1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
32 *
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
51 *
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
55 *
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57 *
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
64 *
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
67 *
68 * namespaces support
69 * OpenVZ, SWsoft Inc.
70 * Pavel Emelianov <xemul@openvz.org>
71 */
72
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86
87 #include <asm/uaccess.h>
88 #include "util.h"
89
90 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
91
92 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
93 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
94
95 static int newary(struct ipc_namespace *, struct ipc_params *);
96 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
97 #ifdef CONFIG_PROC_FS
98 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
99 #endif
100
101 #define SEMMSL_FAST 256 /* 512 bytes on stack */
102 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
103
104 /*
105 * linked list protection:
106 * sem_undo.id_next,
107 * sem_array.sem_pending{,last},
108 * sem_array.sem_undo: sem_lock() for read/write
109 * sem_undo.proc_next: only "current" is allowed to read/write that field.
110 *
111 */
112
113 #define sc_semmsl sem_ctls[0]
114 #define sc_semmns sem_ctls[1]
115 #define sc_semopm sem_ctls[2]
116 #define sc_semmni sem_ctls[3]
117
sem_init_ns(struct ipc_namespace * ns)118 void sem_init_ns(struct ipc_namespace *ns)
119 {
120 ns->sc_semmsl = SEMMSL;
121 ns->sc_semmns = SEMMNS;
122 ns->sc_semopm = SEMOPM;
123 ns->sc_semmni = SEMMNI;
124 ns->used_sems = 0;
125 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
126 }
127
128 #ifdef CONFIG_IPC_NS
sem_exit_ns(struct ipc_namespace * ns)129 void sem_exit_ns(struct ipc_namespace *ns)
130 {
131 free_ipcs(ns, &sem_ids(ns), freeary);
132 }
133 #endif
134
sem_init(void)135 void __init sem_init (void)
136 {
137 sem_init_ns(&init_ipc_ns);
138 ipc_init_proc_interface("sysvipc/sem",
139 " key semid perms nsems uid gid cuid cgid otime ctime\n",
140 IPC_SEM_IDS, sysvipc_sem_proc_show);
141 }
142
143 /*
144 * sem_lock_(check_) routines are called in the paths where the rw_mutex
145 * is not held.
146 */
sem_lock(struct ipc_namespace * ns,int id)147 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
148 {
149 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
150
151 if (IS_ERR(ipcp))
152 return (struct sem_array *)ipcp;
153
154 return container_of(ipcp, struct sem_array, sem_perm);
155 }
156
sem_lock_check(struct ipc_namespace * ns,int id)157 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
158 int id)
159 {
160 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
161
162 if (IS_ERR(ipcp))
163 return (struct sem_array *)ipcp;
164
165 return container_of(ipcp, struct sem_array, sem_perm);
166 }
167
sem_lock_and_putref(struct sem_array * sma)168 static inline void sem_lock_and_putref(struct sem_array *sma)
169 {
170 ipc_lock_by_ptr(&sma->sem_perm);
171 ipc_rcu_putref(sma);
172 }
173
sem_getref_and_unlock(struct sem_array * sma)174 static inline void sem_getref_and_unlock(struct sem_array *sma)
175 {
176 ipc_rcu_getref(sma);
177 ipc_unlock(&(sma)->sem_perm);
178 }
179
sem_putref(struct sem_array * sma)180 static inline void sem_putref(struct sem_array *sma)
181 {
182 ipc_lock_by_ptr(&sma->sem_perm);
183 ipc_rcu_putref(sma);
184 ipc_unlock(&(sma)->sem_perm);
185 }
186
sem_rmid(struct ipc_namespace * ns,struct sem_array * s)187 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
188 {
189 ipc_rmid(&sem_ids(ns), &s->sem_perm);
190 }
191
192 /*
193 * Lockless wakeup algorithm:
194 * Without the check/retry algorithm a lockless wakeup is possible:
195 * - queue.status is initialized to -EINTR before blocking.
196 * - wakeup is performed by
197 * * unlinking the queue entry from sma->sem_pending
198 * * setting queue.status to IN_WAKEUP
199 * This is the notification for the blocked thread that a
200 * result value is imminent.
201 * * call wake_up_process
202 * * set queue.status to the final value.
203 * - the previously blocked thread checks queue.status:
204 * * if it's IN_WAKEUP, then it must wait until the value changes
205 * * if it's not -EINTR, then the operation was completed by
206 * update_queue. semtimedop can return queue.status without
207 * performing any operation on the sem array.
208 * * otherwise it must acquire the spinlock and check what's up.
209 *
210 * The two-stage algorithm is necessary to protect against the following
211 * races:
212 * - if queue.status is set after wake_up_process, then the woken up idle
213 * thread could race forward and try (and fail) to acquire sma->lock
214 * before update_queue had a chance to set queue.status
215 * - if queue.status is written before wake_up_process and if the
216 * blocked process is woken up by a signal between writing
217 * queue.status and the wake_up_process, then the woken up
218 * process could return from semtimedop and die by calling
219 * sys_exit before wake_up_process is called. Then wake_up_process
220 * will oops, because the task structure is already invalid.
221 * (yes, this happened on s390 with sysv msg).
222 *
223 */
224 #define IN_WAKEUP 1
225
226 /**
227 * newary - Create a new semaphore set
228 * @ns: namespace
229 * @params: ptr to the structure that contains key, semflg and nsems
230 *
231 * Called with sem_ids.rw_mutex held (as a writer)
232 */
233
newary(struct ipc_namespace * ns,struct ipc_params * params)234 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
235 {
236 int id;
237 int retval;
238 struct sem_array *sma;
239 int size;
240 key_t key = params->key;
241 int nsems = params->u.nsems;
242 int semflg = params->flg;
243
244 if (!nsems)
245 return -EINVAL;
246 if (ns->used_sems + nsems > ns->sc_semmns)
247 return -ENOSPC;
248
249 size = sizeof (*sma) + nsems * sizeof (struct sem);
250 sma = ipc_rcu_alloc(size);
251 if (!sma) {
252 return -ENOMEM;
253 }
254 memset (sma, 0, size);
255
256 sma->sem_perm.mode = (semflg & S_IRWXUGO);
257 sma->sem_perm.key = key;
258
259 sma->sem_perm.security = NULL;
260 retval = security_sem_alloc(sma);
261 if (retval) {
262 ipc_rcu_putref(sma);
263 return retval;
264 }
265
266 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
267 if (id < 0) {
268 security_sem_free(sma);
269 ipc_rcu_putref(sma);
270 return id;
271 }
272 ns->used_sems += nsems;
273
274 sma->sem_base = (struct sem *) &sma[1];
275 INIT_LIST_HEAD(&sma->sem_pending);
276 INIT_LIST_HEAD(&sma->list_id);
277 sma->sem_nsems = nsems;
278 sma->sem_ctime = get_seconds();
279 sem_unlock(sma);
280
281 return sma->sem_perm.id;
282 }
283
284
285 /*
286 * Called with sem_ids.rw_mutex and ipcp locked.
287 */
sem_security(struct kern_ipc_perm * ipcp,int semflg)288 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
289 {
290 struct sem_array *sma;
291
292 sma = container_of(ipcp, struct sem_array, sem_perm);
293 return security_sem_associate(sma, semflg);
294 }
295
296 /*
297 * Called with sem_ids.rw_mutex and ipcp locked.
298 */
sem_more_checks(struct kern_ipc_perm * ipcp,struct ipc_params * params)299 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
300 struct ipc_params *params)
301 {
302 struct sem_array *sma;
303
304 sma = container_of(ipcp, struct sem_array, sem_perm);
305 if (params->u.nsems > sma->sem_nsems)
306 return -EINVAL;
307
308 return 0;
309 }
310
SYSCALL_DEFINE3(semget,key_t,key,int,nsems,int,semflg)311 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
312 {
313 struct ipc_namespace *ns;
314 struct ipc_ops sem_ops;
315 struct ipc_params sem_params;
316
317 ns = current->nsproxy->ipc_ns;
318
319 if (nsems < 0 || nsems > ns->sc_semmsl)
320 return -EINVAL;
321
322 sem_ops.getnew = newary;
323 sem_ops.associate = sem_security;
324 sem_ops.more_checks = sem_more_checks;
325
326 sem_params.key = key;
327 sem_params.flg = semflg;
328 sem_params.u.nsems = nsems;
329
330 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
331 }
332
333 /*
334 * Determine whether a sequence of semaphore operations would succeed
335 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
336 */
337
try_atomic_semop(struct sem_array * sma,struct sembuf * sops,int nsops,struct sem_undo * un,int pid)338 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
339 int nsops, struct sem_undo *un, int pid)
340 {
341 int result, sem_op;
342 struct sembuf *sop;
343 struct sem * curr;
344
345 for (sop = sops; sop < sops + nsops; sop++) {
346 curr = sma->sem_base + sop->sem_num;
347 sem_op = sop->sem_op;
348 result = curr->semval;
349
350 if (!sem_op && result)
351 goto would_block;
352
353 result += sem_op;
354 if (result < 0)
355 goto would_block;
356 if (result > SEMVMX)
357 goto out_of_range;
358 if (sop->sem_flg & SEM_UNDO) {
359 int undo = un->semadj[sop->sem_num] - sem_op;
360 /*
361 * Exceeding the undo range is an error.
362 */
363 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
364 goto out_of_range;
365 }
366 curr->semval = result;
367 }
368
369 sop--;
370 while (sop >= sops) {
371 sma->sem_base[sop->sem_num].sempid = pid;
372 if (sop->sem_flg & SEM_UNDO)
373 un->semadj[sop->sem_num] -= sop->sem_op;
374 sop--;
375 }
376
377 sma->sem_otime = get_seconds();
378 return 0;
379
380 out_of_range:
381 result = -ERANGE;
382 goto undo;
383
384 would_block:
385 if (sop->sem_flg & IPC_NOWAIT)
386 result = -EAGAIN;
387 else
388 result = 1;
389
390 undo:
391 sop--;
392 while (sop >= sops) {
393 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
394 sop--;
395 }
396
397 return result;
398 }
399
400 /* Go through the pending queue for the indicated semaphore
401 * looking for tasks that can be completed.
402 */
update_queue(struct sem_array * sma)403 static void update_queue (struct sem_array * sma)
404 {
405 int error;
406 struct sem_queue * q;
407
408 q = list_entry(sma->sem_pending.next, struct sem_queue, list);
409 while (&q->list != &sma->sem_pending) {
410 error = try_atomic_semop(sma, q->sops, q->nsops,
411 q->undo, q->pid);
412
413 /* Does q->sleeper still need to sleep? */
414 if (error <= 0) {
415 struct sem_queue *n;
416
417 /*
418 * Continue scanning. The next operation
419 * that must be checked depends on the type of the
420 * completed operation:
421 * - if the operation modified the array, then
422 * restart from the head of the queue and
423 * check for threads that might be waiting
424 * for semaphore values to become 0.
425 * - if the operation didn't modify the array,
426 * then just continue.
427 * The order of list_del() and reading ->next
428 * is crucial: In the former case, the list_del()
429 * must be done first [because we might be the
430 * first entry in ->sem_pending], in the latter
431 * case the list_del() must be done last
432 * [because the list is invalid after the list_del()]
433 */
434 if (q->alter) {
435 list_del(&q->list);
436 n = list_entry(sma->sem_pending.next,
437 struct sem_queue, list);
438 } else {
439 n = list_entry(q->list.next, struct sem_queue,
440 list);
441 list_del(&q->list);
442 }
443
444 /* wake up the waiting thread */
445 q->status = IN_WAKEUP;
446
447 wake_up_process(q->sleeper);
448 /* hands-off: q will disappear immediately after
449 * writing q->status.
450 */
451 smp_wmb();
452 q->status = error;
453 q = n;
454 } else {
455 q = list_entry(q->list.next, struct sem_queue, list);
456 }
457 }
458 }
459
460 /* The following counts are associated to each semaphore:
461 * semncnt number of tasks waiting on semval being nonzero
462 * semzcnt number of tasks waiting on semval being zero
463 * This model assumes that a task waits on exactly one semaphore.
464 * Since semaphore operations are to be performed atomically, tasks actually
465 * wait on a whole sequence of semaphores simultaneously.
466 * The counts we return here are a rough approximation, but still
467 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
468 */
count_semncnt(struct sem_array * sma,ushort semnum)469 static int count_semncnt (struct sem_array * sma, ushort semnum)
470 {
471 int semncnt;
472 struct sem_queue * q;
473
474 semncnt = 0;
475 list_for_each_entry(q, &sma->sem_pending, list) {
476 struct sembuf * sops = q->sops;
477 int nsops = q->nsops;
478 int i;
479 for (i = 0; i < nsops; i++)
480 if (sops[i].sem_num == semnum
481 && (sops[i].sem_op < 0)
482 && !(sops[i].sem_flg & IPC_NOWAIT))
483 semncnt++;
484 }
485 return semncnt;
486 }
487
count_semzcnt(struct sem_array * sma,ushort semnum)488 static int count_semzcnt (struct sem_array * sma, ushort semnum)
489 {
490 int semzcnt;
491 struct sem_queue * q;
492
493 semzcnt = 0;
494 list_for_each_entry(q, &sma->sem_pending, list) {
495 struct sembuf * sops = q->sops;
496 int nsops = q->nsops;
497 int i;
498 for (i = 0; i < nsops; i++)
499 if (sops[i].sem_num == semnum
500 && (sops[i].sem_op == 0)
501 && !(sops[i].sem_flg & IPC_NOWAIT))
502 semzcnt++;
503 }
504 return semzcnt;
505 }
506
free_un(struct rcu_head * head)507 static void free_un(struct rcu_head *head)
508 {
509 struct sem_undo *un = container_of(head, struct sem_undo, rcu);
510 kfree(un);
511 }
512
513 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
514 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
515 * remains locked on exit.
516 */
freeary(struct ipc_namespace * ns,struct kern_ipc_perm * ipcp)517 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
518 {
519 struct sem_undo *un, *tu;
520 struct sem_queue *q, *tq;
521 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
522
523 /* Free the existing undo structures for this semaphore set. */
524 assert_spin_locked(&sma->sem_perm.lock);
525 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
526 list_del(&un->list_id);
527 spin_lock(&un->ulp->lock);
528 un->semid = -1;
529 list_del_rcu(&un->list_proc);
530 spin_unlock(&un->ulp->lock);
531 call_rcu(&un->rcu, free_un);
532 }
533
534 /* Wake up all pending processes and let them fail with EIDRM. */
535 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
536 list_del(&q->list);
537
538 q->status = IN_WAKEUP;
539 wake_up_process(q->sleeper); /* doesn't sleep */
540 smp_wmb();
541 q->status = -EIDRM; /* hands-off q */
542 }
543
544 /* Remove the semaphore set from the IDR */
545 sem_rmid(ns, sma);
546 sem_unlock(sma);
547
548 ns->used_sems -= sma->sem_nsems;
549 security_sem_free(sma);
550 ipc_rcu_putref(sma);
551 }
552
copy_semid_to_user(void __user * buf,struct semid64_ds * in,int version)553 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
554 {
555 switch(version) {
556 case IPC_64:
557 return copy_to_user(buf, in, sizeof(*in));
558 case IPC_OLD:
559 {
560 struct semid_ds out;
561
562 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
563
564 out.sem_otime = in->sem_otime;
565 out.sem_ctime = in->sem_ctime;
566 out.sem_nsems = in->sem_nsems;
567
568 return copy_to_user(buf, &out, sizeof(out));
569 }
570 default:
571 return -EINVAL;
572 }
573 }
574
semctl_nolock(struct ipc_namespace * ns,int semid,int cmd,int version,union semun arg)575 static int semctl_nolock(struct ipc_namespace *ns, int semid,
576 int cmd, int version, union semun arg)
577 {
578 int err = -EINVAL;
579 struct sem_array *sma;
580
581 switch(cmd) {
582 case IPC_INFO:
583 case SEM_INFO:
584 {
585 struct seminfo seminfo;
586 int max_id;
587
588 err = security_sem_semctl(NULL, cmd);
589 if (err)
590 return err;
591
592 memset(&seminfo,0,sizeof(seminfo));
593 seminfo.semmni = ns->sc_semmni;
594 seminfo.semmns = ns->sc_semmns;
595 seminfo.semmsl = ns->sc_semmsl;
596 seminfo.semopm = ns->sc_semopm;
597 seminfo.semvmx = SEMVMX;
598 seminfo.semmnu = SEMMNU;
599 seminfo.semmap = SEMMAP;
600 seminfo.semume = SEMUME;
601 down_read(&sem_ids(ns).rw_mutex);
602 if (cmd == SEM_INFO) {
603 seminfo.semusz = sem_ids(ns).in_use;
604 seminfo.semaem = ns->used_sems;
605 } else {
606 seminfo.semusz = SEMUSZ;
607 seminfo.semaem = SEMAEM;
608 }
609 max_id = ipc_get_maxid(&sem_ids(ns));
610 up_read(&sem_ids(ns).rw_mutex);
611 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
612 return -EFAULT;
613 return (max_id < 0) ? 0: max_id;
614 }
615 case IPC_STAT:
616 case SEM_STAT:
617 {
618 struct semid64_ds tbuf;
619 int id;
620
621 if (cmd == SEM_STAT) {
622 sma = sem_lock(ns, semid);
623 if (IS_ERR(sma))
624 return PTR_ERR(sma);
625 id = sma->sem_perm.id;
626 } else {
627 sma = sem_lock_check(ns, semid);
628 if (IS_ERR(sma))
629 return PTR_ERR(sma);
630 id = 0;
631 }
632
633 err = -EACCES;
634 if (ipcperms (&sma->sem_perm, S_IRUGO))
635 goto out_unlock;
636
637 err = security_sem_semctl(sma, cmd);
638 if (err)
639 goto out_unlock;
640
641 memset(&tbuf, 0, sizeof(tbuf));
642
643 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
644 tbuf.sem_otime = sma->sem_otime;
645 tbuf.sem_ctime = sma->sem_ctime;
646 tbuf.sem_nsems = sma->sem_nsems;
647 sem_unlock(sma);
648 if (copy_semid_to_user (arg.buf, &tbuf, version))
649 return -EFAULT;
650 return id;
651 }
652 default:
653 return -EINVAL;
654 }
655 return err;
656 out_unlock:
657 sem_unlock(sma);
658 return err;
659 }
660
semctl_main(struct ipc_namespace * ns,int semid,int semnum,int cmd,int version,union semun arg)661 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
662 int cmd, int version, union semun arg)
663 {
664 struct sem_array *sma;
665 struct sem* curr;
666 int err;
667 ushort fast_sem_io[SEMMSL_FAST];
668 ushort* sem_io = fast_sem_io;
669 int nsems;
670
671 sma = sem_lock_check(ns, semid);
672 if (IS_ERR(sma))
673 return PTR_ERR(sma);
674
675 nsems = sma->sem_nsems;
676
677 err = -EACCES;
678 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
679 goto out_unlock;
680
681 err = security_sem_semctl(sma, cmd);
682 if (err)
683 goto out_unlock;
684
685 err = -EACCES;
686 switch (cmd) {
687 case GETALL:
688 {
689 ushort __user *array = arg.array;
690 int i;
691
692 if(nsems > SEMMSL_FAST) {
693 sem_getref_and_unlock(sma);
694
695 sem_io = ipc_alloc(sizeof(ushort)*nsems);
696 if(sem_io == NULL) {
697 sem_putref(sma);
698 return -ENOMEM;
699 }
700
701 sem_lock_and_putref(sma);
702 if (sma->sem_perm.deleted) {
703 sem_unlock(sma);
704 err = -EIDRM;
705 goto out_free;
706 }
707 }
708
709 for (i = 0; i < sma->sem_nsems; i++)
710 sem_io[i] = sma->sem_base[i].semval;
711 sem_unlock(sma);
712 err = 0;
713 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
714 err = -EFAULT;
715 goto out_free;
716 }
717 case SETALL:
718 {
719 int i;
720 struct sem_undo *un;
721
722 sem_getref_and_unlock(sma);
723
724 if(nsems > SEMMSL_FAST) {
725 sem_io = ipc_alloc(sizeof(ushort)*nsems);
726 if(sem_io == NULL) {
727 sem_putref(sma);
728 return -ENOMEM;
729 }
730 }
731
732 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
733 sem_putref(sma);
734 err = -EFAULT;
735 goto out_free;
736 }
737
738 for (i = 0; i < nsems; i++) {
739 if (sem_io[i] > SEMVMX) {
740 sem_putref(sma);
741 err = -ERANGE;
742 goto out_free;
743 }
744 }
745 sem_lock_and_putref(sma);
746 if (sma->sem_perm.deleted) {
747 sem_unlock(sma);
748 err = -EIDRM;
749 goto out_free;
750 }
751
752 for (i = 0; i < nsems; i++)
753 sma->sem_base[i].semval = sem_io[i];
754
755 assert_spin_locked(&sma->sem_perm.lock);
756 list_for_each_entry(un, &sma->list_id, list_id) {
757 for (i = 0; i < nsems; i++)
758 un->semadj[i] = 0;
759 }
760 sma->sem_ctime = get_seconds();
761 /* maybe some queued-up processes were waiting for this */
762 update_queue(sma);
763 err = 0;
764 goto out_unlock;
765 }
766 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
767 }
768 err = -EINVAL;
769 if(semnum < 0 || semnum >= nsems)
770 goto out_unlock;
771
772 curr = &sma->sem_base[semnum];
773
774 switch (cmd) {
775 case GETVAL:
776 err = curr->semval;
777 goto out_unlock;
778 case GETPID:
779 err = curr->sempid;
780 goto out_unlock;
781 case GETNCNT:
782 err = count_semncnt(sma,semnum);
783 goto out_unlock;
784 case GETZCNT:
785 err = count_semzcnt(sma,semnum);
786 goto out_unlock;
787 case SETVAL:
788 {
789 int val = arg.val;
790 struct sem_undo *un;
791
792 err = -ERANGE;
793 if (val > SEMVMX || val < 0)
794 goto out_unlock;
795
796 assert_spin_locked(&sma->sem_perm.lock);
797 list_for_each_entry(un, &sma->list_id, list_id)
798 un->semadj[semnum] = 0;
799
800 curr->semval = val;
801 curr->sempid = task_tgid_vnr(current);
802 sma->sem_ctime = get_seconds();
803 /* maybe some queued-up processes were waiting for this */
804 update_queue(sma);
805 err = 0;
806 goto out_unlock;
807 }
808 }
809 out_unlock:
810 sem_unlock(sma);
811 out_free:
812 if(sem_io != fast_sem_io)
813 ipc_free(sem_io, sizeof(ushort)*nsems);
814 return err;
815 }
816
817 static inline unsigned long
copy_semid_from_user(struct semid64_ds * out,void __user * buf,int version)818 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
819 {
820 switch(version) {
821 case IPC_64:
822 if (copy_from_user(out, buf, sizeof(*out)))
823 return -EFAULT;
824 return 0;
825 case IPC_OLD:
826 {
827 struct semid_ds tbuf_old;
828
829 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
830 return -EFAULT;
831
832 out->sem_perm.uid = tbuf_old.sem_perm.uid;
833 out->sem_perm.gid = tbuf_old.sem_perm.gid;
834 out->sem_perm.mode = tbuf_old.sem_perm.mode;
835
836 return 0;
837 }
838 default:
839 return -EINVAL;
840 }
841 }
842
843 /*
844 * This function handles some semctl commands which require the rw_mutex
845 * to be held in write mode.
846 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
847 */
semctl_down(struct ipc_namespace * ns,int semid,int cmd,int version,union semun arg)848 static int semctl_down(struct ipc_namespace *ns, int semid,
849 int cmd, int version, union semun arg)
850 {
851 struct sem_array *sma;
852 int err;
853 struct semid64_ds semid64;
854 struct kern_ipc_perm *ipcp;
855
856 if(cmd == IPC_SET) {
857 if (copy_semid_from_user(&semid64, arg.buf, version))
858 return -EFAULT;
859 }
860
861 ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0);
862 if (IS_ERR(ipcp))
863 return PTR_ERR(ipcp);
864
865 sma = container_of(ipcp, struct sem_array, sem_perm);
866
867 err = security_sem_semctl(sma, cmd);
868 if (err)
869 goto out_unlock;
870
871 switch(cmd){
872 case IPC_RMID:
873 freeary(ns, ipcp);
874 goto out_up;
875 case IPC_SET:
876 ipc_update_perm(&semid64.sem_perm, ipcp);
877 sma->sem_ctime = get_seconds();
878 break;
879 default:
880 err = -EINVAL;
881 }
882
883 out_unlock:
884 sem_unlock(sma);
885 out_up:
886 up_write(&sem_ids(ns).rw_mutex);
887 return err;
888 }
889
SYSCALL_DEFINE(semctl)890 SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
891 {
892 int err = -EINVAL;
893 int version;
894 struct ipc_namespace *ns;
895
896 if (semid < 0)
897 return -EINVAL;
898
899 version = ipc_parse_version(&cmd);
900 ns = current->nsproxy->ipc_ns;
901
902 switch(cmd) {
903 case IPC_INFO:
904 case SEM_INFO:
905 case IPC_STAT:
906 case SEM_STAT:
907 err = semctl_nolock(ns, semid, cmd, version, arg);
908 return err;
909 case GETALL:
910 case GETVAL:
911 case GETPID:
912 case GETNCNT:
913 case GETZCNT:
914 case SETVAL:
915 case SETALL:
916 err = semctl_main(ns,semid,semnum,cmd,version,arg);
917 return err;
918 case IPC_RMID:
919 case IPC_SET:
920 err = semctl_down(ns, semid, cmd, version, arg);
921 return err;
922 default:
923 return -EINVAL;
924 }
925 }
926 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
SyS_semctl(int semid,int semnum,int cmd,union semun arg)927 asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
928 {
929 return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
930 }
931 SYSCALL_ALIAS(sys_semctl, SyS_semctl);
932 #endif
933
934 /* If the task doesn't already have a undo_list, then allocate one
935 * here. We guarantee there is only one thread using this undo list,
936 * and current is THE ONE
937 *
938 * If this allocation and assignment succeeds, but later
939 * portions of this code fail, there is no need to free the sem_undo_list.
940 * Just let it stay associated with the task, and it'll be freed later
941 * at exit time.
942 *
943 * This can block, so callers must hold no locks.
944 */
get_undo_list(struct sem_undo_list ** undo_listp)945 static inline int get_undo_list(struct sem_undo_list **undo_listp)
946 {
947 struct sem_undo_list *undo_list;
948
949 undo_list = current->sysvsem.undo_list;
950 if (!undo_list) {
951 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
952 if (undo_list == NULL)
953 return -ENOMEM;
954 spin_lock_init(&undo_list->lock);
955 atomic_set(&undo_list->refcnt, 1);
956 INIT_LIST_HEAD(&undo_list->list_proc);
957
958 current->sysvsem.undo_list = undo_list;
959 }
960 *undo_listp = undo_list;
961 return 0;
962 }
963
lookup_undo(struct sem_undo_list * ulp,int semid)964 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
965 {
966 struct sem_undo *walk;
967
968 list_for_each_entry_rcu(walk, &ulp->list_proc, list_proc) {
969 if (walk->semid == semid)
970 return walk;
971 }
972 return NULL;
973 }
974
975 /**
976 * find_alloc_undo - Lookup (and if not present create) undo array
977 * @ns: namespace
978 * @semid: semaphore array id
979 *
980 * The function looks up (and if not present creates) the undo structure.
981 * The size of the undo structure depends on the size of the semaphore
982 * array, thus the alloc path is not that straightforward.
983 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
984 * performs a rcu_read_lock().
985 */
find_alloc_undo(struct ipc_namespace * ns,int semid)986 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
987 {
988 struct sem_array *sma;
989 struct sem_undo_list *ulp;
990 struct sem_undo *un, *new;
991 int nsems;
992 int error;
993
994 error = get_undo_list(&ulp);
995 if (error)
996 return ERR_PTR(error);
997
998 rcu_read_lock();
999 spin_lock(&ulp->lock);
1000 un = lookup_undo(ulp, semid);
1001 spin_unlock(&ulp->lock);
1002 if (likely(un!=NULL))
1003 goto out;
1004 rcu_read_unlock();
1005
1006 /* no undo structure around - allocate one. */
1007 /* step 1: figure out the size of the semaphore array */
1008 sma = sem_lock_check(ns, semid);
1009 if (IS_ERR(sma))
1010 return ERR_PTR(PTR_ERR(sma));
1011
1012 nsems = sma->sem_nsems;
1013 sem_getref_and_unlock(sma);
1014
1015 /* step 2: allocate new undo structure */
1016 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1017 if (!new) {
1018 sem_putref(sma);
1019 return ERR_PTR(-ENOMEM);
1020 }
1021
1022 /* step 3: Acquire the lock on semaphore array */
1023 sem_lock_and_putref(sma);
1024 if (sma->sem_perm.deleted) {
1025 sem_unlock(sma);
1026 kfree(new);
1027 un = ERR_PTR(-EIDRM);
1028 goto out;
1029 }
1030 spin_lock(&ulp->lock);
1031
1032 /*
1033 * step 4: check for races: did someone else allocate the undo struct?
1034 */
1035 un = lookup_undo(ulp, semid);
1036 if (un) {
1037 kfree(new);
1038 goto success;
1039 }
1040 /* step 5: initialize & link new undo structure */
1041 new->semadj = (short *) &new[1];
1042 new->ulp = ulp;
1043 new->semid = semid;
1044 assert_spin_locked(&ulp->lock);
1045 list_add_rcu(&new->list_proc, &ulp->list_proc);
1046 assert_spin_locked(&sma->sem_perm.lock);
1047 list_add(&new->list_id, &sma->list_id);
1048 un = new;
1049
1050 success:
1051 spin_unlock(&ulp->lock);
1052 rcu_read_lock();
1053 sem_unlock(sma);
1054 out:
1055 return un;
1056 }
1057
SYSCALL_DEFINE4(semtimedop,int,semid,struct sembuf __user *,tsops,unsigned,nsops,const struct timespec __user *,timeout)1058 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1059 unsigned, nsops, const struct timespec __user *, timeout)
1060 {
1061 int error = -EINVAL;
1062 struct sem_array *sma;
1063 struct sembuf fast_sops[SEMOPM_FAST];
1064 struct sembuf* sops = fast_sops, *sop;
1065 struct sem_undo *un;
1066 int undos = 0, alter = 0, max;
1067 struct sem_queue queue;
1068 unsigned long jiffies_left = 0;
1069 struct ipc_namespace *ns;
1070
1071 ns = current->nsproxy->ipc_ns;
1072
1073 if (nsops < 1 || semid < 0)
1074 return -EINVAL;
1075 if (nsops > ns->sc_semopm)
1076 return -E2BIG;
1077 if(nsops > SEMOPM_FAST) {
1078 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1079 if(sops==NULL)
1080 return -ENOMEM;
1081 }
1082 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1083 error=-EFAULT;
1084 goto out_free;
1085 }
1086 if (timeout) {
1087 struct timespec _timeout;
1088 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1089 error = -EFAULT;
1090 goto out_free;
1091 }
1092 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1093 _timeout.tv_nsec >= 1000000000L) {
1094 error = -EINVAL;
1095 goto out_free;
1096 }
1097 jiffies_left = timespec_to_jiffies(&_timeout);
1098 }
1099 max = 0;
1100 for (sop = sops; sop < sops + nsops; sop++) {
1101 if (sop->sem_num >= max)
1102 max = sop->sem_num;
1103 if (sop->sem_flg & SEM_UNDO)
1104 undos = 1;
1105 if (sop->sem_op != 0)
1106 alter = 1;
1107 }
1108
1109 if (undos) {
1110 un = find_alloc_undo(ns, semid);
1111 if (IS_ERR(un)) {
1112 error = PTR_ERR(un);
1113 goto out_free;
1114 }
1115 } else
1116 un = NULL;
1117
1118 sma = sem_lock_check(ns, semid);
1119 if (IS_ERR(sma)) {
1120 if (un)
1121 rcu_read_unlock();
1122 error = PTR_ERR(sma);
1123 goto out_free;
1124 }
1125
1126 /*
1127 * semid identifiers are not unique - find_alloc_undo may have
1128 * allocated an undo structure, it was invalidated by an RMID
1129 * and now a new array with received the same id. Check and fail.
1130 * This case can be detected checking un->semid. The existance of
1131 * "un" itself is guaranteed by rcu.
1132 */
1133 error = -EIDRM;
1134 if (un) {
1135 if (un->semid == -1) {
1136 rcu_read_unlock();
1137 goto out_unlock_free;
1138 } else {
1139 /*
1140 * rcu lock can be released, "un" cannot disappear:
1141 * - sem_lock is acquired, thus IPC_RMID is
1142 * impossible.
1143 * - exit_sem is impossible, it always operates on
1144 * current (or a dead task).
1145 */
1146
1147 rcu_read_unlock();
1148 }
1149 }
1150
1151 error = -EFBIG;
1152 if (max >= sma->sem_nsems)
1153 goto out_unlock_free;
1154
1155 error = -EACCES;
1156 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1157 goto out_unlock_free;
1158
1159 error = security_sem_semop(sma, sops, nsops, alter);
1160 if (error)
1161 goto out_unlock_free;
1162
1163 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1164 if (error <= 0) {
1165 if (alter && error == 0)
1166 update_queue (sma);
1167 goto out_unlock_free;
1168 }
1169
1170 /* We need to sleep on this operation, so we put the current
1171 * task into the pending queue and go to sleep.
1172 */
1173
1174 queue.sops = sops;
1175 queue.nsops = nsops;
1176 queue.undo = un;
1177 queue.pid = task_tgid_vnr(current);
1178 queue.alter = alter;
1179 if (alter)
1180 list_add_tail(&queue.list, &sma->sem_pending);
1181 else
1182 list_add(&queue.list, &sma->sem_pending);
1183
1184 queue.status = -EINTR;
1185 queue.sleeper = current;
1186 current->state = TASK_INTERRUPTIBLE;
1187 sem_unlock(sma);
1188
1189 if (timeout)
1190 jiffies_left = schedule_timeout(jiffies_left);
1191 else
1192 schedule();
1193
1194 error = queue.status;
1195 while(unlikely(error == IN_WAKEUP)) {
1196 cpu_relax();
1197 error = queue.status;
1198 }
1199
1200 if (error != -EINTR) {
1201 /* fast path: update_queue already obtained all requested
1202 * resources */
1203 goto out_free;
1204 }
1205
1206 sma = sem_lock(ns, semid);
1207 if (IS_ERR(sma)) {
1208 error = -EIDRM;
1209 goto out_free;
1210 }
1211
1212 /*
1213 * If queue.status != -EINTR we are woken up by another process
1214 */
1215 error = queue.status;
1216 if (error != -EINTR) {
1217 goto out_unlock_free;
1218 }
1219
1220 /*
1221 * If an interrupt occurred we have to clean up the queue
1222 */
1223 if (timeout && jiffies_left == 0)
1224 error = -EAGAIN;
1225 list_del(&queue.list);
1226
1227 out_unlock_free:
1228 sem_unlock(sma);
1229 out_free:
1230 if(sops != fast_sops)
1231 kfree(sops);
1232 return error;
1233 }
1234
SYSCALL_DEFINE3(semop,int,semid,struct sembuf __user *,tsops,unsigned,nsops)1235 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1236 unsigned, nsops)
1237 {
1238 return sys_semtimedop(semid, tsops, nsops, NULL);
1239 }
1240
1241 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1242 * parent and child tasks.
1243 */
1244
copy_semundo(unsigned long clone_flags,struct task_struct * tsk)1245 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1246 {
1247 struct sem_undo_list *undo_list;
1248 int error;
1249
1250 if (clone_flags & CLONE_SYSVSEM) {
1251 error = get_undo_list(&undo_list);
1252 if (error)
1253 return error;
1254 atomic_inc(&undo_list->refcnt);
1255 tsk->sysvsem.undo_list = undo_list;
1256 } else
1257 tsk->sysvsem.undo_list = NULL;
1258
1259 return 0;
1260 }
1261
1262 /*
1263 * add semadj values to semaphores, free undo structures.
1264 * undo structures are not freed when semaphore arrays are destroyed
1265 * so some of them may be out of date.
1266 * IMPLEMENTATION NOTE: There is some confusion over whether the
1267 * set of adjustments that needs to be done should be done in an atomic
1268 * manner or not. That is, if we are attempting to decrement the semval
1269 * should we queue up and wait until we can do so legally?
1270 * The original implementation attempted to do this (queue and wait).
1271 * The current implementation does not do so. The POSIX standard
1272 * and SVID should be consulted to determine what behavior is mandated.
1273 */
exit_sem(struct task_struct * tsk)1274 void exit_sem(struct task_struct *tsk)
1275 {
1276 struct sem_undo_list *ulp;
1277
1278 ulp = tsk->sysvsem.undo_list;
1279 if (!ulp)
1280 return;
1281 tsk->sysvsem.undo_list = NULL;
1282
1283 if (!atomic_dec_and_test(&ulp->refcnt))
1284 return;
1285
1286 for (;;) {
1287 struct sem_array *sma;
1288 struct sem_undo *un;
1289 int semid;
1290 int i;
1291
1292 rcu_read_lock();
1293 un = list_entry(rcu_dereference(ulp->list_proc.next),
1294 struct sem_undo, list_proc);
1295 if (&un->list_proc == &ulp->list_proc)
1296 semid = -1;
1297 else
1298 semid = un->semid;
1299 rcu_read_unlock();
1300
1301 if (semid == -1)
1302 break;
1303
1304 sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
1305
1306 /* exit_sem raced with IPC_RMID, nothing to do */
1307 if (IS_ERR(sma))
1308 continue;
1309
1310 un = lookup_undo(ulp, semid);
1311 if (un == NULL) {
1312 /* exit_sem raced with IPC_RMID+semget() that created
1313 * exactly the same semid. Nothing to do.
1314 */
1315 sem_unlock(sma);
1316 continue;
1317 }
1318
1319 /* remove un from the linked lists */
1320 assert_spin_locked(&sma->sem_perm.lock);
1321 list_del(&un->list_id);
1322
1323 spin_lock(&ulp->lock);
1324 list_del_rcu(&un->list_proc);
1325 spin_unlock(&ulp->lock);
1326
1327 /* perform adjustments registered in un */
1328 for (i = 0; i < sma->sem_nsems; i++) {
1329 struct sem * semaphore = &sma->sem_base[i];
1330 if (un->semadj[i]) {
1331 semaphore->semval += un->semadj[i];
1332 /*
1333 * Range checks of the new semaphore value,
1334 * not defined by sus:
1335 * - Some unices ignore the undo entirely
1336 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1337 * - some cap the value (e.g. FreeBSD caps
1338 * at 0, but doesn't enforce SEMVMX)
1339 *
1340 * Linux caps the semaphore value, both at 0
1341 * and at SEMVMX.
1342 *
1343 * Manfred <manfred@colorfullife.com>
1344 */
1345 if (semaphore->semval < 0)
1346 semaphore->semval = 0;
1347 if (semaphore->semval > SEMVMX)
1348 semaphore->semval = SEMVMX;
1349 semaphore->sempid = task_tgid_vnr(current);
1350 }
1351 }
1352 sma->sem_otime = get_seconds();
1353 /* maybe some queued-up processes were waiting for this */
1354 update_queue(sma);
1355 sem_unlock(sma);
1356
1357 call_rcu(&un->rcu, free_un);
1358 }
1359 kfree(ulp);
1360 }
1361
1362 #ifdef CONFIG_PROC_FS
sysvipc_sem_proc_show(struct seq_file * s,void * it)1363 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1364 {
1365 struct sem_array *sma = it;
1366
1367 return seq_printf(s,
1368 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1369 sma->sem_perm.key,
1370 sma->sem_perm.id,
1371 sma->sem_perm.mode,
1372 sma->sem_nsems,
1373 sma->sem_perm.uid,
1374 sma->sem_perm.gid,
1375 sma->sem_perm.cuid,
1376 sma->sem_perm.cgid,
1377 sma->sem_otime,
1378 sma->sem_ctime);
1379 }
1380 #endif
1381