1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/module.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/backing-dev.h>
55 #include <linux/sort.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/atomic.h>
59 #include <linux/mutex.h>
60 #include <linux/workqueue.h>
61 #include <linux/cgroup.h>
62
63 /*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69 static struct workqueue_struct *cpuset_wq;
70
71 /*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
76 int number_of_cpusets __read_mostly;
77
78 /* Forward declare cgroup structures */
79 struct cgroup_subsys cpuset_subsys;
80 struct cpuset;
81
82 /* See "Frequency meter" comments, below. */
83
84 struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89 };
90
91 struct cpuset {
92 struct cgroup_subsys_state css;
93
94 unsigned long flags; /* "unsigned long" so bitops work */
95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
98 struct cpuset *parent; /* my parent */
99
100 /*
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
103 */
104 int mems_generation;
105
106 struct fmeter fmeter; /* memory_pressure filter */
107
108 /* partition number for rebuild_sched_domains() */
109 int pn;
110
111 /* for custom sched domain */
112 int relax_domain_level;
113
114 /* used for walking a cpuset heirarchy */
115 struct list_head stack_list;
116 };
117
118 /* Retrieve the cpuset for a cgroup */
cgroup_cs(struct cgroup * cont)119 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
120 {
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
123 }
124
125 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)126 static inline struct cpuset *task_cs(struct task_struct *task)
127 {
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
130 }
131 struct cpuset_hotplug_scanner {
132 struct cgroup_scanner scan;
133 struct cgroup *to;
134 };
135
136 /* bits in struct cpuset flags field */
137 typedef enum {
138 CS_CPU_EXCLUSIVE,
139 CS_MEM_EXCLUSIVE,
140 CS_MEM_HARDWALL,
141 CS_MEMORY_MIGRATE,
142 CS_SCHED_LOAD_BALANCE,
143 CS_SPREAD_PAGE,
144 CS_SPREAD_SLAB,
145 } cpuset_flagbits_t;
146
147 /* convenient tests for these bits */
is_cpu_exclusive(const struct cpuset * cs)148 static inline int is_cpu_exclusive(const struct cpuset *cs)
149 {
150 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
151 }
152
is_mem_exclusive(const struct cpuset * cs)153 static inline int is_mem_exclusive(const struct cpuset *cs)
154 {
155 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
156 }
157
is_mem_hardwall(const struct cpuset * cs)158 static inline int is_mem_hardwall(const struct cpuset *cs)
159 {
160 return test_bit(CS_MEM_HARDWALL, &cs->flags);
161 }
162
is_sched_load_balance(const struct cpuset * cs)163 static inline int is_sched_load_balance(const struct cpuset *cs)
164 {
165 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
166 }
167
is_memory_migrate(const struct cpuset * cs)168 static inline int is_memory_migrate(const struct cpuset *cs)
169 {
170 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
171 }
172
is_spread_page(const struct cpuset * cs)173 static inline int is_spread_page(const struct cpuset *cs)
174 {
175 return test_bit(CS_SPREAD_PAGE, &cs->flags);
176 }
177
is_spread_slab(const struct cpuset * cs)178 static inline int is_spread_slab(const struct cpuset *cs)
179 {
180 return test_bit(CS_SPREAD_SLAB, &cs->flags);
181 }
182
183 /*
184 * Increment this integer everytime any cpuset changes its
185 * mems_allowed value. Users of cpusets can track this generation
186 * number, and avoid having to lock and reload mems_allowed unless
187 * the cpuset they're using changes generation.
188 *
189 * A single, global generation is needed because cpuset_attach_task() could
190 * reattach a task to a different cpuset, which must not have its
191 * generation numbers aliased with those of that tasks previous cpuset.
192 *
193 * Generations are needed for mems_allowed because one task cannot
194 * modify another's memory placement. So we must enable every task,
195 * on every visit to __alloc_pages(), to efficiently check whether
196 * its current->cpuset->mems_allowed has changed, requiring an update
197 * of its current->mems_allowed.
198 *
199 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
200 * there is no need to mark it atomic.
201 */
202 static int cpuset_mems_generation;
203
204 static struct cpuset top_cpuset = {
205 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
206 };
207
208 /*
209 * There are two global mutexes guarding cpuset structures. The first
210 * is the main control groups cgroup_mutex, accessed via
211 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
212 * callback_mutex, below. They can nest. It is ok to first take
213 * cgroup_mutex, then nest callback_mutex. We also require taking
214 * task_lock() when dereferencing a task's cpuset pointer. See "The
215 * task_lock() exception", at the end of this comment.
216 *
217 * A task must hold both mutexes to modify cpusets. If a task
218 * holds cgroup_mutex, then it blocks others wanting that mutex,
219 * ensuring that it is the only task able to also acquire callback_mutex
220 * and be able to modify cpusets. It can perform various checks on
221 * the cpuset structure first, knowing nothing will change. It can
222 * also allocate memory while just holding cgroup_mutex. While it is
223 * performing these checks, various callback routines can briefly
224 * acquire callback_mutex to query cpusets. Once it is ready to make
225 * the changes, it takes callback_mutex, blocking everyone else.
226 *
227 * Calls to the kernel memory allocator can not be made while holding
228 * callback_mutex, as that would risk double tripping on callback_mutex
229 * from one of the callbacks into the cpuset code from within
230 * __alloc_pages().
231 *
232 * If a task is only holding callback_mutex, then it has read-only
233 * access to cpusets.
234 *
235 * The task_struct fields mems_allowed and mems_generation may only
236 * be accessed in the context of that task, so require no locks.
237 *
238 * The cpuset_common_file_read() handlers only hold callback_mutex across
239 * small pieces of code, such as when reading out possibly multi-word
240 * cpumasks and nodemasks.
241 *
242 * Accessing a task's cpuset should be done in accordance with the
243 * guidelines for accessing subsystem state in kernel/cgroup.c
244 */
245
246 static DEFINE_MUTEX(callback_mutex);
247
248 /*
249 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
250 * buffers. They are statically allocated to prevent using excess stack
251 * when calling cpuset_print_task_mems_allowed().
252 */
253 #define CPUSET_NAME_LEN (128)
254 #define CPUSET_NODELIST_LEN (256)
255 static char cpuset_name[CPUSET_NAME_LEN];
256 static char cpuset_nodelist[CPUSET_NODELIST_LEN];
257 static DEFINE_SPINLOCK(cpuset_buffer_lock);
258
259 /*
260 * This is ugly, but preserves the userspace API for existing cpuset
261 * users. If someone tries to mount the "cpuset" filesystem, we
262 * silently switch it to mount "cgroup" instead
263 */
cpuset_get_sb(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data,struct vfsmount * mnt)264 static int cpuset_get_sb(struct file_system_type *fs_type,
265 int flags, const char *unused_dev_name,
266 void *data, struct vfsmount *mnt)
267 {
268 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
269 int ret = -ENODEV;
270 if (cgroup_fs) {
271 char mountopts[] =
272 "cpuset,noprefix,"
273 "release_agent=/sbin/cpuset_release_agent";
274 ret = cgroup_fs->get_sb(cgroup_fs, flags,
275 unused_dev_name, mountopts, mnt);
276 put_filesystem(cgroup_fs);
277 }
278 return ret;
279 }
280
281 static struct file_system_type cpuset_fs_type = {
282 .name = "cpuset",
283 .get_sb = cpuset_get_sb,
284 };
285
286 /*
287 * Return in pmask the portion of a cpusets's cpus_allowed that
288 * are online. If none are online, walk up the cpuset hierarchy
289 * until we find one that does have some online cpus. If we get
290 * all the way to the top and still haven't found any online cpus,
291 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
292 * task, return cpu_online_map.
293 *
294 * One way or another, we guarantee to return some non-empty subset
295 * of cpu_online_map.
296 *
297 * Call with callback_mutex held.
298 */
299
guarantee_online_cpus(const struct cpuset * cs,struct cpumask * pmask)300 static void guarantee_online_cpus(const struct cpuset *cs,
301 struct cpumask *pmask)
302 {
303 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
304 cs = cs->parent;
305 if (cs)
306 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
307 else
308 cpumask_copy(pmask, cpu_online_mask);
309 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
310 }
311
312 /*
313 * Return in *pmask the portion of a cpusets's mems_allowed that
314 * are online, with memory. If none are online with memory, walk
315 * up the cpuset hierarchy until we find one that does have some
316 * online mems. If we get all the way to the top and still haven't
317 * found any online mems, return node_states[N_HIGH_MEMORY].
318 *
319 * One way or another, we guarantee to return some non-empty subset
320 * of node_states[N_HIGH_MEMORY].
321 *
322 * Call with callback_mutex held.
323 */
324
guarantee_online_mems(const struct cpuset * cs,nodemask_t * pmask)325 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
326 {
327 while (cs && !nodes_intersects(cs->mems_allowed,
328 node_states[N_HIGH_MEMORY]))
329 cs = cs->parent;
330 if (cs)
331 nodes_and(*pmask, cs->mems_allowed,
332 node_states[N_HIGH_MEMORY]);
333 else
334 *pmask = node_states[N_HIGH_MEMORY];
335 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
336 }
337
338 /**
339 * cpuset_update_task_memory_state - update task memory placement
340 *
341 * If the current tasks cpusets mems_allowed changed behind our
342 * backs, update current->mems_allowed, mems_generation and task NUMA
343 * mempolicy to the new value.
344 *
345 * Task mempolicy is updated by rebinding it relative to the
346 * current->cpuset if a task has its memory placement changed.
347 * Do not call this routine if in_interrupt().
348 *
349 * Call without callback_mutex or task_lock() held. May be
350 * called with or without cgroup_mutex held. Thanks in part to
351 * 'the_top_cpuset_hack', the task's cpuset pointer will never
352 * be NULL. This routine also might acquire callback_mutex during
353 * call.
354 *
355 * Reading current->cpuset->mems_generation doesn't need task_lock
356 * to guard the current->cpuset derefence, because it is guarded
357 * from concurrent freeing of current->cpuset using RCU.
358 *
359 * The rcu_dereference() is technically probably not needed,
360 * as I don't actually mind if I see a new cpuset pointer but
361 * an old value of mems_generation. However this really only
362 * matters on alpha systems using cpusets heavily. If I dropped
363 * that rcu_dereference(), it would save them a memory barrier.
364 * For all other arch's, rcu_dereference is a no-op anyway, and for
365 * alpha systems not using cpusets, another planned optimization,
366 * avoiding the rcu critical section for tasks in the root cpuset
367 * which is statically allocated, so can't vanish, will make this
368 * irrelevant. Better to use RCU as intended, than to engage in
369 * some cute trick to save a memory barrier that is impossible to
370 * test, for alpha systems using cpusets heavily, which might not
371 * even exist.
372 *
373 * This routine is needed to update the per-task mems_allowed data,
374 * within the tasks context, when it is trying to allocate memory
375 * (in various mm/mempolicy.c routines) and notices that some other
376 * task has been modifying its cpuset.
377 */
378
cpuset_update_task_memory_state(void)379 void cpuset_update_task_memory_state(void)
380 {
381 int my_cpusets_mem_gen;
382 struct task_struct *tsk = current;
383 struct cpuset *cs;
384
385 rcu_read_lock();
386 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
387 rcu_read_unlock();
388
389 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
390 mutex_lock(&callback_mutex);
391 task_lock(tsk);
392 cs = task_cs(tsk); /* Maybe changed when task not locked */
393 guarantee_online_mems(cs, &tsk->mems_allowed);
394 tsk->cpuset_mems_generation = cs->mems_generation;
395 if (is_spread_page(cs))
396 tsk->flags |= PF_SPREAD_PAGE;
397 else
398 tsk->flags &= ~PF_SPREAD_PAGE;
399 if (is_spread_slab(cs))
400 tsk->flags |= PF_SPREAD_SLAB;
401 else
402 tsk->flags &= ~PF_SPREAD_SLAB;
403 task_unlock(tsk);
404 mutex_unlock(&callback_mutex);
405 mpol_rebind_task(tsk, &tsk->mems_allowed);
406 }
407 }
408
409 /*
410 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
411 *
412 * One cpuset is a subset of another if all its allowed CPUs and
413 * Memory Nodes are a subset of the other, and its exclusive flags
414 * are only set if the other's are set. Call holding cgroup_mutex.
415 */
416
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)417 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
418 {
419 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
420 nodes_subset(p->mems_allowed, q->mems_allowed) &&
421 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
422 is_mem_exclusive(p) <= is_mem_exclusive(q);
423 }
424
425 /**
426 * alloc_trial_cpuset - allocate a trial cpuset
427 * @cs: the cpuset that the trial cpuset duplicates
428 */
alloc_trial_cpuset(const struct cpuset * cs)429 static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
430 {
431 struct cpuset *trial;
432
433 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
434 if (!trial)
435 return NULL;
436
437 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
438 kfree(trial);
439 return NULL;
440 }
441 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
442
443 return trial;
444 }
445
446 /**
447 * free_trial_cpuset - free the trial cpuset
448 * @trial: the trial cpuset to be freed
449 */
free_trial_cpuset(struct cpuset * trial)450 static void free_trial_cpuset(struct cpuset *trial)
451 {
452 free_cpumask_var(trial->cpus_allowed);
453 kfree(trial);
454 }
455
456 /*
457 * validate_change() - Used to validate that any proposed cpuset change
458 * follows the structural rules for cpusets.
459 *
460 * If we replaced the flag and mask values of the current cpuset
461 * (cur) with those values in the trial cpuset (trial), would
462 * our various subset and exclusive rules still be valid? Presumes
463 * cgroup_mutex held.
464 *
465 * 'cur' is the address of an actual, in-use cpuset. Operations
466 * such as list traversal that depend on the actual address of the
467 * cpuset in the list must use cur below, not trial.
468 *
469 * 'trial' is the address of bulk structure copy of cur, with
470 * perhaps one or more of the fields cpus_allowed, mems_allowed,
471 * or flags changed to new, trial values.
472 *
473 * Return 0 if valid, -errno if not.
474 */
475
validate_change(const struct cpuset * cur,const struct cpuset * trial)476 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
477 {
478 struct cgroup *cont;
479 struct cpuset *c, *par;
480
481 /* Each of our child cpusets must be a subset of us */
482 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
483 if (!is_cpuset_subset(cgroup_cs(cont), trial))
484 return -EBUSY;
485 }
486
487 /* Remaining checks don't apply to root cpuset */
488 if (cur == &top_cpuset)
489 return 0;
490
491 par = cur->parent;
492
493 /* We must be a subset of our parent cpuset */
494 if (!is_cpuset_subset(trial, par))
495 return -EACCES;
496
497 /*
498 * If either I or some sibling (!= me) is exclusive, we can't
499 * overlap
500 */
501 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
502 c = cgroup_cs(cont);
503 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
504 c != cur &&
505 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
506 return -EINVAL;
507 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
508 c != cur &&
509 nodes_intersects(trial->mems_allowed, c->mems_allowed))
510 return -EINVAL;
511 }
512
513 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
514 if (cgroup_task_count(cur->css.cgroup)) {
515 if (cpumask_empty(trial->cpus_allowed) ||
516 nodes_empty(trial->mems_allowed)) {
517 return -ENOSPC;
518 }
519 }
520
521 return 0;
522 }
523
524 /*
525 * Helper routine for generate_sched_domains().
526 * Do cpusets a, b have overlapping cpus_allowed masks?
527 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)528 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
529 {
530 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
531 }
532
533 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)534 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
535 {
536 if (dattr->relax_domain_level < c->relax_domain_level)
537 dattr->relax_domain_level = c->relax_domain_level;
538 return;
539 }
540
541 static void
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * c)542 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
543 {
544 LIST_HEAD(q);
545
546 list_add(&c->stack_list, &q);
547 while (!list_empty(&q)) {
548 struct cpuset *cp;
549 struct cgroup *cont;
550 struct cpuset *child;
551
552 cp = list_first_entry(&q, struct cpuset, stack_list);
553 list_del(q.next);
554
555 if (cpumask_empty(cp->cpus_allowed))
556 continue;
557
558 if (is_sched_load_balance(cp))
559 update_domain_attr(dattr, cp);
560
561 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
562 child = cgroup_cs(cont);
563 list_add_tail(&child->stack_list, &q);
564 }
565 }
566 }
567
568 /*
569 * generate_sched_domains()
570 *
571 * This function builds a partial partition of the systems CPUs
572 * A 'partial partition' is a set of non-overlapping subsets whose
573 * union is a subset of that set.
574 * The output of this function needs to be passed to kernel/sched.c
575 * partition_sched_domains() routine, which will rebuild the scheduler's
576 * load balancing domains (sched domains) as specified by that partial
577 * partition.
578 *
579 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
580 * for a background explanation of this.
581 *
582 * Does not return errors, on the theory that the callers of this
583 * routine would rather not worry about failures to rebuild sched
584 * domains when operating in the severe memory shortage situations
585 * that could cause allocation failures below.
586 *
587 * Must be called with cgroup_lock held.
588 *
589 * The three key local variables below are:
590 * q - a linked-list queue of cpuset pointers, used to implement a
591 * top-down scan of all cpusets. This scan loads a pointer
592 * to each cpuset marked is_sched_load_balance into the
593 * array 'csa'. For our purposes, rebuilding the schedulers
594 * sched domains, we can ignore !is_sched_load_balance cpusets.
595 * csa - (for CpuSet Array) Array of pointers to all the cpusets
596 * that need to be load balanced, for convenient iterative
597 * access by the subsequent code that finds the best partition,
598 * i.e the set of domains (subsets) of CPUs such that the
599 * cpus_allowed of every cpuset marked is_sched_load_balance
600 * is a subset of one of these domains, while there are as
601 * many such domains as possible, each as small as possible.
602 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
603 * the kernel/sched.c routine partition_sched_domains() in a
604 * convenient format, that can be easily compared to the prior
605 * value to determine what partition elements (sched domains)
606 * were changed (added or removed.)
607 *
608 * Finding the best partition (set of domains):
609 * The triple nested loops below over i, j, k scan over the
610 * load balanced cpusets (using the array of cpuset pointers in
611 * csa[]) looking for pairs of cpusets that have overlapping
612 * cpus_allowed, but which don't have the same 'pn' partition
613 * number and gives them in the same partition number. It keeps
614 * looping on the 'restart' label until it can no longer find
615 * any such pairs.
616 *
617 * The union of the cpus_allowed masks from the set of
618 * all cpusets having the same 'pn' value then form the one
619 * element of the partition (one sched domain) to be passed to
620 * partition_sched_domains().
621 */
622 /* FIXME: see the FIXME in partition_sched_domains() */
generate_sched_domains(struct cpumask ** domains,struct sched_domain_attr ** attributes)623 static int generate_sched_domains(struct cpumask **domains,
624 struct sched_domain_attr **attributes)
625 {
626 LIST_HEAD(q); /* queue of cpusets to be scanned */
627 struct cpuset *cp; /* scans q */
628 struct cpuset **csa; /* array of all cpuset ptrs */
629 int csn; /* how many cpuset ptrs in csa so far */
630 int i, j, k; /* indices for partition finding loops */
631 struct cpumask *doms; /* resulting partition; i.e. sched domains */
632 struct sched_domain_attr *dattr; /* attributes for custom domains */
633 int ndoms = 0; /* number of sched domains in result */
634 int nslot; /* next empty doms[] struct cpumask slot */
635
636 doms = NULL;
637 dattr = NULL;
638 csa = NULL;
639
640 /* Special case for the 99% of systems with one, full, sched domain */
641 if (is_sched_load_balance(&top_cpuset)) {
642 doms = kmalloc(cpumask_size(), GFP_KERNEL);
643 if (!doms)
644 goto done;
645
646 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
647 if (dattr) {
648 *dattr = SD_ATTR_INIT;
649 update_domain_attr_tree(dattr, &top_cpuset);
650 }
651 cpumask_copy(doms, top_cpuset.cpus_allowed);
652
653 ndoms = 1;
654 goto done;
655 }
656
657 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
658 if (!csa)
659 goto done;
660 csn = 0;
661
662 list_add(&top_cpuset.stack_list, &q);
663 while (!list_empty(&q)) {
664 struct cgroup *cont;
665 struct cpuset *child; /* scans child cpusets of cp */
666
667 cp = list_first_entry(&q, struct cpuset, stack_list);
668 list_del(q.next);
669
670 if (cpumask_empty(cp->cpus_allowed))
671 continue;
672
673 /*
674 * All child cpusets contain a subset of the parent's cpus, so
675 * just skip them, and then we call update_domain_attr_tree()
676 * to calc relax_domain_level of the corresponding sched
677 * domain.
678 */
679 if (is_sched_load_balance(cp)) {
680 csa[csn++] = cp;
681 continue;
682 }
683
684 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
685 child = cgroup_cs(cont);
686 list_add_tail(&child->stack_list, &q);
687 }
688 }
689
690 for (i = 0; i < csn; i++)
691 csa[i]->pn = i;
692 ndoms = csn;
693
694 restart:
695 /* Find the best partition (set of sched domains) */
696 for (i = 0; i < csn; i++) {
697 struct cpuset *a = csa[i];
698 int apn = a->pn;
699
700 for (j = 0; j < csn; j++) {
701 struct cpuset *b = csa[j];
702 int bpn = b->pn;
703
704 if (apn != bpn && cpusets_overlap(a, b)) {
705 for (k = 0; k < csn; k++) {
706 struct cpuset *c = csa[k];
707
708 if (c->pn == bpn)
709 c->pn = apn;
710 }
711 ndoms--; /* one less element */
712 goto restart;
713 }
714 }
715 }
716
717 /*
718 * Now we know how many domains to create.
719 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
720 */
721 doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
722 if (!doms)
723 goto done;
724
725 /*
726 * The rest of the code, including the scheduler, can deal with
727 * dattr==NULL case. No need to abort if alloc fails.
728 */
729 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
730
731 for (nslot = 0, i = 0; i < csn; i++) {
732 struct cpuset *a = csa[i];
733 struct cpumask *dp;
734 int apn = a->pn;
735
736 if (apn < 0) {
737 /* Skip completed partitions */
738 continue;
739 }
740
741 dp = doms + nslot;
742
743 if (nslot == ndoms) {
744 static int warnings = 10;
745 if (warnings) {
746 printk(KERN_WARNING
747 "rebuild_sched_domains confused:"
748 " nslot %d, ndoms %d, csn %d, i %d,"
749 " apn %d\n",
750 nslot, ndoms, csn, i, apn);
751 warnings--;
752 }
753 continue;
754 }
755
756 cpumask_clear(dp);
757 if (dattr)
758 *(dattr + nslot) = SD_ATTR_INIT;
759 for (j = i; j < csn; j++) {
760 struct cpuset *b = csa[j];
761
762 if (apn == b->pn) {
763 cpumask_or(dp, dp, b->cpus_allowed);
764 if (dattr)
765 update_domain_attr_tree(dattr + nslot, b);
766
767 /* Done with this partition */
768 b->pn = -1;
769 }
770 }
771 nslot++;
772 }
773 BUG_ON(nslot != ndoms);
774
775 done:
776 kfree(csa);
777
778 /*
779 * Fallback to the default domain if kmalloc() failed.
780 * See comments in partition_sched_domains().
781 */
782 if (doms == NULL)
783 ndoms = 1;
784
785 *domains = doms;
786 *attributes = dattr;
787 return ndoms;
788 }
789
790 /*
791 * Rebuild scheduler domains.
792 *
793 * Call with neither cgroup_mutex held nor within get_online_cpus().
794 * Takes both cgroup_mutex and get_online_cpus().
795 *
796 * Cannot be directly called from cpuset code handling changes
797 * to the cpuset pseudo-filesystem, because it cannot be called
798 * from code that already holds cgroup_mutex.
799 */
do_rebuild_sched_domains(struct work_struct * unused)800 static void do_rebuild_sched_domains(struct work_struct *unused)
801 {
802 struct sched_domain_attr *attr;
803 struct cpumask *doms;
804 int ndoms;
805
806 get_online_cpus();
807
808 /* Generate domain masks and attrs */
809 cgroup_lock();
810 ndoms = generate_sched_domains(&doms, &attr);
811 cgroup_unlock();
812
813 /* Have scheduler rebuild the domains */
814 partition_sched_domains(ndoms, doms, attr);
815
816 put_online_cpus();
817 }
818
819 static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
820
821 /*
822 * Rebuild scheduler domains, asynchronously via workqueue.
823 *
824 * If the flag 'sched_load_balance' of any cpuset with non-empty
825 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
826 * which has that flag enabled, or if any cpuset with a non-empty
827 * 'cpus' is removed, then call this routine to rebuild the
828 * scheduler's dynamic sched domains.
829 *
830 * The rebuild_sched_domains() and partition_sched_domains()
831 * routines must nest cgroup_lock() inside get_online_cpus(),
832 * but such cpuset changes as these must nest that locking the
833 * other way, holding cgroup_lock() for much of the code.
834 *
835 * So in order to avoid an ABBA deadlock, the cpuset code handling
836 * these user changes delegates the actual sched domain rebuilding
837 * to a separate workqueue thread, which ends up processing the
838 * above do_rebuild_sched_domains() function.
839 */
async_rebuild_sched_domains(void)840 static void async_rebuild_sched_domains(void)
841 {
842 queue_work(cpuset_wq, &rebuild_sched_domains_work);
843 }
844
845 /*
846 * Accomplishes the same scheduler domain rebuild as the above
847 * async_rebuild_sched_domains(), however it directly calls the
848 * rebuild routine synchronously rather than calling it via an
849 * asynchronous work thread.
850 *
851 * This can only be called from code that is not holding
852 * cgroup_mutex (not nested in a cgroup_lock() call.)
853 */
rebuild_sched_domains(void)854 void rebuild_sched_domains(void)
855 {
856 do_rebuild_sched_domains(NULL);
857 }
858
859 /**
860 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
861 * @tsk: task to test
862 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
863 *
864 * Call with cgroup_mutex held. May take callback_mutex during call.
865 * Called for each task in a cgroup by cgroup_scan_tasks().
866 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
867 * words, if its mask is not equal to its cpuset's mask).
868 */
cpuset_test_cpumask(struct task_struct * tsk,struct cgroup_scanner * scan)869 static int cpuset_test_cpumask(struct task_struct *tsk,
870 struct cgroup_scanner *scan)
871 {
872 return !cpumask_equal(&tsk->cpus_allowed,
873 (cgroup_cs(scan->cg))->cpus_allowed);
874 }
875
876 /**
877 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
878 * @tsk: task to test
879 * @scan: struct cgroup_scanner containing the cgroup of the task
880 *
881 * Called by cgroup_scan_tasks() for each task in a cgroup whose
882 * cpus_allowed mask needs to be changed.
883 *
884 * We don't need to re-check for the cgroup/cpuset membership, since we're
885 * holding cgroup_lock() at this point.
886 */
cpuset_change_cpumask(struct task_struct * tsk,struct cgroup_scanner * scan)887 static void cpuset_change_cpumask(struct task_struct *tsk,
888 struct cgroup_scanner *scan)
889 {
890 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
891 }
892
893 /**
894 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
895 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
896 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
897 *
898 * Called with cgroup_mutex held
899 *
900 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
901 * calling callback functions for each.
902 *
903 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
904 * if @heap != NULL.
905 */
update_tasks_cpumask(struct cpuset * cs,struct ptr_heap * heap)906 static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
907 {
908 struct cgroup_scanner scan;
909
910 scan.cg = cs->css.cgroup;
911 scan.test_task = cpuset_test_cpumask;
912 scan.process_task = cpuset_change_cpumask;
913 scan.heap = heap;
914 cgroup_scan_tasks(&scan);
915 }
916
917 /**
918 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
919 * @cs: the cpuset to consider
920 * @buf: buffer of cpu numbers written to this cpuset
921 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)922 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
923 const char *buf)
924 {
925 struct ptr_heap heap;
926 int retval;
927 int is_load_balanced;
928
929 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
930 if (cs == &top_cpuset)
931 return -EACCES;
932
933 /*
934 * An empty cpus_allowed is ok only if the cpuset has no tasks.
935 * Since cpulist_parse() fails on an empty mask, we special case
936 * that parsing. The validate_change() call ensures that cpusets
937 * with tasks have cpus.
938 */
939 if (!*buf) {
940 cpumask_clear(trialcs->cpus_allowed);
941 } else {
942 retval = cpulist_parse(buf, trialcs->cpus_allowed);
943 if (retval < 0)
944 return retval;
945
946 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
947 return -EINVAL;
948 }
949 retval = validate_change(cs, trialcs);
950 if (retval < 0)
951 return retval;
952
953 /* Nothing to do if the cpus didn't change */
954 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
955 return 0;
956
957 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
958 if (retval)
959 return retval;
960
961 is_load_balanced = is_sched_load_balance(trialcs);
962
963 mutex_lock(&callback_mutex);
964 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
965 mutex_unlock(&callback_mutex);
966
967 /*
968 * Scan tasks in the cpuset, and update the cpumasks of any
969 * that need an update.
970 */
971 update_tasks_cpumask(cs, &heap);
972
973 heap_free(&heap);
974
975 if (is_load_balanced)
976 async_rebuild_sched_domains();
977 return 0;
978 }
979
980 /*
981 * cpuset_migrate_mm
982 *
983 * Migrate memory region from one set of nodes to another.
984 *
985 * Temporarilly set tasks mems_allowed to target nodes of migration,
986 * so that the migration code can allocate pages on these nodes.
987 *
988 * Call holding cgroup_mutex, so current's cpuset won't change
989 * during this call, as manage_mutex holds off any cpuset_attach()
990 * calls. Therefore we don't need to take task_lock around the
991 * call to guarantee_online_mems(), as we know no one is changing
992 * our task's cpuset.
993 *
994 * Hold callback_mutex around the two modifications of our tasks
995 * mems_allowed to synchronize with cpuset_mems_allowed().
996 *
997 * While the mm_struct we are migrating is typically from some
998 * other task, the task_struct mems_allowed that we are hacking
999 * is for our current task, which must allocate new pages for that
1000 * migrating memory region.
1001 *
1002 * We call cpuset_update_task_memory_state() before hacking
1003 * our tasks mems_allowed, so that we are assured of being in
1004 * sync with our tasks cpuset, and in particular, callbacks to
1005 * cpuset_update_task_memory_state() from nested page allocations
1006 * won't see any mismatch of our cpuset and task mems_generation
1007 * values, so won't overwrite our hacked tasks mems_allowed
1008 * nodemask.
1009 */
1010
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1011 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1012 const nodemask_t *to)
1013 {
1014 struct task_struct *tsk = current;
1015
1016 cpuset_update_task_memory_state();
1017
1018 mutex_lock(&callback_mutex);
1019 tsk->mems_allowed = *to;
1020 mutex_unlock(&callback_mutex);
1021
1022 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1023
1024 mutex_lock(&callback_mutex);
1025 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
1026 mutex_unlock(&callback_mutex);
1027 }
1028
1029 static void *cpuset_being_rebound;
1030
1031 /**
1032 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1033 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1034 * @oldmem: old mems_allowed of cpuset cs
1035 *
1036 * Called with cgroup_mutex held
1037 * Return 0 if successful, -errno if not.
1038 */
update_tasks_nodemask(struct cpuset * cs,const nodemask_t * oldmem)1039 static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1040 {
1041 struct task_struct *p;
1042 struct mm_struct **mmarray;
1043 int i, n, ntasks;
1044 int migrate;
1045 int fudge;
1046 struct cgroup_iter it;
1047 int retval;
1048
1049 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1050
1051 fudge = 10; /* spare mmarray[] slots */
1052 fudge += cpumask_weight(cs->cpus_allowed);/* imagine 1 fork-bomb/cpu */
1053 retval = -ENOMEM;
1054
1055 /*
1056 * Allocate mmarray[] to hold mm reference for each task
1057 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1058 * tasklist_lock. We could use GFP_ATOMIC, but with a
1059 * few more lines of code, we can retry until we get a big
1060 * enough mmarray[] w/o using GFP_ATOMIC.
1061 */
1062 while (1) {
1063 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
1064 ntasks += fudge;
1065 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1066 if (!mmarray)
1067 goto done;
1068 read_lock(&tasklist_lock); /* block fork */
1069 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
1070 break; /* got enough */
1071 read_unlock(&tasklist_lock); /* try again */
1072 kfree(mmarray);
1073 }
1074
1075 n = 0;
1076
1077 /* Load up mmarray[] with mm reference for each task in cpuset. */
1078 cgroup_iter_start(cs->css.cgroup, &it);
1079 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
1080 struct mm_struct *mm;
1081
1082 if (n >= ntasks) {
1083 printk(KERN_WARNING
1084 "Cpuset mempolicy rebind incomplete.\n");
1085 break;
1086 }
1087 mm = get_task_mm(p);
1088 if (!mm)
1089 continue;
1090 mmarray[n++] = mm;
1091 }
1092 cgroup_iter_end(cs->css.cgroup, &it);
1093 read_unlock(&tasklist_lock);
1094
1095 /*
1096 * Now that we've dropped the tasklist spinlock, we can
1097 * rebind the vma mempolicies of each mm in mmarray[] to their
1098 * new cpuset, and release that mm. The mpol_rebind_mm()
1099 * call takes mmap_sem, which we couldn't take while holding
1100 * tasklist_lock. Forks can happen again now - the mpol_dup()
1101 * cpuset_being_rebound check will catch such forks, and rebind
1102 * their vma mempolicies too. Because we still hold the global
1103 * cgroup_mutex, we know that no other rebind effort will
1104 * be contending for the global variable cpuset_being_rebound.
1105 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1106 * is idempotent. Also migrate pages in each mm to new nodes.
1107 */
1108 migrate = is_memory_migrate(cs);
1109 for (i = 0; i < n; i++) {
1110 struct mm_struct *mm = mmarray[i];
1111
1112 mpol_rebind_mm(mm, &cs->mems_allowed);
1113 if (migrate)
1114 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1115 mmput(mm);
1116 }
1117
1118 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1119 kfree(mmarray);
1120 cpuset_being_rebound = NULL;
1121 retval = 0;
1122 done:
1123 return retval;
1124 }
1125
1126 /*
1127 * Handle user request to change the 'mems' memory placement
1128 * of a cpuset. Needs to validate the request, update the
1129 * cpusets mems_allowed and mems_generation, and for each
1130 * task in the cpuset, rebind any vma mempolicies and if
1131 * the cpuset is marked 'memory_migrate', migrate the tasks
1132 * pages to the new memory.
1133 *
1134 * Call with cgroup_mutex held. May take callback_mutex during call.
1135 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1136 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1137 * their mempolicies to the cpusets new mems_allowed.
1138 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1139 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1140 const char *buf)
1141 {
1142 nodemask_t oldmem;
1143 int retval;
1144
1145 /*
1146 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1147 * it's read-only
1148 */
1149 if (cs == &top_cpuset)
1150 return -EACCES;
1151
1152 /*
1153 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1154 * Since nodelist_parse() fails on an empty mask, we special case
1155 * that parsing. The validate_change() call ensures that cpusets
1156 * with tasks have memory.
1157 */
1158 if (!*buf) {
1159 nodes_clear(trialcs->mems_allowed);
1160 } else {
1161 retval = nodelist_parse(buf, trialcs->mems_allowed);
1162 if (retval < 0)
1163 goto done;
1164
1165 if (!nodes_subset(trialcs->mems_allowed,
1166 node_states[N_HIGH_MEMORY]))
1167 return -EINVAL;
1168 }
1169 oldmem = cs->mems_allowed;
1170 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
1171 retval = 0; /* Too easy - nothing to do */
1172 goto done;
1173 }
1174 retval = validate_change(cs, trialcs);
1175 if (retval < 0)
1176 goto done;
1177
1178 mutex_lock(&callback_mutex);
1179 cs->mems_allowed = trialcs->mems_allowed;
1180 cs->mems_generation = cpuset_mems_generation++;
1181 mutex_unlock(&callback_mutex);
1182
1183 retval = update_tasks_nodemask(cs, &oldmem);
1184 done:
1185 return retval;
1186 }
1187
current_cpuset_is_being_rebound(void)1188 int current_cpuset_is_being_rebound(void)
1189 {
1190 return task_cs(current) == cpuset_being_rebound;
1191 }
1192
update_relax_domain_level(struct cpuset * cs,s64 val)1193 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1194 {
1195 if (val < -1 || val >= SD_LV_MAX)
1196 return -EINVAL;
1197
1198 if (val != cs->relax_domain_level) {
1199 cs->relax_domain_level = val;
1200 if (!cpumask_empty(cs->cpus_allowed) &&
1201 is_sched_load_balance(cs))
1202 async_rebuild_sched_domains();
1203 }
1204
1205 return 0;
1206 }
1207
1208 /*
1209 * update_flag - read a 0 or a 1 in a file and update associated flag
1210 * bit: the bit to update (see cpuset_flagbits_t)
1211 * cs: the cpuset to update
1212 * turning_on: whether the flag is being set or cleared
1213 *
1214 * Call with cgroup_mutex held.
1215 */
1216
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1217 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1218 int turning_on)
1219 {
1220 struct cpuset *trialcs;
1221 int err;
1222 int balance_flag_changed;
1223
1224 trialcs = alloc_trial_cpuset(cs);
1225 if (!trialcs)
1226 return -ENOMEM;
1227
1228 if (turning_on)
1229 set_bit(bit, &trialcs->flags);
1230 else
1231 clear_bit(bit, &trialcs->flags);
1232
1233 err = validate_change(cs, trialcs);
1234 if (err < 0)
1235 goto out;
1236
1237 balance_flag_changed = (is_sched_load_balance(cs) !=
1238 is_sched_load_balance(trialcs));
1239
1240 mutex_lock(&callback_mutex);
1241 cs->flags = trialcs->flags;
1242 mutex_unlock(&callback_mutex);
1243
1244 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1245 async_rebuild_sched_domains();
1246
1247 out:
1248 free_trial_cpuset(trialcs);
1249 return err;
1250 }
1251
1252 /*
1253 * Frequency meter - How fast is some event occurring?
1254 *
1255 * These routines manage a digitally filtered, constant time based,
1256 * event frequency meter. There are four routines:
1257 * fmeter_init() - initialize a frequency meter.
1258 * fmeter_markevent() - called each time the event happens.
1259 * fmeter_getrate() - returns the recent rate of such events.
1260 * fmeter_update() - internal routine used to update fmeter.
1261 *
1262 * A common data structure is passed to each of these routines,
1263 * which is used to keep track of the state required to manage the
1264 * frequency meter and its digital filter.
1265 *
1266 * The filter works on the number of events marked per unit time.
1267 * The filter is single-pole low-pass recursive (IIR). The time unit
1268 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1269 * simulate 3 decimal digits of precision (multiplied by 1000).
1270 *
1271 * With an FM_COEF of 933, and a time base of 1 second, the filter
1272 * has a half-life of 10 seconds, meaning that if the events quit
1273 * happening, then the rate returned from the fmeter_getrate()
1274 * will be cut in half each 10 seconds, until it converges to zero.
1275 *
1276 * It is not worth doing a real infinitely recursive filter. If more
1277 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1278 * just compute FM_MAXTICKS ticks worth, by which point the level
1279 * will be stable.
1280 *
1281 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1282 * arithmetic overflow in the fmeter_update() routine.
1283 *
1284 * Given the simple 32 bit integer arithmetic used, this meter works
1285 * best for reporting rates between one per millisecond (msec) and
1286 * one per 32 (approx) seconds. At constant rates faster than one
1287 * per msec it maxes out at values just under 1,000,000. At constant
1288 * rates between one per msec, and one per second it will stabilize
1289 * to a value N*1000, where N is the rate of events per second.
1290 * At constant rates between one per second and one per 32 seconds,
1291 * it will be choppy, moving up on the seconds that have an event,
1292 * and then decaying until the next event. At rates slower than
1293 * about one in 32 seconds, it decays all the way back to zero between
1294 * each event.
1295 */
1296
1297 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1298 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1299 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1300 #define FM_SCALE 1000 /* faux fixed point scale */
1301
1302 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)1303 static void fmeter_init(struct fmeter *fmp)
1304 {
1305 fmp->cnt = 0;
1306 fmp->val = 0;
1307 fmp->time = 0;
1308 spin_lock_init(&fmp->lock);
1309 }
1310
1311 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)1312 static void fmeter_update(struct fmeter *fmp)
1313 {
1314 time_t now = get_seconds();
1315 time_t ticks = now - fmp->time;
1316
1317 if (ticks == 0)
1318 return;
1319
1320 ticks = min(FM_MAXTICKS, ticks);
1321 while (ticks-- > 0)
1322 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1323 fmp->time = now;
1324
1325 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1326 fmp->cnt = 0;
1327 }
1328
1329 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)1330 static void fmeter_markevent(struct fmeter *fmp)
1331 {
1332 spin_lock(&fmp->lock);
1333 fmeter_update(fmp);
1334 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1335 spin_unlock(&fmp->lock);
1336 }
1337
1338 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)1339 static int fmeter_getrate(struct fmeter *fmp)
1340 {
1341 int val;
1342
1343 spin_lock(&fmp->lock);
1344 fmeter_update(fmp);
1345 val = fmp->val;
1346 spin_unlock(&fmp->lock);
1347 return val;
1348 }
1349
1350 /* Protected by cgroup_lock */
1351 static cpumask_var_t cpus_attach;
1352
1353 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
cpuset_can_attach(struct cgroup_subsys * ss,struct cgroup * cont,struct task_struct * tsk)1354 static int cpuset_can_attach(struct cgroup_subsys *ss,
1355 struct cgroup *cont, struct task_struct *tsk)
1356 {
1357 struct cpuset *cs = cgroup_cs(cont);
1358 int ret = 0;
1359
1360 if ((current != task) && (!capable(CAP_SYS_ADMIN))) {
1361 const struct cred *cred = current_cred(), *tcred;
1362
1363 if (cred->euid != tcred->uid && cred->euid != tcred->suid)
1364 return -EPERM;
1365 }
1366
1367 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1368 return -ENOSPC;
1369
1370 if (tsk->flags & PF_THREAD_BOUND) {
1371 mutex_lock(&callback_mutex);
1372 if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
1373 ret = -EINVAL;
1374 mutex_unlock(&callback_mutex);
1375 }
1376
1377 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
1378 }
1379
cpuset_attach(struct cgroup_subsys * ss,struct cgroup * cont,struct cgroup * oldcont,struct task_struct * tsk)1380 static void cpuset_attach(struct cgroup_subsys *ss,
1381 struct cgroup *cont, struct cgroup *oldcont,
1382 struct task_struct *tsk)
1383 {
1384 nodemask_t from, to;
1385 struct mm_struct *mm;
1386 struct cpuset *cs = cgroup_cs(cont);
1387 struct cpuset *oldcs = cgroup_cs(oldcont);
1388 int err;
1389
1390 if (cs == &top_cpuset) {
1391 cpumask_copy(cpus_attach, cpu_possible_mask);
1392 } else {
1393 mutex_lock(&callback_mutex);
1394 guarantee_online_cpus(cs, cpus_attach);
1395 mutex_unlock(&callback_mutex);
1396 }
1397 err = set_cpus_allowed_ptr(tsk, cpus_attach);
1398 if (err)
1399 return;
1400
1401 from = oldcs->mems_allowed;
1402 to = cs->mems_allowed;
1403 mm = get_task_mm(tsk);
1404 if (mm) {
1405 mpol_rebind_mm(mm, &to);
1406 if (is_memory_migrate(cs))
1407 cpuset_migrate_mm(mm, &from, &to);
1408 mmput(mm);
1409 }
1410 }
1411
1412 /* The various types of files and directories in a cpuset file system */
1413
1414 typedef enum {
1415 FILE_MEMORY_MIGRATE,
1416 FILE_CPULIST,
1417 FILE_MEMLIST,
1418 FILE_CPU_EXCLUSIVE,
1419 FILE_MEM_EXCLUSIVE,
1420 FILE_MEM_HARDWALL,
1421 FILE_SCHED_LOAD_BALANCE,
1422 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1423 FILE_MEMORY_PRESSURE_ENABLED,
1424 FILE_MEMORY_PRESSURE,
1425 FILE_SPREAD_PAGE,
1426 FILE_SPREAD_SLAB,
1427 } cpuset_filetype_t;
1428
cpuset_write_u64(struct cgroup * cgrp,struct cftype * cft,u64 val)1429 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1430 {
1431 int retval = 0;
1432 struct cpuset *cs = cgroup_cs(cgrp);
1433 cpuset_filetype_t type = cft->private;
1434
1435 if (!cgroup_lock_live_group(cgrp))
1436 return -ENODEV;
1437
1438 switch (type) {
1439 case FILE_CPU_EXCLUSIVE:
1440 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1441 break;
1442 case FILE_MEM_EXCLUSIVE:
1443 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1444 break;
1445 case FILE_MEM_HARDWALL:
1446 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1447 break;
1448 case FILE_SCHED_LOAD_BALANCE:
1449 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1450 break;
1451 case FILE_MEMORY_MIGRATE:
1452 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1453 break;
1454 case FILE_MEMORY_PRESSURE_ENABLED:
1455 cpuset_memory_pressure_enabled = !!val;
1456 break;
1457 case FILE_MEMORY_PRESSURE:
1458 retval = -EACCES;
1459 break;
1460 case FILE_SPREAD_PAGE:
1461 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1462 cs->mems_generation = cpuset_mems_generation++;
1463 break;
1464 case FILE_SPREAD_SLAB:
1465 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1466 cs->mems_generation = cpuset_mems_generation++;
1467 break;
1468 default:
1469 retval = -EINVAL;
1470 break;
1471 }
1472 cgroup_unlock();
1473 return retval;
1474 }
1475
cpuset_write_s64(struct cgroup * cgrp,struct cftype * cft,s64 val)1476 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1477 {
1478 int retval = 0;
1479 struct cpuset *cs = cgroup_cs(cgrp);
1480 cpuset_filetype_t type = cft->private;
1481
1482 if (!cgroup_lock_live_group(cgrp))
1483 return -ENODEV;
1484
1485 switch (type) {
1486 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1487 retval = update_relax_domain_level(cs, val);
1488 break;
1489 default:
1490 retval = -EINVAL;
1491 break;
1492 }
1493 cgroup_unlock();
1494 return retval;
1495 }
1496
1497 /*
1498 * Common handling for a write to a "cpus" or "mems" file.
1499 */
cpuset_write_resmask(struct cgroup * cgrp,struct cftype * cft,const char * buf)1500 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1501 const char *buf)
1502 {
1503 int retval = 0;
1504 struct cpuset *cs = cgroup_cs(cgrp);
1505 struct cpuset *trialcs;
1506
1507 if (!cgroup_lock_live_group(cgrp))
1508 return -ENODEV;
1509
1510 trialcs = alloc_trial_cpuset(cs);
1511 if (!trialcs)
1512 return -ENOMEM;
1513
1514 switch (cft->private) {
1515 case FILE_CPULIST:
1516 retval = update_cpumask(cs, trialcs, buf);
1517 break;
1518 case FILE_MEMLIST:
1519 retval = update_nodemask(cs, trialcs, buf);
1520 break;
1521 default:
1522 retval = -EINVAL;
1523 break;
1524 }
1525
1526 free_trial_cpuset(trialcs);
1527 cgroup_unlock();
1528 return retval;
1529 }
1530
1531 /*
1532 * These ascii lists should be read in a single call, by using a user
1533 * buffer large enough to hold the entire map. If read in smaller
1534 * chunks, there is no guarantee of atomicity. Since the display format
1535 * used, list of ranges of sequential numbers, is variable length,
1536 * and since these maps can change value dynamically, one could read
1537 * gibberish by doing partial reads while a list was changing.
1538 * A single large read to a buffer that crosses a page boundary is
1539 * ok, because the result being copied to user land is not recomputed
1540 * across a page fault.
1541 */
1542
cpuset_sprintf_cpulist(char * page,struct cpuset * cs)1543 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1544 {
1545 int ret;
1546
1547 mutex_lock(&callback_mutex);
1548 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
1549 mutex_unlock(&callback_mutex);
1550
1551 return ret;
1552 }
1553
cpuset_sprintf_memlist(char * page,struct cpuset * cs)1554 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1555 {
1556 nodemask_t mask;
1557
1558 mutex_lock(&callback_mutex);
1559 mask = cs->mems_allowed;
1560 mutex_unlock(&callback_mutex);
1561
1562 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1563 }
1564
cpuset_common_file_read(struct cgroup * cont,struct cftype * cft,struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1565 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1566 struct cftype *cft,
1567 struct file *file,
1568 char __user *buf,
1569 size_t nbytes, loff_t *ppos)
1570 {
1571 struct cpuset *cs = cgroup_cs(cont);
1572 cpuset_filetype_t type = cft->private;
1573 char *page;
1574 ssize_t retval = 0;
1575 char *s;
1576
1577 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1578 return -ENOMEM;
1579
1580 s = page;
1581
1582 switch (type) {
1583 case FILE_CPULIST:
1584 s += cpuset_sprintf_cpulist(s, cs);
1585 break;
1586 case FILE_MEMLIST:
1587 s += cpuset_sprintf_memlist(s, cs);
1588 break;
1589 default:
1590 retval = -EINVAL;
1591 goto out;
1592 }
1593 *s++ = '\n';
1594
1595 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1596 out:
1597 free_page((unsigned long)page);
1598 return retval;
1599 }
1600
cpuset_read_u64(struct cgroup * cont,struct cftype * cft)1601 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1602 {
1603 struct cpuset *cs = cgroup_cs(cont);
1604 cpuset_filetype_t type = cft->private;
1605 switch (type) {
1606 case FILE_CPU_EXCLUSIVE:
1607 return is_cpu_exclusive(cs);
1608 case FILE_MEM_EXCLUSIVE:
1609 return is_mem_exclusive(cs);
1610 case FILE_MEM_HARDWALL:
1611 return is_mem_hardwall(cs);
1612 case FILE_SCHED_LOAD_BALANCE:
1613 return is_sched_load_balance(cs);
1614 case FILE_MEMORY_MIGRATE:
1615 return is_memory_migrate(cs);
1616 case FILE_MEMORY_PRESSURE_ENABLED:
1617 return cpuset_memory_pressure_enabled;
1618 case FILE_MEMORY_PRESSURE:
1619 return fmeter_getrate(&cs->fmeter);
1620 case FILE_SPREAD_PAGE:
1621 return is_spread_page(cs);
1622 case FILE_SPREAD_SLAB:
1623 return is_spread_slab(cs);
1624 default:
1625 BUG();
1626 }
1627
1628 /* Unreachable but makes gcc happy */
1629 return 0;
1630 }
1631
cpuset_read_s64(struct cgroup * cont,struct cftype * cft)1632 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1633 {
1634 struct cpuset *cs = cgroup_cs(cont);
1635 cpuset_filetype_t type = cft->private;
1636 switch (type) {
1637 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1638 return cs->relax_domain_level;
1639 default:
1640 BUG();
1641 }
1642
1643 /* Unrechable but makes gcc happy */
1644 return 0;
1645 }
1646
1647
1648 /*
1649 * for the common functions, 'private' gives the type of file
1650 */
1651
1652 static struct cftype files[] = {
1653 {
1654 .name = "cpus",
1655 .read = cpuset_common_file_read,
1656 .write_string = cpuset_write_resmask,
1657 .max_write_len = (100U + 6 * NR_CPUS),
1658 .private = FILE_CPULIST,
1659 },
1660
1661 {
1662 .name = "mems",
1663 .read = cpuset_common_file_read,
1664 .write_string = cpuset_write_resmask,
1665 .max_write_len = (100U + 6 * MAX_NUMNODES),
1666 .private = FILE_MEMLIST,
1667 },
1668
1669 {
1670 .name = "cpu_exclusive",
1671 .read_u64 = cpuset_read_u64,
1672 .write_u64 = cpuset_write_u64,
1673 .private = FILE_CPU_EXCLUSIVE,
1674 },
1675
1676 {
1677 .name = "mem_exclusive",
1678 .read_u64 = cpuset_read_u64,
1679 .write_u64 = cpuset_write_u64,
1680 .private = FILE_MEM_EXCLUSIVE,
1681 },
1682
1683 {
1684 .name = "mem_hardwall",
1685 .read_u64 = cpuset_read_u64,
1686 .write_u64 = cpuset_write_u64,
1687 .private = FILE_MEM_HARDWALL,
1688 },
1689
1690 {
1691 .name = "sched_load_balance",
1692 .read_u64 = cpuset_read_u64,
1693 .write_u64 = cpuset_write_u64,
1694 .private = FILE_SCHED_LOAD_BALANCE,
1695 },
1696
1697 {
1698 .name = "sched_relax_domain_level",
1699 .read_s64 = cpuset_read_s64,
1700 .write_s64 = cpuset_write_s64,
1701 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1702 },
1703
1704 {
1705 .name = "memory_migrate",
1706 .read_u64 = cpuset_read_u64,
1707 .write_u64 = cpuset_write_u64,
1708 .private = FILE_MEMORY_MIGRATE,
1709 },
1710
1711 {
1712 .name = "memory_pressure",
1713 .read_u64 = cpuset_read_u64,
1714 .write_u64 = cpuset_write_u64,
1715 .private = FILE_MEMORY_PRESSURE,
1716 },
1717
1718 {
1719 .name = "memory_spread_page",
1720 .read_u64 = cpuset_read_u64,
1721 .write_u64 = cpuset_write_u64,
1722 .private = FILE_SPREAD_PAGE,
1723 },
1724
1725 {
1726 .name = "memory_spread_slab",
1727 .read_u64 = cpuset_read_u64,
1728 .write_u64 = cpuset_write_u64,
1729 .private = FILE_SPREAD_SLAB,
1730 },
1731 };
1732
1733 static struct cftype cft_memory_pressure_enabled = {
1734 .name = "memory_pressure_enabled",
1735 .read_u64 = cpuset_read_u64,
1736 .write_u64 = cpuset_write_u64,
1737 .private = FILE_MEMORY_PRESSURE_ENABLED,
1738 };
1739
cpuset_populate(struct cgroup_subsys * ss,struct cgroup * cont)1740 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1741 {
1742 int err;
1743
1744 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1745 if (err)
1746 return err;
1747 /* memory_pressure_enabled is in root cpuset only */
1748 if (!cont->parent)
1749 err = cgroup_add_file(cont, ss,
1750 &cft_memory_pressure_enabled);
1751 return err;
1752 }
1753
1754 /*
1755 * post_clone() is called at the end of cgroup_clone().
1756 * 'cgroup' was just created automatically as a result of
1757 * a cgroup_clone(), and the current task is about to
1758 * be moved into 'cgroup'.
1759 *
1760 * Currently we refuse to set up the cgroup - thereby
1761 * refusing the task to be entered, and as a result refusing
1762 * the sys_unshare() or clone() which initiated it - if any
1763 * sibling cpusets have exclusive cpus or mem.
1764 *
1765 * If this becomes a problem for some users who wish to
1766 * allow that scenario, then cpuset_post_clone() could be
1767 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1768 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1769 * held.
1770 */
cpuset_post_clone(struct cgroup_subsys * ss,struct cgroup * cgroup)1771 static void cpuset_post_clone(struct cgroup_subsys *ss,
1772 struct cgroup *cgroup)
1773 {
1774 struct cgroup *parent, *child;
1775 struct cpuset *cs, *parent_cs;
1776
1777 parent = cgroup->parent;
1778 list_for_each_entry(child, &parent->children, sibling) {
1779 cs = cgroup_cs(child);
1780 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1781 return;
1782 }
1783 cs = cgroup_cs(cgroup);
1784 parent_cs = cgroup_cs(parent);
1785
1786 cs->mems_allowed = parent_cs->mems_allowed;
1787 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
1788 return;
1789 }
1790
1791 /*
1792 * cpuset_create - create a cpuset
1793 * ss: cpuset cgroup subsystem
1794 * cont: control group that the new cpuset will be part of
1795 */
1796
cpuset_create(struct cgroup_subsys * ss,struct cgroup * cont)1797 static struct cgroup_subsys_state *cpuset_create(
1798 struct cgroup_subsys *ss,
1799 struct cgroup *cont)
1800 {
1801 struct cpuset *cs;
1802 struct cpuset *parent;
1803
1804 if (!cont->parent) {
1805 /* This is early initialization for the top cgroup */
1806 top_cpuset.mems_generation = cpuset_mems_generation++;
1807 return &top_cpuset.css;
1808 }
1809 parent = cgroup_cs(cont->parent);
1810 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1811 if (!cs)
1812 return ERR_PTR(-ENOMEM);
1813 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1814 kfree(cs);
1815 return ERR_PTR(-ENOMEM);
1816 }
1817
1818 cpuset_update_task_memory_state();
1819 cs->flags = 0;
1820 if (is_spread_page(parent))
1821 set_bit(CS_SPREAD_PAGE, &cs->flags);
1822 if (is_spread_slab(parent))
1823 set_bit(CS_SPREAD_SLAB, &cs->flags);
1824 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1825 cpumask_clear(cs->cpus_allowed);
1826 nodes_clear(cs->mems_allowed);
1827 cs->mems_generation = cpuset_mems_generation++;
1828 fmeter_init(&cs->fmeter);
1829 cs->relax_domain_level = -1;
1830
1831 cs->parent = parent;
1832 number_of_cpusets++;
1833 return &cs->css ;
1834 }
1835
1836 /*
1837 * If the cpuset being removed has its flag 'sched_load_balance'
1838 * enabled, then simulate turning sched_load_balance off, which
1839 * will call async_rebuild_sched_domains().
1840 */
1841
cpuset_destroy(struct cgroup_subsys * ss,struct cgroup * cont)1842 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1843 {
1844 struct cpuset *cs = cgroup_cs(cont);
1845
1846 cpuset_update_task_memory_state();
1847
1848 if (is_sched_load_balance(cs))
1849 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1850
1851 number_of_cpusets--;
1852 free_cpumask_var(cs->cpus_allowed);
1853 kfree(cs);
1854 }
1855
1856 struct cgroup_subsys cpuset_subsys = {
1857 .name = "cpuset",
1858 .create = cpuset_create,
1859 .destroy = cpuset_destroy,
1860 .can_attach = cpuset_can_attach,
1861 .attach = cpuset_attach,
1862 .populate = cpuset_populate,
1863 .post_clone = cpuset_post_clone,
1864 .subsys_id = cpuset_subsys_id,
1865 .early_init = 1,
1866 };
1867
1868 /*
1869 * cpuset_init_early - just enough so that the calls to
1870 * cpuset_update_task_memory_state() in early init code
1871 * are harmless.
1872 */
1873
cpuset_init_early(void)1874 int __init cpuset_init_early(void)
1875 {
1876 alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
1877
1878 top_cpuset.mems_generation = cpuset_mems_generation++;
1879 return 0;
1880 }
1881
1882
1883 /**
1884 * cpuset_init - initialize cpusets at system boot
1885 *
1886 * Description: Initialize top_cpuset and the cpuset internal file system,
1887 **/
1888
cpuset_init(void)1889 int __init cpuset_init(void)
1890 {
1891 int err = 0;
1892
1893 cpumask_setall(top_cpuset.cpus_allowed);
1894 nodes_setall(top_cpuset.mems_allowed);
1895
1896 fmeter_init(&top_cpuset.fmeter);
1897 top_cpuset.mems_generation = cpuset_mems_generation++;
1898 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1899 top_cpuset.relax_domain_level = -1;
1900
1901 err = register_filesystem(&cpuset_fs_type);
1902 if (err < 0)
1903 return err;
1904
1905 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1906 BUG();
1907
1908 number_of_cpusets = 1;
1909 return 0;
1910 }
1911
1912 /**
1913 * cpuset_do_move_task - move a given task to another cpuset
1914 * @tsk: pointer to task_struct the task to move
1915 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1916 *
1917 * Called by cgroup_scan_tasks() for each task in a cgroup.
1918 * Return nonzero to stop the walk through the tasks.
1919 */
cpuset_do_move_task(struct task_struct * tsk,struct cgroup_scanner * scan)1920 static void cpuset_do_move_task(struct task_struct *tsk,
1921 struct cgroup_scanner *scan)
1922 {
1923 struct cpuset_hotplug_scanner *chsp;
1924
1925 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1926 cgroup_attach_task(chsp->to, tsk);
1927 }
1928
1929 /**
1930 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1931 * @from: cpuset in which the tasks currently reside
1932 * @to: cpuset to which the tasks will be moved
1933 *
1934 * Called with cgroup_mutex held
1935 * callback_mutex must not be held, as cpuset_attach() will take it.
1936 *
1937 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1938 * calling callback functions for each.
1939 */
move_member_tasks_to_cpuset(struct cpuset * from,struct cpuset * to)1940 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1941 {
1942 struct cpuset_hotplug_scanner scan;
1943
1944 scan.scan.cg = from->css.cgroup;
1945 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1946 scan.scan.process_task = cpuset_do_move_task;
1947 scan.scan.heap = NULL;
1948 scan.to = to->css.cgroup;
1949
1950 if (cgroup_scan_tasks(&scan.scan))
1951 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1952 "cgroup_scan_tasks failed\n");
1953 }
1954
1955 /*
1956 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
1957 * or memory nodes, we need to walk over the cpuset hierarchy,
1958 * removing that CPU or node from all cpusets. If this removes the
1959 * last CPU or node from a cpuset, then move the tasks in the empty
1960 * cpuset to its next-highest non-empty parent.
1961 *
1962 * Called with cgroup_mutex held
1963 * callback_mutex must not be held, as cpuset_attach() will take it.
1964 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)1965 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1966 {
1967 struct cpuset *parent;
1968
1969 /*
1970 * The cgroup's css_sets list is in use if there are tasks
1971 * in the cpuset; the list is empty if there are none;
1972 * the cs->css.refcnt seems always 0.
1973 */
1974 if (list_empty(&cs->css.cgroup->css_sets))
1975 return;
1976
1977 /*
1978 * Find its next-highest non-empty parent, (top cpuset
1979 * has online cpus, so can't be empty).
1980 */
1981 parent = cs->parent;
1982 while (cpumask_empty(parent->cpus_allowed) ||
1983 nodes_empty(parent->mems_allowed))
1984 parent = parent->parent;
1985
1986 move_member_tasks_to_cpuset(cs, parent);
1987 }
1988
1989 /*
1990 * Walk the specified cpuset subtree and look for empty cpusets.
1991 * The tasks of such cpuset must be moved to a parent cpuset.
1992 *
1993 * Called with cgroup_mutex held. We take callback_mutex to modify
1994 * cpus_allowed and mems_allowed.
1995 *
1996 * This walk processes the tree from top to bottom, completing one layer
1997 * before dropping down to the next. It always processes a node before
1998 * any of its children.
1999 *
2000 * For now, since we lack memory hot unplug, we'll never see a cpuset
2001 * that has tasks along with an empty 'mems'. But if we did see such
2002 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
2003 */
scan_for_empty_cpusets(struct cpuset * root)2004 static void scan_for_empty_cpusets(struct cpuset *root)
2005 {
2006 LIST_HEAD(queue);
2007 struct cpuset *cp; /* scans cpusets being updated */
2008 struct cpuset *child; /* scans child cpusets of cp */
2009 struct cgroup *cont;
2010 nodemask_t oldmems;
2011
2012 list_add_tail((struct list_head *)&root->stack_list, &queue);
2013
2014 while (!list_empty(&queue)) {
2015 cp = list_first_entry(&queue, struct cpuset, stack_list);
2016 list_del(queue.next);
2017 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
2018 child = cgroup_cs(cont);
2019 list_add_tail(&child->stack_list, &queue);
2020 }
2021
2022 /* Continue past cpusets with all cpus, mems online */
2023 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
2024 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
2025 continue;
2026
2027 oldmems = cp->mems_allowed;
2028
2029 /* Remove offline cpus and mems from this cpuset. */
2030 mutex_lock(&callback_mutex);
2031 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2032 cpu_online_mask);
2033 nodes_and(cp->mems_allowed, cp->mems_allowed,
2034 node_states[N_HIGH_MEMORY]);
2035 mutex_unlock(&callback_mutex);
2036
2037 /* Move tasks from the empty cpuset to a parent */
2038 if (cpumask_empty(cp->cpus_allowed) ||
2039 nodes_empty(cp->mems_allowed))
2040 remove_tasks_in_empty_cpuset(cp);
2041 else {
2042 update_tasks_cpumask(cp, NULL);
2043 update_tasks_nodemask(cp, &oldmems);
2044 }
2045 }
2046 }
2047
2048 /*
2049 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2050 * period. This is necessary in order to make cpusets transparent
2051 * (of no affect) on systems that are actively using CPU hotplug
2052 * but making no active use of cpusets.
2053 *
2054 * This routine ensures that top_cpuset.cpus_allowed tracks
2055 * cpu_online_map on each CPU hotplug (cpuhp) event.
2056 *
2057 * Called within get_online_cpus(). Needs to call cgroup_lock()
2058 * before calling generate_sched_domains().
2059 */
cpuset_track_online_cpus(struct notifier_block * unused_nb,unsigned long phase,void * unused_cpu)2060 static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
2061 unsigned long phase, void *unused_cpu)
2062 {
2063 struct sched_domain_attr *attr;
2064 struct cpumask *doms;
2065 int ndoms;
2066
2067 switch (phase) {
2068 case CPU_ONLINE:
2069 case CPU_ONLINE_FROZEN:
2070 case CPU_DEAD:
2071 case CPU_DEAD_FROZEN:
2072 break;
2073
2074 default:
2075 return NOTIFY_DONE;
2076 }
2077
2078 cgroup_lock();
2079 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2080 scan_for_empty_cpusets(&top_cpuset);
2081 ndoms = generate_sched_domains(&doms, &attr);
2082 cgroup_unlock();
2083
2084 /* Have scheduler rebuild the domains */
2085 partition_sched_domains(ndoms, doms, attr);
2086
2087 return NOTIFY_OK;
2088 }
2089
2090 #ifdef CONFIG_MEMORY_HOTPLUG
2091 /*
2092 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
2093 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2094 * See also the previous routine cpuset_track_online_cpus().
2095 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)2096 static int cpuset_track_online_nodes(struct notifier_block *self,
2097 unsigned long action, void *arg)
2098 {
2099 cgroup_lock();
2100 switch (action) {
2101 case MEM_ONLINE:
2102 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2103 break;
2104 case MEM_OFFLINE:
2105 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2106 scan_for_empty_cpusets(&top_cpuset);
2107 break;
2108 default:
2109 break;
2110 }
2111 cgroup_unlock();
2112 return NOTIFY_OK;
2113 }
2114 #endif
2115
2116 /**
2117 * cpuset_init_smp - initialize cpus_allowed
2118 *
2119 * Description: Finish top cpuset after cpu, node maps are initialized
2120 **/
2121
cpuset_init_smp(void)2122 void __init cpuset_init_smp(void)
2123 {
2124 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
2125 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2126
2127 hotcpu_notifier(cpuset_track_online_cpus, 0);
2128 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
2129
2130 cpuset_wq = create_singlethread_workqueue("cpuset");
2131 BUG_ON(!cpuset_wq);
2132 }
2133
2134 /**
2135 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2136 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2137 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2138 *
2139 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2140 * attached to the specified @tsk. Guaranteed to return some non-empty
2141 * subset of cpu_online_map, even if this means going outside the
2142 * tasks cpuset.
2143 **/
2144
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)2145 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2146 {
2147 mutex_lock(&callback_mutex);
2148 cpuset_cpus_allowed_locked(tsk, pmask);
2149 mutex_unlock(&callback_mutex);
2150 }
2151
2152 /**
2153 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2154 * Must be called with callback_mutex held.
2155 **/
cpuset_cpus_allowed_locked(struct task_struct * tsk,struct cpumask * pmask)2156 void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
2157 {
2158 task_lock(tsk);
2159 guarantee_online_cpus(task_cs(tsk), pmask);
2160 task_unlock(tsk);
2161 }
2162
cpuset_init_current_mems_allowed(void)2163 void cpuset_init_current_mems_allowed(void)
2164 {
2165 nodes_setall(current->mems_allowed);
2166 }
2167
2168 /**
2169 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2170 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2171 *
2172 * Description: Returns the nodemask_t mems_allowed of the cpuset
2173 * attached to the specified @tsk. Guaranteed to return some non-empty
2174 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2175 * tasks cpuset.
2176 **/
2177
cpuset_mems_allowed(struct task_struct * tsk)2178 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2179 {
2180 nodemask_t mask;
2181
2182 mutex_lock(&callback_mutex);
2183 task_lock(tsk);
2184 guarantee_online_mems(task_cs(tsk), &mask);
2185 task_unlock(tsk);
2186 mutex_unlock(&callback_mutex);
2187
2188 return mask;
2189 }
2190
2191 /**
2192 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2193 * @nodemask: the nodemask to be checked
2194 *
2195 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2196 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)2197 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2198 {
2199 return nodes_intersects(*nodemask, current->mems_allowed);
2200 }
2201
2202 /*
2203 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2204 * mem_hardwall ancestor to the specified cpuset. Call holding
2205 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2206 * (an unusual configuration), then returns the root cpuset.
2207 */
nearest_hardwall_ancestor(const struct cpuset * cs)2208 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2209 {
2210 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2211 cs = cs->parent;
2212 return cs;
2213 }
2214
2215 /**
2216 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2217 * @z: is this zone on an allowed node?
2218 * @gfp_mask: memory allocation flags
2219 *
2220 * If we're in interrupt, yes, we can always allocate. If
2221 * __GFP_THISNODE is set, yes, we can always allocate. If zone
2222 * z's node is in our tasks mems_allowed, yes. If it's not a
2223 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2224 * hardwalled cpuset ancestor to this tasks cpuset, yes.
2225 * If the task has been OOM killed and has access to memory reserves
2226 * as specified by the TIF_MEMDIE flag, yes.
2227 * Otherwise, no.
2228 *
2229 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2230 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2231 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2232 * from an enclosing cpuset.
2233 *
2234 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2235 * hardwall cpusets, and never sleeps.
2236 *
2237 * The __GFP_THISNODE placement logic is really handled elsewhere,
2238 * by forcibly using a zonelist starting at a specified node, and by
2239 * (in get_page_from_freelist()) refusing to consider the zones for
2240 * any node on the zonelist except the first. By the time any such
2241 * calls get to this routine, we should just shut up and say 'yes'.
2242 *
2243 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2244 * and do not allow allocations outside the current tasks cpuset
2245 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2246 * GFP_KERNEL allocations are not so marked, so can escape to the
2247 * nearest enclosing hardwalled ancestor cpuset.
2248 *
2249 * Scanning up parent cpusets requires callback_mutex. The
2250 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2251 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2252 * current tasks mems_allowed came up empty on the first pass over
2253 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2254 * cpuset are short of memory, might require taking the callback_mutex
2255 * mutex.
2256 *
2257 * The first call here from mm/page_alloc:get_page_from_freelist()
2258 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2259 * so no allocation on a node outside the cpuset is allowed (unless
2260 * in interrupt, of course).
2261 *
2262 * The second pass through get_page_from_freelist() doesn't even call
2263 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2264 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2265 * in alloc_flags. That logic and the checks below have the combined
2266 * affect that:
2267 * in_interrupt - any node ok (current task context irrelevant)
2268 * GFP_ATOMIC - any node ok
2269 * TIF_MEMDIE - any node ok
2270 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2271 * GFP_USER - only nodes in current tasks mems allowed ok.
2272 *
2273 * Rule:
2274 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2275 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2276 * the code that might scan up ancestor cpusets and sleep.
2277 */
2278
__cpuset_zone_allowed_softwall(struct zone * z,gfp_t gfp_mask)2279 int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2280 {
2281 int node; /* node that zone z is on */
2282 const struct cpuset *cs; /* current cpuset ancestors */
2283 int allowed; /* is allocation in zone z allowed? */
2284
2285 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2286 return 1;
2287 node = zone_to_nid(z);
2288 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2289 if (node_isset(node, current->mems_allowed))
2290 return 1;
2291 /*
2292 * Allow tasks that have access to memory reserves because they have
2293 * been OOM killed to get memory anywhere.
2294 */
2295 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2296 return 1;
2297 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2298 return 0;
2299
2300 if (current->flags & PF_EXITING) /* Let dying task have memory */
2301 return 1;
2302
2303 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2304 mutex_lock(&callback_mutex);
2305
2306 task_lock(current);
2307 cs = nearest_hardwall_ancestor(task_cs(current));
2308 task_unlock(current);
2309
2310 allowed = node_isset(node, cs->mems_allowed);
2311 mutex_unlock(&callback_mutex);
2312 return allowed;
2313 }
2314
2315 /*
2316 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2317 * @z: is this zone on an allowed node?
2318 * @gfp_mask: memory allocation flags
2319 *
2320 * If we're in interrupt, yes, we can always allocate.
2321 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2322 * z's node is in our tasks mems_allowed, yes. If the task has been
2323 * OOM killed and has access to memory reserves as specified by the
2324 * TIF_MEMDIE flag, yes. Otherwise, no.
2325 *
2326 * The __GFP_THISNODE placement logic is really handled elsewhere,
2327 * by forcibly using a zonelist starting at a specified node, and by
2328 * (in get_page_from_freelist()) refusing to consider the zones for
2329 * any node on the zonelist except the first. By the time any such
2330 * calls get to this routine, we should just shut up and say 'yes'.
2331 *
2332 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2333 * this variant requires that the zone be in the current tasks
2334 * mems_allowed or that we're in interrupt. It does not scan up the
2335 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2336 * It never sleeps.
2337 */
2338
__cpuset_zone_allowed_hardwall(struct zone * z,gfp_t gfp_mask)2339 int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2340 {
2341 int node; /* node that zone z is on */
2342
2343 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2344 return 1;
2345 node = zone_to_nid(z);
2346 if (node_isset(node, current->mems_allowed))
2347 return 1;
2348 /*
2349 * Allow tasks that have access to memory reserves because they have
2350 * been OOM killed to get memory anywhere.
2351 */
2352 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2353 return 1;
2354 return 0;
2355 }
2356
2357 /**
2358 * cpuset_lock - lock out any changes to cpuset structures
2359 *
2360 * The out of memory (oom) code needs to mutex_lock cpusets
2361 * from being changed while it scans the tasklist looking for a
2362 * task in an overlapping cpuset. Expose callback_mutex via this
2363 * cpuset_lock() routine, so the oom code can lock it, before
2364 * locking the task list. The tasklist_lock is a spinlock, so
2365 * must be taken inside callback_mutex.
2366 */
2367
cpuset_lock(void)2368 void cpuset_lock(void)
2369 {
2370 mutex_lock(&callback_mutex);
2371 }
2372
2373 /**
2374 * cpuset_unlock - release lock on cpuset changes
2375 *
2376 * Undo the lock taken in a previous cpuset_lock() call.
2377 */
2378
cpuset_unlock(void)2379 void cpuset_unlock(void)
2380 {
2381 mutex_unlock(&callback_mutex);
2382 }
2383
2384 /**
2385 * cpuset_mem_spread_node() - On which node to begin search for a page
2386 *
2387 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2388 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2389 * and if the memory allocation used cpuset_mem_spread_node()
2390 * to determine on which node to start looking, as it will for
2391 * certain page cache or slab cache pages such as used for file
2392 * system buffers and inode caches, then instead of starting on the
2393 * local node to look for a free page, rather spread the starting
2394 * node around the tasks mems_allowed nodes.
2395 *
2396 * We don't have to worry about the returned node being offline
2397 * because "it can't happen", and even if it did, it would be ok.
2398 *
2399 * The routines calling guarantee_online_mems() are careful to
2400 * only set nodes in task->mems_allowed that are online. So it
2401 * should not be possible for the following code to return an
2402 * offline node. But if it did, that would be ok, as this routine
2403 * is not returning the node where the allocation must be, only
2404 * the node where the search should start. The zonelist passed to
2405 * __alloc_pages() will include all nodes. If the slab allocator
2406 * is passed an offline node, it will fall back to the local node.
2407 * See kmem_cache_alloc_node().
2408 */
2409
cpuset_mem_spread_node(void)2410 int cpuset_mem_spread_node(void)
2411 {
2412 int node;
2413
2414 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2415 if (node == MAX_NUMNODES)
2416 node = first_node(current->mems_allowed);
2417 current->cpuset_mem_spread_rotor = node;
2418 return node;
2419 }
2420 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2421
2422 /**
2423 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2424 * @tsk1: pointer to task_struct of some task.
2425 * @tsk2: pointer to task_struct of some other task.
2426 *
2427 * Description: Return true if @tsk1's mems_allowed intersects the
2428 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2429 * one of the task's memory usage might impact the memory available
2430 * to the other.
2431 **/
2432
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)2433 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2434 const struct task_struct *tsk2)
2435 {
2436 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2437 }
2438
2439 /**
2440 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2441 * @task: pointer to task_struct of some task.
2442 *
2443 * Description: Prints @task's name, cpuset name, and cached copy of its
2444 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2445 * dereferencing task_cs(task).
2446 */
cpuset_print_task_mems_allowed(struct task_struct * tsk)2447 void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2448 {
2449 struct dentry *dentry;
2450
2451 dentry = task_cs(tsk)->css.cgroup->dentry;
2452 spin_lock(&cpuset_buffer_lock);
2453 snprintf(cpuset_name, CPUSET_NAME_LEN,
2454 dentry ? (const char *)dentry->d_name.name : "/");
2455 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2456 tsk->mems_allowed);
2457 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2458 tsk->comm, cpuset_name, cpuset_nodelist);
2459 spin_unlock(&cpuset_buffer_lock);
2460 }
2461
2462 /*
2463 * Collection of memory_pressure is suppressed unless
2464 * this flag is enabled by writing "1" to the special
2465 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2466 */
2467
2468 int cpuset_memory_pressure_enabled __read_mostly;
2469
2470 /**
2471 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2472 *
2473 * Keep a running average of the rate of synchronous (direct)
2474 * page reclaim efforts initiated by tasks in each cpuset.
2475 *
2476 * This represents the rate at which some task in the cpuset
2477 * ran low on memory on all nodes it was allowed to use, and
2478 * had to enter the kernels page reclaim code in an effort to
2479 * create more free memory by tossing clean pages or swapping
2480 * or writing dirty pages.
2481 *
2482 * Display to user space in the per-cpuset read-only file
2483 * "memory_pressure". Value displayed is an integer
2484 * representing the recent rate of entry into the synchronous
2485 * (direct) page reclaim by any task attached to the cpuset.
2486 **/
2487
__cpuset_memory_pressure_bump(void)2488 void __cpuset_memory_pressure_bump(void)
2489 {
2490 task_lock(current);
2491 fmeter_markevent(&task_cs(current)->fmeter);
2492 task_unlock(current);
2493 }
2494
2495 #ifdef CONFIG_PROC_PID_CPUSET
2496 /*
2497 * proc_cpuset_show()
2498 * - Print tasks cpuset path into seq_file.
2499 * - Used for /proc/<pid>/cpuset.
2500 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2501 * doesn't really matter if tsk->cpuset changes after we read it,
2502 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2503 * anyway.
2504 */
proc_cpuset_show(struct seq_file * m,void * unused_v)2505 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2506 {
2507 struct pid *pid;
2508 struct task_struct *tsk;
2509 char *buf;
2510 struct cgroup_subsys_state *css;
2511 int retval;
2512
2513 retval = -ENOMEM;
2514 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2515 if (!buf)
2516 goto out;
2517
2518 retval = -ESRCH;
2519 pid = m->private;
2520 tsk = get_pid_task(pid, PIDTYPE_PID);
2521 if (!tsk)
2522 goto out_free;
2523
2524 retval = -EINVAL;
2525 cgroup_lock();
2526 css = task_subsys_state(tsk, cpuset_subsys_id);
2527 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2528 if (retval < 0)
2529 goto out_unlock;
2530 seq_puts(m, buf);
2531 seq_putc(m, '\n');
2532 out_unlock:
2533 cgroup_unlock();
2534 put_task_struct(tsk);
2535 out_free:
2536 kfree(buf);
2537 out:
2538 return retval;
2539 }
2540
cpuset_open(struct inode * inode,struct file * file)2541 static int cpuset_open(struct inode *inode, struct file *file)
2542 {
2543 struct pid *pid = PROC_I(inode)->pid;
2544 return single_open(file, proc_cpuset_show, pid);
2545 }
2546
2547 const struct file_operations proc_cpuset_operations = {
2548 .open = cpuset_open,
2549 .read = seq_read,
2550 .llseek = seq_lseek,
2551 .release = single_release,
2552 };
2553 #endif /* CONFIG_PROC_PID_CPUSET */
2554
2555 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)2556 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2557 {
2558 seq_printf(m, "Cpus_allowed:\t");
2559 seq_cpumask(m, &task->cpus_allowed);
2560 seq_printf(m, "\n");
2561 seq_printf(m, "Cpus_allowed_list:\t");
2562 seq_cpumask_list(m, &task->cpus_allowed);
2563 seq_printf(m, "\n");
2564 seq_printf(m, "Mems_allowed:\t");
2565 seq_nodemask(m, &task->mems_allowed);
2566 seq_printf(m, "\n");
2567 seq_printf(m, "Mems_allowed_list:\t");
2568 seq_nodemask_list(m, &task->mems_allowed);
2569 seq_printf(m, "\n");
2570 }
2571