically
623  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
624  * controllers.  Adding and removing devices, including virtual root hubs
625  * in host controller driver modules, does not change these path identifers;
626  * neither does rebooting or re-enumerating.  These are more useful identifiers
627  * than changeable ("unstable") ones like bus numbers or device addresses.
628  *
629  * With a partial exception for devices connected to USB 2.0 root hubs, these
630  * identifiers are also predictable.  So long as the device tree isn't changed,
631  * plugging any USB device into a given hub port always gives it the same path.
632  * Because of the use of "companion" controllers, devices connected to ports on
633  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
634  * high speed, and a different one if they are full or low speed.
635  */
usb_make_path(struct usb_device * dev,char * buf,size_t size)636 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
637 {
638 	int actual;
639 	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
640 			  dev->devpath);
641 	return (actual >= (int)size) ? -1 : actual;
642 }
643 
644 /*-------------------------------------------------------------------------*/
645 
646 /**
647  * usb_endpoint_num - get the endpoint's number
648  * @epd: endpoint to be checked
649  *
650  * Returns @epd's number: 0 to 15.
651  */
usb_endpoint_num(const struct usb_endpoint_descriptor * epd)652 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
653 {
654 	return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
655 }
656 
657 /**
658  * usb_endpoint_type - get the endpoint's transfer type
659  * @epd: endpoint to be checked
660  *
661  * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
662  * to @epd's transfer type.
663  */
usb_endpoint_type(const struct usb_endpoint_descriptor * epd)664 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
665 {
666 	return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
667 }
668 
669 /**
670  * usb_endpoint_dir_in - check if the endpoint has IN direction
671  * @epd: endpoint to be checked
672  *
673  * Returns true if the endpoint is of type IN, otherwise it returns false.
674  */
usb_endpoint_dir_in(const struct usb_endpoint_descriptor * epd)675 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
676 {
677 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
678 }
679 
680 /**
681  * usb_endpoint_dir_out - check if the endpoint has OUT direction
682  * @epd: endpoint to be checked
683  *
684  * Returns true if the endpoint is of type OUT, otherwise it returns false.
685  */
usb_endpoint_dir_out(const struct usb_endpoint_descriptor * epd)686 static inline int usb_endpoint_dir_out(
687 				const struct usb_endpoint_descriptor *epd)
688 {
689 	return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
690 }
691 
692 /**
693  * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
694  * @epd: endpoint to be checked
695  *
696  * Returns true if the endpoint is of type bulk, otherwise it returns false.
697  */
usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor * epd)698 static inline int usb_endpoint_xfer_bulk(
699 				const struct usb_endpoint_descriptor *epd)
700 {
701 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
702 		USB_ENDPOINT_XFER_BULK);
703 }
704 
705 /**
706  * usb_endpoint_xfer_control - check if the endpoint has control transfer type
707  * @epd: endpoint to be checked
708  *
709  * Returns true if the endpoint is of type control, otherwise it returns false.
710  */
usb_endpoint_xfer_control(const struct usb_endpoint_descriptor * epd)711 static inline int usb_endpoint_xfer_control(
712 				const struct usb_endpoint_descriptor *epd)
713 {
714 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
715 		USB_ENDPOINT_XFER_CONTROL);
716 }
717 
718 /**
719  * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
720  * @epd: endpoint to be checked
721  *
722  * Returns true if the endpoint is of type interrupt, otherwise it returns
723  * false.
724  */
usb_endpoint_xfer_int(const struct usb_endpoint_descriptor * epd)725 static inline int usb_endpoint_xfer_int(
726 				const struct usb_endpoint_descriptor *epd)
727 {
728 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
729 		USB_ENDPOINT_XFER_INT);
730 }
731 
732 /**
733  * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
734  * @epd: endpoint to be checked
735  *
736  * Returns true if the endpoint is of type isochronous, otherwise it returns
737  * false.
738  */
usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor * epd)739 static inline int usb_endpoint_xfer_isoc(
740 				const struct usb_endpoint_descriptor *epd)
741 {
742 	return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
743 		USB_ENDPOINT_XFER_ISOC);
744 }
745 
746 /**
747  * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
748  * @epd: endpoint to be checked
749  *
750  * Returns true if the endpoint has bulk transfer type and IN direction,
751  * otherwise it returns false.
752  */
usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor * epd)753 static inline int usb_endpoint_is_bulk_in(
754 				const struct usb_endpoint_descriptor *epd)
755 {
756 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
757 }
758 
759 /**
760  * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
761  * @epd: endpoint to be checked
762  *
763  * Returns true if the endpoint has bulk transfer type and OUT direction,
764  * otherwise it returns false.
765  */
usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor * epd)766 static inline int usb_endpoint_is_bulk_out(
767 				const struct usb_endpoint_descriptor *epd)
768 {
769 	return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
770 }
771 
772 /**
773  * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
774  * @epd: endpoint to be checked
775  *
776  * Returns true if the endpoint has interrupt transfer type and IN direction,
777  * otherwise it returns false.
778  */
usb_endpoint_is_int_in(const struct usb_endpoint_descriptor * epd)779 static inline int usb_endpoint_is_int_in(
780 				const struct usb_endpoint_descriptor *epd)
781 {
782 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
783 }
784 
785 /**
786  * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
787  * @epd: endpoint to be checked
788  *
789  * Returns true if the endpoint has interrupt transfer type and OUT direction,
790  * otherwise it returns false.
791  */
usb_endpoint_is_int_out(const struct usb_endpoint_descriptor * epd)792 static inline int usb_endpoint_is_int_out(
793 				const struct usb_endpoint_descriptor *epd)
794 {
795 	return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
796 }
797 
798 /**
799  * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
800  * @epd: endpoint to be checked
801  *
802  * Returns true if the endpoint has isochronous transfer type and IN direction,
803  * otherwise it returns false.
804  */
usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor * epd)805 static inline int usb_endpoint_is_isoc_in(
806 				const struct usb_endpoint_descriptor *epd)
807 {
808 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
809 }
810 
811 /**
812  * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
813  * @epd: endpoint to be checked
814  *
815  * Returns true if the endpoint has isochronous transfer type and OUT direction,
816  * otherwise it returns false.
817  */
usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor * epd)818 static inline int usb_endpoint_is_isoc_out(
819 				const struct usb_endpoint_descriptor *epd)
820 {
821 	return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
822 }
823 
824 /*-------------------------------------------------------------------------*/
825 
826 #define USB_DEVICE_ID_MATCH_DEVICE \
827 		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
828 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
829 		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
830 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
831 		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
832 #define USB_DEVICE_ID_MATCH_DEV_INFO \
833 		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
834 		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
835 		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
836 #define USB_DEVICE_ID_MATCH_INT_INFO \
837 		(USB_DEVICE_ID_MATCH_INT_CLASS | \
838 		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
839 		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
840 
841 /**
842  * USB_DEVICE - macro used to describe a specific usb device
843  * @vend: the 16 bit USB Vendor ID
844  * @prod: the 16 bit USB Product ID
845  *
846  * This macro is used to create a struct usb_device_id that matches a
847  * specific device.
848  */
849 #define USB_DEVICE(vend,prod) \
850 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
851 	.idVendor = (vend), \
852 	.idProduct = (prod)
853 /**
854  * USB_DEVICE_VER - describe a specific usb device with a version range
855  * @vend: the 16 bit USB Vendor ID
856  * @prod: the 16 bit USB Product ID
857  * @lo: the bcdDevice_lo value
858  * @hi: the bcdDevice_hi value
859  *
860  * This macro is used to create a struct usb_device_id that matches a
861  * specific device, with a version range.
862  */
863 #define USB_DEVICE_VER(vend, prod, lo, hi) \
864 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
865 	.idVendor = (vend), \
866 	.idProduct = (prod), \
867 	.bcdDevice_lo = (lo), \
868 	.bcdDevice_hi = (hi)
869 
870 /**
871  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
872  * @vend: the 16 bit USB Vendor ID
873  * @prod: the 16 bit USB Product ID
874  * @pr: bInterfaceProtocol value
875  *
876  * This macro is used to create a struct usb_device_id that matches a
877  * specific interface protocol of devices.
878  */
879 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
880 	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
881 		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
882 	.idVendor = (vend), \
883 	.idProduct = (prod), \
884 	.bInterfaceProtocol = (pr)
885 
886 /**
887  * USB_DEVICE_INFO - macro used to describe a class of usb devices
888  * @cl: bDeviceClass value
889  * @sc: bDeviceSubClass value
890  * @pr: bDeviceProtocol value
891  *
892  * This macro is used to create a struct usb_device_id that matches a
893  * specific class of devices.
894  */
895 #define USB_DEVICE_INFO(cl, sc, pr) \
896 	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
897 	.bDeviceClass = (cl), \
898 	.bDeviceSubClass = (sc), \
899 	.bDeviceProtocol = (pr)
900 
901 /**
902  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
903  * @cl: bInterfaceClass value
904  * @sc: bInterfaceSubClass value
905  * @pr: bInterfaceProtocol value
906  *
907  * This macro is used to create a struct usb_device_id that matches a
908  * specific class of interfaces.
909  */
910 #define USB_INTERFACE_INFO(cl, sc, pr) \
911 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
912 	.bInterfaceClass = (cl), \
913 	.bInterfaceSubClass = (sc), \
914 	.bInterfaceProtocol = (pr)
915 
916 /**
917  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
918  * @vend: the 16 bit USB Vendor ID
919  * @prod: the 16 bit USB Product ID
920  * @cl: bInterfaceClass value
921  * @sc: bInterfaceSubClass value
922  * @pr: bInterfaceProtocol value
923  *
924  * This macro is used to create a struct usb_device_id that matches a
925  * specific device with a specific class of interfaces.
926  *
927  * This is especially useful when explicitly matching devices that have
928  * vendor specific bDeviceClass values, but standards-compliant interfaces.
929  */
930 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
931 	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
932 		| USB_DEVICE_ID_MATCH_DEVICE, \
933 	.idVendor = (vend), \
934 	.idProduct = (prod), \
935 	.bInterfaceClass = (cl), \
936 	.bInterfaceSubClass = (sc), \
937 	.bInterfaceProtocol = (pr)
938 
939 /* ----------------------------------------------------------------------- */
940 
941 /* Stuff for dynamic usb ids */
942 struct usb_dynids {
943 	spinlock_t lock;
944 	struct list_head list;
945 };
946 
947 struct usb_dynid {
948 	struct list_head node;
949 	struct usb_device_id id;
950 };
951 
952 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
953 				struct device_driver *driver,
954 				const char *buf, size_t count);
955 
956 /**
957  * struct usbdrv_wrap - wrapper for driver-model structure
958  * @driver: The driver-model core driver structure.
959  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
960  */
961 struct usbdrv_wrap {
962 	struct device_driver driver;
963 	int for_devices;
964 };
965 
966 /**
967  * struct usb_driver - identifies USB interface driver to usbcore
968  * @name: The driver name should be unique among USB drivers,
969  *	and should normally be the same as the module name.
970  * @probe: Called to see if the driver is willing to manage a particular
971  *	interface on a device.  If it is, probe returns zero and uses
972  *	usb_set_intfdata() to associate driver-specific data with the
973  *	interface.  It may also use usb_set_interface() to specify the
974  *	appropriate altsetting.  If unwilling to manage the interface,
975  *	return -ENODEV, if genuine IO errors occured, an appropriate
976  *	negative errno value.
977  * @disconnect: Called when the interface is no longer accessible, usually
978  *	because its device has been (or is being) disconnected or the
979  *	driver module is being unloaded.
980  * @ioctl: Used for drivers that want to talk to userspace through
981  *	the "usbfs" filesystem.  This lets devices provide ways to
982  *	expose information to user space regardless of where they
983  *	do (or don't) show up otherwise in the filesystem.
984  * @suspend: Called when the device is going to be suspended by the system.
985  * @resume: Called when the device is being resumed by the system.
986  * @reset_resume: Called when the suspended device has been reset instead
987  *	of being resumed.
988  * @pre_reset: Called by usb_reset_device() when the device
989  *	is about to be reset.
990  * @post_reset: Called by usb_reset_device() after the device
991  *	has been reset
992  * @id_table: USB drivers use ID table to support hotplugging.
993  *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
994  *	or your driver's probe function will never get called.
995  * @dynids: used internally to hold the list of dynamically added device
996  *	ids for this driver.
997  * @drvwrap: Driver-model core structure wrapper.
998  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
999  *	added to this driver by preventing the sysfs file from being created.
1000  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1001  *	for interfaces bound to this driver.
1002  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1003  *	endpoints before calling the driver's disconnect method.
1004  *
1005  * USB interface drivers must provide a name, probe() and disconnect()
1006  * methods, and an id_table.  Other driver fields are optional.
1007  *
1008  * The id_table is used in hotplugging.  It holds a set of descriptors,
1009  * and specialized data may be associated with each entry.  That table
1010  * is used by both user and kernel mode hotplugging support.
1011  *
1012  * The probe() and disconnect() methods are called in a context where
1013  * they can sleep, but they should avoid abusing the privilege.  Most
1014  * work to connect to a device should be done when the device is opened,
1015  * and undone at the last close.  The disconnect code needs to address
1016  * concurrency issues with respect to open() and close() methods, as
1017  * well as forcing all pending I/O requests to complete (by unlinking
1018  * them as necessary, and blocking until the unlinks complete).
1019  */
1020 struct usb_driver {
1021 	const char *name;
1022 
1023 	int (*probe) (struct usb_interface *intf,
1024 		      const struct usb_device_id *id);
1025 
1026 	void (*disconnect) (struct usb_interface *intf);
1027 
1028 	int (*ioctl) (struct usb_interface *intf, unsigned int code,
1029 			void *buf);
1030 
1031 	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1032 	int (*resume) (struct usb_interface *intf);
1033 	int (*reset_resume)(struct usb_interface *intf);
1034 
1035 	int (*pre_reset)(struct usb_interface *intf);
1036 	int (*post_reset)(struct usb_interface *intf);
1037 
1038 	const struct usb_device_id *id_table;
1039 
1040 	struct usb_dynids dynids;
1041 	struct usbdrv_wrap drvwrap;
1042 	unsigned int no_dynamic_id:1;
1043 	unsigned int supports_autosuspend:1;
1044 	unsigned int soft_unbind:1;
1045 };
1046 #define	to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1047 
1048 /**
1049  * struct usb_device_driver - identifies USB device driver to usbcore
1050  * @name: The driver name should be unique among USB drivers,
1051  *	and should normally be the same as the module name.
1052  * @probe: Called to see if the driver is willing to manage a particular
1053  *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1054  *	to associate driver-specific data with the device.  If unwilling
1055  *	to manage the device, return a negative errno value.
1056  * @disconnect: Called when the device is no longer accessible, usually
1057  *	because it has been (or is being) disconnected or the driver's
1058  *	module is being unloaded.
1059  * @suspend: Called when the device is going to be suspended by the system.
1060  * @resume: Called when the device is being resumed by the system.
1061  * @drvwrap: Driver-model core structure wrapper.
1062  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1063  *	for devices bound to this driver.
1064  *
1065  * USB drivers must provide all the fields listed above except drvwrap.
1066  */
1067 struct usb_device_driver {
1068 	const char *name;
1069 
1070 	int (*probe) (struct usb_device *udev);
1071 	void (*disconnect) (struct usb_device *udev);
1072 
1073 	int (*suspend) (struct usb_device *udev, pm_message_t message);
1074 	int (*resume) (struct usb_device *udev, pm_message_t message);
1075 	struct usbdrv_wrap drvwrap;
1076 	unsigned int supports_autosuspend:1;
1077 };
1078 #define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1079 		drvwrap.driver)
1080 
1081 extern struct bus_type usb_bus_type;
1082 
1083 /**
1084  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1085  * @name: the usb class device name for this driver.  Will show up in sysfs.
1086  * @fops: pointer to the struct file_operations of this driver.
1087  * @minor_base: the start of the minor range for this driver.
1088  *
1089  * This structure is used for the usb_register_dev() and
1090  * usb_unregister_dev() functions, to consolidate a number of the
1091  * parameters used for them.
1092  */
1093 struct usb_class_driver {
1094 	char *name;
1095 	const struct file_operations *fops;
1096 	int minor_base;
1097 };
1098 
1099 /*
1100  * use these in module_init()/module_exit()
1101  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1102  */
1103 extern int usb_register_driver(struct usb_driver *, struct module *,
1104 			       const char *);
usb_register(struct usb_driver * driver)1105 static inline int usb_register(struct usb_driver *driver)
1106 {
1107 	return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1108 }
1109 extern void usb_deregister(struct usb_driver *);
1110 
1111 extern int usb_register_device_driver(struct usb_device_driver *,
1112 			struct module *);
1113 extern void usb_deregister_device_driver(struct usb_device_driver *);
1114 
1115 extern int usb_register_dev(struct usb_interface *intf,
1116 			    struct usb_class_driver *class_driver);
1117 extern void usb_deregister_dev(struct usb_interface *intf,
1118 			       struct usb_class_driver *class_driver);
1119 
1120 extern int usb_disabled(void);
1121 
1122 /* ----------------------------------------------------------------------- */
1123 
1124 /*
1125  * URB support, for asynchronous request completions
1126  */
1127 
1128 /*
1129  * urb->transfer_flags:
1130  *
1131  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1132  */
1133 #define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1134 #define URB_ISO_ASAP		0x0002	/* iso-only, urb->start_frame
1135 					 * ignored */
1136 #define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1137 #define URB_NO_SETUP_DMA_MAP	0x0008	/* urb->setup_dma valid on submit */
1138 #define URB_NO_FSBR		0x0020	/* UHCI-specific */
1139 #define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1140 #define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1141 					 * needed */
1142 #define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1143 
1144 #define URB_DIR_IN		0x0200	/* Transfer from device to host */
1145 #define URB_DIR_OUT		0
1146 #define URB_DIR_MASK		URB_DIR_IN
1147 
1148 struct usb_iso_packet_descriptor {
1149 	unsigned int offset;
1150 	unsigned int length;		/* expected length */
1151 	unsigned int actual_length;
1152 	int status;
1153 };
1154 
1155 struct urb;
1156 
1157 struct usb_anchor {
1158 	struct list_head urb_list;
1159 	wait_queue_head_t wait;
1160 	spinlock_t lock;
1161 	unsigned int poisoned:1;
1162 };
1163 
init_usb_anchor(struct usb_anchor * anchor)1164 static inline void init_usb_anchor(struct usb_anchor *anchor)
1165 {
1166 	INIT_LIST_HEAD(&anchor->urb_list);
1167 	init_waitqueue_head(&anchor->wait);
1168 	spin_lock_init(&anchor->lock);
1169 }
1170 
1171 typedef void (*usb_complete_t)(struct urb *);
1172 
1173 /**
1174  * struct urb - USB Request Block
1175  * @urb_list: For use by current owner of the URB.
1176  * @anchor_list: membership in the list of an anchor
1177  * @anchor: to anchor URBs to a common mooring
1178  * @ep: Points to the endpoint's data structure.  Will eventually
1179  *	replace @pipe.
1180  * @pipe: Holds endpoint number, direction, type, and more.
1181  *	Create these values with the eight macros available;
1182  *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1183  *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1184  *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1185  *	numbers range from zero to fifteen.  Note that "in" endpoint two
1186  *	is a different endpoint (and pipe) from "out" endpoint two.
1187  *	The current configuration controls the existence, type, and
1188  *	maximum packet size of any given endpoint.
1189  * @dev: Identifies the USB device to perform the request.
1190  * @status: This is read in non-iso completion functions to get the
1191  *	status of the particular request.  ISO requests only use it
1192  *	to tell whether the URB was unlinked; detailed status for
1193  *	each frame is in the fields of the iso_frame-desc.
1194  * @transfer_flags: A variety of flags may be used to affect how URB
1195  *	submission, unlinking, or operation are handled.  Different
1196  *	kinds of URB can use different flags.
1197  * @transfer_buffer:  This identifies the buffer to (or from) which
1198  * 	the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1199  *	is set).  This buffer must be suitable for DMA; allocate it with
1200  *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1201  *	of this buffer will be modified.  This buffer is used for the data
1202  *	stage of control transfers.
1203  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1204  *	the device driver is saying that it provided this DMA address,
1205  *	which the host controller driver should use in preference to the
1206  *	transfer_buffer.
1207  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1208  *	be broken up into chunks according to the current maximum packet
1209  *	size for the endpoint, which is a function of the configuration
1210  *	and is encoded in the pipe.  When the length is zero, neither
1211  *	transfer_buffer nor transfer_dma is used.
1212  * @actual_length: This is read in non-iso completion functions, and
1213  *	it tells how many bytes (out of transfer_buffer_length) were
1214  *	transferred.  It will normally be the same as requested, unless
1215  *	either an error was reported or a short read was performed.
1216  *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1217  *	short reads be reported as errors.
1218  * @setup_packet: Only used for control transfers, this points to eight bytes
1219  *	of setup data.  Control transfers always start by sending this data
1220  *	to the device.  Then transfer_buffer is read or written, if needed.
1221  * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1222  *	device driver has provided this DMA address for the setup packet.
1223  *	The host controller driver should use this in preference to
1224  *	setup_packet.
1225  * @start_frame: Returns the initial frame for isochronous transfers.
1226  * @number_of_packets: Lists the number of ISO transfer buffers.
1227  * @interval: Specifies the polling interval for interrupt or isochronous
1228  *	transfers.  The units are frames (milliseconds) for for full and low
1229  *	speed devices, and microframes (1/8 millisecond) for highspeed ones.
1230  * @error_count: Returns the number of ISO transfers that reported errors.
1231  * @context: For use in completion functions.  This normally points to
1232  *	request-specific driver context.
1233  * @complete: Completion handler. This URB is passed as the parameter to the
1234  *	completion function.  The completion function may then do what
1235  *	it likes with the URB, including resubmitting or freeing it.
1236  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1237  *	collect the transfer status for each buffer.
1238  *
1239  * This structure identifies USB transfer requests.  URBs must be allocated by
1240  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1241  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1242  * are submitted using usb_submit_urb(), and pending requests may be canceled
1243  * using usb_unlink_urb() or usb_kill_urb().
1244  *
1245  * Data Transfer Buffers:
1246  *
1247  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1248  * taken from the general page pool.  That is provided by transfer_buffer
1249  * (control requests also use setup_packet), and host controller drivers
1250  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1251  * mapping operations can be expensive on some platforms (perhaps using a dma
1252  * bounce buffer or talking to an IOMMU),
1253  * although they're cheap on commodity x86 and ppc hardware.
1254  *
1255  * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1256  * which tell the host controller driver that no such mapping is needed since
1257  * the device driver is DMA-aware.  For example, a device driver might
1258  * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1259  * When these transfer flags are provided, host controller drivers will
1260  * attempt to use the dma addresses found in the transfer_dma and/or
1261  * setup_dma fields rather than determining a dma address themselves.  (Note
1262  * that transfer_buffer and setup_packet must still be set because not all
1263  * host controllers use DMA, nor do virtual root hubs).
1264  *
1265  * Initialization:
1266  *
1267  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1268  * zero), and complete fields.  All URBs must also initialize
1269  * transfer_buffer and transfer_buffer_length.  They may provide the
1270  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1271  * to be treated as errors; that flag is invalid for write requests.
1272  *
1273  * Bulk URBs may
1274  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1275  * should always terminate with a short packet, even if it means adding an
1276  * extra zero length packet.
1277  *
1278  * Control URBs must provide a setup_packet.  The setup_packet and
1279  * transfer_buffer may each be mapped for DMA or not, independently of
1280  * the other.  The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1281  * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1282  * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1283  *
1284  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1285  * or, for highspeed devices, 125 microsecond units)
1286  * to poll for transfers.  After the URB has been submitted, the interval
1287  * field reflects how the transfer was actually scheduled.
1288  * The polling interval may be more frequent than requested.
1289  * For example, some controllers have a maximum interval of 32 milliseconds,
1290  * while others support intervals of up to 1024 milliseconds.
1291  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1292  * endpoints, as well as high speed interrupt endpoints, the encoding of
1293  * the transfer interval in the endpoint descriptor is logarithmic.
1294  * Device drivers must convert that value to linear units themselves.)
1295  *
1296  * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1297  * the host controller to schedule the transfer as soon as bandwidth
1298  * utilization allows, and then set start_frame to reflect the actual frame
1299  * selected during submission.  Otherwise drivers must specify the start_frame
1300  * and handle the case where the transfer can't begin then.  However, drivers
1301  * won't know how bandwidth is currently allocated, and while they can
1302  * find the current frame using usb_get_current_frame_number () they can't
1303  * know the range for that frame number.  (Ranges for frame counter values
1304  * are HC-specific, and can go from 256 to 65536 frames from "now".)
1305  *
1306  * Isochronous URBs have a different data transfer model, in part because
1307  * the quality of service is only "best effort".  Callers provide specially
1308  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1309  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1310  * URBs are normally queued, submitted by drivers to arrange that
1311  * transfers are at least double buffered, and then explicitly resubmitted
1312  * in completion handlers, so
1313  * that data (such as audio or video) streams at as constant a rate as the
1314  * host controller scheduler can support.
1315  *
1316  * Completion Callbacks:
1317  *
1318  * The completion callback is made in_interrupt(), and one of the first
1319  * things that a completion handler should do is check the status field.
1320  * The status field is provided for all URBs.  It is used to report
1321  * unlinked URBs, and status for all non-ISO transfers.  It should not
1322  * be examined before the URB is returned to the completion handler.
1323  *
1324  * The context field is normally used to link URBs back to the relevant
1325  * driver or request state.
1326  *
1327  * When the completion callback is invoked for non-isochronous URBs, the
1328  * actual_length field tells how many bytes were transferred.  This field
1329  * is updated even when the URB terminated with an error or was unlinked.
1330  *
1331  * ISO transfer status is reported in the status and actual_length fields
1332  * of the iso_frame_desc array, and the number of errors is reported in
1333  * error_count.  Completion callbacks for ISO transfers will normally
1334  * (re)submit URBs to ensure a constant transfer rate.
1335  *
1336  * Note that even fields marked "public" should not be touched by the driver
1337  * when the urb is owned by the hcd, that is, since the call to
1338  * usb_submit_urb() till the entry into the completion routine.
1339  */
1340 struct urb {
1341 	/* private: usb core and host controller only fields in the urb */
1342 	struct kref kref;		/* reference count of the URB */
1343 	void *hcpriv;			/* private data for host controller */
1344 	atomic_t use_count;		/* concurrent submissions counter */
1345 	atomic_t reject;		/* submissions will fail */
1346 	int unlinked;			/* unlink error code */
1347 
1348 	/* public: documented fields in the urb that can be used by drivers */
1349 	struct list_head urb_list;	/* list head for use by the urb's
1350 					 * current owner */
1351 	struct list_head anchor_list;	/* the URB may be anchored */
1352 	struct usb_anchor *anchor;
1353 	struct usb_device *dev; 	/* (in) pointer to associated device */
1354 	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1355 	unsigned int pipe;		/* (in) pipe information */
1356 	int status;			/* (return) non-ISO status */
1357 	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1358 	void *transfer_buffer;		/* (in) associated data buffer */
1359 	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1360 	int transfer_buffer_length;	/* (in) data buffer length */
1361 	int actual_length;		/* (return) actual transfer length */
1362 	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1363 	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1364 	int start_frame;		/* (modify) start frame (ISO) */
1365 	int number_of_packets;		/* (in) number of ISO packets */
1366 	int interval;			/* (modify) transfer interval
1367 					 * (INT/ISO) */
1368 	int error_count;		/* (return) number of ISO errors */
1369 	void *context;			/* (in) context for completion */
1370 	usb_complete_t complete;	/* (in) completion routine */
1371 	struct usb_iso_packet_descriptor iso_frame_desc[0];
1372 					/* (in) ISO ONLY */
1373 };
1374 
1375 /* ----------------------------------------------------------------------- */
1376 
1377 /**
1378  * usb_fill_control_urb - initializes a control urb
1379  * @urb: pointer to the urb to initialize.
1380  * @dev: pointer to the struct usb_device for this urb.
1381  * @pipe: the endpoint pipe
1382  * @setup_packet: pointer to the setup_packet buffer
1383  * @transfer_buffer: pointer to the transfer buffer
1384  * @buffer_length: length of the transfer buffer
1385  * @complete_fn: pointer to the usb_complete_t function
1386  * @context: what to set the urb context to.
1387  *
1388  * Initializes a control urb with the proper information needed to submit
1389  * it to a device.
1390  */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1391 static inline void usb_fill_control_urb(struct urb *urb,
1392 					struct usb_device *dev,
1393 					unsigned int pipe,
1394 					unsigned char *setup_packet,
1395 					void *transfer_buffer,
1396 					int buffer_length,
1397 					usb_complete_t complete_fn,
1398 					void *context)
1399 {
1400 	urb->dev = dev;
1401 	urb->pipe = pipe;
1402 	urb->setup_packet = setup_packet;
1403 	urb->transfer_buffer = transfer_buffer;
1404 	urb->transfer_buffer_length = buffer_length;
1405 	urb->complete = complete_fn;
1406 	urb->context = context;
1407 }
1408 
1409 /**
1410  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1411  * @urb: pointer to the urb to initialize.
1412  * @dev: pointer to the struct usb_device for this urb.
1413  * @pipe: the endpoint pipe
1414  * @transfer_buffer: pointer to the transfer buffer
1415  * @buffer_length: length of the transfer buffer
1416  * @complete_fn: pointer to the usb_complete_t function
1417  * @context: what to set the urb context to.
1418  *
1419  * Initializes a bulk urb with the proper information needed to submit it
1420  * to a device.
1421  */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1422 static inline void usb_fill_bulk_urb(struct urb *urb,
1423 				     struct usb_device *dev,
1424 				     unsigned int pipe,
1425 				     void *transfer_buffer,
1426 				     int buffer_length,
1427 				     usb_complete_t complete_fn,
1428 				     void *context)
1429 {
1430 	urb->dev = dev;
1431 	urb->pipe = pipe;
1432 	urb->transfer_buffer = transfer_buffer;
1433 	urb->transfer_buffer_length = buffer_length;
1434 	urb->complete = complete_fn;
1435 	urb->context = context;
1436 }
1437 
1438 /**
1439  * usb_fill_int_urb - macro to help initialize a interrupt urb
1440  * @urb: pointer to the urb to initialize.
1441  * @dev: pointer to the struct usb_device for this urb.
1442  * @pipe: the endpoint pipe
1443  * @transfer_buffer: pointer to the transfer buffer
1444  * @buffer_length: length of the transfer buffer
1445  * @complete_fn: pointer to the usb_complete_t function
1446  * @context: what to set the urb context to.
1447  * @interval: what to set the urb interval to, encoded like
1448  *	the endpoint descriptor's bInterval value.
1449  *
1450  * Initializes a interrupt urb with the proper information needed to submit
1451  * it to a device.
1452  * Note that high speed interrupt endpoints use a logarithmic encoding of
1453  * the endpoint interval, and express polling intervals in microframes
1454  * (eight per millisecond) rather than in frames (one per millisecond).
1455  */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1456 static inline void usb_fill_int_urb(struct urb *urb,
1457 				    struct usb_device *dev,
1458 				    unsigned int pipe,
1459 				    void *transfer_buffer,
1460 				    int buffer_length,
1461 				    usb_complete_t complete_fn,
1462 				    void *context,
1463 				    int interval)
1464 {
1465 	urb->dev = dev;
1466 	urb->pipe = pipe;
1467 	urb->transfer_buffer = transfer_buffer;
1468 	urb->transfer_buffer_length = buffer_length;
1469 	urb->complete = complete_fn;
1470 	urb->context = context;
1471 	if (dev->speed == USB_SPEED_HIGH)
1472 		urb->interval = 1 << (interval - 1);
1473 	else
1474 		urb->interval = interval;
1475 	urb->start_frame = -1;
1476 }
1477 
1478 extern void usb_init_urb(struct urb *urb);
1479 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1480 extern void usb_free_urb(struct urb *urb);
1481 #define usb_put_urb usb_free_urb
1482 extern struct urb *usb_get_urb(struct urb *urb);
1483 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1484 extern int usb_unlink_urb(struct urb *urb);
1485 extern void usb_kill_urb(struct urb *urb);
1486 extern void usb_poison_urb(struct urb *urb);
1487 extern void usb_unpoison_urb(struct urb *urb);
1488 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1489 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1490 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1491 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1492 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1493 extern void usb_unanchor_urb(struct urb *urb);
1494 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1495 					 unsigned int timeout);
1496 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1497 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1498 extern int usb_anchor_empty(struct usb_anchor *anchor);
1499 
1500 /**
1501  * usb_urb_dir_in - check if an URB describes an IN transfer
1502  * @urb: URB to be checked
1503  *
1504  * Returns 1 if @urb describes an IN transfer (device-to-host),
1505  * otherwise 0.
1506  */
usb_urb_dir_in(struct urb * urb)1507 static inline int usb_urb_dir_in(struct urb *urb)
1508 {
1509 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1510 }
1511 
1512 /**
1513  * usb_urb_dir_out - check if an URB describes an OUT transfer
1514  * @urb: URB to be checked
1515  *
1516  * Returns 1 if @urb describes an OUT transfer (host-to-device),
1517  * otherwise 0.
1518  */
usb_urb_dir_out(struct urb * urb)1519 static inline int usb_urb_dir_out(struct urb *urb)
1520 {
1521 	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1522 }
1523 
1524 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1525 	gfp_t mem_flags, dma_addr_t *dma);
1526 void usb_buffer_free(struct usb_device *dev, size_t size,
1527 	void *addr, dma_addr_t dma);
1528 
1529 #if 0
1530 struct urb *usb_buffer_map(struct urb *urb);
1531 void usb_buffer_dmasync(struct urb *urb);
1532 void usb_buffer_unmap(struct urb *urb);
1533 #endif
1534 
1535 struct scatterlist;
1536 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1537 		      struct scatterlist *sg, int nents);
1538 #if 0
1539 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1540 			   struct scatterlist *sg, int n_hw_ents);
1541 #endif
1542 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1543 			 struct scatterlist *sg, int n_hw_ents);
1544 
1545 /*-------------------------------------------------------------------*
1546  *                         SYNCHRONOUS CALL SUPPORT                  *
1547  *-------------------------------------------------------------------*/
1548 
1549 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1550 	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1551 	void *data, __u16 size, int timeout);
1552 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1553 	void *data, int len, int *actual_length, int timeout);
1554 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1555 	void *data, int len, int *actual_length,
1556 	int timeout);
1557 
1558 /* wrappers around usb_control_msg() for the most common standard requests */
1559 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1560 	unsigned char descindex, void *buf, int size);
1561 extern int usb_get_status(struct usb_device *dev,
1562 	int type, int target, void *data);
1563 extern int usb_string(struct usb_device *dev, int index,
1564 	char *buf, size_t size);
1565 
1566 /* wrappers that also update important state inside usbcore */
1567 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1568 extern int usb_reset_configuration(struct usb_device *dev);
1569 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1570 
1571 /* this request isn't really synchronous, but it belongs with the others */
1572 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1573 
1574 /*
1575  * timeouts, in milliseconds, used for sending/receiving control messages
1576  * they typically complete within a few frames (msec) after they're issued
1577  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1578  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1579  */
1580 #define USB_CTRL_GET_TIMEOUT	5000
1581 #define USB_CTRL_SET_TIMEOUT	5000
1582 
1583 
1584 /**
1585  * struct usb_sg_request - support for scatter/gather I/O
1586  * @status: zero indicates success, else negative errno
1587  * @bytes: counts bytes transferred.
1588  *
1589  * These requests are initialized using usb_sg_init(), and then are used
1590  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1591  * members of the request object aren't for driver access.
1592  *
1593  * The status and bytecount values are valid only after usb_sg_wait()
1594  * returns.  If the status is zero, then the bytecount matches the total
1595  * from the request.
1596  *
1597  * After an error completion, drivers may need to clear a halt condition
1598  * on the endpoint.
1599  */
1600 struct usb_sg_request {
1601 	int			status;
1602 	size_t			bytes;
1603 
1604 	/*
1605 	 * members below are private: to usbcore,
1606 	 * and are not provided for driver access!
1607 	 */
1608 	spinlock_t		lock;
1609 
1610 	struct usb_device	*dev;
1611 	int			pipe;
1612 	struct scatterlist	*sg;
1613 	int			nents;
1614 
1615 	int			entries;
1616 	struct urb		**urbs;
1617 
1618 	int			count;
1619 	struct completion	complete;
1620 };
1621 
1622 int usb_sg_init(
1623 	struct usb_sg_request	*io,
1624 	struct usb_device	*dev,
1625 	unsigned		pipe,
1626 	unsigned		period,
1627 	struct scatterlist	*sg,
1628 	int			nents,
1629 	size_t			length,
1630 	gfp_t			mem_flags
1631 );
1632 void usb_sg_cancel(struct usb_sg_request *io);
1633 void usb_sg_wait(struct usb_sg_request *io);
1634 
1635 
1636 /* ----------------------------------------------------------------------- */
1637 
1638 /*
1639  * For various legacy reasons, Linux has a small cookie that's paired with
1640  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1641  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1642  * an unsigned int encoded as:
1643  *
1644  *  - direction:	bit 7		(0 = Host-to-Device [Out],
1645  *					 1 = Device-to-Host [In] ...
1646  *					like endpoint bEndpointAddress)
1647  *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1648  *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1649  *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1650  *					 10 = control, 11 = bulk)
1651  *
1652  * Given the device address and endpoint descriptor, pipes are redundant.
1653  */
1654 
1655 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1656 /* (yet ... they're the values used by usbfs) */
1657 #define PIPE_ISOCHRONOUS		0
1658 #define PIPE_INTERRUPT			1
1659 #define PIPE_CONTROL			2
1660 #define PIPE_BULK			3
1661 
1662 #define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1663 #define usb_pipeout(pipe)	(!usb_pipein(pipe))
1664 
1665 #define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1666 #define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1667 
1668 #define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1669 #define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1670 #define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1671 #define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1672 #define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1673 
1674 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1675 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1676 #define	usb_dotoggle(dev, ep, out)  ((dev)->toggle[out] ^= (1 << (ep)))
1677 #define usb_settoggle(dev, ep, out, bit) \
1678 		((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1679 		 ((bit) << (ep)))
1680 
1681 
__create_pipe(struct usb_device * dev,unsigned int endpoint)1682 static inline unsigned int __create_pipe(struct usb_device *dev,
1683 		unsigned int endpoint)
1684 {
1685 	return (dev->devnum << 8) | (endpoint << 15);
1686 }
1687 
1688 /* Create various pipes... */
1689 #define usb_sndctrlpipe(dev,endpoint)	\
1690 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1691 #define usb_rcvctrlpipe(dev,endpoint)	\
1692 	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1693 #define usb_sndisocpipe(dev,endpoint)	\
1694 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1695 #define usb_rcvisocpipe(dev,endpoint)	\
1696 	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1697 #define usb_sndbulkpipe(dev,endpoint)	\
1698 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1699 #define usb_rcvbulkpipe(dev,endpoint)	\
1700 	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1701 #define usb_sndintpipe(dev,endpoint)	\
1702 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1703 #define usb_rcvintpipe(dev,endpoint)	\
1704 	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1705 
1706 /*-------------------------------------------------------------------------*/
1707 
1708 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1709 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1710 {
1711 	struct usb_host_endpoint	*ep;
1712 	unsigned			epnum = usb_pipeendpoint(pipe);
1713 
1714 	if (is_out) {
1715 		WARN_ON(usb_pipein(pipe));
1716 		ep = udev->ep_out[epnum];
1717 	} else {
1718 		WARN_ON(usb_pipeout(pipe));
1719 		ep = udev->ep_in[epnum];
1720 	}
1721 	if (!ep)
1722 		return 0;
1723 
1724 	/* NOTE:  only 0x07ff bits are for packet size... */
1725 	return le16_to_cpu(ep->desc.wMaxPacketSize);
1726 }
1727 
1728 /* ----------------------------------------------------------------------- */
1729 
1730 /* Events from the usb core */
1731 #define USB_DEVICE_ADD		0x0001
1732 #define USB_DEVICE_REMOVE	0x0002
1733 #define USB_BUS_ADD		0x0003
1734 #define USB_BUS_REMOVE		0x0004
1735 extern void usb_register_notify(struct notifier_block *nb);
1736 extern void usb_unregister_notify(struct notifier_block *nb);
1737 
1738 #ifdef DEBUG
1739 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1740 	__FILE__ , ## arg)
1741 #else
1742 #define dbg(format, arg...) do {} while (0)
1743 #endif
1744 
1745 #define err(format, arg...) printk(KERN_ERR KBUILD_MODNAME ": " \
1746 	format "\n" , ## arg)
1747 
1748 #endif  /* __KERNEL__ */
1749 
1750 #endif
1751