• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <trace/sched.h>
64 
65 #include <asm/pgtable.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/cacheflush.h>
70 #include <asm/tlbflush.h>
71 
72 /*
73  * Protected counters by write_lock_irq(&tasklist_lock)
74  */
75 unsigned long total_forks;	/* Handle normal Linux uptimes. */
76 int nr_threads; 		/* The idle threads do not count.. */
77 
78 int max_threads;		/* tunable limit on nr_threads */
79 
80 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
81 
82 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
83 
84 DEFINE_TRACE(sched_process_fork);
85 
nr_processes(void)86 int nr_processes(void)
87 {
88 	int cpu;
89 	int total = 0;
90 
91 	for_each_online_cpu(cpu)
92 		total += per_cpu(process_counts, cpu);
93 
94 	return total;
95 }
96 
97 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
98 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
99 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
100 static struct kmem_cache *task_struct_cachep;
101 #endif
102 
103 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
alloc_thread_info(struct task_struct * tsk)104 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
105 {
106 #ifdef CONFIG_DEBUG_STACK_USAGE
107 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
108 #else
109 	gfp_t mask = GFP_KERNEL;
110 #endif
111 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
112 }
113 
free_thread_info(struct thread_info * ti)114 static inline void free_thread_info(struct thread_info *ti)
115 {
116 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
117 }
118 #endif
119 
120 /* SLAB cache for signal_struct structures (tsk->signal) */
121 static struct kmem_cache *signal_cachep;
122 
123 /* SLAB cache for sighand_struct structures (tsk->sighand) */
124 struct kmem_cache *sighand_cachep;
125 
126 /* SLAB cache for files_struct structures (tsk->files) */
127 struct kmem_cache *files_cachep;
128 
129 /* SLAB cache for fs_struct structures (tsk->fs) */
130 struct kmem_cache *fs_cachep;
131 
132 /* SLAB cache for vm_area_struct structures */
133 struct kmem_cache *vm_area_cachep;
134 
135 /* SLAB cache for mm_struct structures (tsk->mm) */
136 static struct kmem_cache *mm_cachep;
137 
free_task(struct task_struct * tsk)138 void free_task(struct task_struct *tsk)
139 {
140 	prop_local_destroy_single(&tsk->dirties);
141 	free_thread_info(tsk->stack);
142 	rt_mutex_debug_task_free(tsk);
143 	ftrace_graph_exit_task(tsk);
144 	free_task_struct(tsk);
145 }
146 EXPORT_SYMBOL(free_task);
147 
__put_task_struct(struct task_struct * tsk)148 void __put_task_struct(struct task_struct *tsk)
149 {
150 	WARN_ON(!tsk->exit_state);
151 	WARN_ON(atomic_read(&tsk->usage));
152 	WARN_ON(tsk == current);
153 
154 	put_cred(tsk->real_cred);
155 	put_cred(tsk->cred);
156 	delayacct_tsk_free(tsk);
157 
158 	if (!profile_handoff_task(tsk))
159 		free_task(tsk);
160 }
161 
162 /*
163  * macro override instead of weak attribute alias, to workaround
164  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
165  */
166 #ifndef arch_task_cache_init
167 #define arch_task_cache_init()
168 #endif
169 
fork_init(unsigned long mempages)170 void __init fork_init(unsigned long mempages)
171 {
172 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
173 #ifndef ARCH_MIN_TASKALIGN
174 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
175 #endif
176 	/* create a slab on which task_structs can be allocated */
177 	task_struct_cachep =
178 		kmem_cache_create("task_struct", sizeof(struct task_struct),
179 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
180 #endif
181 
182 	/* do the arch specific task caches init */
183 	arch_task_cache_init();
184 
185 	/*
186 	 * The default maximum number of threads is set to a safe
187 	 * value: the thread structures can take up at most half
188 	 * of memory.
189 	 */
190 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
191 
192 	/*
193 	 * we need to allow at least 20 threads to boot a system
194 	 */
195 	if(max_threads < 20)
196 		max_threads = 20;
197 
198 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
199 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
200 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
201 		init_task.signal->rlim[RLIMIT_NPROC];
202 }
203 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)204 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
205 					       struct task_struct *src)
206 {
207 	*dst = *src;
208 	return 0;
209 }
210 
dup_task_struct(struct task_struct * orig)211 static struct task_struct *dup_task_struct(struct task_struct *orig)
212 {
213 	struct task_struct *tsk;
214 	struct thread_info *ti;
215 	int err;
216 
217 	prepare_to_copy(orig);
218 
219 	tsk = alloc_task_struct();
220 	if (!tsk)
221 		return NULL;
222 
223 	ti = alloc_thread_info(tsk);
224 	if (!ti) {
225 		free_task_struct(tsk);
226 		return NULL;
227 	}
228 
229  	err = arch_dup_task_struct(tsk, orig);
230 	if (err)
231 		goto out;
232 
233 	tsk->stack = ti;
234 
235 	err = prop_local_init_single(&tsk->dirties);
236 	if (err)
237 		goto out;
238 
239 	setup_thread_stack(tsk, orig);
240 
241 #ifdef CONFIG_CC_STACKPROTECTOR
242 	tsk->stack_canary = get_random_int();
243 #endif
244 
245 	/* One for us, one for whoever does the "release_task()" (usually parent) */
246 	atomic_set(&tsk->usage,2);
247 	atomic_set(&tsk->fs_excl, 0);
248 #ifdef CONFIG_BLK_DEV_IO_TRACE
249 	tsk->btrace_seq = 0;
250 #endif
251 	tsk->splice_pipe = NULL;
252 	return tsk;
253 
254 out:
255 	free_thread_info(ti);
256 	free_task_struct(tsk);
257 	return NULL;
258 }
259 
260 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)261 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
262 {
263 	struct vm_area_struct *mpnt, *tmp, **pprev;
264 	struct rb_node **rb_link, *rb_parent;
265 	int retval;
266 	unsigned long charge;
267 	struct mempolicy *pol;
268 
269 	down_write(&oldmm->mmap_sem);
270 	flush_cache_dup_mm(oldmm);
271 	/*
272 	 * Not linked in yet - no deadlock potential:
273 	 */
274 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
275 
276 	mm->locked_vm = 0;
277 	mm->mmap = NULL;
278 	mm->mmap_cache = NULL;
279 	mm->free_area_cache = oldmm->mmap_base;
280 	mm->cached_hole_size = ~0UL;
281 	mm->map_count = 0;
282 	cpus_clear(mm->cpu_vm_mask);
283 	mm->mm_rb = RB_ROOT;
284 	rb_link = &mm->mm_rb.rb_node;
285 	rb_parent = NULL;
286 	pprev = &mm->mmap;
287 
288 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
289 		struct file *file;
290 
291 		if (mpnt->vm_flags & VM_DONTCOPY) {
292 			long pages = vma_pages(mpnt);
293 			mm->total_vm -= pages;
294 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
295 								-pages);
296 			continue;
297 		}
298 		charge = 0;
299 		if (mpnt->vm_flags & VM_ACCOUNT) {
300 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
301 			if (security_vm_enough_memory(len))
302 				goto fail_nomem;
303 			charge = len;
304 		}
305 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
306 		if (!tmp)
307 			goto fail_nomem;
308 		*tmp = *mpnt;
309 		pol = mpol_dup(vma_policy(mpnt));
310 		retval = PTR_ERR(pol);
311 		if (IS_ERR(pol))
312 			goto fail_nomem_policy;
313 		vma_set_policy(tmp, pol);
314 		tmp->vm_flags &= ~VM_LOCKED;
315 		tmp->vm_mm = mm;
316 		tmp->vm_next = NULL;
317 		anon_vma_link(tmp);
318 		file = tmp->vm_file;
319 		if (file) {
320 			struct inode *inode = file->f_path.dentry->d_inode;
321 			struct address_space *mapping = file->f_mapping;
322 
323 			get_file(file);
324 			if (tmp->vm_flags & VM_DENYWRITE)
325 				atomic_dec(&inode->i_writecount);
326 			spin_lock(&mapping->i_mmap_lock);
327 			if (tmp->vm_flags & VM_SHARED)
328 				mapping->i_mmap_writable++;
329 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
330 			flush_dcache_mmap_lock(mapping);
331 			/* insert tmp into the share list, just after mpnt */
332 			vma_prio_tree_add(tmp, mpnt);
333 			flush_dcache_mmap_unlock(mapping);
334 			spin_unlock(&mapping->i_mmap_lock);
335 		}
336 
337 		/*
338 		 * Clear hugetlb-related page reserves for children. This only
339 		 * affects MAP_PRIVATE mappings. Faults generated by the child
340 		 * are not guaranteed to succeed, even if read-only
341 		 */
342 		if (is_vm_hugetlb_page(tmp))
343 			reset_vma_resv_huge_pages(tmp);
344 
345 		/*
346 		 * Link in the new vma and copy the page table entries.
347 		 */
348 		*pprev = tmp;
349 		pprev = &tmp->vm_next;
350 
351 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
352 		rb_link = &tmp->vm_rb.rb_right;
353 		rb_parent = &tmp->vm_rb;
354 
355 		mm->map_count++;
356 		retval = copy_page_range(mm, oldmm, mpnt);
357 
358 		if (tmp->vm_ops && tmp->vm_ops->open)
359 			tmp->vm_ops->open(tmp);
360 
361 		if (retval)
362 			goto out;
363 	}
364 	/* a new mm has just been created */
365 	arch_dup_mmap(oldmm, mm);
366 	retval = 0;
367 out:
368 	up_write(&mm->mmap_sem);
369 	flush_tlb_mm(oldmm);
370 	up_write(&oldmm->mmap_sem);
371 	return retval;
372 fail_nomem_policy:
373 	kmem_cache_free(vm_area_cachep, tmp);
374 fail_nomem:
375 	retval = -ENOMEM;
376 	vm_unacct_memory(charge);
377 	goto out;
378 }
379 
mm_alloc_pgd(struct mm_struct * mm)380 static inline int mm_alloc_pgd(struct mm_struct * mm)
381 {
382 	mm->pgd = pgd_alloc(mm);
383 	if (unlikely(!mm->pgd))
384 		return -ENOMEM;
385 	return 0;
386 }
387 
mm_free_pgd(struct mm_struct * mm)388 static inline void mm_free_pgd(struct mm_struct * mm)
389 {
390 	pgd_free(mm, mm->pgd);
391 }
392 #else
393 #define dup_mmap(mm, oldmm)	(0)
394 #define mm_alloc_pgd(mm)	(0)
395 #define mm_free_pgd(mm)
396 #endif /* CONFIG_MMU */
397 
398 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
399 
400 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
401 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
402 
403 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
404 
coredump_filter_setup(char * s)405 static int __init coredump_filter_setup(char *s)
406 {
407 	default_dump_filter =
408 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
409 		MMF_DUMP_FILTER_MASK;
410 	return 1;
411 }
412 
413 __setup("coredump_filter=", coredump_filter_setup);
414 
415 #include <linux/init_task.h>
416 
mm_init(struct mm_struct * mm,struct task_struct * p)417 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
418 {
419 	atomic_set(&mm->mm_users, 1);
420 	atomic_set(&mm->mm_count, 1);
421 	init_rwsem(&mm->mmap_sem);
422 	INIT_LIST_HEAD(&mm->mmlist);
423 	mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
424 	mm->core_state = NULL;
425 	mm->nr_ptes = 0;
426 	set_mm_counter(mm, file_rss, 0);
427 	set_mm_counter(mm, anon_rss, 0);
428 	spin_lock_init(&mm->page_table_lock);
429 	spin_lock_init(&mm->ioctx_lock);
430 	INIT_HLIST_HEAD(&mm->ioctx_list);
431 	mm->free_area_cache = TASK_UNMAPPED_BASE;
432 	mm->cached_hole_size = ~0UL;
433 	mm_init_owner(mm, p);
434 
435 	if (likely(!mm_alloc_pgd(mm))) {
436 		mm->def_flags = 0;
437 		mmu_notifier_mm_init(mm);
438 		return mm;
439 	}
440 
441 	free_mm(mm);
442 	return NULL;
443 }
444 
445 /*
446  * Allocate and initialize an mm_struct.
447  */
mm_alloc(void)448 struct mm_struct * mm_alloc(void)
449 {
450 	struct mm_struct * mm;
451 
452 	mm = allocate_mm();
453 	if (mm) {
454 		memset(mm, 0, sizeof(*mm));
455 		mm = mm_init(mm, current);
456 	}
457 	return mm;
458 }
459 
460 /*
461  * Called when the last reference to the mm
462  * is dropped: either by a lazy thread or by
463  * mmput. Free the page directory and the mm.
464  */
__mmdrop(struct mm_struct * mm)465 void __mmdrop(struct mm_struct *mm)
466 {
467 	BUG_ON(mm == &init_mm);
468 	mm_free_pgd(mm);
469 	destroy_context(mm);
470 	mmu_notifier_mm_destroy(mm);
471 	free_mm(mm);
472 }
473 EXPORT_SYMBOL_GPL(__mmdrop);
474 
475 /*
476  * Decrement the use count and release all resources for an mm.
477  */
mmput(struct mm_struct * mm)478 void mmput(struct mm_struct *mm)
479 {
480 	might_sleep();
481 
482 	if (atomic_dec_and_test(&mm->mm_users)) {
483 		exit_aio(mm);
484 		exit_mmap(mm);
485 		set_mm_exe_file(mm, NULL);
486 		if (!list_empty(&mm->mmlist)) {
487 			spin_lock(&mmlist_lock);
488 			list_del(&mm->mmlist);
489 			spin_unlock(&mmlist_lock);
490 		}
491 		put_swap_token(mm);
492 		mmdrop(mm);
493 	}
494 }
495 EXPORT_SYMBOL_GPL(mmput);
496 
497 /**
498  * get_task_mm - acquire a reference to the task's mm
499  *
500  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
501  * this kernel workthread has transiently adopted a user mm with use_mm,
502  * to do its AIO) is not set and if so returns a reference to it, after
503  * bumping up the use count.  User must release the mm via mmput()
504  * after use.  Typically used by /proc and ptrace.
505  */
get_task_mm(struct task_struct * task)506 struct mm_struct *get_task_mm(struct task_struct *task)
507 {
508 	struct mm_struct *mm;
509 
510 	task_lock(task);
511 	mm = task->mm;
512 	if (mm) {
513 		if (task->flags & PF_KTHREAD)
514 			mm = NULL;
515 		else
516 			atomic_inc(&mm->mm_users);
517 	}
518 	task_unlock(task);
519 	return mm;
520 }
521 EXPORT_SYMBOL_GPL(get_task_mm);
522 
523 /* Please note the differences between mmput and mm_release.
524  * mmput is called whenever we stop holding onto a mm_struct,
525  * error success whatever.
526  *
527  * mm_release is called after a mm_struct has been removed
528  * from the current process.
529  *
530  * This difference is important for error handling, when we
531  * only half set up a mm_struct for a new process and need to restore
532  * the old one.  Because we mmput the new mm_struct before
533  * restoring the old one. . .
534  * Eric Biederman 10 January 1998
535  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)536 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
537 {
538 	struct completion *vfork_done = tsk->vfork_done;
539 
540 	/* Get rid of any futexes when releasing the mm */
541 #ifdef CONFIG_FUTEX
542 	if (unlikely(tsk->robust_list))
543 		exit_robust_list(tsk);
544 #ifdef CONFIG_COMPAT
545 	if (unlikely(tsk->compat_robust_list))
546 		compat_exit_robust_list(tsk);
547 #endif
548 #endif
549 
550 	/* Get rid of any cached register state */
551 	deactivate_mm(tsk, mm);
552 
553 	/* notify parent sleeping on vfork() */
554 	if (vfork_done) {
555 		tsk->vfork_done = NULL;
556 		complete(vfork_done);
557 	}
558 
559 	/*
560 	 * If we're exiting normally, clear a user-space tid field if
561 	 * requested.  We leave this alone when dying by signal, to leave
562 	 * the value intact in a core dump, and to save the unnecessary
563 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
564 	 */
565 	if (tsk->clear_child_tid
566 	    && !(tsk->flags & PF_SIGNALED)
567 	    && atomic_read(&mm->mm_users) > 1) {
568 		u32 __user * tidptr = tsk->clear_child_tid;
569 		tsk->clear_child_tid = NULL;
570 
571 		/*
572 		 * We don't check the error code - if userspace has
573 		 * not set up a proper pointer then tough luck.
574 		 */
575 		put_user(0, tidptr);
576 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
577 	}
578 }
579 
580 /*
581  * Allocate a new mm structure and copy contents from the
582  * mm structure of the passed in task structure.
583  */
dup_mm(struct task_struct * tsk)584 struct mm_struct *dup_mm(struct task_struct *tsk)
585 {
586 	struct mm_struct *mm, *oldmm = current->mm;
587 	int err;
588 
589 	if (!oldmm)
590 		return NULL;
591 
592 	mm = allocate_mm();
593 	if (!mm)
594 		goto fail_nomem;
595 
596 	memcpy(mm, oldmm, sizeof(*mm));
597 
598 	/* Initializing for Swap token stuff */
599 	mm->token_priority = 0;
600 	mm->last_interval = 0;
601 
602 	if (!mm_init(mm, tsk))
603 		goto fail_nomem;
604 
605 	if (init_new_context(tsk, mm))
606 		goto fail_nocontext;
607 
608 	dup_mm_exe_file(oldmm, mm);
609 
610 	err = dup_mmap(mm, oldmm);
611 	if (err)
612 		goto free_pt;
613 
614 	mm->hiwater_rss = get_mm_rss(mm);
615 	mm->hiwater_vm = mm->total_vm;
616 
617 	return mm;
618 
619 free_pt:
620 	mmput(mm);
621 
622 fail_nomem:
623 	return NULL;
624 
625 fail_nocontext:
626 	/*
627 	 * If init_new_context() failed, we cannot use mmput() to free the mm
628 	 * because it calls destroy_context()
629 	 */
630 	mm_free_pgd(mm);
631 	free_mm(mm);
632 	return NULL;
633 }
634 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)635 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
636 {
637 	struct mm_struct * mm, *oldmm;
638 	int retval;
639 
640 	tsk->min_flt = tsk->maj_flt = 0;
641 	tsk->nvcsw = tsk->nivcsw = 0;
642 
643 	tsk->mm = NULL;
644 	tsk->active_mm = NULL;
645 
646 	/*
647 	 * Are we cloning a kernel thread?
648 	 *
649 	 * We need to steal a active VM for that..
650 	 */
651 	oldmm = current->mm;
652 	if (!oldmm)
653 		return 0;
654 
655 	if (clone_flags & CLONE_VM) {
656 		atomic_inc(&oldmm->mm_users);
657 		mm = oldmm;
658 		goto good_mm;
659 	}
660 
661 	retval = -ENOMEM;
662 	mm = dup_mm(tsk);
663 	if (!mm)
664 		goto fail_nomem;
665 
666 good_mm:
667 	/* Initializing for Swap token stuff */
668 	mm->token_priority = 0;
669 	mm->last_interval = 0;
670 
671 	tsk->mm = mm;
672 	tsk->active_mm = mm;
673 	return 0;
674 
675 fail_nomem:
676 	return retval;
677 }
678 
__copy_fs_struct(struct fs_struct * old)679 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
680 {
681 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
682 	/* We don't need to lock fs - think why ;-) */
683 	if (fs) {
684 		atomic_set(&fs->count, 1);
685 		rwlock_init(&fs->lock);
686 		fs->umask = old->umask;
687 		read_lock(&old->lock);
688 		fs->root = old->root;
689 		path_get(&old->root);
690 		fs->pwd = old->pwd;
691 		path_get(&old->pwd);
692 		read_unlock(&old->lock);
693 	}
694 	return fs;
695 }
696 
copy_fs_struct(struct fs_struct * old)697 struct fs_struct *copy_fs_struct(struct fs_struct *old)
698 {
699 	return __copy_fs_struct(old);
700 }
701 
702 EXPORT_SYMBOL_GPL(copy_fs_struct);
703 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)704 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
705 {
706 	if (clone_flags & CLONE_FS) {
707 		atomic_inc(&current->fs->count);
708 		return 0;
709 	}
710 	tsk->fs = __copy_fs_struct(current->fs);
711 	if (!tsk->fs)
712 		return -ENOMEM;
713 	return 0;
714 }
715 
copy_files(unsigned long clone_flags,struct task_struct * tsk)716 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
717 {
718 	struct files_struct *oldf, *newf;
719 	int error = 0;
720 
721 	/*
722 	 * A background process may not have any files ...
723 	 */
724 	oldf = current->files;
725 	if (!oldf)
726 		goto out;
727 
728 	if (clone_flags & CLONE_FILES) {
729 		atomic_inc(&oldf->count);
730 		goto out;
731 	}
732 
733 	newf = dup_fd(oldf, &error);
734 	if (!newf)
735 		goto out;
736 
737 	tsk->files = newf;
738 	error = 0;
739 out:
740 	return error;
741 }
742 
copy_io(unsigned long clone_flags,struct task_struct * tsk)743 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
744 {
745 #ifdef CONFIG_BLOCK
746 	struct io_context *ioc = current->io_context;
747 
748 	if (!ioc)
749 		return 0;
750 	/*
751 	 * Share io context with parent, if CLONE_IO is set
752 	 */
753 	if (clone_flags & CLONE_IO) {
754 		tsk->io_context = ioc_task_link(ioc);
755 		if (unlikely(!tsk->io_context))
756 			return -ENOMEM;
757 	} else if (ioprio_valid(ioc->ioprio)) {
758 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
759 		if (unlikely(!tsk->io_context))
760 			return -ENOMEM;
761 
762 		tsk->io_context->ioprio = ioc->ioprio;
763 	}
764 #endif
765 	return 0;
766 }
767 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)768 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
769 {
770 	struct sighand_struct *sig;
771 
772 	if (clone_flags & CLONE_SIGHAND) {
773 		atomic_inc(&current->sighand->count);
774 		return 0;
775 	}
776 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
777 	rcu_assign_pointer(tsk->sighand, sig);
778 	if (!sig)
779 		return -ENOMEM;
780 	atomic_set(&sig->count, 1);
781 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
782 	return 0;
783 }
784 
__cleanup_sighand(struct sighand_struct * sighand)785 void __cleanup_sighand(struct sighand_struct *sighand)
786 {
787 	if (atomic_dec_and_test(&sighand->count))
788 		kmem_cache_free(sighand_cachep, sighand);
789 }
790 
791 
792 /*
793  * Initialize POSIX timer handling for a thread group.
794  */
posix_cpu_timers_init_group(struct signal_struct * sig)795 static void posix_cpu_timers_init_group(struct signal_struct *sig)
796 {
797 	/* Thread group counters. */
798 	thread_group_cputime_init(sig);
799 
800 	/* Expiration times and increments. */
801 	sig->it_virt_expires = cputime_zero;
802 	sig->it_virt_incr = cputime_zero;
803 	sig->it_prof_expires = cputime_zero;
804 	sig->it_prof_incr = cputime_zero;
805 
806 	/* Cached expiration times. */
807 	sig->cputime_expires.prof_exp = cputime_zero;
808 	sig->cputime_expires.virt_exp = cputime_zero;
809 	sig->cputime_expires.sched_exp = 0;
810 
811 	/* The timer lists. */
812 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
813 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
814 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
815 }
816 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)817 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
818 {
819 	struct signal_struct *sig;
820 
821 	if (clone_flags & CLONE_THREAD) {
822 		atomic_inc(&current->signal->count);
823 		atomic_inc(&current->signal->live);
824 		return 0;
825 	}
826 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
827 
828 	if (sig)
829 		posix_cpu_timers_init_group(sig);
830 
831 	tsk->signal = sig;
832 	if (!sig)
833 		return -ENOMEM;
834 
835 	atomic_set(&sig->count, 1);
836 	atomic_set(&sig->live, 1);
837 	init_waitqueue_head(&sig->wait_chldexit);
838 	sig->flags = 0;
839 	sig->group_exit_code = 0;
840 	sig->group_exit_task = NULL;
841 	sig->group_stop_count = 0;
842 	sig->curr_target = tsk;
843 	init_sigpending(&sig->shared_pending);
844 	INIT_LIST_HEAD(&sig->posix_timers);
845 
846 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
847 	sig->it_real_incr.tv64 = 0;
848 	sig->real_timer.function = it_real_fn;
849 
850 	sig->leader = 0;	/* session leadership doesn't inherit */
851 	sig->tty_old_pgrp = NULL;
852 	sig->tty = NULL;
853 
854 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
855 	sig->gtime = cputime_zero;
856 	sig->cgtime = cputime_zero;
857 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
858 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
859 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
860 	task_io_accounting_init(&sig->ioac);
861 	sig->sum_sched_runtime = 0;
862 	taskstats_tgid_init(sig);
863 
864 	task_lock(current->group_leader);
865 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
866 	task_unlock(current->group_leader);
867 
868 	acct_init_pacct(&sig->pacct);
869 
870 	tty_audit_fork(sig);
871 
872 	return 0;
873 }
874 
__cleanup_signal(struct signal_struct * sig)875 void __cleanup_signal(struct signal_struct *sig)
876 {
877 	thread_group_cputime_free(sig);
878 	tty_kref_put(sig->tty);
879 	kmem_cache_free(signal_cachep, sig);
880 }
881 
cleanup_signal(struct task_struct * tsk)882 static void cleanup_signal(struct task_struct *tsk)
883 {
884 	struct signal_struct *sig = tsk->signal;
885 
886 	atomic_dec(&sig->live);
887 
888 	if (atomic_dec_and_test(&sig->count))
889 		__cleanup_signal(sig);
890 }
891 
copy_flags(unsigned long clone_flags,struct task_struct * p)892 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
893 {
894 	unsigned long new_flags = p->flags;
895 
896 	new_flags &= ~PF_SUPERPRIV;
897 	new_flags |= PF_FORKNOEXEC;
898 	new_flags |= PF_STARTING;
899 	p->flags = new_flags;
900 	clear_freeze_flag(p);
901 }
902 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)903 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
904 {
905 	current->clear_child_tid = tidptr;
906 
907 	return task_pid_vnr(current);
908 }
909 
rt_mutex_init_task(struct task_struct * p)910 static void rt_mutex_init_task(struct task_struct *p)
911 {
912 	spin_lock_init(&p->pi_lock);
913 #ifdef CONFIG_RT_MUTEXES
914 	plist_head_init(&p->pi_waiters, &p->pi_lock);
915 	p->pi_blocked_on = NULL;
916 #endif
917 }
918 
919 #ifdef CONFIG_MM_OWNER
mm_init_owner(struct mm_struct * mm,struct task_struct * p)920 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
921 {
922 	mm->owner = p;
923 }
924 #endif /* CONFIG_MM_OWNER */
925 
926 /*
927  * Initialize POSIX timer handling for a single task.
928  */
posix_cpu_timers_init(struct task_struct * tsk)929 static void posix_cpu_timers_init(struct task_struct *tsk)
930 {
931 	tsk->cputime_expires.prof_exp = cputime_zero;
932 	tsk->cputime_expires.virt_exp = cputime_zero;
933 	tsk->cputime_expires.sched_exp = 0;
934 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
935 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
936 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
937 }
938 
939 /*
940  * This creates a new process as a copy of the old one,
941  * but does not actually start it yet.
942  *
943  * It copies the registers, and all the appropriate
944  * parts of the process environment (as per the clone
945  * flags). The actual kick-off is left to the caller.
946  */
copy_process(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace)947 static struct task_struct *copy_process(unsigned long clone_flags,
948 					unsigned long stack_start,
949 					struct pt_regs *regs,
950 					unsigned long stack_size,
951 					int __user *child_tidptr,
952 					struct pid *pid,
953 					int trace)
954 {
955 	int retval;
956 	struct task_struct *p;
957 	int cgroup_callbacks_done = 0;
958 
959 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
960 		return ERR_PTR(-EINVAL);
961 
962 	/*
963 	 * Thread groups must share signals as well, and detached threads
964 	 * can only be started up within the thread group.
965 	 */
966 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
967 		return ERR_PTR(-EINVAL);
968 
969 	/*
970 	 * Shared signal handlers imply shared VM. By way of the above,
971 	 * thread groups also imply shared VM. Blocking this case allows
972 	 * for various simplifications in other code.
973 	 */
974 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
975 		return ERR_PTR(-EINVAL);
976 
977 	retval = security_task_create(clone_flags);
978 	if (retval)
979 		goto fork_out;
980 
981 	retval = -ENOMEM;
982 	p = dup_task_struct(current);
983 	if (!p)
984 		goto fork_out;
985 
986 	rt_mutex_init_task(p);
987 
988 #ifdef CONFIG_PROVE_LOCKING
989 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
990 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
991 #endif
992 	retval = -EAGAIN;
993 	if (atomic_read(&p->real_cred->user->processes) >=
994 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
995 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
996 		    p->real_cred->user != INIT_USER)
997 			goto bad_fork_free;
998 	}
999 
1000 	retval = copy_creds(p, clone_flags);
1001 	if (retval < 0)
1002 		goto bad_fork_free;
1003 
1004 	/*
1005 	 * If multiple threads are within copy_process(), then this check
1006 	 * triggers too late. This doesn't hurt, the check is only there
1007 	 * to stop root fork bombs.
1008 	 */
1009 	retval = -EAGAIN;
1010 	if (nr_threads >= max_threads)
1011 		goto bad_fork_cleanup_count;
1012 
1013 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1014 		goto bad_fork_cleanup_count;
1015 
1016 	if (p->binfmt && !try_module_get(p->binfmt->module))
1017 		goto bad_fork_cleanup_put_domain;
1018 
1019 	p->did_exec = 0;
1020 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1021 	copy_flags(clone_flags, p);
1022 	INIT_LIST_HEAD(&p->children);
1023 	INIT_LIST_HEAD(&p->sibling);
1024 #ifdef CONFIG_PREEMPT_RCU
1025 	p->rcu_read_lock_nesting = 0;
1026 	p->rcu_flipctr_idx = 0;
1027 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1028 	p->vfork_done = NULL;
1029 	spin_lock_init(&p->alloc_lock);
1030 
1031 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1032 	init_sigpending(&p->pending);
1033 
1034 	p->utime = cputime_zero;
1035 	p->stime = cputime_zero;
1036 	p->gtime = cputime_zero;
1037 	p->utimescaled = cputime_zero;
1038 	p->stimescaled = cputime_zero;
1039 	p->prev_utime = cputime_zero;
1040 	p->prev_stime = cputime_zero;
1041 
1042 	p->default_timer_slack_ns = current->timer_slack_ns;
1043 
1044 #ifdef CONFIG_DETECT_SOFTLOCKUP
1045 	p->last_switch_count = 0;
1046 	p->last_switch_timestamp = 0;
1047 #endif
1048 
1049 	task_io_accounting_init(&p->ioac);
1050 	acct_clear_integrals(p);
1051 
1052 	posix_cpu_timers_init(p);
1053 
1054 	p->lock_depth = -1;		/* -1 = no lock */
1055 	do_posix_clock_monotonic_gettime(&p->start_time);
1056 	p->real_start_time = p->start_time;
1057 	monotonic_to_bootbased(&p->real_start_time);
1058 	p->io_context = NULL;
1059 	p->audit_context = NULL;
1060 	cgroup_fork(p);
1061 #ifdef CONFIG_NUMA
1062 	p->mempolicy = mpol_dup(p->mempolicy);
1063  	if (IS_ERR(p->mempolicy)) {
1064  		retval = PTR_ERR(p->mempolicy);
1065  		p->mempolicy = NULL;
1066  		goto bad_fork_cleanup_cgroup;
1067  	}
1068 	mpol_fix_fork_child_flag(p);
1069 #endif
1070 #ifdef CONFIG_TRACE_IRQFLAGS
1071 	p->irq_events = 0;
1072 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1073 	p->hardirqs_enabled = 1;
1074 #else
1075 	p->hardirqs_enabled = 0;
1076 #endif
1077 	p->hardirq_enable_ip = 0;
1078 	p->hardirq_enable_event = 0;
1079 	p->hardirq_disable_ip = _THIS_IP_;
1080 	p->hardirq_disable_event = 0;
1081 	p->softirqs_enabled = 1;
1082 	p->softirq_enable_ip = _THIS_IP_;
1083 	p->softirq_enable_event = 0;
1084 	p->softirq_disable_ip = 0;
1085 	p->softirq_disable_event = 0;
1086 	p->hardirq_context = 0;
1087 	p->softirq_context = 0;
1088 #endif
1089 #ifdef CONFIG_LOCKDEP
1090 	p->lockdep_depth = 0; /* no locks held yet */
1091 	p->curr_chain_key = 0;
1092 	p->lockdep_recursion = 0;
1093 #endif
1094 
1095 #ifdef CONFIG_DEBUG_MUTEXES
1096 	p->blocked_on = NULL; /* not blocked yet */
1097 #endif
1098 	if (unlikely(current->ptrace))
1099 		ptrace_fork(p, clone_flags);
1100 
1101 	/* Perform scheduler related setup. Assign this task to a CPU. */
1102 	sched_fork(p, clone_flags);
1103 
1104 	if ((retval = audit_alloc(p)))
1105 		goto bad_fork_cleanup_policy;
1106 	/* copy all the process information */
1107 	if ((retval = copy_semundo(clone_flags, p)))
1108 		goto bad_fork_cleanup_audit;
1109 	if ((retval = copy_files(clone_flags, p)))
1110 		goto bad_fork_cleanup_semundo;
1111 	if ((retval = copy_fs(clone_flags, p)))
1112 		goto bad_fork_cleanup_files;
1113 	if ((retval = copy_sighand(clone_flags, p)))
1114 		goto bad_fork_cleanup_fs;
1115 	if ((retval = copy_signal(clone_flags, p)))
1116 		goto bad_fork_cleanup_sighand;
1117 	if ((retval = copy_mm(clone_flags, p)))
1118 		goto bad_fork_cleanup_signal;
1119 	if ((retval = copy_namespaces(clone_flags, p)))
1120 		goto bad_fork_cleanup_mm;
1121 	if ((retval = copy_io(clone_flags, p)))
1122 		goto bad_fork_cleanup_namespaces;
1123 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1124 	if (retval)
1125 		goto bad_fork_cleanup_io;
1126 
1127 	if (pid != &init_struct_pid) {
1128 		retval = -ENOMEM;
1129 		pid = alloc_pid(p->nsproxy->pid_ns);
1130 		if (!pid)
1131 			goto bad_fork_cleanup_io;
1132 
1133 		if (clone_flags & CLONE_NEWPID) {
1134 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1135 			if (retval < 0)
1136 				goto bad_fork_free_pid;
1137 		}
1138 	}
1139 
1140 	ftrace_graph_init_task(p);
1141 
1142 	p->pid = pid_nr(pid);
1143 	p->tgid = p->pid;
1144 	if (clone_flags & CLONE_THREAD)
1145 		p->tgid = current->tgid;
1146 
1147 	if (current->nsproxy != p->nsproxy) {
1148 		retval = ns_cgroup_clone(p, pid);
1149 		if (retval)
1150 			goto bad_fork_free_graph;
1151 	}
1152 
1153 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1154 	/*
1155 	 * Clear TID on mm_release()?
1156 	 */
1157 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1158 #ifdef CONFIG_FUTEX
1159 	p->robust_list = NULL;
1160 #ifdef CONFIG_COMPAT
1161 	p->compat_robust_list = NULL;
1162 #endif
1163 	INIT_LIST_HEAD(&p->pi_state_list);
1164 	p->pi_state_cache = NULL;
1165 #endif
1166 	/*
1167 	 * sigaltstack should be cleared when sharing the same VM
1168 	 */
1169 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1170 		p->sas_ss_sp = p->sas_ss_size = 0;
1171 
1172 	/*
1173 	 * Syscall tracing should be turned off in the child regardless
1174 	 * of CLONE_PTRACE.
1175 	 */
1176 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1177 #ifdef TIF_SYSCALL_EMU
1178 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1179 #endif
1180 	clear_all_latency_tracing(p);
1181 
1182 	/* ok, now we should be set up.. */
1183 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1184 	p->pdeath_signal = 0;
1185 	p->exit_state = 0;
1186 
1187 	/*
1188 	 * Ok, make it visible to the rest of the system.
1189 	 * We dont wake it up yet.
1190 	 */
1191 	p->group_leader = p;
1192 	INIT_LIST_HEAD(&p->thread_group);
1193 
1194 	/* Now that the task is set up, run cgroup callbacks if
1195 	 * necessary. We need to run them before the task is visible
1196 	 * on the tasklist. */
1197 	cgroup_fork_callbacks(p);
1198 	cgroup_callbacks_done = 1;
1199 
1200 	/* Need tasklist lock for parent etc handling! */
1201 	write_lock_irq(&tasklist_lock);
1202 
1203 	/*
1204 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1205 	 * not be changed, nor will its assigned CPU.
1206 	 *
1207 	 * The cpus_allowed mask of the parent may have changed after it was
1208 	 * copied first time - so re-copy it here, then check the child's CPU
1209 	 * to ensure it is on a valid CPU (and if not, just force it back to
1210 	 * parent's CPU). This avoids alot of nasty races.
1211 	 */
1212 	p->cpus_allowed = current->cpus_allowed;
1213 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1214 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1215 			!cpu_online(task_cpu(p))))
1216 		set_task_cpu(p, smp_processor_id());
1217 
1218 	/* CLONE_PARENT re-uses the old parent */
1219 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1220 		p->real_parent = current->real_parent;
1221 		p->parent_exec_id = current->parent_exec_id;
1222 	} else {
1223 		p->real_parent = current;
1224 		p->parent_exec_id = current->self_exec_id;
1225 	}
1226 
1227 	spin_lock(&current->sighand->siglock);
1228 
1229 	/*
1230 	 * Process group and session signals need to be delivered to just the
1231 	 * parent before the fork or both the parent and the child after the
1232 	 * fork. Restart if a signal comes in before we add the new process to
1233 	 * it's process group.
1234 	 * A fatal signal pending means that current will exit, so the new
1235 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1236  	 */
1237 	recalc_sigpending();
1238 	if (signal_pending(current)) {
1239 		spin_unlock(&current->sighand->siglock);
1240 		write_unlock_irq(&tasklist_lock);
1241 		retval = -ERESTARTNOINTR;
1242 		goto bad_fork_free_graph;
1243 	}
1244 
1245 	if (clone_flags & CLONE_THREAD) {
1246 		p->group_leader = current->group_leader;
1247 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1248 	}
1249 
1250 	if (likely(p->pid)) {
1251 		list_add_tail(&p->sibling, &p->real_parent->children);
1252 		tracehook_finish_clone(p, clone_flags, trace);
1253 
1254 		if (thread_group_leader(p)) {
1255 			if (clone_flags & CLONE_NEWPID)
1256 				p->nsproxy->pid_ns->child_reaper = p;
1257 
1258 			p->signal->leader_pid = pid;
1259 			tty_kref_put(p->signal->tty);
1260 			p->signal->tty = tty_kref_get(current->signal->tty);
1261 			set_task_pgrp(p, task_pgrp_nr(current));
1262 			set_task_session(p, task_session_nr(current));
1263 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1264 			attach_pid(p, PIDTYPE_SID, task_session(current));
1265 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1266 			__get_cpu_var(process_counts)++;
1267 		}
1268 		attach_pid(p, PIDTYPE_PID, pid);
1269 		nr_threads++;
1270 	}
1271 
1272 	total_forks++;
1273 	spin_unlock(&current->sighand->siglock);
1274 	write_unlock_irq(&tasklist_lock);
1275 	proc_fork_connector(p);
1276 	cgroup_post_fork(p);
1277 	return p;
1278 
1279 bad_fork_free_graph:
1280 	ftrace_graph_exit_task(p);
1281 bad_fork_free_pid:
1282 	if (pid != &init_struct_pid)
1283 		free_pid(pid);
1284 bad_fork_cleanup_io:
1285 	put_io_context(p->io_context);
1286 bad_fork_cleanup_namespaces:
1287 	exit_task_namespaces(p);
1288 bad_fork_cleanup_mm:
1289 	if (p->mm)
1290 		mmput(p->mm);
1291 bad_fork_cleanup_signal:
1292 	cleanup_signal(p);
1293 bad_fork_cleanup_sighand:
1294 	__cleanup_sighand(p->sighand);
1295 bad_fork_cleanup_fs:
1296 	exit_fs(p); /* blocking */
1297 bad_fork_cleanup_files:
1298 	exit_files(p); /* blocking */
1299 bad_fork_cleanup_semundo:
1300 	exit_sem(p);
1301 bad_fork_cleanup_audit:
1302 	audit_free(p);
1303 bad_fork_cleanup_policy:
1304 #ifdef CONFIG_NUMA
1305 	mpol_put(p->mempolicy);
1306 bad_fork_cleanup_cgroup:
1307 #endif
1308 	cgroup_exit(p, cgroup_callbacks_done);
1309 	delayacct_tsk_free(p);
1310 	if (p->binfmt)
1311 		module_put(p->binfmt->module);
1312 bad_fork_cleanup_put_domain:
1313 	module_put(task_thread_info(p)->exec_domain->module);
1314 bad_fork_cleanup_count:
1315 	atomic_dec(&p->cred->user->processes);
1316 	put_cred(p->real_cred);
1317 	put_cred(p->cred);
1318 bad_fork_free:
1319 	free_task(p);
1320 fork_out:
1321 	return ERR_PTR(retval);
1322 }
1323 
idle_regs(struct pt_regs * regs)1324 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1325 {
1326 	memset(regs, 0, sizeof(struct pt_regs));
1327 	return regs;
1328 }
1329 
fork_idle(int cpu)1330 struct task_struct * __cpuinit fork_idle(int cpu)
1331 {
1332 	struct task_struct *task;
1333 	struct pt_regs regs;
1334 
1335 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1336 			    &init_struct_pid, 0);
1337 	if (!IS_ERR(task))
1338 		init_idle(task, cpu);
1339 
1340 	return task;
1341 }
1342 
1343 #ifdef CONFIG_QEMU_TRACE
1344 extern void qemu_trace_fork(struct task_struct *forked, unsigned long clone_flags);
1345 #endif
1346 
1347 /*
1348  *  Ok, this is the main fork-routine.
1349  *
1350  * It copies the process, and if successful kick-starts
1351  * it and waits for it to finish using the VM if required.
1352  */
do_fork(unsigned long clone_flags,unsigned long stack_start,struct pt_regs * regs,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)1353 long do_fork(unsigned long clone_flags,
1354 	      unsigned long stack_start,
1355 	      struct pt_regs *regs,
1356 	      unsigned long stack_size,
1357 	      int __user *parent_tidptr,
1358 	      int __user *child_tidptr)
1359 {
1360 	struct task_struct *p;
1361 	int trace = 0;
1362 	long nr;
1363 
1364 	/*
1365 	 * Do some preliminary argument and permissions checking before we
1366 	 * actually start allocating stuff
1367 	 */
1368 	if (clone_flags & CLONE_NEWUSER) {
1369 		if (clone_flags & CLONE_THREAD)
1370 			return -EINVAL;
1371 		/* hopefully this check will go away when userns support is
1372 		 * complete
1373 		 */
1374 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1375 				!capable(CAP_SETGID))
1376 			return -EPERM;
1377 	}
1378 
1379 	/*
1380 	 * We hope to recycle these flags after 2.6.26
1381 	 */
1382 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1383 		static int __read_mostly count = 100;
1384 
1385 		if (count > 0 && printk_ratelimit()) {
1386 			char comm[TASK_COMM_LEN];
1387 
1388 			count--;
1389 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1390 					"clone flags 0x%lx\n",
1391 				get_task_comm(comm, current),
1392 				clone_flags & CLONE_STOPPED);
1393 		}
1394 	}
1395 
1396 	/*
1397 	 * When called from kernel_thread, don't do user tracing stuff.
1398 	 */
1399 	if (likely(user_mode(regs)))
1400 		trace = tracehook_prepare_clone(clone_flags);
1401 
1402 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1403 			 child_tidptr, NULL, trace);
1404 	/*
1405 	 * Do this prior waking up the new thread - the thread pointer
1406 	 * might get invalid after that point, if the thread exits quickly.
1407 	 */
1408 	if (!IS_ERR(p)) {
1409 		struct completion vfork;
1410 
1411 		trace_sched_process_fork(current, p);
1412 
1413 		nr = task_pid_vnr(p);
1414 
1415 		if (clone_flags & CLONE_PARENT_SETTID)
1416 			put_user(nr, parent_tidptr);
1417 
1418 		if (clone_flags & CLONE_VFORK) {
1419 			p->vfork_done = &vfork;
1420 			init_completion(&vfork);
1421 		}
1422 
1423 		audit_finish_fork(p);
1424 		tracehook_report_clone(trace, regs, clone_flags, nr, p);
1425 
1426 		/*
1427 		 * We set PF_STARTING at creation in case tracing wants to
1428 		 * use this to distinguish a fully live task from one that
1429 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1430 		 * clear it and set the child going.
1431 		 */
1432 		p->flags &= ~PF_STARTING;
1433 
1434 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1435 			/*
1436 			 * We'll start up with an immediate SIGSTOP.
1437 			 */
1438 			sigaddset(&p->pending.signal, SIGSTOP);
1439 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1440 			__set_task_state(p, TASK_STOPPED);
1441 		} else {
1442 			wake_up_new_task(p, clone_flags);
1443 		}
1444 
1445 		tracehook_report_clone_complete(trace, regs,
1446 						clone_flags, nr, p);
1447 
1448 #ifdef CONFIG_QEMU_TRACE
1449                 qemu_trace_fork(p, clone_flags);
1450 #endif
1451 
1452 		if (clone_flags & CLONE_VFORK) {
1453 			freezer_do_not_count();
1454 			wait_for_completion(&vfork);
1455 			freezer_count();
1456 			tracehook_report_vfork_done(p, nr);
1457 		}
1458 	} else {
1459 		nr = PTR_ERR(p);
1460 	}
1461 	return nr;
1462 }
1463 
1464 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1465 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1466 #endif
1467 
sighand_ctor(void * data)1468 static void sighand_ctor(void *data)
1469 {
1470 	struct sighand_struct *sighand = data;
1471 
1472 	spin_lock_init(&sighand->siglock);
1473 	init_waitqueue_head(&sighand->signalfd_wqh);
1474 }
1475 
proc_caches_init(void)1476 void __init proc_caches_init(void)
1477 {
1478 	sighand_cachep = kmem_cache_create("sighand_cache",
1479 			sizeof(struct sighand_struct), 0,
1480 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1481 			sighand_ctor);
1482 	signal_cachep = kmem_cache_create("signal_cache",
1483 			sizeof(struct signal_struct), 0,
1484 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1485 	files_cachep = kmem_cache_create("files_cache",
1486 			sizeof(struct files_struct), 0,
1487 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1488 	fs_cachep = kmem_cache_create("fs_cache",
1489 			sizeof(struct fs_struct), 0,
1490 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1491 	mm_cachep = kmem_cache_create("mm_struct",
1492 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1493 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1494 	mmap_init();
1495 }
1496 
1497 /*
1498  * Check constraints on flags passed to the unshare system call and
1499  * force unsharing of additional process context as appropriate.
1500  */
check_unshare_flags(unsigned long * flags_ptr)1501 static void check_unshare_flags(unsigned long *flags_ptr)
1502 {
1503 	/*
1504 	 * If unsharing a thread from a thread group, must also
1505 	 * unshare vm.
1506 	 */
1507 	if (*flags_ptr & CLONE_THREAD)
1508 		*flags_ptr |= CLONE_VM;
1509 
1510 	/*
1511 	 * If unsharing vm, must also unshare signal handlers.
1512 	 */
1513 	if (*flags_ptr & CLONE_VM)
1514 		*flags_ptr |= CLONE_SIGHAND;
1515 
1516 	/*
1517 	 * If unsharing signal handlers and the task was created
1518 	 * using CLONE_THREAD, then must unshare the thread
1519 	 */
1520 	if ((*flags_ptr & CLONE_SIGHAND) &&
1521 	    (atomic_read(&current->signal->count) > 1))
1522 		*flags_ptr |= CLONE_THREAD;
1523 
1524 	/*
1525 	 * If unsharing namespace, must also unshare filesystem information.
1526 	 */
1527 	if (*flags_ptr & CLONE_NEWNS)
1528 		*flags_ptr |= CLONE_FS;
1529 }
1530 
1531 /*
1532  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1533  */
unshare_thread(unsigned long unshare_flags)1534 static int unshare_thread(unsigned long unshare_flags)
1535 {
1536 	if (unshare_flags & CLONE_THREAD)
1537 		return -EINVAL;
1538 
1539 	return 0;
1540 }
1541 
1542 /*
1543  * Unshare the filesystem structure if it is being shared
1544  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)1545 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1546 {
1547 	struct fs_struct *fs = current->fs;
1548 
1549 	if ((unshare_flags & CLONE_FS) &&
1550 	    (fs && atomic_read(&fs->count) > 1)) {
1551 		*new_fsp = __copy_fs_struct(current->fs);
1552 		if (!*new_fsp)
1553 			return -ENOMEM;
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 /*
1560  * Unsharing of sighand is not supported yet
1561  */
unshare_sighand(unsigned long unshare_flags,struct sighand_struct ** new_sighp)1562 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1563 {
1564 	struct sighand_struct *sigh = current->sighand;
1565 
1566 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1567 		return -EINVAL;
1568 	else
1569 		return 0;
1570 }
1571 
1572 /*
1573  * Unshare vm if it is being shared
1574  */
unshare_vm(unsigned long unshare_flags,struct mm_struct ** new_mmp)1575 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1576 {
1577 	struct mm_struct *mm = current->mm;
1578 
1579 	if ((unshare_flags & CLONE_VM) &&
1580 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1581 		return -EINVAL;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 /*
1588  * Unshare file descriptor table if it is being shared
1589  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)1590 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1591 {
1592 	struct files_struct *fd = current->files;
1593 	int error = 0;
1594 
1595 	if ((unshare_flags & CLONE_FILES) &&
1596 	    (fd && atomic_read(&fd->count) > 1)) {
1597 		*new_fdp = dup_fd(fd, &error);
1598 		if (!*new_fdp)
1599 			return error;
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 /*
1606  * unshare allows a process to 'unshare' part of the process
1607  * context which was originally shared using clone.  copy_*
1608  * functions used by do_fork() cannot be used here directly
1609  * because they modify an inactive task_struct that is being
1610  * constructed. Here we are modifying the current, active,
1611  * task_struct.
1612  */
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)1613 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1614 {
1615 	int err = 0;
1616 	struct fs_struct *fs, *new_fs = NULL;
1617 	struct sighand_struct *new_sigh = NULL;
1618 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1619 	struct files_struct *fd, *new_fd = NULL;
1620 	struct nsproxy *new_nsproxy = NULL;
1621 	int do_sysvsem = 0;
1622 
1623 	check_unshare_flags(&unshare_flags);
1624 
1625 	/* Return -EINVAL for all unsupported flags */
1626 	err = -EINVAL;
1627 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1628 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1629 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1630 		goto bad_unshare_out;
1631 
1632 	/*
1633 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1634 	 * to a new ipc namespace, the semaphore arrays from the old
1635 	 * namespace are unreachable.
1636 	 */
1637 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1638 		do_sysvsem = 1;
1639 	if ((err = unshare_thread(unshare_flags)))
1640 		goto bad_unshare_out;
1641 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1642 		goto bad_unshare_cleanup_thread;
1643 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1644 		goto bad_unshare_cleanup_fs;
1645 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1646 		goto bad_unshare_cleanup_sigh;
1647 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1648 		goto bad_unshare_cleanup_vm;
1649 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1650 			new_fs)))
1651 		goto bad_unshare_cleanup_fd;
1652 
1653 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1654 		if (do_sysvsem) {
1655 			/*
1656 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1657 			 */
1658 			exit_sem(current);
1659 		}
1660 
1661 		if (new_nsproxy) {
1662 			switch_task_namespaces(current, new_nsproxy);
1663 			new_nsproxy = NULL;
1664 		}
1665 
1666 		task_lock(current);
1667 
1668 		if (new_fs) {
1669 			fs = current->fs;
1670 			current->fs = new_fs;
1671 			new_fs = fs;
1672 		}
1673 
1674 		if (new_mm) {
1675 			mm = current->mm;
1676 			active_mm = current->active_mm;
1677 			current->mm = new_mm;
1678 			current->active_mm = new_mm;
1679 			activate_mm(active_mm, new_mm);
1680 			new_mm = mm;
1681 		}
1682 
1683 		if (new_fd) {
1684 			fd = current->files;
1685 			current->files = new_fd;
1686 			new_fd = fd;
1687 		}
1688 
1689 		task_unlock(current);
1690 	}
1691 
1692 	if (new_nsproxy)
1693 		put_nsproxy(new_nsproxy);
1694 
1695 bad_unshare_cleanup_fd:
1696 	if (new_fd)
1697 		put_files_struct(new_fd);
1698 
1699 bad_unshare_cleanup_vm:
1700 	if (new_mm)
1701 		mmput(new_mm);
1702 
1703 bad_unshare_cleanup_sigh:
1704 	if (new_sigh)
1705 		if (atomic_dec_and_test(&new_sigh->count))
1706 			kmem_cache_free(sighand_cachep, new_sigh);
1707 
1708 bad_unshare_cleanup_fs:
1709 	if (new_fs)
1710 		put_fs_struct(new_fs);
1711 
1712 bad_unshare_cleanup_thread:
1713 bad_unshare_out:
1714 	return err;
1715 }
1716 
1717 /*
1718  *	Helper to unshare the files of the current task.
1719  *	We don't want to expose copy_files internals to
1720  *	the exec layer of the kernel.
1721  */
1722 
unshare_files(struct files_struct ** displaced)1723 int unshare_files(struct files_struct **displaced)
1724 {
1725 	struct task_struct *task = current;
1726 	struct files_struct *copy = NULL;
1727 	int error;
1728 
1729 	error = unshare_fd(CLONE_FILES, &copy);
1730 	if (error || !copy) {
1731 		*displaced = NULL;
1732 		return error;
1733 	}
1734 	*displaced = task->files;
1735 	task_lock(task);
1736 	task->files = copy;
1737 	task_unlock(task);
1738 	return 0;
1739 }
1740